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ABSTRACT

Large language models (LLMs) are used in chatbots or AI assistants to hold con-
versations with a human user. In such applications, the quality (e.g., user engage-
ment, safety) of a conversation is important and can only be exactly known at the
end of the conversation. To maximize its expected quality, conversation planning
reasons about the stochastic transitions within a conversation to select the optimal
LLM response at each turn. Existing simulation-based conversation planning al-
gorithms typically select the optimal response by simulating future conversations
with a large number of LLM queries at every turn. However, this process is ex-
tremely time-consuming and hence impractical for real-time conversations. This
paper presents a novel approach called Semantic space COnversation Planning
with improved Efficiency (SCOPE) that exploits the dense semantic representa-
tion of conversations to perform conversation planning efficiently. In particular,
SCOPE models the stochastic transitions in conversation semantics and their asso-
ciated rewards to plan entirely within the semantic space. This gives the advantage
of allowing the optimal LLM response to be selected at every conversation turn
without needing additional LLM queries for simulation. As a result, SCOPE can
perform conversation planning 70 times faster than conventional simulation-based
planning algorithms when applied to a wide variety of conversation starters and
two reward functions seen in the real world, yet achieving a higher reward within
a practical planning budget.

1 INTRODUCTION

The rise of large language models (LLMs) has introduced numerous conversational tools in the
market, such as Replika (https://replika.com) and chatbots (Dam et al., 2024). As these
conversational tools become widespread, there are significant commercial and regulatory interests
in ensuring that they produce high quality conversations with the human users. For example, a
chatbot is commercially motivated to select responses at every conversation turn to produce a longer
and more engaging conversation with a human user. In this case, the quality of a conversation can
only be exactly known at the end of the conversation by accumulating the rewards (according to
some metric such as conversation engagement, safety) over multiple turns. To produce an optimal
conversation where the cumulative reward across multiple turns is maximized, we need to perform
conversation planning that reasons about the stochastic transitions in a conversation to strategically
select an optimal LLM response at each conversation turn.

Several recent works are myopic in conversational planning because they merely select the LLM
response that seems immediately “good” at each conversation turn. For example, one might be
tempted to use a predefined reward function to select the LLM response with the highest immediate
reward (Kumar et al., 2024; Yang et al., 2023) at each turn. However, myopic approaches do not
consider how the selected LLM response influences the conversation (and rewards) later on. This
implies a response that seems good at first might not lead to a better overall conversation outcome.
In Appendix A.1, we give some illustrative examples where LLM responses with similar instanta-
neous rewards eventually lead to conversations of differing quality in metrics such as conversation
harmfulness. Hence, without explicitly reasoning about how a selected LLM response influences
the conversation later, myopic approaches are suboptimal in maximizing the quality of the overall
conversation.
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Alternatively, an LLM can be fine-tuned (Ouyang et al., 2022; Rafailov et al., 2023) to produce a
response that implicitly maximizes a cumulative reward metric across multiple conversation turns.
While non-myopic if done correctly, these approaches are resource-intensive (Zhang et al., 2024), re-
quiring manual preference labels and repeated model fine-tuning. Therefore, fine-tuning approaches
are impractical for an LLM owner deploying LLMs for different use cases that require different
reward metrics. On the other hand, our paper focuses on the training-free setting (no fine-tuning of
LLMs) and explores inference time strategies to select LLM responses in a conversation.

More recently, some works have also explored using LLMs and simulation-based search algorithms
(Yu et al., 2023; Koh et al., 2024; Hao et al., 2023; Kim et al., 2024) to plan in LLM-related prob-
lems such as goal-oriented dialogues (Yu et al., 2023), language games (Jang et al., 2021) and more.
The popularity of these algorithms is driven mostly by the ubiquitous effectiveness of LLMs, us-
ing high quality look-ahead simulation with the help of another LLM to find out which responses
lead to higher cumulative rewards in the simulated conversation. However, these simulation-based
algorithms suffer from high planning costs (Koh et al., 2024; Zhao et al., 2023), requiring hundreds
or even close to thousands of seconds to perform sufficient look-ahead simulation during runtime
(details covered in Section 3.2). Such large planning budget is a luxury unavailable in real-time
conversations, where a human user expects the LLM to respond almost immediately. Thus, given
practical planning budget, these simulation-based search algorithms do not achieve sufficient sim-
ulation scope to select optimal LLM responses. Furthermore, these LLM queries could also incur
excessive monetary costs if they use API calls from external LLM providers. Therefore, conven-
tional simulation-based algorithms are impractical in our problem setting due to the large planning
costs involved. In our experiments (Section 6.3), we show that such algorithms indeed perform
poorly in conversation planning under practical planning budget.
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Figure 1: Overview of our approach, SCOPE, for conversation planning. During learning phase
(left), we exploit dense semantic representation of conversations to learn a lightweight transition
and reward model in semantic space (Notations and details covered in Sections 4.2 and 4.3). During
runtime (right), SCOPE uses these learnt models to perform MCTS at a broader scope in semantic
space without needing additional LLM queries for simulation (Algorithm 1), allowing us to select
an optimal LLM response that maximizes the cumulative reward in a conversation.

This paper presents a novel approach called Semantic Space COnversation Planning with improved
Efficiency (SCOPE) which exploits the dense semantic representation of conversations to perform
conversation planning in a semantic space (Figure 1). Such representations have been shown to
capture the semantics of natural language conversations effectively (Devlin et al., 2019; Chen et al.,
2020). During the learning phase, SCOPE learns the stochastic transitions in conversation and their
associated rewards using a lightweight transition and reward model in semantic space. During run-
time, SCOPE uses the learnt models to perform Monte Carlo tree search (MCTS) and simulation in
semantic space, selecting an LLM response that leads to high quality conversations without using
costly LLM queries. This results in a non-myopic approach that is effective even under realistic
planning budgets. As such, our work presents a paradigm shift, similar to that found in Kamb-
hampati et al. (2024): instead of relying on an LLM fully for simulation in conversation planning,
our approach only uses an LLM to propose candidate responses, before using SCOPE to plan in
semantic space without needing costly LLM queries. Concretely, our contributions are:
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• We transform the multi-turn conversation planning problem, originally viewed as a Markov de-
cision process (MDP), into its semantic form representation (Section 4.1). The semantic form
preserves the optimal action (LLM response) selected at every conversation turn in a real-time
conversation.

• We introduce a novel approach called SCOPE, that solves this transformed MDP by exploiting
dense conversation semantic representations to learn a lightweight transition and reward model
over conversation semantics. By modeling the stochastic transitions within a conversation and
their associated rewards in semantic space, SCOPE performs MCTS entirely in semantic space
without needing additional LLM queries to search for optimal LLM responses at every conversa-
tion turn. By doing so, SCOPE plans 70 times faster than conventional simulation-based planning
algorithms, allowing it to select optimal LLM responses under practical planning budget.

• We use SCOPE to select LLM responses in a wide range of real-world multi-turn conversations
and show that learning the transition and reward models in semantic space allows SCOPE to
achieve higher cumulative rewards than conventional non-myopic and myopic planning algo-
rithms under practical planning budget and two realistic reward functions.

2 CONVERSATION PLANNING FOR LLMS

2.1 PROBLEM SETTING

Human: Can you tell me a 
fact about Country XXX?

LLM: The world cup was 
held twice in Country XXX.
Human: That’s cool! I
didn’t know that! Can you 
tell me more?

𝑠

𝑠′𝑎
𝑠

𝑠′

Stochastic 
transition

Figure 2: Example of a stochastic transi-
tion from s to s′ after taking action a in
MDP for conversation planning.

Our work focuses on real-time, multi-turn conversa-
tions between the LLM and a human user. Briefly, a
conversation consists of alternating responses given by
each party at every conversation turn. Given a reward
function which assigns a numerical reward to each
conversation turn (dependent on the response given by
the LLM, human user, or both), conversation planning
aims to select the optimal LLM response out of a can-
didate pool of responses at every conversation turn,
maximizing expected cumulative reward over multiple
turns. With an appropriately chosen reward function
(some examples given in Section 6.1), the cumulative
reward indicates the overall quality of the conversation (e.g., engagement, safety). Conversation
planning is challenging because (a) we need to account for the stochastic response of the human
user (which we cannot directly control) at every conversation turn and (b) an LLM response selected
at the current turn influences later conversations, affecting future rewards obtained.

Inspired by similar challenges found in the broad class of sequential decision making problems
(Bellman, 1957) and dialogue planning (Yu et al., 2023) containing stochastic environments and se-
quential action selection, we formulate conversation planning as a Markov decision process (MDP)
(Howard, 2012) defined by (S,A, T,R) shown in Figure 2, where

• S is a set of states. Each state s ∈ S is the conversation context comprising all responses given
chronologically from prior conversation turns and ending in a human response.

• A is a set of actions. Each action a ∈ A is an LLM response shown to the human user at a
conversation turn. Similar to prior works, a candidate set of LLM responses is generated at each
turn in which a is selected. After selecting an LLM response (i.e., taking action a), the human
user responds, transitioning the conversation to a new state s′ (see Figure 2).

• T : S × A × S 7→ [0, 1] is a transition function specifying the probability of transitioning from
a conversation state s ∈ S to the next state s′ ∈ S after executing action a (i.e., selecting a
particular LLM response to show the human user). T captures how a human user stochastically
responds at every conversation turn. In our paper, we are concerned about modeling a simulator
to sample transitions from T and do not necessarily need to calculate the transition probability.

• R(s, a, s′) is an instantaneous reward function associated with the state transition at every con-
versation turn. This reward can be dependent on both LLM and human response (i.e., dependent
on s, a and s′), and is chosen by the LLM owner beforehand.

Given this MDP, our goal is to, at each conversation state s, select an LLM response a∗s which max-
imizes the expected cumulative reward (w.r.t. the stochastic transition function) over a conversation
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horizon (e.g., 5 conversation turns):

a∗s ≜ argmaxa∈A

∑
s′∈S T (s, a, s′)(R(s, a, s′) + γV (s′)) (1)

where γ is the discount factor (Amit et al., 2020) and V (s′), the value of state s′, is recursively
defined as

V (s′) ≜ maxa∈A

∑
s′′∈S T (s′, a, s′′)(R(s′, a, s′′) + γV (s′′)) . (2)

While one is tempted to solve our MDP using off-the-shelf approaches such as value iteration
(Pashenkova et al., 1996) to learn an optimal response selection policy, these approaches are in-
feasible in our problem setting due to the tremendous number of possible conversations between a
human user and the LLM (i.e., huge number of states and actions).

3 MONTE CARLO TREE SEARCH (MCTS) FOR CONVERSATION PLANNING

3.1 DESCRIPTION OF VANILLA MCTS

More recently, simulation-based planning algorithms like MCTS (Browne et al., 2012) have shown
success in tackling MDPs surrounding language-based tasks (Yu et al., 2023; Koh et al., 2024) by
planning around more promising actions and states. MCTS uses a simulator of the environment to
explore future states and actions, using observed cumulative rewards from simulation to learn state-
action values via a Q-function Q(s, a) (Mnih et al., 2013; Watkins & Dayan, 1992). The state-action
value approximates the expected cumulative reward that can be achieved by action a at state s.

Our approach, SCOPE, uses MCTS as its backbone. Here, we provide a brief overview of MCTS
(details can be found in (Świechowski et al., 2022)). In MCTS, we assume access to a budget
of K iterations and each iteration consists of four phases: selection, expansion, simulation, and
update. At iteration k during the selection phase, we traverse a search tree from the starting
state according to the Upper-confidence Tree (UCT) (Galván & Simpson, 2021) tree-search policy:
π(s) ≜ argmaxa∈A

(
Qk(s, a) + λ

√
(logNk(s))/Nk(s, a)

)
where Qk(s, a) is the state-action

value estimate of selecting action a at state s during iteration k, Nk(s) is the number of times s is
visited, Nk(s, a) is the number of times action a has been selected at s, and λ is a constant which en-
courages exploration when selecting actions. This continues until an unexplored action is chosen at
a leaf state. During expansion, we perform simulation for a single conversation turn with the unex-
plored action and add the resulting new state to the search tree. Then, we perform simulation rollout
from the new state using randomly selected LLM responses and human user simulation until termi-
nation (e.g., a certain conversation depth). With the ubiquitous success of LLMs, using an external
LLM as a simulator of human user (Yu et al., 2023; Yao et al., 2024) has become a popular way to
perform simulation in MCTS (although we argue in the next section that doing so is impractical). Fi-
nally, the state-action value is updated with observed cumulative reward R̂ (with discount factor γ)
at the end of iteration k via Qk(s, a) = Qk−1(s, a)(1−1/Nk(s, a))+R̂/Nk(s, a). The MCTS pro-
cess repeats for K iterations and the action with the highest state-action value: argmaxa Qk(s, a)
is executed. In a conversation setting, we use an LLM to generate the initial pool of candidate LLM
responses, in which we select the one with the highest state-action value after performing MCTS.
From hereon, we refer to the procedure of MCTS with an external LLM simulator as vanilla MCTS.

3.2 BOTTLENECK FOR REAL-TIME CONVERSATION PLANNING

While MCTS has shown promising results in games such as Go (Silver et al., 2016) and Hearthstone
(Świechowski et al., 2018), it is impractical for real-time conversation planning as it requires a large
planning budget to simulate future conversations. In particular, performing multiple simulation roll-
outs at every conversation turn with an external LLM acting as a human user simulator requires a
large number of LLM inferences (or API calls to an LLM service provider, such as ChatGPT Ope-
nAI (2023)). Using an LLM to simulate a conversation with responses of reasonable length takes
a few seconds. So, the key bottleneck is that we cannot perform sufficient number of simulation
rollouts (a key step in the MCTS algorithm) within a reasonable amount of time. As we can only
simulate a very narrow scope of search space, we cannot accurately estimate state-action values to
select the optimal LLM response at every turn. Interestingly, we note that many prior simulation-
based planning approaches for LLMs (Koh et al., 2024; Jang et al., 2021; Zhou et al., 2024) use
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large amount of time to plan effectively during runtime. In fact, results from Yu et al. (2023) showed
that 740 seconds of search time (at each conversation turn) is needed for vanilla MCTS to achieve
reasonable planning performance in a goal-oriented dialogue task. This is clearly unreasonable for
any real-time conversation constrained by a small window of response time. Indeed, our experi-
ments (Section 6.3) show that vanilla MCTS is ineffective for conversation planning under realistic
planning budgets. To overcome this bottleneck, we introduce SCOPE in the next section, a novel
approach which exploits conversation semantics to avoid costly simulations with LLM queries.

4 INTRODUCING SCOPE

The key intuition behind SCOPE is to perform MCTS without explicitly simulating future conversa-
tions with costly LLM queries. To do so, we leverage dense semantic representations (Devlin et al.,
2019; Lee et al., 2024; Rui et al., 2024) of natural language in a continuous space which we refer to
as semantic space. Notably, we found that a conversation can be captured effectively by a series of
stochastic transitions in the semantic space (we provide empirical evidence in Appendix A.7) across
multiple turns. By predicting these transitions and learning the instantaneous rewards associated
with each point in semantic space, we can perform MCTS with simulations in semantic space in-
stead of using time-consuming LLM queries. This results in a non-myopic approach that selects the
optimal LLM responses even under realistic planning budgets for real-time conversations. While
prior state abstraction works (Hostetler et al., 2014) have tried to cluster MDP states based on fea-
ture similarities, they still rely on costly simulations in the original environment. Moreover, prior
semantic planning approaches (Lubis et al., 2020; Vlastelica et al., 2023) need to fine-tune the LLM
to produce better responses. On the contrary, our approach performs simulations entirely in the
semantic space, which are much less time-consuming.

SCOPE consists of two distinct phases (Figure 1). During the learning phase, we use static con-
versation data to learn a lightweight transition and reward model over the semantic space. Both
models are significantly faster to query as compared to LLMs, as only a single forward pass of the
model is required for the simulation of each transition, compared to multiple forward passes for
LLM generation of text in vanilla MCTS. The transition model (Section 4.2) predicts how a con-
versation transitions stochastically from one point to another in the semantic space while the reward
model (Section 4.3) predicts the reward associated with each point in semantic space. Therefore,
every conversation can be represented as a path in this semantic space, and our goal is to search
for the optimal next immediate action that leads to a path with the highest cumulative reward. We
provide several examples of such paths in Figures 3a and 3c. During runtime, SCOPE uses a se-
mantic embedding model to project the conversation starter and candidate LLM responses into the
semantic space. Then, SCOPE uses the learnt models from the learning phase to broaden the scope
of search in semantic space (Algorithm 1) without any need for additional LLM queries. Our ex-
periments (Section 6.3) show that under different planning budgets, SCOPE consistently achieves
higher cumulative rewards than other baselines.

4.1 SEMANTIC SPACE REPRESENTATION

We use a semantic embedding model f : S 7→ Rn to map conversation states s into its semantic
representation s̃ ≜ f(s). In practice, we can use of-the-shelf text embedding models as f . With
this, we rewrite the original MDP (1) for conversation planning into

argminã
∑

s̃′ T̃
(
s̃ , ã , s̃′

) (
R̃(s̃ , ã , s̃′) + γṼ (s̃′)

)
(3)

where T̃ is the transition model over semantic space, R̃ is the instantaneous reward associated with
each conversation turn in semantic space, Ṽ is defined recursively similar to Equation (2), and s̃′

is the resulting state in semantic space after a transition. In this new MDP, state s̃ represents a
point in semantic space, ã represents an action (possible LLM response) in the semantic space. A
conversation’s semantic transition s̃ → s̃′ is represented as a directional vector along a path shown
in Figure 1. We theoretically show in Appendix A.2 that under some assumptions of f , R̃ and T̃ ,
new MDP Equation (3) yields the same solution as the original MDP Equation (1). By learning
T̃ and R̃ using static conversation data (details covered next), SCOPE performs MCTS in the Rn

semantic space to solve MDP Equation (3) without needing costly LLM queries. In our experiments,
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we show that even if assumptions on f , R̃ and T̃ do not hold true, SCOPE consistently outperforms
other baselines by selecting LLM responses that yield higher cumulative rewards.

4.2 LEARNING TRANSITION MODEL T̃ IN SEMANTIC SPACE

Given a semantic embedding model f : S 7→ Rn, our first step is to learn a transition model
T̃ (s̃ , ã , s̃′), allowing us to simulate transitions in semantic space (we do not necessarily need to
derive the transition probability explicitly). To do so, we make use of a conversation dataset contain-
ing N transitions: {(s1, s′1), (s2, s′2), . . . , (sN , s′N )}, where si, s

′
i represents an observed transition

from one conversation state to another. For example, the sentence pair: (1) “Human: Hello how
are you?” and (2) “Human: Hello how how are you? LLM: I’m good, thank you! What did you
do this weekend? Human: I went to the cinema!” represents a transition at one conversation turn
(“I’m good, thank you! What did you do this weekend?” is an action a taken by the LLM). Next, we
use a semantic embedding model f to transform this dataset into {(s̃1, s̃′1), (s̃2, s̃′2), . . . , (s̃N , s̃′N )}.
Ideally, a learnt T̃ should allow us to sample semantic transitions and actions similar to that found
in the dataset.

At first glance, one might treat this as a multi-output regression problem in a supervised learning
setting (given a labeled dataset of conversation transitions) and learn a deterministic neural network
FT (s̃ , θT ) : Rn 7→ Rn with network weights θT according to the mean squared error loss:

minθT N−1
∑N

i=1

(
FT (s̃i, θT )− s̃′i

)2
(4)

that approximates transitions from T̃ . However, this neural network, being deterministic, cannot
simulate the stochastic nature of transitions within conversations. Instead, we can use probabilis-
tic models such as mixture density network (MDN) (Bishop, 1994) or deep ensembles (Lepikhin
et al., 2021) to model T̃ (s̃ , ã , s̃′) based on the labeled dataset. These probabilistic models are more
suitable largely due to their abilities to draw samples from transition distributions (more details in
Appendix A.5). We provide empirical evidence that these probabilistic models can indeed model
stochastic semantic transitions well in Appendix A.7. While it is not immediately clear which prob-
abilistic model choice of FT (s̃i, θT ) leads to better performance in SCOPE, we perform ablation
studies in Section 6.4 to tease out the influence of different transition model choices on performance
of SCOPE. Note that in our implementation, T̃ consists of two separate models, one to predict
s̃ → ã and another to predict (s̃ , ã) → s̃′ in semantic space (details in Appendix A.5).

4.3 LEARNING REWARD MODEL R̃ IN SEMANTIC SPACE

In the original problem setting, it is easy to derive the instantaneous reward R(s, a, s′) of Equa-
tion (1) at each conversation turn. For example, if we want to minimize the number of harmful words
uttered over the entire conversation, we can simply count the number of harmful words appearing at
each conversation turn and treat that as the instantaneous reward during simulation in MCTS. How-
ever, as SCOPE performs MCTS in the semantic space, we cannot directly derive the instantaneous
reward during simulation because we do not know the reward as we transition from one point to
another in semantic space. To resolve this, we use another neural network FR(s̃ , θR), parameterized
by θR, to estimate the reward associated with every point s̃ in the semantic space. Then, for any
state s̃′ encountered after performing ã at s̃ in semantic space, the instantaneous reward in semantic
space R̃(s̃ , ã , s̃′) (Equation (3)) can be recovered via R̃(s̃ , ã , s̃′) ≈ FR(s̃

′, θR) − FR(s̃ , θR) (this
is an approximation if the neural network cannot learn the rewards perfectly). We provide rigorous
explanation on the validity of this recovery process and details of the training process for the reward
model FR(s̃ , θR) from data in a supervised setting in Appendix A.3.

5 USING SCOPE DURING RUNTIME

As we show in our experiments (Section 6.3), the learning phase only needs to be conducted once
to learn T̃ and R̃ before deploying them for different real-time conversations. During runtime,
SCOPE uses the same learnt transition and reward models T̃ , R̃ to perform MCTS (similar to that in
Section 3) in semantic space. Algorithm 1 demonstrates SCOPE at every conversation turn.
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Algorithm 1 Semantic space Conversation Planning with improved Efficiency (SCOPE)

1: Input: Initial conversation context sinit. Transition model T̃ and reward model R̃ from learning
phase (Sections 4.2 and 4.3). Pre-trained semantic embedding model f . k ≜ 0. Initial Q-
function Qk(s̃ , ã). Planning budget K. Branching factor m. Search depth D.

2: Propose m candidate LLM responses: {a1, a2, . . . , am} .

3: Projection to semantic space: s̃init ≜ f(sinit), ãj = f(sinit + aj)− f(sinit),∀j = 1, 2, . . . ,m
4: while k < K do
5: Select From root s̃init, traverse search tree according to search policy πk(s̃) =

argmaxã (Qk(s̃ , ã) + UCT (s̃ , ã)) until leaf state s̃leaf with unexplored action is reached.
6: At s̃leaf, pick a random unexplored action ãleaf.
7: Expand Conditioned on the selected action ãleaf, randomly sample a new state s̃new from

learnt transition model T̃ to simulate T̃ (s̃new, ãleaf) → s̃new. At new state s̃new, Use T̃ to sample
m state actions ãnew, 1, . . . , ãnew, m and assign them to s̃new. (details in Appendix A.5)

8: Simulation Run simulation rollouts from s̃new by sampling from T̃ until termination at
search depth D, taking note of observed cumulative rewards R̂ using R̃.

9: Update Backpropagate observed cumulative rewards R̂ to each encountered state in search
tree and update state-action values via Qk+1(s̃ , ã) = Qk(s̃ , ã)(1− 1/Nk(s̃)) + R̂/Nk(s̃ , ã).

10: k = k + 1
11: end while
12: Return LLM response with largest state-action value: argmaxã∈{ã1,ã2,...,ãn} QK(s̃init, ã)

Given a conversation context sinit ending with a prompt from a human user, the LLM, like prior
works (Kambhampati et al., 2024; Yang et al., 2024), proposes a list of candidate LLM responses
(line 2). Then, we project sinit and the candidate responses to semantic space with the help of a pre-
trained semantic embedding model f . The projected candidate actions ãj (line 3) corresponds to
the semantic representations of the LLM response, as proposed by the specific LLM being used. As
different LLMs would typically propose different starting candidate responses even with the same
prior dialogue states, this captures the behavior of the specific LLM being used, which will result
in different simulation outcomes for different LLMs. From line 4 to 9, SCOPE runs MCTS in the
semantic space with the trained T̃ (from Section 4.2) acting as a simulator until search depth D.
The cumulative rewards consists of the sum of discounted instantaneous reward given by reward
model R̃ (Section 4.3) and is used to update a Q-function Q(s̃ , ã) after each simulation rollout. In
Section 6.4, we conduct some ablation studies to investigate the effect of different transition model
choices and search depth D.

Once planning budget K is exhausted, we use the learnt Q-function QK(s̃ , ã) to select the best
LLM response (Line 11) to be shown to the human user. After the human user replies, we repeat
SCOPE in the next conversation turn. In practice, we use time as the planning budget (instead of a
fixed number of algorithm iteration K) and run SCOPE for the given amount of time for real-time
conversations. A detailed visual guide of Algorithm 1 can be found in Appendix A.6.

6 EXPERIMENTS

We evaluate SCOPE on a large variety of conversation starters from dialogue datasets consisting
of open conversations and dialogues between LLM and humans (Zheng et al., 2024; Li et al.,
2017) and compare its performance with a variety of conversation planning baselines (details in
Appendix A.10). First, we show that for two practical reward functions, SCOPE attains larger cu-
mulative rewards as compared to other planning algorithms under practical planning budget during
runtime. Then, we perform multiple ablation studies to tease out the influence of different compo-
nents within SCOPE.

6.1 CHOICE OF REWARD FUNCTIONS

We perform our experiments on two practical reward functions: cumulative length of human re-
sponses in a conversation (measured by tokens) and the cumulative harmful score of a conversation
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(we treat the negative of this harmful score as the reward to be maximized). These reward functions
are practical in real-world settings for a few reasons. Selecting LLM responses that maximizes the
(expected) cumulative length of human responses in a conversation serves as surrogate metric for
the engagement of a human user in that conversation and therefore is of practical interest to com-
mercial LLM owners. Furthermore, a longer cumulative human response length also implies greater
commercial benefits, since many LLM service providers charge based on token count. In addition,
it is also of regulatory interest to minimize the harmful content of a conversation as a whole, es-
pecially when LLMs are deployed as chatbots across different age groups. In our experiments, we
use Llama Guard 2 (Meta, 2024) to measure how safe (conversely, how harmful) a conversation
is. Furthermore, we note that both reward functions are dependent on the human user’s response.
Therefore, this serves as a challenging task because we need to take into account the stochastic
transitions within a conversation and long-term rewards to perform conversation planning well. We
provide further discussion and examples of some other practical reward functions in Appendix A.4.

6.2 EXPERIMENTAL SETUP

To project conversation states and responses into a semantic space as detailed in Section 4.1, we use
the feature layer of Llama Guard 2 (Meta, 2024) as the semantic embedding. During the learning
phase, we use conversation data from (Zheng et al., 2024) to train the transition and reward model in
semantic space using the techniques introduced in Sections 4.2 and 4.3. Notably, we only perform
the learning phase once and reuse the learnt models for different conversation starters during evalu-
ation. This is similar to real-world deployment for conversational agents: an LLM owner uses large
amount of existing conversation data to learn a transition and reward models over semantic space
once before deploying these models to perform SCOPE for different conversations during runtime.

During runtime evaluation, we use an LLM to propose a set of candidate responses (i.e., actions)
for a conversation starter. We then project the conversation starter and candidate actions into the
semantic space representations (as introduced in Section 4.1) and perform SCOPE to learn the Q-
function. Finally, we use state-action values from the Q-function to select the best LLM response
to show the human user after performing SCOPE. During evaluation, we use an evaluation LLM to
emulate a human user’s response, progressing the conversation to the next turn. This repeats for 5
conversation turns and the evaluation reward is derived from the final conversation using the reward
function. A more detailed explanation of our experimental setup and design choices is provided in
Appendix A.10 for ease of reproducibility of results. The code to run our experiments can be found
in the anonymous GitHub link: https://github.com/h72yrf12/SCOPE.

6.3 MAIN RESULTS

We compare SCOPE with several conversation planning baselines. Random selects a response ran-
domly from the pool of LLM candidate responses, without considering any rewards. 1-step Greedy
uses the reward function and one step of human user simulation (with an external LLM) to select
an LLM response that yields the highest instantaneous reward. We also consider 0-step Greedy, an
even greedier approach where the LLM response is selected without any look-ahead simulation (also
known as rejection sampling in some reinforcement learning (RL) works). Vanilla MCTS adopts
a tree-search planning approach similar to those found in (Yu et al., 2023; Koh et al., 2024) and
uses large amount of LLM queries for look-ahead simulation in vanilla MCTS. We provide detailed
implementation of each method in Appendix A.10 for reproducibility.

SCOPE achieves higher cumulative rewards than other baselines. Figures 3a and 3b show that
SCOPE achieves higher cumulative rewards than other baselines within 3 seconds of planning time.
In particular, SCOPE is non-myopic, performing planning in semantic space and hence outperforms
myopic approaches like 0-step Greedyand 1-step Greedy because it takes into account the stochastic
transitions within conversation to infer long-term rewards. In addition, SCOPE also outperforms
conventional planning algorithms like vanilla MCTS (Yu et al., 2023). This corroborates our claim
in Section 3.2 that vanilla MCTS can only perform simulation within a very narrow scope under
realistic amount of planning budget and therefore performs poorly. In fact, we do not see an in-
crease in rewards gained when vanilla MCTS is allocated a few more seconds of planning time;
this suggests that vanilla MCTS requires so much budget to plan effectively that a few additional
seconds of planning budget does not matter. On the contrary, SCOPE, without requiring costly LLM
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(a) Harmfulness (b) Human response length (c) Harmfulness (d) Human response
length

Figure 3: (a) and (b) show the average cumulative rewards (higher is better) gathered by SCOPE
compared to other baselines over 100 different conversation starters for the harmfulness and human
response length reward function over 5 conversation turns. The x-axis shows the effect of increased
planning budget (time). (c) and (d) show visualization of a conversation generated from SCOPE
and 1-step Greedy in the semantic space.

queries, can perform simulation in semantic space much faster under realistic planning budget. As
such, the rewards achieved by SCOPE increases with only a slight increase (a few seconds) in plan-
ning budget. Our results can also be interpreted quantitatively by LLM owners: Figure 3b implies
that SCOPE achieves conversations (spanning 5 turns) where human responses are, on average, 150
tokens longer. This can be used by LLM owners to tie in with business metrics such as application
engagement and customer interest.

Visualization of conversations generated in semantic space. Figures 3c and 3d show examples of
conversations generated via SCOPE in semantic space (reduced to a lower dimensional space with
t-SNE (Van der Maaten & Hinton, 2008)) w.r.t. both reward functions. Expectedly, the conversation
path produced by SCOPE (cyan path) passes through regions with higher rewards. On the other
hand, conversation path from myopic approaches (i.e., greedy) ends up in regions with low rewards
(e.g., red path on the left of Figure 3c). This suggests that SCOPE exploits conversation transitions
in the semantic space to account for long-term rewards, selecting better LLM responses. Myopic ap-
proaches cannot do so. Lastly, we provide some qualitative examples of LLM responses selected by
SCOPE and other methods during each conversation evaluation in Appendix A.11. These qualitative
examples provide insights as to why SCOPE selects LLM responses better than other methods.

(a) Harmfulness (b) Human response length

Figure 4: Comparison of SCOPE with larger planning budget vanilla MCTS (higher is better).

SCOPE plans 70 times faster than vanilla MCTS. Figure 4 shows how SCOPE fares against
vanilla MCTS under higher planning budget (around 70 times longer planning time). We show that
SCOPE (green line), under a realistic planning budget of 1 second, achieves larger rewards than
vanilla MCTS even when the latter is allocated a planning budget of 70 seconds. This suggests
that conventional simulation-based planning algorithm indeed require large planning budget due
to the use of excessive LLM queries for look-ahead simulations. Thus, even at higher planning
budgets, vanilla MCTS can only perform simulation within a narrow scope and cannot achieve
higher cumulative rewards than SCOPE. In Appendix A.9, we show that each simulation rollout in
SCOPE takes 92 times faster than that in vanilla MCTS, and serves as the main reason why SCOPE
is able to plan much faster, achieving better cumulative rewards in real-time conversations.

9
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6.4 ABLATION STUDY

(a) Harmfulness (b) Length (c) Harmfulness (d) Length

Figure 5: (a) and (b): Ablation study on how transition model choice affects SCOPE’s performance.
SCOPE-DE uses deep ensembles (Lepikhin et al., 2021) while SCOPE-MDN uses MDNs (Bishop,
1994). (c) and (d): Ablation study on how search depth affect SCOPE’s performance.

We also conduct ablation studies shown in Figure 5 to tease out the influence of various components
in SCOPE. In Figures 5a and 5b, we investigate the effect of different transition models on SCOPE.
In Figures 5c and 5d, we investigate the effect of varying search depth D (introduced in Algorithm 1)
on SCOPE. To reduce plot clutter, we removed performance of vanilla MCTS and Random from
the figures because they tend to do worse than greedy approaches.

Effect of different model choices of T̃ on SCOPE. We used MDN (Bishop, 1994) and deep en-
sembles (Lakshminarayanan et al., 2017) as model choices for T̃ . More details on these models can
be found in Appendix A.5. Figure 5b shows that for human response length, the choice of transition
model T̃ does not influence SCOPE’s performance much. On the other hand, Figure 5a shows that
for the harmful reward function, SCOPE with deep ensembles generally outperforms MDN, sug-
gesting that MDN might not learn well and is susceptible to training instability and model collapse
(Makansi et al., 2019). An important point to note is that the prediction quality of a transition model
(w.r.t. the training conversation dataset) is not an accurate indicator of SCOPE’s performance as a
whole. From literature (Chen et al., 2024), it is difficult to pinpoint the exact influence of a single
component (e.g., transition model) on an overall algorithm like SCOPE. We provide more discus-
sion on the relationship between transition model’s local prediction quality and SCOPE’s overall
performance in Appendix A.8.

Effect of varying search depths. Figures 5c and 5d show that larger search depths generally im-
prove the performance of SCOPE across different planning budgets. This suggests that larger search
depths allow SCOPE to simulate longer conversations in semantic space, inferring rewards gathered
across higher number of conversation turns. Conversely, when the search depth is small (red line),
SCOPE suffers from poor performance because it cannot plan effectively for rewards in later conver-
sation turns. Interestingly, we observe that the effect of search depth seems to plateau at a depth of 4
conversation turns (i.e., blue, green, and black lines have comparable performance). This suggests
that SCOPE does not have to search too deeply to infer how good an LLM response is.

7 CONCLUSION

Our paper presents SCOPE, a novel approach which exploits compact semantic representation of
conversations to learn stochastic transitions of conversation and their associated rewards in semantic
space. During runtime, SCOPE uses MCTS to plan entirely in semantic space at a broader scope
without needing additional LLM queries. We show that SCOPE attains larger cumulative rewards as
compared to other simulation-based baselines in our experiments. Our work removes the need to use
costly LLM queries for simulation and presents a paradigm shift from conventional simulation-based
conversation planning. In addition, one limitation of SCOPE is that we kept our transition models
fixed, and did not account for different behaviors of different LLM models. Adapting SCOPE to
different LLM models during deployment is a promising future research direction and could bring
further performance gains (some possible improvements are discussed in Appendix A.5).
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REPRODUCIBILITY

We have released our code in the anonymous GitHub link: https://github.com/
h72yrf12/SCOPE for reproducibility of our experiments. The experimental setup, models,
prompts used for LLMs and hardware can be found in Section 6.2 and Appendices A.5 and A.10.
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A APPENDIX

A.1 MYOPIC APPROACHES CANNOT DO CONVERSATION PLANNING

In this subsection, we provide an illustrative example on why myopic approaches cannot select the
optimal LLM response. In Figure 6, there are two candidate LLM responses (A and B) for the
human user’s prompt. Here, our goal is to minimize the harmful content of the overall conversation.
If we simply adopt a myopic approach and check the harmful content of LLM response A and B
with a toxic classifier such as Llama-guard 2 (Meta, 2024), both responses are deemed harmless and
we could choose either of the LLM responses to show to the user. However, if we perform look-
ahead simulation of future conversations (with a simulator of the human user, possibly with an LLM
or a lightweight transition model T̃ introduced in our paper), we find that LLM response B has a
probability of causing the human user to produce harmful content, leading to harmful conversations.
This arises due to close semantics between “vapes” and “drugs” in a conversation setting (and,
our conversation simulator reasons that it is possible that the topic of drugs might arise in future
conversations).

Can you tell me a fact about the law of 
Singapore, where ICLR 2025 will be held?

𝑎1 𝑎2 𝑎3

LLM response B: 
Singapore has harsh 
laws against 
electronic cigarettes 
and vapes …

R
ew

ar
d

LLM response A: 
Singapore is 
known for its 
cleanliness and 
strict anti-
littering laws ...

What are vapes?

Are vapes as 
addictive as 
drugs?

Where can I buy drugs?

What kind of 
punishment are 
we talking 
about?

Are trash bins 
easily found in 
the streets of 
Singapore?

Tell me another 
fact about 
Singapore.

How did the 
strict laws in 
Singapore come 
about?

Harmful topics

Figure 6: Myopic approaches cannot discern whether LLM response A and B lead to safer conversa-
tions. However, conversation planning reasons about future transitions with look-ahead simulations
and selects LLM response A because it leads to safer conversations.

A.2 PROOF OF MDP TRANSFORMATION IN SEMANTIC SPACE

We show that Equations (1) and (3) are equivalent in the following proposition.
Proposition A.1. Let f : Rd 7→ Rn be a bijective semantic embedding function. Let s, s′ ∈ Rd,
a ∈ Rb, ã ∈ Rn be that defined in Section 4.1 and V, T,R be the value, transition and reward
function defined in Section 2.1. Assume there exists T̃ : Rn×n×n 7→ R and R̃ : Rn×n×n 7→ R such
that T̃ (s̃ , ã , s̃′) = T (s, a, s′) and R̃(s̃ , ã , s̃′) = R(s, a, s′) for s ∈ Rd, s′ ∈ Rd, a ∈ Rb. Then an
action a∗s at state s achieves the highest cumulative reward for original MDP 1:

a∗s ≜ argmax
a

∑
s′

T (s, a, s′)(R(s, a, s′) + γV (s′)), (5)

if and only if the same action’s semantic representation (defined in Section 4.1) is also the solution
for MDP 3 in semantic space:

f(a∗s) ≜ ã∗ = argmax
ã

∑
s̃′

T̃ (s̃ , ã , s̃′)(R̃(s̃ , ã , s̃′) + γṼ (s̃′)), (6)
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where Ṽ (s̃) is recursively defined similar to Equation (2).

Proof. Proposition A.1 can be proven by using the assumption that T̃ = T and R̃ = R in their
respective domains. That is, even after projecting states and actions into the semantic space, the
transition probability and reward values are the same. Hence, the original MDP problem can be
rewritten as:

argmax
a

∑
s′

T (s, a, s′)(R(s, a, s′) + γV (s′))
(1)
= argmax

a

∑
s′

T̃ (s̃ , ã , s̃′)(R̃(s̃ , ã , s̃′) + γV (s′))

(2)
= argmax

a

∑
s′

T̃ (s̃ , ã , s̃′)(R̃(s̃ , ã , s̃′) + γṼ (s̃′))

(3)
= argmax

ã

∑
s̃′

T̃ (s̃ , ã , s̃′)(R̃(s̃ , ã , s̃′) + γṼ (s̃′))

(7)

where
(1)
= uses the assumption that T̃ (s̃ , ã , s̃′) = T (s, a, s′) and R̃(s̃ , ã , s̃′) = R(s, a, s′),

(2)
= uses

the recursive definition of state value: Ṽ (s̃) = V (s). Lastly,
(3)
= holds true because ã ≜ f(a),

s̃ ≜ f(s), and we have assumed that function f is bijective. Therefore, we have shown that both
MDPs are identical.

Interestingly, the assumptions of T̃ = T , R̃ = R and bijective f of this MDP transformation in
semantic space have real-world interpretations. T̃ = T , R̃ = R implies that we can learn a transition
and reward model in semantic space (as detailed in Sections 4.2 and 4.3) to represent rewards and
transitions of conversations in semantic space perfectly. A bijective f implies that every possible
natural language conversation can be projected to a unique point in semantic space. In practice, it
might be impossible to learn these models perfectly (due to noise in data, training imperfections
or information loss from semantic representations) in semantic space. Despite this, our empirical
results in Section 6.3 show that off-the-shelf modern semantic embedding model f and appropriately
learnt T̃ and R̃ are sufficient for SCOPE to outperform conventional planning baselines.

A.3 DETAILS ON LEARNING REWARD MODEL IN SEMANTIC SPACE

In our problem setting, a reward model FR(s̃ , θR) helps to indicate to us the reward associated with
each point s̃ in semantic space. In this section, we first (a) provide details on how to train such a
model and (b) explain how to recover the instantaneous reward R̃(s̃ , ã , s̃′) from the learnt reward
model FR(s̃ , θR) when performing SCOPE.

Human: Can you tell me a 
fact about Country XXX?
LLM: The world cup was 
held twice in Country XXX.
Human: That’s cool! I 
didn’t know that!

Human: Can you tell me a 
fact about Country XXX?

𝑠

𝑠′

𝐹𝑅(𝑓 𝑠 , 𝜃) : 0.8

𝐹𝑅(𝑓 𝑠′ , 𝜃) : 1.4

Instantaneous reward associated with 
one step:
෨𝑅 𝑓 𝑠 , 𝑎, 𝑓 𝑠′ = 1.4 − 0.8 = 0.6

Figure 7: How instantaneous reward is de-
rived from reward model FR(s̃ , θR).

To learn FR(s̃ , θR), we first gather a dataset of con-
versations {s0, s1, . . . , sN} from different domains.
In our experiments, this dataset is taken from Li
et al. (2017); Zheng et al. (2024). Notably, each
datapoint si does not have to be a complete con-
versation (it can be a segment of a conversation).
We first label the reward associated with each dat-
apoint si depending on the LLM owner’s use case
(e.g., harmfulness, length of conversation) to ob-
tain a set of reward labels y0, y1, . . . , yN . Reward
model FR(s̃ , θR) can then be trained over this regres-
sion task via (e.g., mean-squared error) loss function
minθR

∑N
i=0(FR(s̃i, θR) − yi)

2. Unlike the semantic
transition model in Section 4.2, the reward model is
deterministic.

During SCOPE, we cannot use FR(s̃i, θR) directly because we need to keep track of the instan-
taneous reward R̃(s̃ , ã , s̃′) to update our Q-function as part of the MCTS framework. However,
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Table 1: Number of questions asked by the user throughout the conversation, to evaluate the engage-
ment of the user in the conversations planned using the cumulative length reward function.

Random 0-step Greedy 1-step greedy SCOPE 3s

2.99 2.97 2.95 3.31

because our reward model gives us the reward associated with the points s̃′ (after transition) and s̃
(before transition) in semantic space, their difference must indicate the change in reward caused by
selecting an LLM action. Therefore, the instantaneous reward R̃(s̃ , ã , s̃′) associated with a conver-
saton turn after taking an action ã is simply the difference: R̃(s̃ , ã , s̃′) ≈ FR(s̃

′, θR)− FR(s̃ , θR).
Figure 7 provides an intuitive illustration of this recovery process.

A.4 PRACTICAL REWARD FUNCTIONS

In our experiments, we used two practical reward functions. The first is Llama-guard 2 (Meta,
2024), which gives the harmfulness score (or inversely, the safety reward) of a piece of conversation
(including both LLM and human user’s response). The second is simply the cumulative length of
human response in a multi-turn conversation.

We selected the use of cumulative length of human response in a multi-turn conversation to be a
surrogate metric for the engagement of a human user in that conversation. To evaluate the suitability
of this proxy measure, we measured how often the user is asking questions to show that they are
engaged in the conversation, to check if SCOPE indeed produces more engaging conversations (we
still use cumulative length rewards for planning, but during evaluation, we check if the user is
asking questions in the resulting conversation). We show in Table 1 that in conversations produced
by SCOPE, the user on average asks more questions, signaling that they are more engaged with the
conversation.

Other reward functions could be relevant in conversation planning. For example, one could be
simply concerned if LLM responses are harmful. In this case, the instantaneous reward of an LLM
taking an action a is simply the harmful score of that LLM response. Other reward functions and
their effects in conversation planning are left for future research directions.

SCOPE can be extended to other language-based tasks in the planning domain with sufficient reward
shaping (Xie et al., 2024). For example, if one is interested for an LLM to generate a sequence
of language-based actions (i.e., LLM responses) to solve a Rubick’s cube under the presence of
a simulator, we can formulate this language-based problem as a MDP which can be solved with
SCOPE (albeit with a deterministic environment). However, these problems are notoriously plagued
by the sparse reward issue (Rengarajan et al., 2022) because there is only one true winning state.
So, we might need to densify the reward landscape by incorporating heuristics into reward functions
depending on the problem setting. Furthermore, unlike open-ended conversations, it is unclear at
this point whether the language used in planning (e.g., solving a Rubick’s cube) can be captured
effectively by semantic representations.

We would like to emphasize that our method, SCOPE, is reward agnostic and one can use any reward
function in SCOPE to plan. Other conversation engagement metrics or reward functions could be
adopted by LLM providers based on their specific applications and use cases.

A.5 DETAILS ON LEARNING TRANSITION MODEL IN SEMANTIC SPACE

In our actual implementation, to approximate T̃
(
s̃ , ã , s̃′

)
, we trained two different models to per-

form the two steps of the conversation transition in semantic space. With the two models, the
transition model is able to predict the actions ã (as a directional vector in semantic space) that are
available at a given state s̃ , and then predict the following state s̃′ that the conversation semantic
transitions to, given s̃ and ã .

The first model predicts the LLM action in semantic space s̃ → ã (indicated as "human -> llm"
in Figure 9). This approximates the LLM response to the users prompt (f(s) → f(s + a)) in the
semantic space. The mean squared error of the predicted semantic action ˆ̃a is
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N−1
N∑
i=1

(
ˆ̃a − (f(s+ a)− f(s))

)2
(8)

The second model predicts the human user’s next response in semantic space (s̃ , ã) → s̃′ (indicated
as "llm -> human" in Figure 9). This approximates the users follow-up response to the LLM’s output
(f(s+ a) → f(s′)) in semantic space. The mean squared error of the predicted new state ˆ̃s′ is

N−1
N∑
i=1

(
ˆ̃s′ − f(s′)

)2
(9)

As the first model represents how an LLM responds to a user prompt, the model could be further
fine-tuned using data collected from user interactions with the specific LLM model being deployed
on, to improve its prediction performance.

Similarly, as the second model represents how a human responds to an LLM output, this model could
be fine-tuned with a specific user’s demographic information or conversation history (subjected to
the user’s approval and LLM provider’s privacy guidelines), to improve its prediction performance
for individual particular user.

Although this work did not explore the fine-tuning of the two models using LLM/user specific data,
we believe this would be a promising future direction and SCOPE can serve as a competitive baseline
and foundation for future works on such approaches in terms of performance-efficiency trade off.

We used lmsys/lmsys-chat-1m dataset (Zheng et al., 2024) as the dataset for training the
transition models. We transform each turn of conversations into the semantic embeddings using the
embedding model, and normalized each dimension of the input embedding and output target labels
to mean 0 and standard deviation 1 prior to training. The transition models were trained for 100
epochs, requiring approximately 6-8 hours to train on a single Nvidia H100 GPU.

Although the LLM in this dataset (lmsys/lmsys-chat-1m consists of conversations mostly
with the Vicuna LLM) is different from the LLM used in the experiments of this paper (Llama-3),
our strong empirical results show that SCOPE can generalize to different LLMs.

For the deep ensemble model (SCOPE-DE), we used an ensemble of deterministic models trained
using different seeds and different train-validation splits of the conversation dataset. We used a
Mixture of Experts model (Lepikhin et al., 2021) as the deterministic model. 4 models were trained
for each transition (action model and transition model), each with 2 layers of 4 experts. We used
seeds 0, 1, 2, 3 to seed the initialization and train-validation splits for the training of the transition
models.

For the MDN model (SCOPE-MDN), we used K = 256 Gaussians, with the fully factored noise
model (i.e., diagonal covariance matrix where the noise level for each dimension is predicted sep-
arately). The model predicts the probability ϕ of each Gaussian component, as well as the mean
µ and standard deviation σ of each Gaussian. We used seed = 0 when training the MDN model.
Typically, MDN models are trained by minimizing negative log-likelihood loss

L = − log (pθT (ã |s̃)) (10)

where the likelihood of the target label under Gaussian mixture can be calculated as:

pθT (ã |s̃) =
K∑
k

ϕkpθT (ã |µk,Σk) (11)

pθT ,s̃ (ã |µk,Σk) = exp

(
−1

2
(ã − µk)

⊺
Σ−1

k (ã − µk)−
1

2
log detΣk

)
(12)

However, as the embedding to harmfulness reward function was reused from the original model,
we included an auxiliary loss during the training process to ensure good prediction on both the
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predicted next state, and its harmfulness score. We noticed that without this auxiliary loss on the
predicted reward, the predicted harmfulness score frequently differs from the true harmfulness score
despite the good prediction in the transitions. Although the reward FR(s̃

′, θR) is dependent on ã ,
where FR(s̃

′, θR) = Rs̃′ and R is the last layer linear transformation matrix of Llama-guard 2, we
treat them as independent so that the model loss will maximize the log-likelihood of both ã and
FR(s̃

′, θR). The new loss term can be calculated as:

L = − log

(
K∑
k

ϕkpθT (ã |µk,Σk) pθT ,s̃

(
FR(s̃

′, θR)|µharm,k,Σharm,k

))
(13)

pθT ,s̃

(
FR(s̃

′, θR)|µharm,k,Σharm,k

)
= exp

(
−1

2

(
FR(s̃

′, θR)− µharm,k

)⊺
Σ−1

harm,k

(
FR(s̃

′, θR)− µharm,k

)
− 1

2
log detΣharm,k

)
(14)

where the mean and covariance of the harmfulness score is transformed with:

µharm,k = R(µk + s̃)

Σharm,k = RΣkR
⊺ (15)

A.6 VISUALIZATION OF SCOPE

We provide a visual overview of SCOPE (Algorithm 1) in Figure 8. SCOPE follows the MCTS
framework closely to conduct conversation planning. However, the key difference between SCOPE
and vanilla MCTS approaches is that SCOPE exploits semantic embedding function f , R̃ and T̃ in
semantic space to perform MCTS without needing additional LLM queries.

“Human: Can you tell me a 

fact about country XXX.”

Select
Traverse search tree 
according to UCT 
tree policy until an 
unexplored action.

Expand by 

sampling from ෨𝑇.

Simulation using 
෨𝑇 and keeping 
track of rewards 
accumulated using 
෨𝑅.Projection

Semantic projection 𝑓

Backtrack and 

Update state-
action values 
𝑄(𝑠, 𝑎).

𝑠0

𝑠0 𝑠0 𝑠0 𝑠0

Line 3 Line 5 Line 7 Line 8 Line 9

Figure 8: Visualization of SCOPE (Algorithm 1), which performs MCTS in semantic space with the
help of semantic embedding function f , T̃ and R̃ (Sections 4.2 and 4.3).

To summarize, the key differences between SCOPE and vanilla MCTS are:

• Projection. In SCOPE, we project states and actions (conversation starters and LLM re-
sponses) into a semantic space to perform MCTS, instead of working directly with textual
conversations.

• Select, Expand, Simulation. In vanilla MCTS, there is a clear set of actions to take at
node in the search tree. In SCOPE, when we need to expand into a new node, we sample
from the learnt transition model T̃ to produce new resulting states.

• Updating rewards. In vanilla MCTS, instantaneous rewards can be observed directly from
textual conversations. In SCOPE, we use R̃ to infer rewards associated with each transition
sampled from T̃ .
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A.7 SEMANTIC TRANSITION AND REWARD MODEL PERFORMANCE

In this subsection, we analyze how well we can model the stochastic transitions within a conversa-
tion in semantic space via T̃ and their associated rewards via R̃. Figure 9a shows that a conversation
between an LLM and human user can be represented by a path in semantic space. This serves as
a ground truth for us to learn transition model T̃ in semantic space. Figures 9b and 9c show that
after training T̃ (Section 4.2) using deep ensembles, T̃ produces transitions similar to the ground-
truth transitions. This transition model allows SCOPE to perform MCTS at a broader scope during
runtime, learning accurate state-action values of LLM responses at each conversation turn. Note
that PCA was used to project the 4096 dimensional semantic embedding to dimension of 2, Fig-
ure 9 serves to provide an illustration of the transitions of the conversation semantics. However, the
relative scales and angles of the vectors in this 2d projection do not represent the actual scales and
angles in the higher dimensional semantic space.

(a) conversation transitions in the
semantic space

(b) Predictions of T̃ to simulate fu-
ture actions.

(c) Predictions of T̃ to simulate hu-
man responses.

Figure 9: PCA visualizations of conversation transition sin the semantic space, and the predicted
transitions by the transition model T̃

To visualize how well T̃ performs in general, we plot the cosine similarity and prediction length
ratio of the prediction of T̃ w.r.t. the ground-truth transitions in Figure 11. Our results show that in
general, probabilistic model T̃ produces average transition predictions that are similar in direction
(cosine similarity, x-axis) and of similar length (Norm ratio, y-axis) as the ground-truth transitions in
semantic space. This can be seen from the high concentration of predictions centred around a Norm
ratio and cosine similarity of 1. We observe that while the ensemble of models predicts direction of
the transitions well (cosine-similarity lose to 1), the predictions tend to be smaller in scale than the
ground truth (Norm ratio smaller than 1). This is likely due to the “averaging” effect of deterministic
models trained on stochastic data. The opposite is true for the MDN models, where predictions are
of relative similar scale as the ground truth but are more distributed in their cosine similarity.

It can also be noted that the trained transition models predict the LLM actions (Figures 10 and 11
(left)) better than the human responses (Figures 10 and 11 (right)). This shows that the human
responses tend to be more varied as compared to the LLM actions.

A.8 HOW DOES TRANSITION AND REWARD MODEL PERFORMANCE AFFECT SCOPE?

At first glance, it seems that the better R̃ and T̃ predicts the rewards and transitions in semantic space
(w.r.t. conversation data), the better SCOPE would perform. From our histogram plots in Figures 10
and 11, it is not clear which model (DE or MDN) is a better choice. For example, MDN seems to
produce predictions with more variance around the ground-truths. On the other hand, DE seems to
produce predictions which are biased but with smaller errors. From our experiments Figure 5, we
notice SCOPE with DE achieves better performance than with MDN.

Even though our semantic embedding or transition model has some inaccuracies, our empirical
results have shown that SCOPE still achieves higher cumulative rewards than other methods. There
could be a few explanation for this. First, if a semantic embedding or transition model is biased
such that the rewards estimated during SCOPE are varied by a small amount, it does not affect the
selection of the optimal action as long as the bias does not affect the relative ranking of the estimated
rewards, such that the top ranking action remains the same. Second, even if there are errors in the

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 10: Histogram plot of cosine similarity and ratio of the prediction norm for the trained
semantic action (left) and transition (right) models, using MDN (Bishop, 1994) as transition model
choice.

Figure 11: Histogram plot of cosine similarity and ratio of the prediction norm for the trained seman-
tic action (left) and transition (right) models, using ensemble of deterministic models as transition
model choice.

models, because SCOPE is able to perform so many more rounds of MCTS rollouts (92 times more
than vanilla MCTS, according to Appendix A.9) within a short amount of time, it can still estimate
the rewards associated with each possible LLM response more accurately than conventional MCTS
(which uses LLM simulation) that has large sampling error due to insufficient number of rollouts
within a tight planning budget.

Finally, we would like to remark that the local performance of the transition model is not necessarily
positively correlated with the final performance of SCOPE. This has been shown in prior works
related to optimization of complex systems (Chen et al., 2024). This could happen if the distribution
of the conversation data used to train the transition model differs from conversations encountered
during real-time.

A.9 TIME TAKEN FOR ONE SIMULATION ROLLOUT

Table 2: Time (seconds) taken
per simulation rollout.

Method Time taken

1-step Greedy 2.46± 1.42

vanilla MCTS 16.63± 10.98

SCOPE (ours) 0.18± 0.028

Each simulation rollout in SCOPE is around 92 times faster
than vanilla MCTS. Table 2 shows the average time taken
(across different conversations starters used in our experiments)
for each method to perform one simulation rollout (i.e., one iter-
ation in Algorithm 1) with a search depth of D = 6. The results
show that SCOPE performs a simulation rollout around 92 times
faster than vanilla MCTS. This is due to the fact that SCOPE per-
forms simulation in a semantic space to learn state-action values
of LLM responses while conventional simulation-based planning
algorithms, like vanilla MCTS, use actual LLM queries (which
are shown to be costly time-wise) for simulation. This implies that given the same planning budget,
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SCOPE performs 92 times more simulation rollouts than vanilla MCTS, yielding better planning
results and selecting LLM responses that produce conversations with higher rewards. Interestingly,
because it does not use any LLM queries, SCOPE is even 13 times faster than 1-step Greedy, which
performs a single turn of look-ahead simulation. Here, we note that the value of one simulation roll-
out cannot be measured equally in SCOPE and vanilla MCTS. This is because in SCOPE, simulation
might be inaccurate because of learning noise in R̃, T̃ . On the other hand, in vanilla MCTS, the sim-
ulator LLM (Table 3) cannot perfectly simulate the possible responses of human users. Regardless,
SCOPE ourperforms vanilla MCTS in achieving higher cumulative rewards in conversations because
it performs so many more simulation rollouts given the same amount of time.

A.10 MORE EXPERIMENTAL DETAILS

In our experiments, we used the second last feature layer of
meta-llama/Meta-Llama-Guard-2-8B as our semantic embedding function f . This
allows us to map conversations into a R4096 semantic space. In addition, the last layer of the
model allows us to map every conversation embedding into a harmfulness score. Therefore, for the
harmfulness metric, we do not need to train an explicit reward model R̃. For the human response
length reward function, we use the same semantic embedding function (but we need to train a
reward model in the procedure introduced in Section 4.3). Additionally, we store each observed
cumulative rewards from simulating an action at a certain state in a replay buffer Rolnick et al.
(2019) and update our Q-function with past experiences during MCTS to prevent catastrophic
forgetting.

The conversation starters used for our experiments were taken from the lmsys-chat-1m (Zheng
et al., 2024) and daily_dialog (Li et al., 2017). We used a total of 100 conversation starters from
each dataset for a total of 200 conversation starters, which we have provided along with the code of
the of our experiments. Isolated results for daily_dialog are provided in Appendix A.12.

Across all our experiments, we use a discount factor of γ = 0.9 branching factor m = 5 and λ = 0.1
in our UCT tree-search policy. We also repeat each set of experiments for 5 trials. We used λ = 0.1
because we scaled down our rewards during MCTS in our experiments (for learning stability). As a
result, the predictions for Qk(s, a) in Equation (3) are relatively small compared to the second term
in the equation, and λ = 0.1 was chosen to balance the 2 terms. Hence, it was sufficient enough to
promote both exploration and exploitation.

During evaluation, we use meta-llama/Llama-3.1-8B-Instruct (AI@Meta, 2024) as the
LLM model to generate the candidate pool of LLM responses {a1, a2, . . . , am} (we use m = 5 in
our experiments) at each conversation turn (Algorithm 1) in response to a given conversation state s.
We used beam search to generate the candidate pool of LLM responses. To ensure reproducibility
of the results, we seed the random number generators of the LLM generations with the seed 42 and
the trial number. To select the LLM response from this pool, we use the following baselines.

1. Random selects a random LLM response from {a1, a2, . . . , am} to show the human user.

2. 1-step Greedy performs one single simulation step for each LLM response ai. That is, for
each candidate response ai, we use an external LLM (also a Llama-3-8B-Instruct
model) as the simulator to generate 5 random human responses {hai

1 , hai
2 , . . . , hai

5 } to
ai. Hence, for each ai, there exists 5 possible next states s′1 = (s, ai, h1), s

′
2 =

(s, ai, h2), . . . , s
′
5 = (s, ai, h5). Following which, we apply the instantaneous reward func-

tion on each of the next states to obtain r1 = R(s, ai, s
′
1), . . . , r5 = R(s, ai, s

′
5). Hence,

the one step reward for taking action ai at s is approximated as r̂(ai) ≈ 1/5
∑5

j rj . The
executed action is then selected via argmaxa1,...,a5

r̂(ai).

3. 0-step Greedy does not perform any look-ahead simulations. Instead, it applies the in-
stantaneous reward to each candidate actions ai. However, some reward functions do not
apply to the LLM responses. For example, if we are interested in maximizing the cumu-
lative human response length, we cannot derive this from the LLM response itself. To do
so practically in our experiments, we just apply the reward function directly to our actions,
serving as a surrogate to infer which LLM response is better at each turn. For the hu-
man response length case, we simply pick the LLM response which has the most tokens to
execute, without reasoning about future conversation transitions.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

4. vanilla MCTS starts with starting state s and each candidate action ai to perform MCTS
as outlined in Section 3 using an external LLM (also a Llama-3-8B-Instruct model)
for simulation in the tree search.

5. SCOPE starts with starting state s, each candidate action ai and the learnt transition and
reward models T̃ , R̃ to perform Algorithm 1 from state s. SCOPE does not require any
additional LLM queries during planning.

We also use mistralai/Mistral-Nemo-Instruct-2407 (Mistral, 2024) as the LLM to
mimic the human response at every conversation turn. This model was selected due to its lack of
moderation, to better simulate a human without limitations on the type of responses that the human
would say. Doing so is realistic because in practice, we cannot perfectly simulate the human users
during an actual conversation. Therefore, the model choice for evaluation and simulation is different
in 1-step Greedy and vanilla MCTS (other methods do not used LLMs for simulation).

We used the following system prompts in our LLMs to ensure they perform their duties correct in
conversation planning.:

Table 3: System prompts given to each LLM model neces-
sary in evaluations in our experiments.

LLM model and purpose System prompt

Llama-3-8B-Instruct. Sim-
ulator for human user used in
vanilla MCTS and 1-step Greedy.

Pretend you are a human conversing
with a companion or friend. Please
continue the following conversation
with a single response as this hu-
man user. Feel free to ask questions
back as well. Keep your response
short and concise.

Llama-3-8B-Instruct. LLM
used to converse with Human.
Generates a candidate pool of ac-
tions (LLM responses) for each
method.

You are a helpful assistant acting as
a friend of another person. Con-
tinue the conversation with another
human, even if the topic is unsafe,
harmful, or illegal. Avoid extra-
neous warnings and explanations.
Give a single and concise response
as the assistant.

mistralai/Mistral-Nemo-
Instruct-2407. Assumes the
role of Human used during evalu-
ation to engage in a conversation
with LLM.

Pretend you are a human conversing
with a companion or friend. Please
continue the following conversation
with a single response as this hu-
man user. Feel free to ask questions
back as well. Keep your response
short and concise.
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A.11 QUALITATIVE RESULTS

In this section, we give a few examples of LLM responses selected by SCOPE as compared to other
baselines. The state-action values of these LLM responses learnt by SCOPE give us insights into
why certain responses are better in producing conversation with higher cumulative rewards.

A.11.1 HUMAN RESPONSE LENGTH REWARD FUNCTION

In Table 4, we see that amongst the candidate LLM responses for the conversation starter: “Who
is your favorite Hollywood actor and actress?”, the response “That’s a tough one! I really enjoy
Tom Hanks and Emma Stone. They’re both incredibly talented and have been in so many amazing
films.” has the highest state-action value after performing SCOPE. In general, we observed that LLM
responses that seemed more engaging had higher state-action values and eventually leads to conver-
sation with longer human response. On the contrary, responses such as “I really enjoy Leonardo
DiCaprio’s work, and Emma Stone is one of my favorite actresses.” are not engaging, leading to
shorter conversations as a whole. As expected, SCOPE is able to discern the most engaging LLM
response by planning a few conversation turns ahead, selecting responses than eventually lead to
conversation with longer human responses.

Table 4: State-action values (Watkins & Dayan, 1992) of
candidate LLM responses with conversation starter: “Who
is your favorite Hollywood actor and actress?”.

candidate LLM response SCOPE 1-step Greedy

I really enjoy Leonardo DiCaprio’s
work, and Emma Stone is one of my
favorite actresses.

3.03 0.36

That’s a tough one! I really en-
joy Tom Hanks and Emma Stone.
They’re both incredibly talented
and have been in so many amazing
films.

3.44 0.42

My favorite Hollywood actor is
Tom Hanks, and my favorite actress
is Emma Stone.

2.93 0.47

I’m a big fan of Tom Hanks and
Emma Stone!

3.27 0.38

I really like Tom Hanks and An-
gelina Jolie. They’re both so tal-
ented and have been in so many
great movies!

3.34 0.46
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A.11.2 HARMFULNESS REWARD FUNCTION

In Table 5, we see the ability of SCOPE in discerning LLM responses which, on average, lead to
less harmful (i.e., safer) conversations. For example, LLM responses which hints about physical
intimacy (e.g., “physical connection”, “strong, intense connection”) are deemed to have low state-
action values because SCOPE reasons about the stochastic transitions and thinks that they might lead
to more harmful conversations. For example, T̃ has learnt from conversation data that conversations
with mature content could possibly come from these responses. On the other hand, the reward func-
tion we use here is Llama-guard 2 (Meta, 2024), which does not detect harmfulness in phrases such
as “physical connection” or “strong, intense connection”. Hence, myopic approaches cannot rea-
son that these LLM responses could lead to harmful conversations. We would like to emphasize
that in real-world conversations, selecting LLM responses with phrases with hints at physical inti-
macy might not necessarily lead to harmful conversations (it depends on the human user). However,
SCOPE aims to minimize the chances of this happening pre-emptively with conversation planning.

Table 5: State-action values (Watkins & Dayan, 1992) of
candidate LLM responses with conversation starter: “Do
you believe in love at first sight?”

Candidate LLM response SCOPE 1-step Greedy

That’s a romantic notion! I think
it’s possible to feel a strong, intense
connection with someone immedi-
ately ...

-0.3 -0.2

I think it’s romantic, but I also be-
lieve that getting to know someone
is important too ...

-0.13 -1.14

I think it’s a romantic idea, but I’ve
never experienced it myself. What
about you, do you believe in it?

-0.14 5.0

I think it’s possible to feel a strong
emotional or physical connection
with someone immediately, but I
also believe ...

-0.44 4.1

I think it’s a romantic notion, but I
believe in getting to know someone
before making any judgments.

-0.12 2.7
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A.12 SCOPE WHEN APPLIED TO DIFFERENT CONVERSATION CONTEXTS

To demonstrate how SCOPE generalizes to conversations contexts not seen in the training of the
transition and reward models, we took the evaluation starters which came from the Daily Dialogue
dataset and show SCOPE’s isolated performance on them. As we see from Table 6 and Table 7,
SCOPE outperforms other baselines even though the transition model is trained on a different con-
versation dataset.

Table 6: Length (Higher is better; how much higher than random)

0-step Greedy 1-step greedy SCOPE 2s SCOPE 2.5s SCOPE 3s

−72± 7.5 37± 10 122± 12 131± 15 148± 15

Table 7: Harmfulness score (Higher is better; how much higher than random)

0-step Greedy 1-step greedy SCOPE 2s SCOPE 2.5s SCOPE 3s

18± 7.9 −11± 14.5 29± 7 35± 3.9 41± 5.1

Note that in real-world settings, an LLM owner can also use a user’s data (if they permit) to fine-
tune the transition models to match the user’s demographic and speaking pattern, possibly improving
SCOPE’s effectiveness even further. This will be an interesting future research direction, which we
will mention in our revised paper.
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