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Abstract

In this paper, we study learning-augmented algorithms for the Bahncard problem.
The Bahncard problem is a generalization of the ski-rental problem, where a traveler
needs to irrevocably and repeatedly decide between a cheap short-term solution and
an expensive long-term one with an unknown future. Even though the problem is
canonical, only a primal-dual-based learning-augmented algorithm was explicitly
designed for it. We develop a new learning-augmented algorithm, named PFSUM,
that incorporates both history and short-term future to improve online decision
making. We derive the competitive ratio of PFSUM as a function of the prediction
error and conduct extensive experiments to show that PFSUM outperforms the
primal-dual-based algorithm.

1 Introduction

The Bahncard is a railway pass of the German railway company, which provides a discount on all
train tickets for a fixed time period of pass validity. When a travel request arises, a traveler can buy
the train ticket with the regular price, or purchase a Bahncard first and get entitled to a discount on all
train tickets within its valid time. The Bahncard problem is an online cost minimization problem,
whose objective is to minimize the overall cost of pass and ticket purchases, without knowledge of
future travel requests [1]. It reveals a recurring renting-or-buying phenomenon, where an online
algorithm needs to irrevocably and repeatedly decide between a cheap short-term solution and an
expensive long-term one with an unknown future. The performance of an online algorithm is typically
measured by the competitive ratio, which is the worst-case ratio across all inputs between the costs of
the online algorithm and an optimal offline one [2].

Recently, there has been growing interest in using machine-learned predictions to improve online
algorithms. One seminal work was done by Lykouris and Vassilvtiskii [3] for the caching problem, in
which the online algorithms are allowed to leverage predictions of future inputs to make decisions,
but they are not given any guarantee on the prediction accuracy. Since then, the framework of online
algorithms with predictions has been extensively studied for a wide range of problems including
ski-rental [4–8], scheduling [9, 10], graph optimization [11], covering [12, 13], data structures [14–
16], etc. In this framework, the measurements for the online algorithms include consistency and
robustness, where the former refers to the competitive ratio under perfect predictions while the latter
refers to the upper bound of the competitive ratio when the predictions can be arbitrarily bad.

The Bahncard problem with machine-learned predictions was recently studied by Bamas et al. [12].
They designed a primal-dual-based algorithm assuming given a prediction of the optimal solution,
i.e., an optimal collection of times to purchase Bahncards such that the total cost is minimized. While
Bamas et al. [12] presented an elegant framework for seamlessly integrating the primal-dual method
with a predicted solution, their approach faces three critical issues. First, their considered scenario is
limited, involving slotted time and a fixed ticket price of 1 for any travel request. The discretization is
necessary for them to formulate an integer program and enable the application of the primal-dual
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method proposed by Buchbinder et al. [17]. Second, their results of consistency and robustness are
weak in that they only hold under the condition that the cost of a Bahncard goes towards infinity,
in which case the optimal solution is to never buy any Bahncard. Last, their algorithm demands a
complete solution as input advice, which implies a predicted complete sequence of travel requests
over an arbitrarily long timespan, which is impractical for real employment.

In this paper, we study the Bahncard problem with machine-learned predictions, adopting a different
technical perspective. We address the general scenario where travel requests may arise at any
time with diverse ticket prices. We develop an algorithm, named PFSUM, which takes short-term
predictions on future trips as inputs. We derive its competitive ratio under any prediction error that is
naturally defined as the difference between the predicted and true values. To present our results, we
introduce several notations. The Bahncard problem is instantiated by three parameters and denoted
by BP(C, β, T ), meaning that a Bahncard costs C, reduces any (regular) ticket price p to βp for
some 0 ≤ β < 1, and is valid for a time period of T . When β = 0 and T → ∞, the Bahncard
problem reduces to the well-known ski-rental problem. Following the definition in [3, 4], we take
the competitive ratio of a learning-augmented online algorithm ALG as a function CRALG(η) of the
prediction error η. ALG is δ-consistent if CRALG(0) = δ, and ϑ-robust if CRALG(η) ≤ ϑ for all η.

At any time t when a travel request arises and there is no a valid Bahncard, a prediction on the total
(regular) ticket price of all travel requests in the upcoming interval [t, t+ T ) is made. Incorporating
this prediction, PFSUM purchases a Bahncard at time t when (i) the total ticket price in the past
interval (t− T, t] is at least γ and (ii) the predicted total ticket price in [t, t+ T ) is also at least γ,
where γ := C/(1− β). Denoting by η the maximum prediction error, we derive that

CRPFSUM(η) =

{
2γ+(2−β)η
(1+β)γ+βη 0 ≤ η ≤ γ,
(3−β)γ+η
(1+β)γ+βη η > γ.

(1)

The result shows that PFSUM is 2/(1 + β)-consistent and 1/β-robust, and its competitive ratio
degrades smoothly as the prediction error increases. We also share our experience in the design of
PFSUM with some interesting observations.

2 Related Work

The Bahncard problem. Fleischer [1] was the first to study the Bahncard problem. By extending
the optimal 2-competitive break-even algorithm for ski-rental, he proposed an optimal (2 − β)-
competitive deterministic algorithm named SUM for BP(C, β, T ). He also proposed a randomized
algorithm named RAND for BP(C, β,∞), and proved that it is e/(e − 1 + β)-competitive. He
conjectured that RAND keeps the same competitiveness for T < ∞. Karlin et al. [18] designed
a randomized online algorithm for TCP acknowledgement and applied it to BP(C, β, T ) with the
conjecture settled positively. In addition, the Bahncard problem was extended to several realistic
problems in computer systems such as bandwidth cost minimization [19], cloud instance reservation
[20], and data migration [21]. Notably, Wang et al. [20] designed algorithms incorporating short-term
predictions about the future for reserving virtual machine instances in clouds, which brings inspiration
to our algorithm design.

Learning-augmented algorithms. Learning-augmented algorithms aim to leverage machine-learned
predictions to improve the performance in both theory and practice [22]. Algorithms using possibly
imperfect predictions have found applications in numerous important problems [4–7, 9–11, 16, 23–27].
See https://algorithms-with-predictions.github.io/ for a comprehensive collection of
the literature.

To our knowledge, the only learning-augmented algorithms specifically designed for the Bahncard
problem were developed by Bamas et al. [12] and Drygala et al. [28]. Bamas et al. [12] proposed an
algorithm, named PDLA, which is λ/(1−β+λβ)·(eλ−β)/(eλ−1)-consistent and (eλ−β)/(eλ−1)-
robust when C → ∞, where λ ∈ (0, 1] is a hyper-parameter of the algorithm. Their method, as
previously discussed, is limited to scenarios with slotted time and uniform ticket prices for all travel
requests. Our approach significantly differs from [12]. First, we address the general scenario where
travel requests can arise at any time and feature varied ticket prices. Second, our algorithm utilizes
short-term predictions provided at the times when travel requests are made, in contrast to their method
which requires predicting a complete solution. We experimentally compare our algorithm with that of
[12] in Section 5. Drygala et al. [28] focused on how many predictions are required to gather enough
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information to output a near-optimal Bahncard purchasing schedule, assuming all predictions are
correct. The learning-augmented algorithm proposed takes a suggested sequence of buying times as
input and assumes a slotted time setting, thereby sharing similar drawbacks to [12].

Im et al. [26] explored a somewhat related TCP acknowledgement problem with machine-learned
predictions. They introduced a new prediction error measure designed to assess how much the optimal
objective value changes as the difference between actual requests and predicted requests varies. A
detailed comparison between our work and [26] is provided in Appendix A.1 of [29].

3 Preliminaries

We adhere to the notations coined by Fleischer [1]. BP(C, β, T ) with C > 0, T > 0, and 0 ≤ β < 1
is a request-answer game between an online algorithm ALG and an adversary (see, e.g., [30]). The
adversary presents a finite sequence of travel requests σ = σ1σ2 · · · , where each σi is a tuple (ti, pi)
that contains the travel time ti ≥ 0 and the regular ticket price pi ≥ 0. The travel requests are
presented in chronological order: 0 ≤ t1 < t2 < · · · .

ALG needs to react to each travel request σi. If ALG does not have a valid Bahncard, it can opt to
buy the ticket with the regular price pi, or first purchase a Bahncard which costs C, and then pay
the ticket price with a β-discount, i.e., βpi. A Bahncard purchased at time t is valid during the time
interval [t, t+ T ). Note that a travel request arising at time t+ T does not benefit from the Bahncard
purchased at time t. We say σi is a reduced request of ALG if ALG has a valid Bahncard at time ti.
Otherwise, σi is a regular request of ALG. We use ALG(σi) to denote ALG’s cost on σi:

ALG(σi) =

{
βpi ALG has a valid Bahncard at ti,
pi otherwise.

We denote by ALG(σ) the total cost of ALG for reacting to all the travel requests in σ. The
competitive ratio of ALG is defined by CRALG := maxσ ALG(σ)/OPT(σ), where OPT is an optimal
offline algorithm for BP(C, β, T ). We use ALG(σ; I) to denote the partial cost incurred during a time
interval I: ALG(σ; I) = C ·x+∑

i:ti∈I ALG(σi), where x is the number of Bahncards purchased by
ALG in I. Additionally, we use c(σ; I) to denote the total regular cost in I: c(σ; I) := ∑

i:ti∈I pi.

Given a time length l, we define the l-recent-cost of σ at time t as c(σ; (t− l, t]). Similarly, we define
the l-future-cost of σ at time t as c(σ; [t, t+ l)). In our design, we assume that when a travel request
(t, p) arises, a short-term prediction of the total regular cost in the time interval [t, t+T ) can be made.
To represent prediction errors, we use ĉ(σ; [t, t + T )) to denote the predicted total regular cost in
[t, t+ T ). Sometimes we are concerned about the regular requests of an algorithm ALG in a recent
time interval. Thus, we further define the regular l-recent-cost of ALG on σ at time t as

ALGr(σ; (t− l, t]
)
:=

∑

i:σi is a regular request of ALG in (t−l,t]

pi.

Without loss of generality, we assume that an online algorithm ALG or an optimal offline algorithm
OPT considers purchasing Bahncards at the times of regular requests only. The rationale is that the
purchase of a Bahncard at any other time can always be delayed to the next regular request without
increasing the total cost.

Lemma 3.1. [1] For any time t, if c
(
σ; [t, t+T )

)
≥ γ := C/(1− β), OPT has at least one reduced

request in [t, t+ T ). The same holds for the time interval (t, t+ T ].

γ is known as the break-even point, i.e., the threshold to purchase a Bahncard at time t for minimizing
the cost incurred in the time interval [t, t+ T ).

Corollary 3.2. At any time t, if the T -future-cost c
(
σ; [t, t + T )

)
< γ, OPT does not purchase a

Bahncard at t.

An optimal deterministic online algorithm for the Bahncard problem is SUM, which is (2 − β)-
competitive [1]. SUM purchases a Bahncard at a regular request (t, p) whenever its regular T -recent-
cost at time t is at least γ, i.e., SUMr(σ; (t− T, t]

)
≥ γ.
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4 Learning-Augmented Algorithms for the Bahncard Problem

4.1 Initial Attempt

The SUM algorithm developed in [1] purchases a Bahncard based on the cost incurred in the past only.
It is likely that there is no further travel request in the valid time of the Bahncard besides the request
at the purchasing time. Our initial attempt is an adaptation of the Aw

γ algorithm proposed in [20].
Aiming to save cost, the Aw

γ algorithm shifts the cost consideration for Bahncard purchasing towards
the future with the help of predictions. That is, a Bahncard is purchased based on a combination of
the actual cost incurred in the past and the predicted cost in the future. We name the adaptation of
Aw

γ to the Bahncard problem as SUMw.1 Specifically, at each regular request (t, p), SUMw predicts
the total regular cost in a prediction window (t, t + w] where w (0 < w < T ) is the length of the
prediction window. SUMw purchases a Bahncard at a regular request (t, p) whenever the sum of the
regular (T − w)-recent-cost at t and the predicted total regular cost in (t, t+ w] is at least γ, i.e.,

SUMr
w

(
σ; (t+ w − T, t]

)
+ ĉ

(
σ; (t, t+ w]

)
≥ γ. (2)

Note that SUMw reduces to SUM when w = 0.

Unfortunately, SUMw is not a good algorithm for using machine-learned predictions. We find that its
consistency is at least (3− β)/(1 + β), which is even larger than SUM’s competitive ratio of 2− β
since β < 1. We construct a travel request sequence to show the consistency result in Appendix A.2
of [29]. Moreover, SUMw does not have any bounded robustness. Consider another example where
only one travel request (t, p) arises with p → 0, but the predictor yields ĉ

(
σ; (t, t+ w]

)
≥ γ. Then,

SUMw purchases a Bahncard at (t, p). Thus, we have SUMw(σ)/OPT(σ) = (C + βp)/p → ∞.

SUMw fails because if a Bahncard is purchased at time t, it is possible that most of the ticket cost
in the interval (t + w − T, t + w] is incurred before t. Consequently, only a small fraction of the
ticket cost is incurred from t onward and can benefit from the Bahncard purchased. As a result,
SUMw suffers from the same deficiency as SUM. We remark that it is not helpful to set the prediction
window length w to T or even larger values, because the travel request arising at (or beyond) time
t+ T (if any) is not covered by the Bahncard purchased at time t.

4.2 Second Attempt

What we have learned from SUMw is that the Bahncard purchase condition should not be based on
the total ticket cost in a past time interval and a future prediction window. Thus, our second algorithm
FSUM (Future SUM) is designed to purchase a Bahncard at a regular request (t, p) whenever the
predicted T -future-cost at time t is at least γ, i.e.,

ĉ
(
σ; [t, t+ T )

)
≥ γ. (3)

Note that FSUM ̸= SUMT because the Bahncard purchase condition of SUMT is ĉ
(
σ; (t, t+T ]

)
≥ γ.

Theorem 4.1. FSUM is 2/(1 + β)-consistent.

The proof is given in Appendix A.3 of [29]. FSUM’s consistency is generally better than SUM’s
competitive ratio since 2/(1 + β) < 2− β always holds for 0 < β < 1. However, similar to SUMw,
FSUM does not have any bounded robustness. Consider again the example where only one travel
request (t, p) arises with p → 0, but the predictor yields ĉ(σ; [t, t+T )) ≥ γ. Then, FSUM purchases
a Bahncard at (t, p) and FSUM(σ)/OPT(σ) = (C + βp)/p → ∞.

4.3 PFSUM Algorithm

FSUM fails to achieve any bounded robustness because it completely ignores the historical infor-
mation in the Bahncard purchase condition. Thus, the worst case is that the actual ticket cost in the
prediction window is close to 0, while the predictor forecasts that it exceeds γ, in which case hardly
anything benefits from the Bahncard purchased. On the other hand, we note that SUM achieves a
decent competitive ratio because a Bahncard is purchased only when the regular T -recent-cost is

1Wang et al. [20] studied a restricted setting where time is slotted into hours and purchases are performed
only at the beginning of slots because virtual machine instances in clouds are billed in an hourly manner.
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at least γ, so that the Bahncard cost can be charged to the regular T -recent-cost in the competitive
analysis. Motivated by this observation, we introduce a new algorithm PFSUM (Past and Future
SUM), in which the Bahncard purchase condition incorporates the ticket costs in both a past time in-
terval and a future prediction window, but uses them separately rather than taking their sum. PFSUM
purchases a Bahncard at a regular request (t, p) whenever (i) the T -recent-cost at t is at least γ, i.e.,
c(σ; (t−T, t]) ≥ γ, and (ii) the predicted T -future-cost at t is also at least γ, i.e., ĉ(σ; [t, t+T )) ≥ γ.
Note that the first condition is different from the condition for SUM to purchase a Bahncard: PFSUM
considers the T -recent-cost, but SUM considers only the regular T -recent-cost. The rationale is that
by definition, the regular T -recent-cost is not covered by any Bahncard, so requiring it to be at least
γ for Bahncard purchase would make the algorithm less effective in saving cost. Compared with
FSUM, though PFSUM has an additional condition for purchasing the Bahncard, it is somewhat
surprising that PFSUM achieves the same consistency of 2/(1 + β) as FSUM, as shown below.

Given a travel request sequence σ, we use µ1 < · · · < µm to denote the times when PFSUM
purchases Bahncards. Accordingly, the timespan can be divided into epochs Ej := [µj , µj+1) for
0 ≤ j ≤ m, where we define µ0 = 0 and µm+1 = ∞. Each epoch Ej (except E0) starts with an on
phase [µj , µj + T ) (the valid time of the Bahncard purchased by PFSUM), followed by an off phase
[µj + T, µj+1) (in which there is no valid Bahncard by PFSUM). Epoch E0 has an off phase only.
We define η as the maximum prediction error among all the predictions used by PFSUM:

η := max
(t,p) is a regular request

∣∣ĉ
(
σ; [t, t+ T )

)
− c

(
σ; [t, t+ T )

)∣∣ . (4)

Then, for any travel request (t, p) in an off phase, we have

c
(
σ; [t, t+ T )

)
− η ≤ ĉ

(
σ; [t, t+ T )

)
≤ c

(
σ; [t, t+ T )

)
+ η. (5)

The following lemmas will be used frequently in the competitive analysis of PFSUM.
Lemma 4.2. The total regular cost in an on phase is at least γ − η.

Proof. If c(σ; [µj , µj + T )) < γ − η for some j, it follows from (5) that ĉ(σ; [µj , µj + T )) ≤
c(σ; [µj , µj + T )) + η < γ − η+ η = γ, which means that PFSUM would not purchase a Bahncard
at time µj , leading to a contradiction. Thus, we must have c(σ; [µj , µj + T )) ≥ γ − η.

Lemma 4.3. In an off phase, the total regular cost in any time interval [t, t+ l) of length l ≤ T is
less than 2γ + η.

Proof. Assume on the contrary that c(σ; [t, t+ l)) ≥ 2γ+η. We take the earliest travel request (t′, p)
in [t, t+ l) such that c(σ; [t, t′]) ≥ γ. This implies c(σ; [t, t′)) < γ. Then, we have c(σ; [t′, t+ l)) =
c(σ; [t, t+ l))− c(σ; [t, t′)) > 2γ + η− γ = γ + η. Hence, c(σ; (t′ − T, t′]) ≥ c(σ; [t, t′]) ≥ γ and
c
(
σ; [t′, t′ + T )

)
≥ c(σ; [t′, t + l)) > γ + η. By (5), the latter further leads to ĉ(σ; [t′, t′ + T )) ≥

c(σ; [t′, t′ + T )) − η > γ, which means that PFSUM should purchase a Bahncard at time t′,
contradicting that t′ ∈ [t, t+ l) is in the off phase. Hence, c(σ; [t, t+ T )) < 2γ + η must hold.

Lemma 4.4. Suppose a time interval [t, t+ T ) overlaps with an off phase. Among the total regular
cost in [t, t + T ), let s2, s3 and s4 denote those in the preceding on phase, the off phase, and the
succeeding on phase respectively (see Figure 1). If 0 ≤ η ≤ γ, s2 ≤ γ and s4 ≤ γ, then the total
regular cost in [t, t+ T ) is no more than 2γ + η, i.e., s2 + s3 + s4 ≤ 2γ + η.

time

on off

s3

︷ ︸︸ ︷︷ ︸︸ ︷ on︷ ︸︸ ︷

s2 s4

t t+ Tt′

Figure 1: Illustration for Lemma 4.4. The shaded rectangle is the valid time of a Bahncard purchased
by OPT.

Proof. Assume on the contrary that s2 + s3 + s4 > 2γ + η. Then, s3 > 0 and hence there is at least
one travel request during the off phase. We take the earliest travel request (t′, p) in the off phase,
such that c(σ; [t, t′]) ≥ γ. With a similar analysis to Lemma 4.3, we can derive that PFSUM should
purchase a Bahncard at time t′, contradicting that t′ is in the off phase.
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We adopt a divide-and-conquer approach to analyze PFSUM. Specifically, we focus on the time
intervals in which at least one of PFSUM and OPT has a valid Bahncard, and analyze the cost
ratio between PFSUM and OPT in these intervals. Consider a maximal contiguous time interval
throughout which at least one of PFSUM and OPT has a valid Bahncard. As shown in Figure 2,
there are 6 different patterns. If OPT and PFSUM purchase a Bahncard at the same time, the time
interval is exactly an on phase (Pattern I), and the cost ratio in it is 1 (Proposition 4.5). Otherwise,
there are 5 different cases: the time interval does not overlap with any on phase (Pattern II); and the
time interval overlaps with at least one on phase – it can start at some time in an on or off phase and
end at some time in an on or off phase, giving rise to four cases (Patterns III to VI). In Patterns II to
VI, we assume that none of the involved Bahncards purchased by OPT are bought at the same time
as any Bahncards purchased by PFSUM.

time

Pattern I (completely overlap)

time

Pattern II (off within)

time time

x ≥ 0︷ ︸︸ ︷ x ≥ 0

time

Pattern V (on ~ off)
x ≥ 0︷ ︸︸ ︷

time

Pattern VI (on ~ on)

Bahncard valid time by PFSUM concerned interval

Pattern III (off ~ off) Pattern IV (off ~ on)

︷ ︸︸ ︷

x ≥ 1

… …

……

… ……

… …

… ……

… ……

︷ ︸︸ ︷

τi

τi+x+1 + T

τi µj+x µj+x + T

µj τi+x τi+x + T µj µj+xµj+x + T

µj µj + T τi τi + T

τi+x+1

Bahncard valid time by OPT

…

Figure 2: All the 6 patterns of concerned time intervals in which either PFSUM or OPT has a
Bahncard. In Patterns III to VI, x is the number of Bahncards purchased by OPT in an on phase and
expiring in the next on phase. x can be any non-negative integer.

Proposition 4.5. (Pattern I) If OPT purchases a Bahncard at time τi at the beginning of epoch Ej ,
i.e., τi = µj , then

PFSUM
(
σ; [µj , µj + T )

)

OPT
(
σ; [µj , µj + T )

) = 1. (6)

Apparently, if the cost ratios between PFSUM and OPT of Patterns II to VI are all capped by the
same bound, the competitive ratio of PFSUM is given by this bound. Unfortunately, this is not
exactly true. In what follows, we show that the cost ratios of Patterns II to V can be capped by the
same bound (Propositions 4.6 and 4.7), which is the competitive ratio of PFSUM that we would
like to prove. For Pattern VI, we show that its cost ratio is capped by the same bound if a particular
condition holds, where we refer to such Pattern VI as augmented Pattern VI (Proposition 4.8). For
non-augmented Pattern VI, we show that it must be accompanied by Patterns I to IV in the sense
that a time interval of non-augmented Pattern VI must be preceded (not necessarily immediately) by
a time interval of Pattern I, II, III or IV. We prove that the cost ratio of non-augmented Pattern VI
combined with such Pattern I, II, III or IV is capped by the same aforesaid bound (Propositions 4.9
and 4.10). This then concludes that PFSUM’s competitive ratio is given by this bound.
Proposition 4.6. (Pattern II) If OPT purchases a Bahncard at time τi in the off phase of an epoch Ej

and the Bahncard expires in the same off phase, i.e., µj + T ≤ τi < τi + T < µj+1, then

PFSUM
(
σ; [τi, τi + T )

)

OPT
(
σ; [τi, τi + T )

) <
2γ + η

(1 + β)γ + βη
. (7)

Proof. Let x = c(σ; [τi, τi+T )). Based on the definition of Pattern II, OPT(σ; [τi, τi+T )) = C+βx
(OPT buys a card at τi) and PFSUM(σ; [τi, τi + T )) = x (PFSUM does not buy cards during any
off phase). Hence, the cost ratio is x

C+βx , which increases with x since β < 1. By Lemma 4.3,
x < 2γ + η. Thus, the cost ratio is bounded by 2γ+η

C+β(2γ+η) =
2γ+η

(1−β)γ+β(2γ+η) =
2γ+η

(1+β)γ+βη .
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The proof technique of the following propositions for Patterns III to VI is to divide the time interval
concerned into sub-intervals, where each sub-interval starts and ends at the time when OPT or
PFSUM purchases a Bahncard or a Bahncard purchased expires. Then, for 0 ≤ η ≤ γ and η > γ,
we respectively derive the upper bound of the cost ratio based on Lemmas 4.2 to 4.4. All the bounds
in Propositions 4.7 to 4.8 are tight (achievable). Detailed proofs are given in Appendixes A.4 to A.5
of [29].
Proposition 4.7. (Patterns III to V) The cost ratio in the time interval of Patterns III, IV, and V is
bounded by

{
2γ+(2−β)η
(1+β)γ+βη 0 ≤ η ≤ γ,
(3−β)γ+η
(1+β)γ+βη η > γ.

(8)

We refer to Pattern VI as augmented Pattern VI if the total regular cost in the last on phase involved
is at least γ. Proposition 4.8 shows that the cost ratio of augmented Pattern VI is capped by the same
bound as Patterns III to V.
Proposition 4.8. (Augmented Pattern VI) Denote by µj and µj+x respectively the first and last
Bahncards purchased by PFSUM in Pattern VI. If the total regular cost in the on phase of Ej+x is at
least γ, the cost ratio in the time interval of Pattern VI, i.e., [µj , µj+x + T ), is bounded by (8).

We remark that the cost ratio of general Pattern VI cannot be capped by the same bound as Patterns
III to V. This is because in Pattern VI, PFSUM purchases one more Bahncard than OPT and hence
has a higher cost of card purchases, whereas PFSUM purchases less or equal numbers of Bahncards
compared to OPT in Patterns III to V. Thus, an additional condition is necessary in Proposition 4.8.

Next, we examine non-augmented Pattern VI. Note that the time intervals of Patterns V and VI cannot
exist in isolation. By the definition of PFSUM, when a Bahncard is purchased at time µj , the total
regular cost in the preceding interval (µj −T, µj ] is at least γ (referred to as feature ⋄). Consequently,
by Lemma 3.1, OPT must purchase a Bahncard whose valid time overlaps with (µj − T, µj ]. To
deal with non-augmented Pattern VI that starts at time µj for some j, we backtrack from µj to find
out what happens earlier. Our target is to identify all possible patterns that might precede Pattern VI.

time

Pattern II/III/V Pattern VI

…… …

time………

Pattern I/IV/VI Pattern VI

︷ ︸︸ ︷off phase

(a)

(b)

(c)

V VI

II

III

IV

I

Bahncard valid time by PFSUM Bahncard valid time by OPT

Figure 3: Pattern graph.

Note that the time interval (µj − T, µj ] definitely intersects with the off phase of epoch Ej−1 and
may also intersect with the on phase of Ej−1 (if the off phase of Ej−1 is shorter than T ). Therefore,
it is possible for all Patterns I to VI to precede Pattern VI (see Figures 3(b) and (c) for illustrations).
If Pattern I, IV or VI precedes Pattern VI, there is an off phase in between, in which neither PFSUM
nor OPT holds a valid Bahncard. Figure 3(a) presents a pattern graph to illustrate all possible
concatenations of patterns preceding Pattern VI. In this graph, a node represents a pattern, and an
edge from node i to node j means pattern i can precede pattern j. Since every Pattern V or VI must
be preceded by some pattern, the backtracking will always encounter a time interval of Pattern I, II,
III or IV. We stop backtracking at the first Pattern I, II, III or IV encountered.

We use p1 ⊕ p2 to denote the composite of pattern p1 followed by pattern p2; use py to denote a
sequence comprising y consecutive instances of pattern p; and use {p1, . . . , pn} ⊕ pj to represent all
possible composite patterns of the form pi⊕ pj for each i = 1, . . . , n. Then, the patterns encountered
in the backtracking can be represented by

{I, II, III, IV} ⊕ {V,VI}y ⊕ VI, (9)
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where y can be any non-negative integers. Following the feature ⋄, for each VI in {V,VI}y of (9),
the total regular cost in the last on phase of Pattern VI and the following off phase is at least γ. It
is easy to see that the cost ratio between PFSUM and OPT in the time interval of such Pattern VI
is no larger than that of augmented Pattern VI and hence the upper bound given in Proposition 4.8.
For each V in {V,VI}y of (9), the cost ratio of Pattern V is capped by the same bound based on
Proposition 4.7. In the following, we prove that the cost ratio of non-augmented Pattern VI combined
with Pattern I, II, III or IV at the beginning of (9) is also capped by the same bound.
Proposition 4.9. The cost ratio in the combination of a time interval of Pattern VI and a time interval
of Pattern II or III is bounded by (8).

Proof Sketch. Note that in Patterns II and III, PFSUM purchases one less Bahncard than OPT. Recall
that in Pattern VI, PFSUM purchases one more Bahncard than OPT. Hence, when considering
Pattern VI with Pattern II or III together, PFSUM purchases the same number of Bahncards as OPT.
Therefore, we can use the same technique as Proposition 4.7 to cap the cost ratio by the same bound.
See Appendix A.6 of [29] for details.

Proposition 4.10. The cost ratio in the combination of a time interval of Pattern VI and a time
interval of Pattern I or IV encountered in backtracking is bounded by (8).

Proof Sketch. Consider Pattern IV. When analyzing the cost ratio of Pattern IV in Proposition 4.7, it
is assumed that the total regular cost in the last on phase is at least γ − η. In IV of (9), following
the feature ⋄, the total cost of travel requests in the last on phase of Pattern IV and the following off
phase is at least γ. Thus, there is an additional cost of at least η. Therefore, we can “migrate” an
additional cost of η to the non-augmented Pattern VI at the end of (9) and make the latter become an
augmented Pattern VI so that the result of Proposition 4.8 can be applied. Meanwhile, the proof of
Proposition 4.7 still applies to the Pattern IV even if the cost η is removed from the last on phase.
Hence, after migrating the cost of η, the Patterns IV and VI involved have the same upper bound of
cost ratio given in (8). The proof for Pattern I is similar. See Appendix A.7 of [29] for details.

By the above analysis and Propositions 4.6 to 4.10, we have:
Theorem 4.11. PFSUM has a competitive ratio of

CRPFSUM(η) =

{
2γ+(2−β)η
(1+β)γ+βη 0 ≤ η ≤ γ,
(3−β)γ+η
(1+β)γ+βη η > γ.

(10)

By letting η = 0, it is easy to see that the consistency of PFSUM is 2/(1 + β). Note that the
competitive ratio of (10) is a continuous function of the prediction error η. It increases from 2/(1+β)
to (4− β)/(1+ 2β) as η increases from 0 to γ, and further increases from (4− β)/(1+ 2β) towards
1/β as η increases from γ towards infinity. Hence, PFSUM is 1/β-robust.

5 Experiments

We conduct extensive experiments to compare PFSUM with SUM [1], PDLA [12], SUMw (Section
4.1), FSUM (Section 4.2), and SRL (Ski-Rental-based Learning algorithm), where SRL is adapted
from Algorithm 2 proposed in [4] for ski-rental. SRL performs as follows. Let λ ∈ (0, 1] be a
hyper-parameter, SRL purchases a Bahncard at a regular request (t, p) if and only if there exists a
time t′ ∈ (t− T, t] that satisfies one of the following conditions: (i) the predicted T -future-cost at
time t′ is no less than γ, and the total regular cost in [t′, t] is greater than λγ; or (ii) the predicted
T -future-cost at time t′ is less than γ, and the total regular cost in [t′, t] is greater than γ/λ.

We test SUMw with w = T/2, and test SRL and PDLA with λ set to 0.2, 0.5, and 1. To accommodate
SRL and PDLA, we discretize time over a sufficiently long timespan, closely approximating a
continuous time scenario. The experimental results across diverse input instances demonstrate the
superior performance of PFSUM.

Input instances. Referring to the experimental setup of [31], we consider two main types of traveler
profiles: commuters, and occasional travelers. We set the timespan at 2000 days, during which
commuters travel every day. For occasional travelers, there is a time gap between travel requests. We
model the inter-request time of occasional travelers using an exponential distribution with a mean of
2. We consider only one travel request per day. This is because multiple travel requests occurring
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on the same day can be effectively treated as a single request with combined ticket price, since a
Bahncard’s validity either covers an entire day or does not cover any part of the day.

For each request sequence generated, we investigate three types of ticket price distributions: a Normal
distribution with a mean of 50 and a variance of 25, a Uniform distribution centered around a mean
of 50, and a Pareto distribution called the Lomax distribution with a shape parameter of 2 and a scale
parameter of 50. Our choice of the Pareto distribution stems from the observation that prices of travel
requests in the real world often exhibit a heavy tail, which suggests that a minority of travel requests
typically account for a significant portion of total cost. Such heavy-tailed distributions are often
hypothesized to adhere to some form of Pareto distributions [32, 33].

Noisy prediction. The predictions are generated by adding noise to the original instance, following
the methodology used by Bamas et al. [12]. Specifically, we introduce a perturbation probability p.
For each day in a given instance, with probability p, the travel request on that day is removed, if it
exists. Meanwhile, with probability p, we add random noise, sampled from the same distribution
used for generating ticket prices, to the price of the travel request, or simply add a travel request
if no request exists on that day. These two operations are executed independently. We vary the
perturbation probability from 0 to 1 in the experiments. Intuitively, the prediction error increases
with the perturbation probability. The predictions needed by SRL, SUMw, FSUM, and PFSUM
are derived from the total regular cost over the specified time period in the perturbed instance. For
PDLA, the predicted solution is obtained by executing the offline optimal algorithm on the perturbed
instance.

(a) Commuters (U) (b) Commuters (N) (c) Commuters (P)

Figure 4: The cost ratios for commuters (β = 0.8, T = 10, C = 100). “U”, “N” and “P” represent
Uniform, Normal and Pareto ticket price distributions respectively.

(a) Occas. travelers (U) (b) Occas. travelers (N) (c) Occas. travelers (P)

Figure 5: The cost ratios for occasional travelers (β = 0.8, T = 10, C = 100). “U”, “N” and “P”
represent Uniform, Normal and Pareto ticket price distributions respectively.
Results and discussion. For all types of input instances, the algorithms exhibit similar relative
performance. We present in Figures 4 to 7 the results obtained for commuters and occasional travelers
when setting β = 0.8 (or 0.6), T = 10 (or 5), C = 100, and different ticket price distributions,
including the Uniform distribution, the Normal distribution, and the Pareto distribution. Experimental
results for other settings are given in Appendix A.8 of [29]. Each curve in the figure represents
the average cost ratio between an algorithm and OPT over 100 experiment runs. The shaded area
represents the 95% confidence interval of the corresponding curve.

We make the following observations from the experimental results. (1) When predictions are good
(perturbation probability is small), PFSUM, FSUM, SUMw, and SRL all perform better than SUM.
This shows that predictions on the ticket prices of short-term future trips are useful for reducing the
total cost. With perfect predictions (perturbation probability = 0), in most cases, either PFSUM or
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(a) Commuters (U) (b) Commuters (N) (c) Commuters (P)

Figure 6: The cost ratios for commuters (β = 0.6, T = 5, C = 100). “U”, “N” and “P” represent
Uniform, Normal and Pareto ticket price distributions respectively.

(a) Occas. travelers (U) (b) Occas. travelers (N) (c) Occas. travelers (P)

Figure 7: The cost ratios for occasional travelers (β = 0.6, T = 5, C = 100). “U”, “N” and “P”
represent Uniform, Normal and Pareto ticket price distributions respectively.

FSUM produces the lowest cost ratio among all algorithms. This empirically confirms that PFSUM
and FSUM have better consistency than SUM and SUMw. (2) PFSUM outperforms all the other
algorithms for a wide range of perturbation probability, demonstrating that PFSUM makes wise
use of predictions. In general, PFSUM has the narrowest confidence intervals, indicating that its
results are the most stable among all algorithms. (3) For the Pareto distribution, as the prediction error
increases, PFSUM demonstrates its robustness through a gradual and smooth rise in the cost ratio to
OPT. Even when the perturbation probability is large, PFSUM hardly performs worse than SUM.
In contrast, the performance of SUMw and FSUM deteriorates rapidly with increasing perturbation
probability, showing their poor robustness. (4) The primal-dual-based algorithm PDLA generally has
much higher cost ratios than PFSUM and even the conventional online algorithm SUM. This shows
that it is important to take advantage of the characteristics of the Bahncard (it is valid for a fixed
time period only and provides the same discount to all the tickets purchased therein) when designing
learning-augmented algorithms. (5) PFSUM consistently outperforms SRL, particularly in scenarios
with significant prediction errors. While the performance of SRL improves with increasing λ under
high prediction errors, as a larger λ leads to reduced reliance on the predictions and enhances the
algorithm’s robustness, its overall performance remains inferior to that of SUM.

6 Discussions and Conclusions

We have developed a new learning-augmented algorithm called PFSUM for the Bahncard problem.
PFSUM makes predictions on the short-term future only, aligning closely with the temporal nature
of the Bahncard problem and the practice of real-world ML predictions. We present a comprehensive
analysis of PFSUM’s competitive ratio under arbitrary prediction errors by a divide-and-conquer
approach. Experimental results demonstrate significant performance advantages of PFSUM.

Different from prior works, we do not predict a full sequence of requests from the outset, and predict
just a sum of near-future requests (cost) when needed. In some online problems with temporal aspects,
compared with individual requests, the aggregated arrival pattern across a group of requests is more
predictable (see, e.g., [34]). Thus, our approach can enhance the learnability of ML predictions. We
believe that our analysis and result will be useful to various applications of the Bahncard problem as
well as other problems with recurring renting-or-buying phenomena.
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A Appendix

A.1 A Detailed Comparison between Our Work and [26]

Im et al. [26] studied a problem somewhat related to the Bahncard problem, focusing on TCP ac-
knowledgement enhanced with machine-learned predictions. In the TCP acknowledgment problem, a
sequence of requests unfolds over time, each requiring acknowledgment, and a single acknowledg-
ment can address all pending requests simultaneously. The objective here is to optimize the combined
total of request delay and acknowledgement cost (strike a balance between minimizing the delays in
addressing requests and the costs of acknowledgments). Im et al. [26] introduced a novel prediction
error measure that estimates how much the optimal objective value changes when the difference
between the actual numbers of requests and the predictions varies. Im et al. [26] took into account
the temporal aspects of requests, akin to a previous work [9]. The new error measure enables their
algorithm to achieve near-optimal consistency and robustness simultaneously. Our investigation into
the Bahncard problem differs significantly from theirs in terms of techniques employed. The main
differences are summarized as follows.

• In [26], predictions are made for a full sequence of TCP acknowledgment requests. The
prediction necessitates a discrete formulation, where time is partitioned into slots of equal
length. In contrast, our approach refrains from discretization and requires only short-term
predictions within a future interval of length T , i.e., the length of the valid time period of a
Bahncard. In our work, a prediction on the short-term future is made only when a travel
request arises and there is no valid Bahncard, aligning more closely with real-world ML
predictions.

• Im et al. [26] designed an error measure that is built on the change of the optimal objective
value when the algorithm input varies from min{pt, p̂t} to max{pt, p̂t}, where pt is the ac-
tual number of requests arising in time slot t and p̂t is the predicted number. By contrast, our
error measure estimates the quality of predictions directly. Harnessing the novel error mea-
sure, Im et al. [26] formulated an intricate algorithm, simultaneously ensuring near-optimal
consistency and robustness. In contrast, we design a simple and easily implementable algo-
rithm using short-term predictions and demonstrates its significant performance advantages
in experimental evaluations.

A.2 Consistency of SUMw is at least (3− β)/(1 + β)

As shown in Figure 8, consider a travel request sequence σ of five requests: (t1, ϵ), (t2, γ − ϵ),
(t3, γ − 2ϵ), (t4, ϵ), and (t5, ϵ), where t1 < t2 ≤ t1 + w < t4 + w − T < t1 + T < t3 < t4 <
t2 + T < t3 + w < t5 ≤ t4 + w. By the algorithm definition, SUMw purchases two Bahncards at
times t1 and t4 respectively, while OPT purchases a Bahncard at time t2. When ϵ → 0, we have

SUMw(σ)

OPT(σ)
=

2C + β(γ + 2ϵ) + (γ − 2ϵ)

C + β(2γ − 2ϵ) + 2ϵ
→ 2C + βγ + γ

C + 2βγ
=

3− β

1 + β
.

time

ǫ ǫ

t1 t2 t3 t4

γ − 2ǫγ − ǫ

t5

ǫ

Figure 8: An example where the shaded rectangle (resp. bold line) is the valid time of a Bahncard
purchased by SUMw (resp. OPT). SUMw purchases a Bahncard at t1 because t2 ≤ t1 + w and
ϵ+ (γ − ϵ) ≥ γ. SUMw does not purchase a Bahncard at t3 since t3 + w < t5 and SUMr

w(σ; (t3 +
w − T, t3]) + ĉ(σ; (t3, t3 + w]) = (γ − 2ϵ) + ϵ < γ. SUMw purchases a Bahncard at t4 because
t3, t4, t5 ∈ (t4 + w − T, t4 + w] and the total ticket cost is γ.

A.3 Proof of Theorem 4.1

For analyzing consistency, we have ĉ(σ; [t, t+ T )) ≡ c(σ; [t, t+ T )) holds for any regular request
(t, p). Given a travel request sequence σ, we denote by µ1 < · · · < µm the times when FSUM
purchases Bahncards. Then, the timespan can be divided into epochs Ej := [µj , µj+1) for 0 ≤ j ≤
m, where we define µ0 = 0 and µm+1 = ∞. Due to perfect predictions, each epoch Ej (except E0)
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starts with an on phase [µj , µj + T ) in which the total regular cost is at least γ, followed by an off
phase [µj + T, µj+1). Epoch E0 has an off phase only. By the definition of FSUM, for any time t in
an off phase when a travel request arises, we have

ĉ
(
σ; [t, t+ T )

)
= c

(
σ; [t, t+ T )

)
< γ. (11)

Note that when both FSUM and OPT do not have a valid Bahncard, they pay the same cost. Thus, we
focus on only the time intervals in which at least one of FSUM and OPT has a valid Bahncard. We
examine the Bahncards purchased by OPT relative to the Bahncards purchased by FSUM. Clearly,
OPT purchases at most one Bahncard in any on phase since the length of an on phase is T , and OPT
does not purchase any Bahncard in any off phase by (11) and Corollary 3.2. For any epoch Ej , if
OPT purchases its i-th Bahncard at time τi ∈ [µj , µj + T ), there are two cases to consider.

time

︷ ︸︸ ︷on off

τiτi−1 + Tµj µj + T

︷ ︸︸ ︷

µj+1τi + T
s1 s3s2 s4 s5

t′

Figure 9: Case I. The shaded rectangle is the valid time of a Bahncard purchased by OPT.

Case I. The Bahncard expires in the following off phase [µj + T, µj+1). As shown in Figure
9, for ease of notation, we use s1, ..., s5 to denote the total regular costs in the time intervals
[µj ,max{µj , τi−1+T}), [max{µj , τi−1+T}, τi), [τi, µj+T ), [µj+T, τi+T ), and [τi+T, µj+1)
respectively. Here τi−1 is the time when OPT purchases its (i− 1)-th Bahncard. If i = 1, we define
τi−1 = −∞. Note that some of the aforesaid intervals can be empty so that the corresponding total
regular cost is 0. Since the total regular cost in an on phase is at least γ, we have

s1 + s2 + s3 ≥ γ. (12)

By Lemma 3.1, we have s3+s4 ≥ γ. If no travel request arises during the time interval [µj+T, τi+T ),
we have s4 = 0. Otherwise, we denote by t′ ∈ [µj + T, τi + T ) the time when the first travel request
arises in this interval. Since t′ is in an off phase, it follows from (11) and τi < t′ that

s4 = c
(
σ; [µj + T, τi + T )

)
= c

(
σ; [t′, τi + T )

)
≤ c

(
σ; [t′, t′ + T )

)
< γ. (13)

Hence, we always have

s4 < γ. (14)

The cost ratio in epoch Ej is given by

FSUM(σ;Ej)

OPT(σ;Ej)
=

C + β(s1 + s2 + s3) + s4 + s5
C + β(s1 + s3 + s4) + s2 + s5

<
C + β(s1 + s2 + s3) + γ + s5
C + β(s1 + s3 + γ) + s2 + s5

(14) & β < 1

≤ C + β(s1 + s2 + s3) + γ + s5
C + β(s1 + s2 + s3 + γ) + s5

s2 ≥ 0 & β < 1

≤ C + β(s1 + s2 + s3) + γ

C + β(s1 + s2 + s3 + γ)
s5 ≥ 0

≤ C + βγ + γ

C + 2βγ
(12)

=
2

1 + β
. γ =

C

1− β
(15)

Case II. The Bahncard expires in the on phase of the next epoch, i.e., [µj+1, µj+1 + T ).

Case II-A. OPT does not purchase any Bahncard in [τi + T, µj+1 + T ). As shown in Figure 10,
we use s1, ..., s7 to denote the total regular costs in the time intervals [µj ,max{µj , τi−1 + T}),
[max{µj , τi−1 + T}, τi), [τi, µj + T ), [µj + T, µj+1), [µj+1, τi + T ), [τi + T, µj+1 + T ), and
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[µj+1 + T, µj+2), respectively. Again τi−1 is the time when OPT purchases its (i− 1)-th Bahncard.
If i = 1, we define τi−1 = −∞. Since the total regular cost in an on phase is at least γ, we have

s1 + s2 + s3 ≥ γ, (16)
s5 + s6 ≥ γ. (17)

time

s2s1 s5

on off

s4

off ︷ ︸︸ ︷

s3 s6 s7

τiµj µj+1 µj+2µj + T µj+1 + Tτi + Tτi−1 + T

︷ ︸︸ ︷︷ ︸︸ ︷ on︷ ︸︸ ︷

t′

Figure 10: Case II-A. The shaded rectangle is the valid time of a Bahncard purchased by OPT.

If no travel request arises during the time interval [µj + T, µj+1), we have s4 = 0 ≤ s6. Otherwise,
we denote by t′ ∈ [µj + T, µj+1) the time when the first travel request arises in this interval. It
follows from (11) and τi < t′ that

s4 + s5 = c
(
σ; [µj + T, τi + T )

)
= c

(
σ; [t′, τi + T )

)
≤ c

(
σ; [t′, t′ + T )

)
< γ. (18)

Together with (17), we get s4 < s6. Therefore, we always have

s4 ≤ s6, (19)

and

s4 < γ. (20)

The cost ratio in epochs Ej and Ej+1 is given by

FSUM(σ;Ej ∪ Ej+1)

OPT(σ;Ej ∪ Ej+1)
=

2C + β(s1 + s2 + s3 + s5 + s6) + s4 + s7
C + β(s1 + s3 + s4 + s5) + s2 + s6 + s7

≤ 2C + β(s1 + s2 + s3 + s5 + s6) + s4 + s7
C + β(s1 + s3 + s5 + s6) + s2 + s4 + s7

(19) & β < 1

≤ 2C + β(s1 + s2 + s3 + s5 + s6) + s4 + s7
C + β(s1 + s2 + s3 + s5 + s6) + s4 + s7

s2 ≥ 0 & β < 1

≤ 2C + β(s1 + s2 + s3 + s5 + s6)

C + β(s1 + s2 + s3 + s5 + s6)
s4 ≥ 0 & s7 ≥ 0

≤ 2C + 2βγ

C + 2βγ
(16) & (17)

=
2

1 + β
. γ =

C

1− β
(21)

In addition, the cost ratio in epoch Ej is given by

FSUM(σ;Ej)

OPT(σ;Ej)
=

C + β(s1 + s2 + s3) + s4
C + β(s1 + s3 + s4) + s2

≤ C + β(s1 + s2 + s3) + s4
C + β(s1 + s2 + s3 + s4)

s2 ≥ 0 & β < 1

≤ C + βγ + s4
C + βγ + βs4

(16)

<
C + βγ + γ

C + βγ + βγ
(20) & β < 1

=
2

1 + β
. γ =

C

1− β
(22)

Case II-B. After time τi+T , OPT purchases another x Bahncards at times τi+1, ..., τi+x respectively
(x ≥ 1) as shown in Figure 11. For each k = 1, ..., x, the purchasing time τi+k falls in the on phase
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[µj+k, µj+k + T ), and the expiry time τi+k + T falls in the next on phase [µj+k+1, µj+k+1 +
T ). OPT does not purchase any new Bahncard in [τi+x + T, µj+x+1 + T ). Essentially, the
pattern in epoch Ej of Case II-A repeats x times, followed by the pattern of Case II-A. By (22),
FSUM(σ;Ej+k)/OPT(σ;Ej+k) ≤ 2/(1+β) for each k = 0, ..., x−1. By (21), FSUM(σ;Ej+x∪
Ej+x+1)/OPT(σ;Ej+x ∪ Ej+x+1) ≤ 2/(1 + β). Hence,

FSUM(σ;Ej ∪ · · · ∪ Ej+x+1)

OPT(σ;Ej ∪ · · · ∪ Ej+x+1)
≤ 2

1 + β
. (23)

time

on offoff ︷ ︸︸ ︷

τiµj µj+1µj + T µj+1 + Tτi−1 + T

︷ ︸︸ ︷︷ ︸︸ ︷ on︷ ︸︸ ︷
…  

on︷ ︸︸ ︷

τi+1 τi+x + Tτi + T µj+x+1 µj+x+1 + Tµj+2

Figure 11: Case II-B. The shaded rectangle is the valid time of a Bahncard purchased by OPT.

Case II-C. After time τi+T , OPT purchases another x Bahncards at times τi+1, ..., τi+x respectively
(x ≥ 1) as shown in Figure 12. For each k = 1, ..., x− 1, the purchasing time τi+k falls in the on
phase [µj+k, µj+k+T ), and the expiry time τi+k+T falls in the next on phase [µj+k+1, µj+k+1+T ).
The purchasing time τi+x falls in the on phase [µj+x, µj+x+T ), and the expiry time τi+x+T falls in
the following off phase [µj+x+T, µj+x+1). Essentially, the pattern in epoch Ej of Case II-A repeats
x times, followed by the pattern of Case I. By (22), FSUM(σ;Ej+k)/OPT(σ;Ej+k) ≤ 2/(1 + β)
for each k = 0, ..., x− 1. By (15), FSUM(σ;Ej+x)/OPT(σ;Ej+x) ≤ 2/(1 + β). Hence,

FSUM(σ;Ej ∪ · · · ∪ Ej+x)

OPT(σ;Ej ∪ · · · ∪ Ej+x)
≤ 2

1 + β
. (24)

τi+x µj+x + T

on offoff ︷ ︸︸ ︷

τiµj µj+1µj + T µj+1 + T

︷ ︸︸ ︷︷ ︸︸ ︷ on︷ ︸︸ ︷
… 

on︷ ︸︸ ︷

τi+1 µj+x
time

off

τi + Tτi−1 + T τi+x−1 + T

︷ ︸︸ ︷

τi+x + Tµj+2

Figure 12: Case II-C. The shaded rectangle is the valid time of a Bahncard purchased by OPT.

If OPT does not purchase any Bahncard in the on phase of Ej , it must have purchased a Bahncard in
the on phase of Ej−1, and the Bahncard expires in the on phase of Ej due to Lemma 3.1. Otherwise,
purchasing another Bahncard at the beginning of Ej can never increase the total cost, because the
total regular cost in the on phase of Ej is at least γ. Thus, Ej−1 and Ej must fall into Case II-A or
be the last two epochs of Case II-B, which have been analyzed above.

The theorem follows from (15), (21), (23) and (24).

A.4 Proof of Proposition 4.7

A.4.1 Proof for Pattern III

Proposition Restated. If OPT purchases x+ 2 Bahncards (x ≥ 0) in successive on phases starting
from Ej , where (i) the first Bahncard has its purchase time τi falling in the off phase of Ej−1 and its
expiry time τi + T falling in the on phase of Ej , (ii) for each k = 1, ..., x, the (k + 1)-th Bahncard
has its purchase time τi+k falling in the on phase of Ej+k−1 and its expiry time τi+k + T falling in
the on phase of Ej+k, and (iii) the (x+2)-th Bahncard has its purchase time τi+x+1 falling in the on
phase of Ej+x and its expiry time τi+x+1 + T falling in the off phase of Ej+x, then

PFSUM
(
σ; [τi, τi+x+1 + T )

)

OPT
(
σ; [τi, τi+x+1 + T )

) ≤
{

2γ+(2−β)η
(1+β)γ+βη 0 ≤ η ≤ γ,
(3−β)γ+η
(1+β)γ+βη η > γ,

(25)

where the upper bound is tight (achievable) when x → ∞.

Proof. As shown in Figure 13, we divide [τi, τi+x+1+T ) into 4x+5 time intervals, where each time
interval starts and ends with the time when OPT or PFSUM purchases a Bahncard or a Bahncard
purchased by OPT or PFSUM expires. Let these intervals be indexed by −1, 0, 1, 2, ..., 4x+ 3, and

17



let s−1, s0, s1, s2, ..., s4x+3 denote the total regular costs in these intervals respectively. By definition,
it is easy to see that for each k = 0, ..., x− 1, the (4k + 3)-th time interval, i.e., [µj+k + T, µj+k+1)
(which is an off phase), is shorter than T since it is within the valid time of a Bahncard purchased by
OPT.

time

on off

s3

τi µj µj+1

︷ ︸︸ ︷︷ ︸︸ ︷ on︷ ︸︸ ︷

s2 s4 s5

τi+1

s6

µj + Tτi + T
… …   

on︷ ︸︸ ︷

s4x s4x+1… …   

off

s1s0s−1

τi+1 + T τi+2 µj+x τi+x+1

︷ ︸︸ ︷ off

s4x+2 s4x+3

τi+x+1 + Tτi+x + T µj+x + Tµj+1 + T

︷ ︸︸ ︷

Figure 13: Illustration for Pattern III. The shaded rectangle is the valid time of a Bahncard purchased
by OPT.

First, we observe that the cost ratio PFSUM
(
σ; [τi, τi+x+1 + T )

)
/OPT

(
σ; [τi, τi+x+1 + T )

)
is less

than 1/β, as shown below.

1

β
− PFSUM

(
σ; [τi, τi+x+1 + T )

)

OPT
(
σ; [τi, τi+x+1 + T )

)

=
(x+ 2)C + β

[
(s−1 + s0) +

∑x−1
k=0

(
s4k+2 + s4k+3 + s4k+4

)
+ (s4x+2 + s4x+3)

]

β · OPT
(
σ; [τi, τi+x+1 + T )

)

+

∑x
k=0 s4k+1 − β

[
(x+ 1)C + β

∑x
k=0

(
s4k + s4k+1 + s4k+2

)
+

∑x
k=−1 s4k+3

]

β · OPT
(
σ; [τi, τi+x+1 + T )

)

=
(x+ 2)C + β

∑x
k=0 s4k +

∑x
k=0 s4k+1 + β

∑x
k=0 s4k+2 + β

∑x
k=−1 s4k+3

β · OPT
(
σ; [τi, τi+x+1 + T )

)

− β(x+ 1)C + β2
∑x

k=0

(
s4k + s4k+1 + s4k+2

)
+ β

∑x
k=−1 s4k+3

β · OPT
(
σ; [τi, τi+x+1 + T )

)

=
[(x+ 2)− β(x+ 1)]C + β(1− β)

∑x
k=0

(
s4k + s4k+2

)
+ (1− β2)

∑x
k=0 s4k+1

β · OPT
(
σ; [τi, τi+x+1 + T )

)

> 0. (since 0 ≤ β < 1)

Thus, the following inequality always holds:

PFSUM
(
σ; [τi, τi+x+1 + T )

)

OPT
(
σ; [τi, τi+x+1 + T )

) <
1

β
. (26)

Next, we analyze the upper bound of the cost ratio. There are two cases to consider.

Case I. 0 ≤ η ≤ γ. By Corollary 3.2, for each k = −1, 0, ..., x, the T -future-cost at τi+k+1 is at
least γ, i.e.,

{
s−1 + s0 ≥ γ,
s4k+2 + s4k+3 + s4k+4 ≥ γ for each k = 0, ..., x− 1,
s4x+2 + s4x+3 ≥ γ.

(27)

By Lemma 4.2, for each k = 0, ..., x, we have

s4k + s4k+1 + s4k+2 ≥ γ − η. (28)

Note that all the travel requests in the (4k + 2)-th (for k = 0, ..., x) and the (4k + 4)-th (for
k = −1, ..., x− 1) time intervals are reduced requests of both PFSUM and OPT. Thus, to maximize
the cost ratio in [τi, τi+x+1 + T ), we should minimize these s4k+2’s and s4k+4’s. If they are greater
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than γ, the cost ratio can be increased by decreasing s4k+2 or s4k+4 to γ without violating (27) and
(28). Thus, for the purpose of deriving an upper bound on the cost ratio, we can assume that

{
s4k+2 ≤ γ for each k = 0, ..., x,
s4k+4 ≤ γ for each k = −1, ..., x− 1.

(29)

It follows from (29) and Lemma 4.4 that
{

s4k+3 + s4k+4 ≤ 2γ + η for k = −1,
s4k+2 + s4k+3 + s4k+4 ≤ 2γ + η for each k = 0, ..., x− 1,
s4k+2 + s4k+3 ≤ 2γ + η for k = x.

(30)

As a result, we have

PFSUM
(
σ; [τi, τi+x+1 + T )

)

OPT
(
σ; [τi, τi+x+1 + T )

)

=
(x+ 1)C + β

∑x
k=0

(
s4k + s4k+1 + s4k+2

)
+

∑x
k=−1 s4k+3

(x+ 2)C + β
[
(s−1 + s0) +

∑x−1
k=0

(
s4k+2 + s4k+3 + s4k+4

)
+ (s4x+2 + s4x+3)

]
+

∑x
k=0 s4k+1

=
(x+ 1)C +

[
(s−1 + s0) +

∑x−1
k=0

(
s4k+2 + s4k+3 + s4k+4

)
+ (s4x+2 + s4x+3)

]

(x+ 2)C + β
[
(s−1 + s0) +

∑x−1
k=0

(
s4k+2 + s4k+3 + s4k+4

)
+ (s4x+2 + s4x+3)

]
+

∑x
k=0 s4k+1

+
β
∑x

k=0 s4k+1 − (1− β)
∑x

k=0

(
s4k + s4k+2

)

(x+ 2)C + β
[
(s−1 + s0) +

∑x−1
k=0

(
s4k+2 + s4k+3 + s4k+4

)
+ (s4x+2 + s4x+3)

]
+

∑x
k=0 s4k+1

≤ (x+ 1)C + (x+ 2)(2γ + η) + β
∑x

k=0 s4k+1 − (1− β)
∑x

k=0

(
s4k + s4k+2

)

(x+ 2)C + β(x+ 2)(2γ + η) +
∑x

k=0 s4k+1
(by (26)) and (30))

=
(x+ 1)C + (x+ 2)(2γ + η) +

∑x
k=0 s4k+1 − (1− β)

∑x
k=0

(
s4k + s4k+1 + s4k+2

)

(x+ 2)C + β(x+ 2)(2γ + η) +
∑x

k=0 s4k+1

≤ (x+ 1)C + (x+ 2)(2γ + η) +
∑x

k=0 s4k+1 − (1− β)(x+ 1)(γ − η)

(x+ 2)C + β(x+ 2)(2γ + η) +
∑x

k=0 s4k+1
(by (28))

≤ (x+ 1)C + (x+ 2)(2γ + η)− (1− β)(x+ 1)(γ − η)

(x+ 2)C + β(x+ 2)(2γ + η)
(since

x∑

k=0

s4k+1 ≥ 0)

=
x
(
C + (γ + 2η) + β(γ − η)

)
+
(
C + 3(γ + η) + β(γ − η)

)

x
(
C + β(2γ + η)

)
+
(
2C + β(4γ + 2η)

)

=
x
(
2γ + (2− β)η

)
+
(
4γ + (3− β)η

)

x
(
(1 + β)γ + βη

)
+
(
(2 + 2β)γ + 2βη

)

≤ 2γ + (2− β)η

(1 + β)γ + βη
. (when x → ∞) (31)

Case II. η > γ. By Lemma 4.3, for each k = −1, 0, ..., x, the total regular cost in the (4k + 3)-th
time interval (which is in an off phase and has length at most T ) is less than 2γ + η:

s4k+3 < 2γ + η. (32)

On the other hand, the total regular cost in any time interval in an on phase is non-negative. As a
result, we have

PFSUM
(
σ; [τi, τi+x+1 + T )

)

OPT
(
σ; [τi, τi+x+1 + T )

) <
(x+ 1)C + (x+ 2)(2γ + η)

(x+ 2)C + β(x+ 2)(2γ + η)
(by (26)) and (32))

=
x
(
C + (2γ + η)

)
+
(
C + (4γ + 2η)

)

x
(
C + β(2γ + η)

)
+

(
2C + β(4γ + 2η)

)
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≤ C + (2γ + η)

C + β(2γ + η)
(when x → ∞)

=
(3− β)γ + η

(1 + β)γ + βη
. (33)

The result follows from (31) and (33).

A tight example is given in Figure 14, where x → ∞. The upper bound is achieved when 0 ≤ η ≤ γ,
for each k = −1, ..., x− 1, s4k+3 = γ + 2η, s4x+3 → 2γ + η; for each k = 0, ..., x, s4k = γ − η,
s4k+1 = s4k+2 = 0, or when η > γ, for each k = −1, ..., x, s4k+3 = 2γ + η and for each
k = 0, ..., x, s4k = s4k+1 = s4k+2 = 0.

time

on off

s3

τi µj µj+1

︷ ︸︸ ︷︷ ︸︸ ︷ on︷ ︸︸ ︷

s2 s4 s5

τi+1

s6

µj + Tτi + T
… …   

on︷ ︸︸ ︷

s4x s4x+1… …   

off

s1s0s−1

τi+1 + T τi+2 µj+x τi+x+1

︷ ︸︸ ︷ off

s4x+2 s4x+3

τi+x+1 + Tτi+x + T µj+x + Tµj+1 + T

︷ ︸︸ ︷

γ + 2η γ − η 0 0 γ + 2η γ − η 0 0 γ − η 0 0 2γ + η (0 ≤ η ≤ γ)

2γ + η2γ + η2γ + η 0 0 0 0 0 0 0 00 (γ > η)

Figure 14: A tight example for Pattern IV. The shaded rectangle is the valid time of a Bahncard
purchased by OPT.

A.4.2 Proof for Pattern IV

Proposition Restated. If OPT purchases x+ 1 Bahncards (x ≥ 0) in successive on phases starting
from Ej , where (i) the first Bahncard has its purchase time τi falling in the off phase of Ej−1 and
its expiry time τi + T falling in the on phase of Ej , and (ii) for each k = 1, ..., x, the (k + 1)-th
Bahncard has its purchase time τi+k falling in the on phase of Ej+k−1 and its expiry time τi+k + T
falling in the on phase of Ej+k, and (iii) OPT does not purchase any new Bahncard in the on phase
of Ej+x, then

PFSUM
(
σ; [τi, µj+x + T )

)

OPT
(
σ; [τi, µj+x + T )

) ≤
{

2γ+(2−β)η
(1+β)γ+βη 0 ≤ η ≤ γ,
(3−β)γ+η
(1+β)γ+βη η > γ,

(34)

where the upper bound is tight (achievable) for any x.

Proof. As shown in Figure 15, we divide [τi, µj+x + T ) into 4x+ 3 time intervals, where each time
interval starts and ends with the time when OPT or PFSUM purchases a Bahncard or a Bahncard
purchased by OPT or PFSUM expires. Let these intervals be indexed by −1, 0, 1, 2, ..., 4x+ 1, and
let s−1, s0, s1, s2, ..., s4x+1 denote the total regular costs in these intervals respectively. By definition,
it is easy to see that for each k = 0, ..., x− 1, the (4k + 3)-th time interval, i.e., [µj+k + T, µj+k+1)
(which is an off phase), is shorter than T since it is within the valid time of a Bahncard purchased by
OPT.

time

on offoff

s3

τi µj µj+1

︷ ︸︸ ︷︷ ︸︸ ︷ on︷ ︸︸ ︷

s2 s4 s5

τi+1

s6 s7

µj + T µj+1 + Tτi + T

︷ ︸︸ ︷
… …   

on︷ ︸︸ ︷

s4x s4x+1… …   

τi+x + T

off

s1s0s−1

︷ ︸︸ ︷

τi+1 + T τi+2 µj+x µj+x + T

Figure 15: Illustration for Pattern IV. The shaded rectangle is the valid time of a Bahncard purchased
by OPT.

First, we observe that the cost ratio PFSUM
(
σ; [τi, µj+x + T )

)
/OPT

(
σ; [τi, µj+x + T )

)
is less

than 1/β, as shown below.

1

β
− PFSUM

(
σ; [τi, µj+x + T )

)

OPT
(
σ; [τi, µj+x + T )

)
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=
(x+ 1)C + β

[
(s−1 + s0) +

∑x−1
k=0

(
s4k+2 + s4k+3 + s4k+4

)]
+

∑x
k=0 s4k+1

β · OPT
(
σ; [τi, µj+x + T )

)

−
β
[
(x+ 1)C + β

[∑x−1
k=0

(
s4k + s4k+1 + s4k+2

)
+ (s4x + s4x+1)

]
+

∑x−1
k=−1 s4k+3

]

β · OPT
(
σ; [τi, µj+x + T )

)

=
(x+ 1)C + β

[∑x
k=0 s4k +

∑x−1
k=0 s4k+2 +

∑x−1
k=−1 s4k+3

]
+

∑x
k=0 s4k+1

β · OPT
(
σ; [τi, µj+x + T )

)

−
β(x+ 1)C + β2

[∑x
k=0 s4k +

∑x
k=0 s4k+1 +

∑x−1
k=0 s4k+2

]
+ β

∑x−1
k=−1 s4k+3

β · OPT
(
σ; [τi, µj+x + T )

)

=
(1− β)(x+ 1)C + β(1− β)

(∑x
k=0 s4k +

∑x−1
k=0 s4k+2

)
+ (1− β2)

∑x
k=0 s4k+1

β · OPT
(
σ; [τi, µj+x + T )

)

> 0. (since 0 ≤ β < 1)

Thus, the following inequality always holds:

PFSUM
(
σ; [τi, µj+x + T )

)

OPT
(
σ; [τi, µj+x + T )

) <
1

β
. (35)

Next, we analyze the upper bound of the cost ratio. There are two cases to consider.

Case I. 0 ≤ η ≤ γ. By Corollary 3.2, for each k = −1, 0, ..., x, the T -future-cost at τi+k+1 is at
least γ, i.e.,

{
s−1 + s0 ≥ γ,
s4k+2 + s4k+3 + s4k+4 ≥ γ for each k = 0, ..., x− 1.

(36)

By Lemma 4.2, we have
{

s4k + s4k+1 + s4k+2 ≥ γ − η for each k = 0, ..., x− 1,
s4x + s4x+1 ≥ γ − η.

(37)

Note that all the travel requests in the (4k + 2)-th (k = 0, ..., x − 1) and the (4k + 4)-th (k =
−1, ..., x− 1) time intervals are reduced requests of both PFSUM and OPT. Thus, to maximize the
cost ratio in [τi, µj+x + T ), we should minimize s4k+2 and s4k+4. If they are greater than γ, the cost
ratio can be increased by decreasing s4k+2 or s4k+4 to γ without violating (36) and (37). Thus, for
the purpose of deriving an upper bound on the cost ratio, we can assume that

{
s4k+2 ≤ γ for each k = 0, ..., x− 1,
s4k+4 ≤ γ for each k = −1, ..., x− 1.

(38)

It follows from (38), and Lemma 4.4 that
{

s4k+3 + s4k+4 ≤ 2γ + η for k = −1,
s4k+2 + s4k+3 + s4k+4 ≤ 2γ + η for each k = 0, ..., x− 1.

(39)

As a result, we have

PFSUM
(
σ; [τi, µj+x + T )

)

OPT
(
σ; [τi, µj+x + T )

)

=
(x+ 1)C + β

[∑x−1
k=0

(
s4k + s4k+1 + s4k+2

)
+ (s4x + s4x+1)

]
+
∑x−1

k=−1 s4k+3

(x+ 1)C + β
[
(s−1 + s0) +

∑x−1
k=0

(
s4k+2 + s4k+3 + s4k+4

)]
+

∑x
k=0 s4k+1

=
(x+ 1)C + (s−1 + s0) +

∑x−1
k=0

(
s4k+2 + s4k+3 + s4k+4

)
+ β

∑x
k=0 s4k+1

(x+ 1)C + β
[
(s−1 + s0) +

∑x−1
k=0

(
s4k+2 + s4k+3 + s4k+4

)]
+

∑x
k=0 s4k+1
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−
(1− β)

[∑x−1
k=0

(
s4k + s4k+2

)
+ s4x

]

(x+ 1)C + β
[
(s−1 + s0) +

∑x−1
k=0

(
s4k+2 + s4k+3 + s4k+4

)]
+
∑x

k=0 s4k+1

≤
(x+ 1)C + (x+ 1)(2γ + η) + β

∑x
k=0 s4k+1 − (1− β)

[∑x−1
k=0

(
s4k + s4k+2

)
+ s4x

]

(x+ 1)C + β(x+ 1)(2γ + η) +
∑x

k=0 s4k+1

(by (35) and (39))

=
(x+ 1)(C + 2γ + η) +

∑x
k=0 s4k+1 − (1− β)

[∑x−1
k=0

(
s4k + s4k+1 + s4k+2

)
+ (s4x + s4x+1)

]

(x+ 1)C + β(x+ 1)(2γ + η) +
∑x

k=0 s4k+1

≤ (x+ 1)C + (x+ 1)(2γ + η) +
∑x

k=0 s4k+1 − (1− β)(x+ 1)(γ − η)

(x+ 1)C + β(x+ 1)(2γ + η) +
∑x

k=0 s4k+1
(by (37))

≤ (x+ 1)C + (x+ 1)(2γ + η)− (1− β)(x+ 1)(γ − η)

(x+ 1)C + β(x+ 1)(2γ + η)
(since

x∑

k=0

s4k+1 ≥ 0)

=
2γ + (2− β)η

(1 + β)γ + βη
. (40)

Case II. η > γ. By Lemma 4.3, for each k = −1, 0, ..., x, the total regular cost in the (4k + 3)-th
time interval (which is in an off phase and has length at most T ) is less than 2γ + η:

s4k+3 < 2γ + η. (41)
On the other hand, the total regular cost in any time interval in an on phase is non-negative. As a
result, we have

PFSUM
(
σ; [τi, µj+x + T )

)

OPT
(
σ; [τi, µj+x + T )

) ≤ (x+ 1)C + (x+ 1)(2γ + η)

(x+ 1)C + β(x+ 1)(2γ + η)
by (35) and (41)

=
(3− β)γ + η

(1 + β)γ + βη
. (42)

The result follows from (40) and (42).

A tight example is given in Figure 16, where x = 0. The upper bound is achieved when 0 ≤ η ≤ γ,
s−1 → γ + 2η, s0 = γ − η, and s1 = 0, or when η > γ, s−1 → 2γ + η, and s0 = s1 = 0.

︷ ︸︸ ︷on
︷ ︸︸ ︷

off

time
τi µj τi + T µj + T

s−1 s0 s1

γ − η 0

→ 2γ + η 0 0

(0 ≤ η ≤ γ)

(η > γ)

γ + 2η

Figure 16: A tight example for Pattern IV. The shaded rectangle is the valid time of a Bahncard
purchased by OPT.

A.4.3 Proof for Pattern V

Proposition Restated. If (i) there is no Bahncard purchased by OPT expiring in the on phase of
Ej , (ii) OPT purchases x+ 1 Bahncards (x ≥ 0) in successive on phases starting from Ej , where
(a) for each k = 0, ..., x − 1, the (k + 1)-th Bahncard has its purchase time τi+k falling in the on
phase of Ej+k and its expiry time τi+k + T falling in the on phase of Ej+k+1, and (b) the (x+1)-th
Bahncard has its purchase time τi+x falling in the on phase of Ej+x and its expiry time τi+x + T
falling in the off phase of Ej+x, then

PFSUM(σ; [µj , τi+x + T ))

OPT(σ; [µj , τi+x + T ))
≤

{
2γ+(2−β)η
(1+β)γ+βη 0 ≤ η ≤ γ,
(3−β)γ+η
(1+β)γ+βη η > γ,

(43)
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where the upper bound is tight (achievable) for any x.

Proof. As shown in Figure 17, we divide [µj , τi+x + T ) into 4x+ 3 time intervals, where each time
interval starts and ends with the time when OPT or PFSUM purchases a Bahncard or a Bahncard
purchased by OPT or PFSUM expires. Let these intervals be indexed by 1, 2, ..., 4x + 3, and let
s1, s2, ..., s4x+3 denote the total regular costs in these intervals respectively. By definition, it is easy
to see that for each k = 0, ..., x− 1, the (4k+3)-th time interval, i.e., [µj+k + T, µj+k+1) (which is
an off phase), is shorter than T since it is within the valid time of a Bahncard purchased by OPT.

Next, we analyze the upper bound of the cost ratio. There are two cases to consider.

… …   

time

s1

on offoff

s3

τiµj µj+1

︷ ︸︸ ︷︷ ︸︸ ︷ on︷ ︸︸ ︷

s2 s4 s5

τi+1

s6 s7

µj + T µj+1 + Tτi + T

︷ ︸︸ ︷
… …   

off︷ ︸︸ ︷

s4x s4x+1

on

s4x+2 s4x+3

︷ ︸︸ ︷

τi+x τi+x + Tµj+x µj+x + Tτi+x−1 + T

Figure 17: Illustration for Pattern V. The shaded rectangle is the valid time of a Bahncard purchased
by OPT.

First, we observe that the cost ratio PFSUM
(
σ; [µj , τi+x + T )

)
/OPT

(
σ; [µj , τi+x + T )

)
is less

than 1/β, as shown below.

1

β
− PFSUM

(
σ; [µj , τi+x + T )

)

OPT
(
σ; [µj , τi+x + T )

)

=
(x+ 1)C + β

[∑x−1
k=0

(
s4k+2 + s4k+3 + s4k+4

)
+

(
s4x+2 + s4x+3

)]
+

∑x
k=0 s4k+1

β · OPT
(
σ; [µj , τi+x + T )

)

−
β
[
(x+ 1)C + β

[∑x−1
k=0

(
s4k+1 + s4k+2 + s4k+4

)
+
(
s4x+1 + s4x+2

)]
+

∑x
k=0 s4k+3

]

β · OPT
(
σ; [µj , τi+x + T )

)

=
(x+ 1)C + β

[∑x
k=0 s4k+2 +

∑x
k=0 s4k+3 +

∑x−1
k=0 s4k+4

]
+

∑x
k=0 s4k+1

β · OPT
(
σ; [µj , τi+x + T )

)

−
β(x+ 1)C + β2

[∑x
k=0 s4k+1 +

∑x
k=0 s4k+2 +

∑x−1
k=0 s4k+4

]
+ β

∑x
k=0 s4k+3

β · OPT
(
σ; [µj , τi+x + T )

)

=
(1− β)(x+ 1)C + β(1− β)

(∑x
k=0 s4k+2 +

∑x−1
k=0 s4k+4

)
+ (1− β2)

∑x
k=0 s4k+1

β · OPT
(
σ; [µj , τi+x + T )

)

> 0. (since 0 ≤ β < 1)

Thus, the following inequality always holds:

PFSUM
(
σ; [µj , τi+x + T )

)

OPT
(
σ; [µj , τi+x + T )

) <
1

β
. (44)

Case I. 0 ≤ η ≤ γ. By Corollary 3.2, for each k = 0, ..., x, the T -future-cost at τi+k is at least γ,
i.e., {

s4k+2 + s4k+3 + s4k+4 ≥ γ for each k = 0, ..., x− 1,
s4x+2 + s4x+3 ≥ γ.

(45)

By Lemma 4.2, we have
{

s1 + s2 ≥ γ − η,
s4k + s4k+1 + s4k+2 ≥ γ − η for each k = 1, ..., x.

(46)
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Note that all the travel requests in the (4k + 2)-th (for k = 0, ..., x) and the (4k + 4)-th (for
k = 0, ..., x− 1) time intervals are reduced requests of both PFSUM and OPT. Thus, to maximize
the cost ratio in [µj , τi+x + T ), we should minimize these s4k+2’s and s4k+4’s. If they are greater
than γ, the cost ratio can be increased by decreasing s4k+2 or s4k+4 to γ without violating (45) and
(46). Thus, for the purpose of deriving an upper bound on the cost ratio, we can assume that{

s4k+2 ≤ γ for each k = 0, ..., x,
s4k+4 ≤ γ for each k = 0, ..., x− 1.

(47)

It follows from (47) and Lemma 4.4 that{
s4k+2 + s4k+3 + s4k+4 ≤ 2γ + η for each k = 0, ..., x− 1,
s4k+2 + s4k+3 ≤ 2γ + η for k = x.

(48)

As a result, we have
PFSUM

(
σ; [µj , τi+x + T )

)

OPT
(
σ; [µj , τi+x + T )

)

=
(x+ 1)C + β

[∑x−1
k=0

(
s4k+1 + s4k+2 + s4k+4

)
+

(
s4x+1 + s4x+2

)]
+

∑x
k=0 s4k+3

(x+ 1)C + β
[∑x−1

k=0

(
s4k+2 + s4k+3 + s4k+4

)
+

(
s4x+2 + s4x+3

)]
+

∑x
k=0 s4k+1

=
(x+ 1)C +

∑x−1
k=0

(
s4k+2 + s4k+3 + s4k+4

)
+

(
s4x+2 + s4x+3

)
+ β

∑x
k=0 s4k+1

(x+ 1)C + β
[∑x−1

k=0

(
s4k+2 + s4k+3 + s4k+4

)
+

(
s4x+2 + s4x+3

)]
+

∑x
k=0 s4k+1

−
(1− β)

[∑x−1
k=0

(
s4k+2 + s4k+4

)
+ s4x+2

]

(x+ 1)C + β
[∑x−1

k=0

(
s4k+2 + s4k+3 + s4k+4

)
+

(
s4x+2 + s4x+3

)]
+

∑x
k=0 s4k+1

≤
(x+ 1)C + (x+ 1)(2γ + η) + β

∑x
k=0 s4k+1 − (1− β)

[∑x−1
k=0

(
s4k+2 + s4k+4

)
+ s4x+2

]

(x+ 1)C + β(x+ 1)(2γ + η) +
∑x

k=0 s4k+1

(by (44) and (48))

=
(x+ 1)C + (x+ 1)(2γ + η) +

∑x
k=0 s4k+1 − (1− β)

[
(s1 + s2) +

∑x
k=1

(
s4k + s4k+1 + s4k+2

)]

(x+ 1)C + β(x+ 1)(2γ + η) +
∑x

k=0 s4k+1

≤ (x+ 1)C + (x+ 1)(2γ + η) +
∑x

k=0 s4k+1 − (1− β)(x+ 1)(γ − η)

(x+ 1)C + β(x+ 1)(2γ + η) +
∑x

k=0 s4k+1
(by (46))

≤ (x+ 1)C + (x+ 1)(2γ + η)− (1− β)(x+ 1)(γ − η)

(x+ 1)C + β(x+ 1)(2γ + η)
(since

x∑

k=0

s4k+1 ≥ 0)

=
2γ + (2− β)η

(1 + β)γ + βη
. (49)

Case II. η > γ. By Lemma 4.3, for each k = 0, ..., x, the total regular cost in the (4k + 3)-th time
interval (which is in an off phase and has length at most T ) is less than 2γ + η:

s4k+3 < 2γ + η. (50)
On the other hand, the total regular cost in any time interval in an on phase is non-negative. As a
result, we have

FSUM
(
σ; [µj , τi+x + T )

)

OPT
(
σ; [µj , τi+x + T )

) <
(x+ 1)C + (x+ 1)(2γ + η)

(x+ 1)C + β(x+ 1)(2γ + η)
by (44) and (50)

=
(3− β)γ + η

(1 + β)γ + βη
. (51)

The result follows from (49) and (51).

A tight example is given in Figure 18, where x = 0. The upper bound is achieved when 0 ≤ η ≤ γ,
s1 = 0, s2 = γ − η, and s3 → γ + 2η, or when η > γ, s1 = s2 = 0, and s3 → 2γ + η.
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time

︷ ︸︸ ︷on off

τiµj µj + T

︷ ︸︸ ︷

µj+1τi + T
s1 s2 s3

0 γ − η (0 ≤ η ≤ γ)

0 0 → 2γ + η (η > γ)

γ + 2η

Figure 18: A tight example for Pattern V. The shaded rectangle is the valid time of a Bahncard
purchased by OPT.

A.5 Proof of Proposition 4.8 (For Augmented Pattern VI)

Proposition Restated. If (i) there is no Bahncard purchased by OPT expiring in the on phase of Ej ,
(ii) OPT purchases x Bahncards (x ≥ 1) in successive on phases starting from Ej , where for each
k = 0, ..., x− 1, the (k + 1)-th Bahncard has its purchase time τi+k falling in the on phase of Ej+k

and its expiry time τi+k + T falling in the on phase of Ej+k+1, and (iii) OPT does not purchase any
new Bahncard in the on phase of Ej+x, and (iv) the total regular cost in the on phase of Ej+x is at
least γ, then

PFSUM(σ; [µj , µj+x + T ))

OPT(σ; [µj , µj+x + T ))
≤

{
2γ+(2−β)η
(1+β)γ+βη 0 ≤ η ≤ γ,
(3−β)γ+η
(1+β)γ+βη η > γ,

(52)

where the upper bound is tight (achievable) for any x.

Proof. As shown in Figure 19, we divide [µj , µj+x + T ) into 4x+ 1 time intervals, where each time
interval starts and ends with the time when OPT or PFSUM purchases a Bahncard or a Bahncard
purchased by OPT or PFSUM expires. Let these intervals be indexed by 1, 2, ..., 4x + 1, and let
s1, s2, ..., s4x+1 denote the total regular costs in these intervals respectively. By definition, it is easy
to see that for each k = 0, ..., x− 1, the (4k+3)-th time interval, i.e., [µj+k + T, µj+k+1) (which is
an off phase), is shorter than T since it is within the valid time of a Bahncard purchased by OPT.

time

s1

on offoff

s3

τiµj µj+1

︷ ︸︸ ︷︷ ︸︸ ︷ on︷ ︸︸ ︷

s2 s4 s5

τi+1

s6 s7

µj + T µj+1 + Tτi + T

︷ ︸︸ ︷
… …   

off on︷ ︸︸ ︷

s4x s4x+1s4x−1

τi+x−1 + Tµj+x

︷ ︸︸ ︷

… …   

µj+2 µj+x−1 + T µj+x + T

Figure 19: Illustration for Proposition 4.8. The shaded rectangle is the valid time of a Bahncard
purchased by OPT.

First, we observe that the cost ratio PFSUM
(
σ; [µj , µj+x + T )

)
/OPT

(
σ; [µj , µj+x + T )

)
< 1/β,

as shown below:

1

β
− PFSUM

(
σ; [µj , µj+x + T )

)

OPT
(
σ; [µj , µj+x + T )

)

=
xC + β

[∑x−1
k=0

(
s4k+2 + s4k+3 + s4k+4

)]
+

∑x
k=0 s4k+1

β ·
[
OPT

(
σ; [µj , µj+x + T )

)]

−
β
[
(x+ 1)C + β

[∑x−1
k=0

(
s4k+1 + s4k+2 + s4k+4

)
+ s4x+1

]
+

∑x−1
k=0 s4k+3

]

β ·
[
OPT

(
σ; [µj , µj+x + T )

)]

=
(1− β)xC − βC + β(1− β)

∑x−1
k=0 s4k+2 + β(1− β)

∑x−1
k=0 s4k+4 + (1− β2)

∑x
k=0 s4k+1

β ·
[
OPT

(
σ; [µj , µj+x + T )

)]

>
(1− β)xC − βC + β(1− β)

(∑x−1
k=0 s4k+2 +

∑x−2
k=0 s4k+4

)

β ·
[
OPT

(
σ; [µj , µj+x + T )

)]
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+
(1− β2)

∑x−1
k=0 s4k+1 + β(1− β)(s4x + s4x+1)

β ·
[
OPT

(
σ; [µj , µj+x + T )

)] (since 0 ≤ β < 1)

≥ (1− β)xC − βC + β(1− β)
(∑x−1

k=0 s4k+2 +
∑x−2

k=0 s4k+4

)

β ·
[
OPT

(
σ; [µj , µj+x + T )

)]

+
(1− β2)

∑x−1
k=0 s4k+1 + β(1− β)γ

β ·
[
OPT

(
σ; [µj , µj+x + T )

)] (since s4x + s4x+1 ≥ γ)

=
(1− β)xC + β(1− β)

(∑x−1
k=0 s4k+2 +

∑x−2
k=0 s4k+4

)
+ (1− β2)

∑x−1
k=0 s4k+1

β ·
[
OPT

(
σ; [µj , µj+x + T )

)]

> 0. (53)

Thus, the following inequality always holds:

PFSUM
(
σ; [µj , µj+x + T )

)

OPT
(
σ; [µj , µj+x + T )

) <
1

β
. (54)

There are two cases to consider.

Case I. 0 ≤ η ≤ γ. By Corollary 3.2, for each k = 0, ..., x− 1, the T -future-cost at τi+k is at least
γ, i.e.,

s4k+2 + s4k+3 + s4k+4 ≥ γ. (55)

On the other hand, by Lemma 4.2 and the (iv)-th condition of the proposition, we have
{

s1 + s2 ≥ γ − η,
s4k + s4k+1 + s4k+2 ≥ γ − η for each k = 1, ..., x− 1,
s4x + s4x+1 ≥ γ.

(56)

Note that for each k = 0, ..., x − 1, all the travel requests in the (4k + 2)-th and the (4k + 4)-th
time intervals are reduced requests of both PFSUM and OPT. Thus, to maximize the cost ratio in
[µj , µj+x + T ), we should minimize s4k+2 and s4k+4. If they are greater than γ, the cost ratio can
be increased by decreasing s4k+2 or s4k+4 to γ without violating (55) and (56) (except for s4x). For
s4x, if it is greater than γ, the cost ratio can be increased by decreasing it to γ without violating (55)
and (56). Thus, for the purpose of deriving an upper bound on the cost ratio, we can assume that

{
s4k+2 ≤ γ for each k = 0, ..., x− 1,
s4k+4 ≤ γ for each k = 0, ..., x− 1.

(57)

It follows from (57) and Lemma 4.4 that, for each k = 0, ..., x− 2,

s4k+2 + s4k+3 + s4k+4 ≤ 2γ + η. (58)

For k = x− 1, we still have

s4k+2 + s4k+3 + s4k+4 ≤ 2γ + η. (59)

Otherwise, there must exist a time t in the off phase of Ej+x−1 such that PFSUM purchases a
Bahncard, leading to a contradiction.

As a result,

PFSUM
(
σ; [µj , µj+x + T )

)

OPT
(
σ; [µj , µj+x + T )

)

=
(x+ 1)C + β

[∑x−1
k=0

(
s4k+1 + s4k+2 + s4k+4

)
+ s4x+1

]
+
∑x−1

k=0 s4k+3

xC + β
[∑x−1

k=0

(
s4k+2 + s4k+3 + s4k+4

)]
+

∑x
k=0 s4k+1
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=
(x+ 1)C + β

∑x
k=0 s4k+1 +

∑x−1
k=0

(
s4k+2 + s4k+3 + s4k+4

)
− (1− β)

∑x−1
k=0

(
s4k+2 + s4k+4

)

xC + β
[∑x−1

k=0

(
s4k+2 + s4k+3 + s4k+4

)]
+

∑x
k=0 s4k+1

=
(x+ 1)C +

∑x
k=0 s4k+1 +

∑x−1
k=0

(
s4k+2 + s4k+3 + s4k+4

)

xC + β
[∑x−1

k=0

(
s4k+2 + s4k+3 + s4k+4

)]
+

∑x
k=0 s4k+1

−
(1− β)

[∑x−1
k=0

(
s4k+1 + s4k+2 + s4k+4

)
+ s4x+1

]

xC + β
[∑x−1

k=0

(
s4k+2 + s4k+3 + s4k+4

)]
+

∑x
k=0 s4k+1

=
(x+ 1)C +

∑x
k=0 s4k+1 +

∑x−1
k=0

(
s4k+2 + s4k+3 + s4k+4

)

xC + β
[∑x−1

k=0

(
s4k+2 + s4k+3 + s4k+4

)]
+

∑x
k=0 s4k+1

−
(1− β)

[
(s1 + s2) +

∑x−1
k=1

(
s4k + s4k+1 + s4k+2

)
+ (s4x + s4x+1)

]

xC + β
[∑x−1

k=0

(
s4k+2 + s4k+3 + s4k+4

)]
+
∑x

k=0 s4k+1

≤ (x+ 1)C +
∑x

k=0 s4k+1 +
∑x−1

k=0

(
s4k+2 + s4k+3 + s4k+4

)
− (1− β)

[
x(γ − η) + γ]

xC + β
∑x−1

k=0

(
s4k+2 + s4k+3 + s4k+4

)
+

∑x
k=0 s4k+1

(by (56))

≤ (x+ 1)C +
∑x−1

k=0

(
s4k+2 + s4k+3 + s4k+4

)
− (1− β)

[
x(γ − η) + γ]

xC + β
∑x−1

k=0

(
s4k+2 + s4k+3 + s4k+4

) (since
x∑

k=0

s4k+1 ≥ 0)

≤ (x+ 1)C + x(2γ + η)− (1− β)
[
x(γ − η) + γ]

xC + βx(2γ + η)
(by (54), (58), and (59))

=
(x+ 1)(1− β)γ + x(2γ + η)− (1− β)

[
x(γ − η) + γ]

x(1− β)γ + βx(2γ + η)
(since C = (1− β)γ)

=
2γ + (2− 2β)η

(1 + β)γ + βη
. (60)

Case II. η > γ. In this case, the total regular cost in any time interval in an on phase can be zero
(except for the on phase of Ej+x):

{
s1 + s2 ≥ 0,
s4k + s4k+1 + s4k+2 ≥ 0 for each k = 1, ..., x− 1,
s4x + s4x+1 ≥ γ.

(61)

On the other hand, by Lemma 4.3, for each k = 0, ..., x− 2, the total regular cost in the (4k + 3)-th
time interval (which is in an off phase and has length at most T ) is less than 2γ + η:

s4k+3 < 2γ + η. (62)
For k = x− 1, we have

s4x−1 < γ + η. (63)
Otherwise, there must exist a time t in the off phase of Ej+x−1 such that PFSUM purchases a
Bahncard, leading to a contradiction.

As a result,
PFSUM

(
σ; [µj , µj+x + T )

)

OPT
(
σ; [µj , µj+x + T )

) <
(x+ 1)C + (x− 1)(2γ + η) + (γ + η) + βγ

xC + βx(2γ + η)

(by (61), (62), and (63))

=
(3− β)γ + η

(1 + β)γ + βη
. (64)

The result follows from (60) and (64).

A tight example for Proposition 4.8 is given in Figure 20, where x = 1. The upper bound is achieved
when 0 ≤ η ≤ γ, s1 = s5 = 0, s2 = γ−η, s3 → 2η, and s4 = γ, or when η > γ, s1 = s2 = s5 = 0,
s3 → γ + η, and s4 = γ.
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on off

s3

︷ ︸︸ ︷︷ ︸︸ ︷ on︷ ︸︸ ︷

s2 s4

0

(0 ≤ η ≤ γ)

(η > γ)

0 γ

µj τi µj + T µj+1 τi + T µj+1 + T

s1 s5

γ − η 2η 0

γ + η γ0 0

Figure 20: A tight example for Proposition 4.8. The shaded rectangle is the valid time of a Bahncard
purchased by OPT.

A.6 Proof of Proposition 4.9

A.6.1 Non-Augmented Pattern VI Combined with Pattern II

Proposition Restated. If (i) OPT purchases a Bahncard at time τk in the off phase of some epoch El

which expires in the same off phase, (ii) there is no Bahncard purchased by OPT expiring in the on
phase of Ej (j > l), (iii) OPT purchases x Bahncards (x ≥ 1) in successive on phases starting from
Ej , where for each k = 0, ..., x− 1, the (k + 1)-th Bahncard has its purchasing time τi+k falling in
the on phase of Ej+k and its expiry time τi+k + T falling in the on phase of Ej+k+1, and (iv) OPT
does not purchase any new Bahncard in the on phase of Ej+x, then

PFSUM
(
σ; [τk, τk + T ) ∪ [µj , µj+x + T )

)

OPT
(
σ; [τk, τk + T ) ∪ [µj , µj+x + T )

) ≤
{

2γ+(2−β)η
(1+β)γ+βη 0 ≤ η ≤ γ,
(3−β)γ+η
(1+β)γ+βη η > γ,

(65)

where the upper bound is tight (achievable) for any x.

Proof. As shown in Figure 21, we divide [τk, τk + T ) ∪ [µj , µj+x + T ) into 4x+ 2 time intervals,
where each time interval starts and ends with the time when OPT or PFSUM purchases a Bahncard or
a Bahncard purchased by OPT or PFSUM expires. Let these intervals be indexed by −1, 1, ..., 4x+1,
and let s−1, s1, ..., s4x+1 denote the total regular costs in these intervals respectively. By definition,
it is easy to see that for each k = 0, ..., x− 1, the (4k + 3)-th time interval, i.e., [µj+k + T, µj+k+1)
(which is an off phase), is shorter than T since it is within the valid time of a Bahncard purchased by
OPT.

time

s1

on offoff

s3

τiµj µj+1

︷ ︸︸ ︷︷ ︸︸ ︷ on︷ ︸︸ ︷

s2 s4 s5

τi+1

s6 s7

µj + T µj+1 + Tτi + T

︷ ︸︸ ︷
… …   

off on︷ ︸︸ ︷

s4x s4x+1s4x−1

τi+x−1 + Tµj+x

︷ ︸︸ ︷

… …   

µj+2 µj+x−1 + T µj+x + T

off

s−1

VIII

… …   

︷ ︸︸ ︷

… …   

τk τk + T

Figure 21: Illustration for Appendix A.6.1. The shaded rectangle is the valid time of a Bahncard
purchased by OPT.

First, we observe that the cost ratio PFSUM
(
σ; [τk, τk + T ) ∪ [µj , µj+x + T )

)
/OPT

(
σ; [τk, τk +

T ) ∪ [µj , µj+x + T )
)

is less than 1/β, as shown below:

1

β
− PFSUM

(
σ; [τk, τk + T ) ∪ [µj , µj+x + T )

)

OPT
(
σ; [τk, τk + T ) ∪ [µj , µj+x + T )

)

=
(x+ 1)C + β

[
s−1 +

∑x−1
k=0(s4k+2 + s4k+3 + s4k+4)

]
+

∑x
k=0 s4k+1

β · OPT
(
σ; [τk, τk + T ) ∪ [µj , µj+x + T )

)

−
β
[
(x+ 1)C + β

[∑x−1
k=0(s4k+1 + s4k+2 + s4k+4) + s4x+1

]
+ s−1 +

∑x−1
k=0 s4k+3

]

β · OPT
(
σ; [τk, τk + T ) ∪ [µj , µj+x + T )

)

=
(1− β)(x+ 1)C + β(1− β)

∑x−1
k=0(s4k+2 + s4k+4) + (1− β2)

∑x
k=0 s4k+1

β · OPT
(
σ; [τk, τk + T ) ∪ [µj , µj+x + T )

)
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> 0. (since 0 ≤ β < 1)

Thus, the following inequality always holds:

PFSUM
(
σ; [τk, τk + T ) ∪ [µj , µj+x + T )

)

OPT
(
σ; [τk, τk + T ) ∪ [µj , µj+x + T )

) <
1

β
. (66)

Next, we analyze the upper bound of the cost ratio. Note that by Lemma 4.3, we have

s−1 < 2γ + η. (67)

There are two cases to consider.

Case I. 0 ≤ η ≤ γ. By Corollary 3.2, for each k = 0, ..., x− 1, the T -future-cost at τi+k is at least
γ, i.e.,

s4k+2 + s4k+3 + s4k+4 ≥ γ. (68)

By Lemma 4.2, we have
{

s1 + s2 ≥ γ − η,
s4k + s4k+1 + s4k+2 ≥ γ − η for each k = 1, ..., x− 1,
s4x + s4x+1 ≥ γ − η.

(69)

Note that for each k = 0, ..., x − 1, all the travel requests in the (4k + 2)-th and the (4k + 4)-th
time intervals are reduced requests of both PFSUM and OPT. Thus, to maximize the cost ratio in
[τk, τk + T ) ∪ [µj , µj+x + T ), we should minimize s4k+2 and s4k+4. If they are greater than γ, the
cost ratio can be increased by decreasing s4k+2 or s4k+4 to γ without violating (68) and (69). Thus,
for the purpose of deriving an upper bound on the cost ratio, we can assume that

s4k+2 ≤ γ, (70)
s4k+4 ≤ γ. (71)

It follows from (70), (71) and Lemma 4.4 that, for each k = 0, ..., x− 1,

s4k+2 + s4k+3 + s4k+4 ≤ 2γ + η. (72)

As a result, we have

PFSUM
(
σ; [τk, τk + T ) ∪ [µj , µj+x + T )

)

OPT
(
σ; [τk, τk + T ) ∪ [µj , µj+x + T )

)

=
(x+ 1)C + β

[∑x−1
k=0

(
s4k+1 + s4k+2 + s4k+4

)
+ s4x+1

]
+ s−1 +

∑x−1
k=0 s4k+3

(x+ 1)C + β
[
s−1 +

∑x−1
k=0

(
s4k+2 + s4k+3 + s4k+4

)]
+

∑x
k=0 s4k+1

<
(x+ 1)C + (2γ + η) + β

[∑x−1
k=0

(
s4k+1 + s4k+2 + s4k+4

)
+ s4x+1

]
+

∑x−1
k=0 s4k+3

(x+ 1)C + β
[
2γ + η +

∑x−1
k=0

(
s4k+2 + s4k+3 + s4k+4

)]
+
∑x

k=0 s4k+1

(by (67))

=
(x+ 1)C + (2γ + η) + β

∑x
k=0 s4k+1 +

∑x−1
k=0

(
s4k+2 + s4k+3 + s4k+4

)
− (1− β)

∑x−1
k=0

(
s4k+2 + s4k+4

)

(x+ 1)C + β
[
2γ + η +

∑x−1
k=0

(
s4k+2 + s4k+3 + s4k+4

)]
+

∑x
k=0 s4k+1

≤ (x+ 1)C + β
∑x

k=0 s4k+1 + (x+ 1)(2γ + η)− (1− β)
∑x−1

k=0

(
s4k+2 + s4k+4

)

(x+ 1)C + β(x+ 1)(2γ + η) +
∑x

k=0 s4k+1
(by (66) and (72))

=
(x+ 1)C +

∑x
k=0 s4k+1 + (x+ 1)(2γ + η)− (1− β)

[∑x−1
k=0

(
s4k+1 + s4k+2 + s4k+4

)
+ s4x+1

]

(x+ 1)C + β(x+ 1)(2γ + η) +
∑x

k=0 s4k+1

=
(x+ 1)C +

∑x
k=0 s4k+1 + (x+ 1)(2γ + η)

(x+ 1)C + β(x+ 1)(2γ + η) +
∑x

k=0 s4k+1
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−
(1− β)

[
(s1 + s2) +

∑x−1
k=1

(
s4k + s4k+1 + s4k+2

)
+ (s4x + s4x+1)

]

(x+ 1)C + β(x+ 1)(2γ + η) +
∑x

k=0 s4k+1

≤ (x+ 1)C +
∑x

k=0 s4k+1 + (x+ 1)(2γ + η)− (1− β)(x+ 1)(γ − η)

(x+ 1)C + β(x+ 1)(2γ + η) +
∑x

k=0 s4k+1
(by (69))

≤ (x+ 1)C + (x+ 1)(2γ + η)− (1− β)(x+ 1)(γ − η)

(x+ 1)C + β(x+ 1)(2γ + η)
(since

x∑

k=0

s4k+1 ≥ 0)

=
C + (2γ + η)− (1− β)(γ − η)

C + β(2γ + η)

=
2γ + (2− β)η

(1 + β)γ + βη
. (73)

Case II. η > γ. By Lemma 4.3, for each k = 0, ..., x− 1, the total regular cost in the (4k + 3)-th
time interval (which is in an off phase and has length at most T ) is less than 2γ + η:

s4k+3 < 2γ + η. (74)

On the other hand, the total regular cost in any time interval in an on phase is non-negative. As a
result, we have

PFSUM
(
σ; [τk, τk + T ) ∪ [µj , µj+x + T )

)

OPT
(
σ; [τk, τk + T ) ∪ [µj , µj+x + T )

) <
(x+ 1)C + (x+ 1)(2γ + η)

(x+ 1)C + β(x+ 1)(2γ + η)

(by (66), (67), and (74))

=
(3− β)γ + η

(1 + β)γ + βη
. (75)

The result follows from (73) and (75).

A.6.2 Non-Augmented Pattern VI Combined with Pattern III

Proposition Restated. If OPT purchases x+ 2 Bahncards (x ≥ 0) starting from the off phase of
El−1, where (i) the first Bahncard has its purchase time τk falling in the off phase of El−1 and its
expiry time τk + T falling in the on phase of El, (ii) for each p = 1, ..., x, the (p+ 1)-th Bahncard
has its purchase time τk+p falling in the on phase of El+p−1 and its expiry time τk+p + T falling
in the on phase of El+p, (iii) the (x + 2)-th Bahncard has its purchase time τk+x+1 falling in the
on phase of El+x and its expiry time τk+x+1 + T falling in the off phase of El+x, and for some
j ≥ l and i ≥ k, OPT purchases y Bahncards (y ≥ 0) in successive on phases starting from Ej+x+1,
where for each p = 0, ..., y − 1, the (p+ 1)-th Bahncard has its purchasing time τi+x+p+2 falling in
the on phase of Ej+x+p+1 and its expiry time τi+x+p+2 + T falling in the on phase of Ej+x+p+2,
and (v) OPT does not purchase any new Bahncard in the on phase of Ej+x+y+1, then

PFSUM
(
σ; [τk, τk+x+1 + T ) ∪ [µj+x+1, µj+x+y+1 + T )

)

OPT
(
σ; [τk, τk+x+1 + T ) ∪ [µj+x+1, µj+x+y+1 + T )

) ≤
{

2γ+(2−β)η
(1+β)γ+βη 0 ≤ η ≤ γ,
(3−β)γ+η
(1+β)γ+βη η > γ.

(76)

Proof. As shown in Figure 22, we divide [τk, τk+x+1+T )∪[µj+x+1, µj+x+y+1+T ) into 4(x+y)+6
time intervals, where each time intervals starts and ends with the time when OPT or PFSUM
purchases a Bahncard or a Bahncard purchased by OPT or PFSUM expires. The first 4x+ 5 time
intervals, from time τi to τi+x+1 + T , are concerned time duration of Pattern III. The total regular
costs in these intervals are denoted by s−1, s0, s1, ..., s4x+3, respectively. [µj+x+1, µj+x+y+1 + T )
is the concerned interval of Pattern VI, which is divided into 4y + 1 time intervals. The total regular
costs in these intervals are denoted by q1, ..., q4y+1, respectively.

For ease of notation, we introduce θk := s4k+2 + s4k+3 + s4k+4, and δk := q4k+2 + q4k+3 +
q4k+4. First, we observe that the cost ratio PFSUM

(
σ; [τk, τk+x+1 + T ) ∪ [µj+x+1, µj+x+y+1 +

T )
)
/OPT

(
σ; [τk, τk+x+1 + T ) ∪ [µj+x+1, µj+x+y+1 + T )

)
is less than 1/β, as shown below:
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Figure 22: Illustration for Appendix A.6.2. The shaded rectangle is the valid time of a Bahncard
purchased by OPT.

1

β
− PFSUM

(
σ; [τk, τk+x+1 + T ) ∪ [µj+x+1, µj+x+y+1 + T )

)

OPT
(
σ; [τk, τk+x+1 + T ) ∪ [µj+x+1, µj+x+y+1 + T )

)

=
(x+ 2)C + β

[
s−1 + s0 + s4x+2 + s4x+3 +

∑x−1
k=0 θk

]

β · OPT
(
σ; [τk, τk+x+1 + T ) ∪ [µj+x+1, µj+x+y+1 + T )

+

∑x
k=0 s4k+1 + s4x+4 + yC + β

∑y−1
k=0 δk +

∑y
k=0 q4k+1

β · OPT
(
σ; [τk, τk+x+1 + T ) ∪ [µj+x+1, µj+x+y+1 + T )

− β · (x+ 1)C + β
∑x

k=0

(
s4k + s4k+1 + s4k+2

)
+

∑x
k=−1 s4k+3 + s4x+4

β · OPT
(
σ; [τk, τk+x+1 + T ) ∪ [µj+x+1, µj+x+y+1 + T )

− β ·
(y + 1)C + β

[∑y−1
k=0

(
q4k+1 + q4k+2 + q4k+4

)
+ q4y+1

]
+
∑y−1

k=0 q4k+3

β · OPT
(
σ; [τk, τk+x+1 + T ) ∪ [µj+x+1, µj+x+y+1 + T )

=
(1− β)(x+ y + 2)C + β(1− β)(

∑x
k=0 s4k+2 +

∑x
k=0 s4k) + (1− β2)

∑x
k=0 s4k+1

β · OPT
(
σ; [τk, τk+x+1 + T ) ∪ [µj+x+1, µj+x+y+1 + T )

+
β(1− β)(

∑y−1
k=0 q4k+2 +

∑y−1
k=0 q4k+4) + (1− β2)

∑y
k=0 q4k+1

β · OPT
(
σ; [τk, τk+x+1 + T ) ∪ [µj+x+1, µj+x+y+1 + T )

>
(1− β)(x+ y + 2)C

β · OPT
(
σ; [τk, τk+x+1 + T ) ∪ [µj+x+1, µj+x+y+1 + T )

(since 0 ≤ β < 1, C > 0)

> 0.

Thus, the following inequality always holds:

PFSUM
(
σ; [τk, τk+x+1 + T ) ∪ [µj+x+1, µj+x+y+1 + T )

)

OPT
(
σ; [τk, τk+x+1 + T ) ∪ [µj+x+1, µj+x+y+1 + T )

) <
1

β
. (77)

Case I. 0 ≤ η ≤ γ. By Corollary 3.2, the T -future-cost at τi+k is at least γ, i.e.,




s−5 + s−4 ≥ γ,
s−2 + s−1 ≥ γ,
s4k+2 + s4k+3 + s4k+4 ≥ γ for each k = 0, ..., x− 1,
q4k+2 + q4k+3 + q4k+4 ≥ γ for each k = 0, ..., y − 1.

(78)

By Lemma 4.2, we have




s4k + s4k+1 + s4k+2 ≥ γ − η for each k = 0, 1, ..., x.
q1 + q2 ≥ γ − η
q4y + q4y+1 ≥ γ − η
q4k + q4k+1 + q4k+2 ≥ γ − η for each k = 1, 2, ..., y − 1.

(79)

Note that for Pattern III, all the travel requests in the (4k+2)-th (for k = 0, ..., x) and the (4k+4)-th
(for k = −1, ..., x − 1) time intervals are reduced requests of both PFSUM and OPT, similar for
Pattern VI. Thus, to maximize the cost ratio in [τk, τk+x+1 + T ) ∪ [µj+x+1, µj+x+y+1 + T ), we
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should minimize these s4k+2’s, s4k+4’s, q4k+2’s, and q4k+4’s. If they are greater than γ, the cost
ratio can be increased by decreasing s4k+2 or s4k+4 to γ without violating (78) and (79). Thus, for
the purpose of deriving an upper bound on the cost ratio, we can assume that





s4k+2 ≤ γ for each k = 0, ..., x,
s4k+4 ≤ γ for each k = −1, ..., x− 1,
q4k+2 ≤ γ for each k = 0, ..., y − 1,
q4k+4 ≤ γ for each k = 0, ..., y − 1.

(80)

It follows from (80) and Lemma 4.4 that,




s−1 + s0 ≤ 2γ + η,
s4x+2 + s4x+3 ≤ 2γ + η,
θk = s4k+2 + s4k+3 + s4k+4 ≤ 2γ + η for each k = 0, ..., x− 1,
δk = q4k+2 + q4k+3 + q4k+4 ≤ 2γ + η for each k = 0, ..., y − 1.

(81)

As a result, we have

PFSUM
(
σ; [τk, τk+x+1 + T ) ∪ [µj+x+1, µj+x+y+1 + T )

OPT
(
σ; [τk, τk+x+1 + T ) ∪ [µj+x+1, µj+x+y+1 + T )

=
(x+ 1)C + s−1 + s0 + s4x+2 + s4x+3 +

∑x−1
k=0 θk +

∑x
k=0 s4k+1 − (1− β)

∑x
k=0(s4k + s4k+1 + s4k+2)

(x+ 2)C + β
[
s−1 + s0 + s4x+2 + s4x+3 +

∑x−1
k=0 θk

]
+

∑x
k=0 s4k+1 + yC + β

∑y−1
k=0 δk +

∑y
k=0 q4k+1

+
(y + 1)C +

∑y
k=0 q4k+1 +

∑y−1
k=0 δk − (1− β)

[
q1 + q2 + q4y + q4y+1 +

∑y−1
k=1(q4k + q4k+1 + q4k+2)

]

(x+ 2)C + β
[
s−1 + s0 + s4x+2 + s4x+3 +

∑x−1
k=0 θk

]
+

∑x
k=0 s4k+1 + yC + β

∑y−1
k=0 δk +

∑y
k=0 q4k+1

≤ (x+ 1)(1− β)η + s−1 + s0 + s4x+2 + s4x+3 +
∑x

k=0 s4k+1 +
∑x−1

k=0 θk

(x+ 2)C + β
[
s−1 + s0 + s4x+2 + s4x+3 +

∑x
k=0 s4k+1 +

∑x−1
k=0 θk

]
+ yC + β

∑y−1
k=0 δk +

∑y
k=0 q4k+1

+
(y + 1)(1− β)η +

∑y−1
k=0 δk +

∑y
k=0 q4k+1

(x+ 2)C + β
[
s−1 + s0 + s4x+2 + s4x+3 +

∑x
k=0 s4k+1 +

∑x−1
k=0 θk

]
+ yC + β

∑y−1
k=0 δk +

∑y
k=0 q4k+1

(by (79))

≤ (x+ 1)(1− β)η + s−1 + s0 + s4x+2 + s4x+3 +
∑x−1

k=0 θk + (y + 1)(1− β)η +
∑y−1

k=0 δk

(x+ 2)C + β(s−1 + s0 + s4x+2 + s4x+3 +
∑x−1

k=0 θk) + yC + β
∑y−1

k=0 δk

(since
x∑

k=0

s4k+1 ≥ 0,

y∑

k=0

q4k+1 ≥ 0)

=
(x+ y + 2)(1− β)η + (s−1 + s0 + s4x+2 + s4x+3 +

∑x−1
k=0 θk) +

∑y−1
k=0 δk

(x+ y + 2)C + β
[
s−1 + s0 + s4x+2 + s4x+3 +

∑x−1
k=0 θk

]
+ βy

∑y−1
k=0 δk

≤ (x+ y + 2)(1− β)η + (x+ y + 2)(2γ + η)

(x+ y + 2)C + β(x+ y + 2)(2γ + η)
(by (77) and (81))

=
(1− β)η + 2γ + η

C + β(2γ + η)

=
2γ + (2− β)η

(1 + β)γ + βη
(82)

Case II. η > γ. By Lemma 4.3, for Pattern III, the total regular cost in the (4k + 3)-th (for
k = −1, ..., x) time interval (which is in an off phase and has length at most T ) is less than 2γ + η,
similar for Pattern VI. Thus we have{

s4k+3 < 2γ + η for each k = −1, ..., x,
q4k+3 < 2γ + η for each k = 0, 1, ..., y − 1.

(83)
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On the other hand, the total regular cost in any time interval in an on phase is non-negative, so it can
be minimized to zero. As a result, we have

PFSUM
(
σ; [τk, τk+x+1 + T ) ∪ [µj+x+1, µj+x+y+1 + T )

)

OPT
(
σ; [τk, τk+x+1 + T ) ∪ [µj+x+1, µj+x+y+1 + T )

)

≤ (x+ 1)C +
∑x

k=−1 s4k+3 + (y + 1)C +
∑y−1

k=0 q4k+3

(x+ 2)C + β
[
s−1 + s4x+3 +

∑x−1
k=0 s4k+3

]
+ yC + β

∑y−1
k=0 q4k+3

<
(x+ 1)C + (x+ 2)(2γ + η) + (y + 1)C + y(2γ + η)

(x+ 2)C + β(x+ 2)(2γ + η) + yC + βy(2γ + η)
(by (77) and (83))

=
(x+ y + 2)C + (x+ y + 2)(2γ + η)

(x+ y + 2)C + β(x+ y + 2)(2γ + η)

=
(3− β)γ + η

(1 + β)γ + βη
(84)

The result follows from (82) and (84).

A.7 Proof of Proposition 4.10

A.7.1 Non-Augmented Pattern VI Combined with Pattern I

Proposition Restated. If (i) OPT purchases a Bahncard at time τk at the beginning of El, i.e.,
τk = µl, (ii) there is no Bahncard purchased by OPT expiring in the on phase of Ej (l < j), (iii)
OPT purchases x Bahncards (x ≥ 1) in successive on phases starting from Ej , where for each
k = 0, ..., x−1, the (k+1)-th Bahncard has its purchasing time τi+k falling in the on phase of Ej+k

and its expiry time τi+k + T falling in the on phase of Ej+k+1, and (iv) OPT does not purchase any
new Bahncard in the on phase of Ej+x, then

PFSUM
(
σ; [τk, τk + T ) ∪ [µj , µj+x + T )

)

OPT
(
σ; [τk, τk + T ) ∪ [µj , µj+x + T )

) ≤
{

2γ+(2−β)η
(1+β)γ+βη 0 ≤ η ≤ γ,
(3−β)γ+η
(1+β)γ+βη η > γ,

(85)

where the upper bound is irrelevant with x.

Proof. As shown in Figure 23, we divide [τk, τk + T ) ∪ [µj , µj+x + T ) into 4x+ 2 time intervals,
where each time interval starts and ends with the time when OPT or PFSUM purchases a Bahncard or
a Bahncard purchased by OPT or PFSUM expires. Let these intervals be indexed by −1, 1, ..., 4x+1,
and let s−1, s1, ..., s4x+1 denote the total regular costs in these intervals respectively. By definition,
it is easy to see that for each k = 0, ..., x− 1, the (4k + 3)-th time interval, i.e., [µj+k + T, µj+k+1)
(which is an off phase), is shorter than T since it is within the valid time of a Bahncard purchased by
OPT.

time

s1

on offoff

s3

τiµj µj+1

︷ ︸︸ ︷︷ ︸︸ ︷ on︷ ︸︸ ︷

s2 s4 s5

τi+1

s6 s7

µj + T µj+1 + Tτi + T

︷ ︸︸ ︷
… …   

off on︷ ︸︸ ︷

s4x s4x+1s4x−1

τi+x−1 + Tµj+x

︷ ︸︸ ︷

… …   

µj+2 µj+x−1 + T µj+x + T

s−1

VII

on︷ ︸︸ ︷
… …   

… …   

τk(µl) τk + T

off︷ ︸︸ ︷

Figure 23: Illustration for Appendix A.7.1. The shaded rectangle is the valid time of a Bahncard
purchased by OPT.

First, we observe that the cost ratio PFSUM
(
σ; [τk, τk + T ) ∪ [µj , µj+x + T )

)
/OPT

(
σ; [τk, τk +

T ) ∪ [µj , µj+x + T )
)

is less than 1/β, as shown below:

1

β
− PFSUM

(
σ; [τk, τk + T ) ∪ [µj , µj+x + T )

)

OPT
(
σ; [τk, τk + T ) ∪ [µj , µj+x + T )

)
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=
(x+ 1)C + β

[
s−1 +

∑x−1
k=0(s4k+2 + s4k+3 + s4k+4)

]
+
∑x

k=0 s4k+1

β · OPT
(
σ; [τk, τk + T ) ∪ [µj , µj+x + T )

))

−
β
[
(x+ 2)C + β

[
s−1 +

∑x−1
k=0(s4k+1 + s4k+2 + s4k+4) + s4x+1

]
+

∑x−1
k=0 s4k+3

]

β · OPT
(
σ; [τk, τk + T ) ∪ [µj , µj+x + T )

))

=
(1− β)(x+ 1)C − βC + β(1− β)

[
s−1 +

∑x−1
k=0(s4k+2 + s4k+4)

]
+ (1− β2)

∑x
k=0 s4k+1

β · OPT
(
σ; [τk, τk + T ) ∪ [µj , µj+x + T )

))

≥
(1− β)(x+ 1)C + β(1− β)

[∑x−1
k=0(s4k+2 + s4k+4)

]
+ (1− β2)

∑x
k=0 s4k+1

β · OPT
(
σ; [τk, τk + T ) ∪ [µj , µj+x + T )

)) (since s−1 ≥ γ)

> 0. (since 0 ≤ β < 1)

Thus, the following inequality always holds:

PFSUM
(
σ; [τk, τk + T ) ∪ [µj , µj+x + T )

)

OPT
(
σ; [τk, τk + T ) ∪ [µj , µj+x + T )

) <
1

β
. (86)

There are two cases to consider.

Case I. 0 ≤ η ≤ γ. By Corollary 3.2, for each k = 0, ..., x− 1, the T -future-cost at τi+k is at least
γ, i.e.,

s4k+2 + s4k+3 + s4k+4 ≥ γ. (87)

By Lemma 4.2, we have




s−1 ≥ γ,
s1 + s2 ≥ γ − η,
s4k + s4k+1 + s4k+2 ≥ γ − η for each k = 1, ..., x− 1,
s4x + s4x+1 ≥ γ − η.

(88)

Note that for each k = 0, ..., x − 1, all the travel requests in the (4k + 2)-th and the (4k + 4)-th
time intervals are reduced requests of both PFSUM and OPT. Thus, to maximize the cost ratio in
[τk, τk + T ) ∪ [µj , µj+x + T ), we should minimize s4k+2 and s4k+4. If they are greater than γ, the
cost ratio can be increased by decreasing s4k+2 or s4k+4 to γ without violating (87) and (88). Thus,
for the purpose of deriving an upper bound on the cost ratio, we can assume that

s4k+2 ≤ γ, (89)
s4k+4 ≤ γ. (90)

It follows from (89), (90) and Lemma 4.4 that, for each k = 0, ..., x− 1,

s4k+2 + s4k+3 + s4k+4 ≤ 2γ + η. (91)

As a result, we have

PFSUM
(
σ; [τk, τk + T ) ∪ [µj , µj+x + T )

)

OPT
(
σ; [τk, τk + T ) ∪ [µj , µj+x + T )

)

=
(x+ 2)C + β

[
s−1 +

∑x−1
k=0

(
s4k+1 + s4k+2 + s4k+4

)
+ s4x+1

]
+
∑x−1

k=0 s4k+3

(x+ 1)C + β
[
s−1 +

∑x−1
k=0

(
s4k+2 + s4k+3 + s4k+4

)]
+
∑x

k=0 s4k+1

≤
(x+ 2)C + β

[
γ +

∑x−1
k=0

(
s4k+1 + s4k+2 + s4k+4

)
+ s4x+1

]
+

∑x−1
k=0 s4k+3

(x+ 1)C + β
[
γ +

∑x−1
k=0

(
s4k+2 + s4k+3 + s4k+4

)]
+

∑x
k=0 s4k+1

(by (88))
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=
(x+ 2)C + βγ + β

∑x
k=0 s4k+1 +

∑x−1
k=0

(
s4k+2 + s4k+3 + s4k+4

)
− (1− β)

∑x−1
k=0

(
s4k+2 + s4k+4

)

(x+ 1)C + β
[
γ +

∑x−1
k=0

(
s4k+2 + s4k+3 + s4k+4

)]
+

∑x
k=0 s4k+1

≤ (x+ 2)C + βγ + β
∑x

k=0 s4k+1 + x(2γ + η)− (1− β)
∑x−1

k=0

(
s4k+2 + s4k+4

)

(x+ 1)C + β(γ + x(2γ + η)) +
∑x

k=0 s4k+1
(by (86) and (91))

=
(x+ 2)C + βγ +

∑x
k=0 s4k+1 + x(2γ + η)− (1− β)

[∑x−1
k=0

(
s4k+1 + s4k+2 + s4k+4

)
+ s4x+1

]

(x+ 1)C + β(γ + x(2γ + η)) +
∑x

k=0 s4k+1

=
(x+ 2)C + βγ +

∑x
k=0 s4k+1 + x(2γ + η)

(x+ 1)C + β(γ + x(2γ + η)) +
∑x

k=0 s4k+1

−
(1− β)

[
(s1 + s2) +

∑x−1
k=1

(
s4k + s4k+1 + s4k+2

)
+ (s4x + s4x+1)

]

(x+ 1)C + β(γ + x(2γ + η)) +
∑x

k=0 s4k+1

≤ (x+ 2)C + βγ +
∑x

k=0 s4k+1 + x(2γ + η)− (1− β)(x+ 1)(γ − η)

(x+ 1)C + β(γ + x(2γ + η)) +
∑x

k=0 s4k+1
(by (88))

≤ (x+ 2)C + βγ + x(2γ + η)− (1− β)(x+ 1)(γ − η)

(x+ 1)C + β(γ + x(2γ + η))
(since

x∑

k=0

s4k+1 ≥ 0)

=
x
(
2γ + (2− β)η

)
+
(
γ + (1− β)η

)

x
(
(1 + β)γ + βη

)
+ γ

≤ 2γ + (2− β)η

(1 + β)γ + βη
. (since x ≥ 1) (92)

Case II. η > γ. By Lemma 4.3, for each k = 0, ..., x− 1, the total regular cost in the (4k + 3)-th
time interval (which is in an off phase and has length at most T ) is less than 2γ + η:

s4k+3 < 2γ + η. (93)

On the other hand, the total regular cost in any time interval in an on phase is non-negative, except
for s−1, which is at least γ:

s−1 ≥ γ. (94)

As a result, we have

PFSUM
(
σ; [τk, τk + T ) ∪ [µj , µj+x + T )

)

OPT
(
σ; [τk, τk + T ) ∪ [µj , µj+x + T )

)) <
(x+ 2)C + βγ + x(2γ + η)

(x+ 1)C + β(γ + x(2γ + η))

(by (86), (93), and (94))

=
x
(
C + 2γ + η

)
+
(
C + γ

)

x
(
C + β(2γ + η)

)
+ γ

≤ (3− β)γ + η

(1 + β)γ + βη
. (since x ≥ 1) (95)

The result follows from (92) and (95).

A.7.2 Non-Augmented Pattern VI Combined with Pattern IV

Proposition Restated. If OPT purchases x+ 1 Bahncards (x ≥ 0) starting from the off phase of
El−1, where (i) the first Bahncard has its purchase time τk falling in the off phase of El−1 and its
expiry time τk+T falling in the on phase of El, (ii) for each p = 1, ..., x, the (p+1)-th Bahncard has
its purchase time τk+p falling in the on phase of El+p−1 and its expiry time τk+p + T falling in the
on phase of El+p, and for some j ≥ l and i ≥ k, OPT purchases y Bahncards (y ≥ 0) in successive
on phases starting from Ej+x+1, where for each p = 0, ..., y − 1, the (p + 1)-th Bahncard has its
purchasing time τi+x+p+1 falling in the on phase of Ej+x+p+1 and its expiry time τi+x+p+1 + T
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falling in the on phase of Ej+x+p+2, and (v) OPT does not purchase any new Bahncard in the on
phase of Ej+x+y+1, then

PFSUM
(
σ; [τk, µl+x+1) ∪ [µj+x+1, µj+x+y+1 + T )

)

OPT
(
σ; [τk, µl+x + T ) ∪ [µj+x+1, µj+x+y+1 + T )

) ≤
{

2γ+(2−β)η
(1+β)γ+βη 0 ≤ η ≤ γ,
(3−β)γ+η
(1+β)γ+βη η > γ,

(96)

where the upper bound is tight (achievable) for any x.

Proof. As shown in Figure 24, we divide [τk, µl+x+1)∪ [µj+x+1, µj+x+y+1 + T ) into 4(x+ y) + 5
time intervals, where each time intervals starts and ends with the time when OPT or PFSUM
purchases a Bahncard or a Bahncard purchased by OPT or PFSUM expires. The first 4x+ 3 time
intervals, from time τi to µj+x + T , are concerned time duration of Pattern IV. The (4x + 4)-th
interval is the off phase [µl+x+T, µl+x+1). The total regular costs in these time intervals are denoted
by s−1, s0, s1, ..., s4x+1, s4x+2, respectively. [µj+x+1, µj+x+y+1 + T ) is the concerned interval of
Pattern VI, which is divided into 4y + 1 time intervals. The total regular costs in these intervals are
denoted by q1, ..., q4y+1, respectively.

time

off ︷ ︸︸ ︷on off︷︸︸︷︷ ︸︸ ︷on off︷︸︸︷
… …   

︷ ︸︸ ︷on︷ ︸︸ ︷ ︷ ︸︸ ︷on off︷︸︸︷︷ ︸︸ ︷on off︷︸︸︷
… …   

︷ ︸︸ ︷ off︷︸︸︷︷ ︸︸ ︷onon

µj+x+1 µj+x+2 µj+x+y+1τi+x+2

s−1 q1 q4y+1s4x+1

IV VI

τi+x+1 τi+x+yτk µl τk+1 µl+1 τk+2 µl+x

… …   

… …   

off︷︸︸︷

s4x+2

µl+x+1

Figure 24: Illustration for Appendix A.7.2. The shaded rectangle is the valid time of a Bahncard
purchased by OPT.

According to Proposition 4.10. In IV of (9), the total cost of travel requests in the last on phase of
Pattern IV and the following off phase is at least γ. Thus we have

c(σ; [µl+x, µl+x+1) = s4x + s4x+1 + s4x+2 ≥ γ (97)

First, we observe that the cost ratio PFSUM
(
σ; [τk, µl+x+1) ∪ [µj+x+1, µj+x+y+1 +

T )
)
/OPT

(
σ; [τk, µl+x+1) ∪ [µj+x+1, µj+x+y+1 + T )

)
is less than 1/β, as shown below:

1

β
− PFSUM

(
σ; [τk, µl+x+1) ∪ [µj+x+1, µj+x+y+1 + T )

)

OPT
(
σ; [τk, µl+x+1) ∪ [µj+x+1, µj+x+y+1 + T )

)

=
(x+ 1)C + β

[
s−1 + s0 +

∑x−1
k=0(s4k+2 + s4k+3 + s4k+4)

]
+
∑x

k=0 s4k+1 + s4x+2

β ·
[
OPT

(
σ; [τk, µl+x+1) ∪ [µj+x+1, µj+x+y+1 + T )

)]

+
yC + β

[∑y−1
k=0(q4k+2 + q4k+3 + q4k+4)

]
+
∑y

k=0 q4k+1

β ·
[
OPT

(
σ; [τk, µl+x+1) ∪ [µj+x+1, µj+x+y+1 + T )

)]

− β ·
(x+ 1)C + β

[∑x−1
k=0

(
s4k + s4k+1 + s4k+2

)
+ (s4x + s4x+1)

]
+

∑x−1
k=−1 s4k+3 + s4x+2

β ·
[
OPT

(
σ; [τk, µl+x+1) ∪ [µj+x+1, µj+x+y+1 + T )

)]

− β ·
(y + 1)C + β

[∑y−1
k=0

(
q4k+1 + q4k+2 + q4k+4

)
+ q4y+1

]
+
∑y−1

k=0 q4k+3

β ·
[
OPT

(
σ; [τk, µl+x+1) ∪ [µj+x+1, µj+x+y+1 + T )

)]

=
(x+ 1)(1− β)C + β(1− β)(

∑x−1
k=0 s4k+2 +

∑x
k=0 s4k) + (1− β2)

∑x
k=0 s4k+1 + (1− β)s4x+2

β ·
[
OPT

(
σ; [τk, µl+x+1) ∪ [µj+x+1, µj+x+y+1 + T )

)]

+

[
y − β(y + 1)

]
C + β(1− β)

[∑y−1
k=0(

∑y−1
k=0(q4k+2 + q4k+4)

]
+ (1− β2)

∑y
k=0 q4k+1 + (1− β)s4x+2

β ·
[
OPT

(
σ; [τk, µl+x+1) ∪ [µj+x+1, µj+x+y+1 + T )

)]
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≥

[
(x+ y)(1− β) + (1− 2β)

]
C + β(1− β)s4x + (1− β2)s4x+1 + (1− β)s4x+2

β ·
[
OPT

(
σ; [τk, µl+x+1) ∪ [µj+x+1, µj+x+y+1 + T )

]

≥

[
(x+ y)(1− β) + (1− 2β)

]
C + β(1− β)(s4x + s4x+1 + s4x+2)

β ·
[
OPT

(
σ; [τk, µl+x+1) ∪ [µj+x+1, µj+x+y+1 + T )

)] (since 0 ≤ β < 1)

≥

[
(x+ y)(1− β) + (1− 2β)

]
C + β(1− β)γ

β ·
[
OPT

(
σ; [τk, µl+x+1) ∪ [µj+x+1, µj+x+y+1 + T )

)] (by (97))

=

[
(x+ y)(1− β) + (1− β)

]
C

β ·
[
OPT

(
σ; [τk, µl+x+1) ∪ [µj+x+1, µj+x+y+1 + T )

)]

> 0. (since 0 ≤ β < 1, C > 0)

Thus, the following inequality always holds:

PFSUM
(
σ; [τk, µl+x+1) ∪ [µj+x+1, µj+x+y+1 + T )

)

OPT
(
σ; [τk, µl+x+1) ∪ [µj+x+1, µj+x+y+1 + T )

) <
1

β
(98)

Case I. 0 ≤ η ≤ γ. By Corollary 3.2, the T -future-cost at τi+k+1 is at least γ, i.e.,
{

s−1 + s0 ≥ γ,
s4k+2 + s4k+3 + s4k+4 ≥ γ for each k = 0, ..., x− 1,
q4k+2 + q4k+3 + q4k+4 ≥ γ for each k = 0, ..., y − 1.

(99)

By Lemma 4.2, we have




s4k + s4k+1 + s4k+2 ≥ γ − η for each k = 0, ..., x− 1,
s4x + s4x+1 ≥ γ − η.
q1 + q2 ≥ γ − η,
q4k + q4k+1 + q4k+2 ≥ γ − η for each k = 1, ..., y − 1,
q4y + q4y+1 ≥ γ − η.

(100)

Note that for Pattern IV, all the travel requests in the (4k+2)-th and the (4k+4)-th (for k = 0, ..., x−1)
time intervals are reduced requests of both PFSUM and OPT, similar for Pattern VI. Thus, to
maximize the cost ratio in [τk, µl+x + T ) ∪ [µj+x+1, µj+x+y+1 + T ), we should minimize these
s4k+2’s and s4k+4’s. If they are greater than γ, the cost ratio can be increased by decreasing s4k+2 or
s4k+4 to γ without violating (99) and (100). Thus, for the purpose of deriving an upper bound on the
cost ratio, we can assume that





s4k+2 ≤ γ for each k = 0, ..., x,
s4k+4 ≤ γ for each k = −1, ..., x− 1,
q4k+2 ≤ γ for each k = 0, ..., y − 1,
q4k+4 ≤ γ for each k = 0, ..., y − 1.

(101)

It follows from (101) and Lemma 4.4 that,

{
s−1 + s0 ≤ 2γ + η
s4k+2 + s4k+3 + s4k+4 ≤ 2γ + η for each k = 0, ..., x− 1,
q4k+2 + q4k+3 + q4k+4 ≤ 2γ + η for each k = 0, ..., y − 1

(102)

As a result, we have
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PFSUM
(
σ; [τk, µl+x+1) ∪ [µj+x+1, µj+x+y+1 + T )

)

OPT
(
σ; [τk, µl+x+1) ∪ [µj+x+1, µj+x+y+1 + T )

)

=
(x+ 1)C + (s−1 + s0) +

∑x−1
k=0 θk + β

∑x
k=0 s4k+1 + s4x+2 − (1− β)

[∑x−1
k=0

(
s4k + s4k+2

)
+ s4x

]

(x+ 1)C + β(s−1 + s0 +
∑x−1

k=0 θk) +
∑x

k=0 s4k+1 + s4x+2 + yC + β
∑y−1

k=0 δk +
∑y

k=0 q4k+1

+
(y + 1)C +

∑y
k=0 q4k+1 +

∑y−1
k=0 δk − (1− β)

[∑y−1
k=0

(
q4k+1 + q4k+2 + q4k+4

)
+ q4y+1

]

(x+ 1)C + β(s−1 + s0 +
∑x−1

k=0 θk) +
∑x

k=0 s4k+1 + yC + β
∑y−1

k=0 δk +
∑y

k=0 q4k+1

≤
(x+ 1)C + (s−1 + s0) +

∑x−1
k=0 θk + β

∑x
k=0 s4k+1 − (1− β)

[∑x−1
k=0

(
s4k + s4k+2

)
+ s4x

]

(x+ 1)C + β(s−1 + s0 +
∑x−1

k=0 θk) +
∑x

k=0 s4k+1 + yC + β
∑y−1

k=0 δk +
∑y

k=0 q4k+1

+
(y + 1)C +

∑y
k=0 q4k+1 +

∑y−1
k=0 δk − (1− β)

[∑y−1
k=0

(
q4k+1 + q4k+2 + q4k+4

)
+ q4y+1

]

(x+ 1)C + β(s−1 + s0 +
∑x−1

k=0 θk) +
∑x

k=0 s4k+1 + yC + β
∑y−1

k=0 δk +
∑y

k=0 q4k+1

(since s4x+2 ≥ 0)

≤
(x+ 1)C + (x+ 1)(2γ + η) +

∑x
k=0 s4k+1 − (1− β)

[∑x−1
k=0

(
s4k + s4k+1 + s4k+2

)
+ (s4x + s4x+1)

]

(x+ 1)C + β(x+ 1)(2γ + η) +
∑x

k=0 s4k+1 + yC + βy(2γ + η) +
∑y

k=0 q4k+1

+
(y + 1)C +

∑y
k=0 q4k+1 + y(2γ + η)− (1− β)

[
q1 + q2 +

∑y−1
k=1

(
q4k + q4k+1 + q4k+2

)
+ q4y + q4y+1

]

(x+ 1)C + β(x+ 1)(2γ + η) +
∑x

k=0 s4k+1 + yC + βy(2γ + η) +
∑y

k=0 q4k+1

(by (98) and (102))

≤
(x+ 1)C + (x+ 1)(2γ + η) +

∑x
k=0 s4k+1 − (1− β)

[
x(γ − η) + γ

]

(x+ 1)C + β(x+ 1)(2γ + η) +
∑x

k=0 s4k+1 + yC + βy(2γ + η) +
∑y

k=0 q4k+1

+
(y + 1)C +

∑y
k=0 q4k+1 + y(2γ + η)− (1− β)(y + 1)(γ − η)

(x+ 1)C + β(x+ 1)(2γ + η) +
∑x

k=0 s4k+1 + yC + βy(2γ + η) +
∑y

k=0 q4k+1

(by (97) and (100))

≤
(x+ y + 2)C + (x+ y + 1)(2γ + η)− (1− β)

[
(x+ y + 2)γ − (x+ y + 1)η

]

(x+ y + 1)C + β(x+ y + 1)(2γ + η)

(since
x∑

k=0

s4k+1 ≥ 0,

y∑

k=0

q4k+1 ≥ 0)

=
2(x+ y + 1)γ + (x+ y + 1)(2− β)η

(x+ y + 1)
[
(1 + β)γ + βη

]

=
2γ + (2− β)η

(1 + β)γ + βη
. (103)

Case II. η > γ. By Lemma 4.3, for Pattern IV, the total regular cost in the (4k + 3)-th (for
k = −1, ..., x) time interval (which is in an off phase and has length at most T ) is less than 2γ + η,
similar for Pattern VI. Thus we have

{
s4k+3 < 2γ + η for each k = −1, ..., x− 1,
q4k+3 < 2γ + η for each k = 0, ..., y − 1.

(104)

On the other hand, the total regular cost in any time interval in an on phase is non-negative, so it can
be minimized to zero, except the last on phase of Pattern IV. As a result, we have
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PFSUM
(
σ; [τk, µl+x+1) ∪ [µj+x+1, µj+x+y+1 + T )

)

OPT
(
σ; [τk, µl+x+1) ∪ [µj+x+1, µj+x+y+1 + T )

)

≤ (x+ 1)C +
∑x−2

k=−1 s4k+3 + s4x−1 + βs4x + (y + 1)C +
∑y−1

k=0 q4k+3

(x+ 1)C + β(s−1 +
∑x−2

k=0 s4k+3 + s4x−1 + s4x) + yC + β
∑y−1

k=0 q4k+3

≤ (x+ y + 2)C + (x+ y)(2γ + η) + γ + η + βγ

(x+ y + 1)C + β(x+ y + 1)(2γ + η)
(by (97) and (104))

=
(x+ y + 2)C + (x+ y + 1)(2γ + η) + (β − 1)γ

(x+ y + 1)C + β(x+ y + 1)(2γ + η)

=
(x+ y + 1)C + (x+ y + 1)(2γ + η)

(x+ y + 1)C + β(x+ y + 1)(2γ + η)

≤ (3− β)γ + η

(1 + β)γ + βη.
(105)

The result follows from (103), and (105).

A.8 More Experimental Results and Discussions

For commuters, Figures 25 to 30 demonstrate the performance of various algorithms under different
settings of β, C, and T . Additionally, with the practical significance of these parameters in mind, we
increase C or decrease T when β is reduced. In Figure 26, where C is exceptionally high, PFSUM,
SUMw, and SUM all tend towards not purchasing Bahncards. However, in this scenario, FSUM’s
competitive ratio escalates due to its complete reliance on predictions with large errors.

Additional results for occasional travelers are presented in Figures 28 to 30. These figures exhibit a
consistent pattern, with PFSUM demonstrating its consistency in scenarios of small prediction error.
Furthermore, PFSUM proves its robustness in cases of extremely large prediction errors, particularly
evident in Figure 30. Here, while all other prediction-incorporated algorithms have competitive ratios
of approximately 1.2 or higher, PFSUM consistently maintains a competitive ratio of less than 1.1.

(a) Commuters (U) (b) Commuters (N) (c) Commuters (P)

Figure 25: The cost ratios for commuters (β = 0.6, T = 10, C = 200). “U”, “N” and “P” represents
Uniform, Normal and Pareto ticket price distributions respectively.
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(a) Commuters (U) (b) Commuters (N) (c) Commuters (P)

Figure 26: The cost ratios for commuters (β = 0.6, T = 10, C = 2000). “U”, “N” and “P” represents
Uniform, Normal and Pareto ticket price distributions respectively.

(a) Commuters (U) (b) Commuters (N) (c) Commuters (P)

Figure 27: The cost ratios for commuters (β = 0.2, T = 10, C = 400). “U”, “N” and “P” represents
Uniform, Normal and Pareto ticket price distributions respectively.

(a) Occas. travelers (U) (b) Occas. travelers (N) (c) Occas. travelers (P)

Figure 28: The cost ratios for occasional travelers (β = 0.6, T = 10, C = 200). “U”, “N” and “P”
represents Uniform, Normal and Pareto ticket price distributions respectively.

(a) Occas. travelers (U) (b) Occas. travelers (N) (c) Occas. travelers (P)

Figure 29: The cost ratios for occasional travelers (β = 0.6, T = 10, C = 2000). “U”, “N” and “P”
represents Uniform, Normal and Pareto ticket price distributions respectively.

40



(a) Occas. travelers (U) (b) Occas. travelers (N) (c) Occas. travelers (P)

Figure 30: The cost ratios for occasional travelers (β = 0.2, T = 10, C = 400). “U”, “N” and “P”
represents Uniform, Normal and Pareto ticket price distributions respectively.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the contributions made, matching
both theoretical and experimental results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [No]

Justification: This paper provides both theoretical and experimental contributions for PF-
SUM. The theoretical results are derived without strong assumptions, but the experimental
results are conducted, although extensively, only on synthesized dataset. Different travel
request patterns may influence the advantage of PFSUM over the other algorithms.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All the propositions, lemmas, theorems and formulas in the paper are numbered,
cross-referenced, and proved. The proof sketches are provided in the main content while the
detailed proofs are given in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have released the code and data for reproducibility. With our instructions,
others can easily reproduce experimental results that are consistent with the results in the
paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code and data can be openly accessed. We provide the instructions to
reproduce all the experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental settings are presented in the experiment section and the
details are provided with the code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The statistical significance involved in our experiments is divided into two
parts: data generation and confidence intervals for the results. For data generation, we have
given their distributions as well as parameters, and specific methods of generation in the
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paper. Additionally, for the results, we have given 95% confidence intervals for all results of
100 experiments through the shaded area in the figures.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide sufficient information on the computer resources for the experi-
ments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics, and we confirm that the
research conducted conforms with the NeurIPS Code of Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: This paper presents work to design, analyze and evaluate learning-augmented
algorithms for the Bahncard problem. There are some positive potential societal conse-
quences of our work. For example, saving the cost of travelers. But none of them we feel
must be specifically highlighted.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have provided details of the code in an anonymized manner.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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