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Abstract

Mastering fine-grained visual recognition, essential in many expert domains, can re-
quire that specialists undergo years of dedicated training. Modeling the progression
of such expertize in humans remains challenging, and accurately inferring a human
learner’s knowledge state is a key step toward understanding visual learning. We
introduce CleverBirds, a large-scale knowledge tracing benchmark for fine-grained
bird species recognition. Collected by the citizen-science platform eBird, it offers
insight into how individuals acquire expertize in complex fine-grained classification.
More than 40,000 participants have engaged in the quiz, answering over 17 mil-
lion multiple-choice questions spanning over 10,000 bird species, with long-range
learning patterns across an average of 400 questions per participant. We release
this dataset to support the development and evaluation of new methods for visual
knowledge tracing. We show that tracking learners’ knowledge is challenging,
especially across participant subgroups and question types, with different forms of
contextual information offering varying degrees of predictive benefit. CleverBirds
is among the largest benchmark of its kind, offering a substantially higher number
of learnable concepts. With it, we hope to enable new avenues for studying the
development of visual expertize over time and across individuals.

1 Introduction
Dedicated practice and expert instruction from knowledgeable teachers are essential ingredients for
students tasked with mastering new subjects and concepts. However, providing access to high quality,
yet affordable, instruction at scale is time consuming and expensive [8]. As a result, researchers have
looked towards alternative, computer-assisted [61], tools in an attempt to overcome these hurdles.

At the heart of an effective automated tutoring system is a computational model of the human learner.
The goal of these models is to observe the learner as they engage with the teaching material at hand,
represent the learners’ knowledge state, and estimate any potential knowledge gaps they may have.
This task, also known as knowledge tracing (KT), has a long history in the literature [3]. Early
solutions modeled human mastery of the material being learned via latent variable probabilistic
models [10, 11]. More recent approaches have advocated for the use of deep learning-based solutions
[60] which, while effective at capturing more complex relationships, can require large quantities of
data to train. However, current datasets for quantifying the performance of different KT methods
are typically concentrated around a small number of subjects such as mathematics [12, 29, 50, 74],
programming [57], and language learning [14, 40].

In this work, we attempt to address a gap in the existing available benchmark datasets for KT. This is
motivated by the fact that there are a large number of domains where learners wish to learn visual
identification skills, e.g., in medicine, art, and biology, to name a few. Many of the tasks in these
domains can be posed as classification problems, where the human learner attempts to learn the
decision boundaries between different concepts (i.e., different semantic classes). One such domain
is animal species classification. For example, there are now a number of online platforms where
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Figure 1: (Left) Human Learning. Participants learn from the quiz questions contained in Clever-
Birds through repeated interactions. For each question, participants are presented with an image of a
bird species and a list of possible species names (here {‘A’, ‘B’, ‘C’, ‘D’}), which may include the
correct answer. After making a guess, they receive feedback in the form of the correct answer (here
‘A’). This process is repeated for multiple questions. (Right) Knowledge Tracing. We illustrate the
prediction task, in which a model is given a participant’s interaction history together with the current
question’s image, options, and correct answer, and is tasked with predicting the participant’s guess.

members of the public report sightings and locations of different species from all around the world,
which in turn is providing valuable data for science [9]. The challenge for the participants in these
projects is that the number of visual concepts (i.e., species) can be very large. For example, even if
only restricted to the case of birds, there are over 11,000 different species worldwide. Compounding
this difficulty is the fact that discriminating between certain species can require very fine-grained
knowledge [75] as some species can look very similar to others.

To advance the development of KT methods in the context of fine-grained classification tasks we
introduce the CleverBirds dataset. CleverBirds embodies a challenging real-world classification task
and contains a large number of interactions generated by human participants who are attempting to
learn how to identify different bird species from images. The core task is depicted in Fig. 1 where a
learner is presented with a sequence of multiple-choice questions and the aim is for them to correctly
identify the bird species depicted in the images shown. Example questions from the dataset are shown
in Fig. 2.

We make the following contributions: (1) We introduce CleverBirds, a new large-scale benchmark
for visual knowledge tracing. Our dataset contains over 10,000 visual unique concepts and more
than 17 million total interactions from over 40,000 unique participants, with half of the participants
having answered over 100 questions each. It provides a new benchmark for obtaining insights
into human learning in the context of fine-grained visual classification. (2) We quantitatively
evaluate a range of computational approaches on CleverBirds and demonstrate that it is a challenging
benchmark, not only to human participants, but also to the computational methods tested. We
evaluate these baseline methods under varying levels of input context, and show how different
types of information can impact predictive accuracy. Links to the dataset and code are available at
https://cleverbirds-benchmark.github.io.

2 Related Work

Knowledge Tracing (KT). KT methods aim to model student knowledge acquisition over time
such that they can predict how a given student will perform on future interactions [3]. Effective
models of human learning have a wide array of applications in the context of intelligent tutoring
systems [61] and machine teaching [82]. Traditional KT approaches are based on probabilistic
models of student mastery [15], but multiple extensions have been proposed to address some of
the simplifying assumptions that were commonly made by earlier models, e.g., by incorporating
individual-specific learnable parameters [78], by estimating concept difficulty [58], or by modeling
more complex dependencies between concepts [39].

More recently, there has been a growth in the number of deep learning-based KT approaches
proposed [65]. Various architectures have been explored such as recurrent networks [52, 60, 77], graph
neural networks [53, 70, 76], attention-based models [32, 56, 57], memory augmented models [1, 81],
hierarchical approaches [47, 73], and explainable methods [6]. There have also been attempts to
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Figure 2: Three examples of the types of quiz questions found in our CleverBirds dataset. In each
case, there are four options representing different species and an additional “None of the above
option”. The correct answer is indicated in green. Any of five options are valid answers and the set of
candidate species provided in the option set are different for each question.

utilize contextual knowledge extracted from large language models to better encode interactions
between concepts and questions [30, 45]. Deep KT methods can capture complex interactions and
longer range temporal dependencies, but at the cost of requiring larger training datasets [31].

Datasets of Human Learning. There are a large number of benchmark datasets that have been
utilized to quantify the performance of different KT methods. These datasets are typically distin-
guished in terms of the number of human learners (i.e., participants), the number of knowledge
components/concepts (e.g., ‘subtraction’ could be a concept in the context of mathematics), the
number of unique questions, and the total number of interactions (i.e., each student may not attempt
all questions). Synthetic datasets have the advantage of enabling controlled testing as the underlying
generative process is known [60]. However, evaluation in simulation is not a substitute for performing
experiments using data from real human participants. The most common source of data comes from
mathematical education, e.g., [29, 42, 66, 67, 74]. The largest of these datasets consist of millions of
interactions with thousands of students and can also contain additional auxiliary information [50].
However, existing datasets are typically limited in the number of overall concepts contained within
them. Beyond mathematics, other popular domains include linguistics [14], programming [30, 40],
and general education games [40].

Most relevant to our benchmark are the small number of datasets targeting image classification tasks.
While not precisely image data, [23] perform experiments on a dataset containing spectrograms
derived from gravitational wave observations from the Gravity Spy citizen science project [80]. The
goal for participants is to classify each spectrogram into one of a discrete set of classes representing
21 different types of ‘glitches’. This dataset does not explicitly target a learning setting, i.e., it is
not necessarily the case that the participants get better over time. The authors of [43] introduce
three datasets for evaluating human learning of fine-grained visual concepts. Their datasets contain
images of five species of butterflies, three classes of conditions of human retinas, and three classes
of synthetic ‘greebles’. Each dataset only contains 6,750 interactions which were obtained using
participants from an online crowd working platform. For each of the three datasets, there are less
than one thousand total images. We summarize the statistics of current KT datasets in Table A3.

In contrast to existing image-based datasets, our CleverBirds benchmark contains a much larger
number of possible concepts that can be learned, i.e., 10,779 different species of birds from all around
the world. In addition, the participant pool spans a range of expertize levels and is sourced from
engaged individuals that volunteered to participate based on their interest in the problem domain.

3 CleverBirds Dataset
Here we describe our CleverBirds dataset. We outline the original collection protocol, the steps we
undertook to refine it, and we describe the high-level statistics of the dataset.

Quiz Composition. The CleverBirds dataset is sourced from an online bird species identification
quiz [16] created by the citizen science project eBird [68]. In the quiz, users (i.e., participants) are
shown an image and asked to guess which bird species, from a list of options, is present in the
image shown (see Fig. 2 for examples). It was first published online in March 2018 to encourage
users to provide image quality ratings for new image uploads. The images contained within the
quiz are sourced from citizen scientists who upload images, along with a proposed species label
indicating the species present in the image, to the Macaulay Library [19]. This proposed species
label is cross-referenced with a list of species expected to be found in the geographic location, and
a volunteer expert reviewer is consulted for unlikely cases (i.e., an image identified as containing
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Figure 3: Left to right: Cumulative distribution of quizzes attempted per user on a log scale,
distribution of users’ average accuracies, distribution of species-wise average user accuracies, and
average user accuracy by number of prior exposures to a species.

a specific species that is not typically found in that area). Data labeling errors from these types of
citizen science efforts can occur, but are low. For example, on iNaturalist, the error rate for bird
species identification has been found to be 3.3% [36].

Quiz images are sampled from images that have been uploaded within the last 5 to 365 days and
contain proportions of both images with no quality ratings, and images that have quality ratings of at
least 2.4 out of 5 possible stars. This allows for unrated images to be quality-labeled through use of
the quiz, while keeping enough high quality images in the quiz for the users to learn from. Users
are asked to rate image quality by sharpness, visibility of the bird, size of the photo and watermarks,
while allowing for flocks and birds in-hand [21]. Additionally, users are encouraged to skip questions
that are unanswerable, for example because multiple bird species are visible within one image. To
further increase difficulty, the candidate answer options are selected to be taxonomically similar to
the correct species. Specifically, options are drawn from a sliding window over the taxonomic list
centered around the true species present in the image shown.

Graphical Interface. Users initiate a quiz by selecting parameters such as a location, time of year,
and species prevalence, which are used to generate quiz questions. For example, if a user selected
Edinburgh, Scotland, May 15th, and ‘likely’ species, they would only be presented with questions
featuring common birds that would be expected to be found in that region at that time of year. Note,
users have the option to select an audio quiz, whereby audio recordings are played instead of them
being shown images. However, we only use the image quiz data as it is much more prevalent. Users
are then guided through a set of 20 multiple-choice questions. For each question, an image of a bird
is shown along with five answer choices: four species names and a “None of the above” option. Users
can optionally skip any question. After submitting an answer, the correct species is revealed, and
they are asked to rate the image quality on a scale of 1 to 5.

Data Filtering. CleverBirds is based on all quizzes completed online from March 14th 2018 to
October 8th, 2024. To prevent overfitting on specific users, we split the dataset by user ID into
training, validation, and test sets. Aiming for a 70/15/15 split, users are assigned to the training
set until it comprises 70% of interactions, then we continue to the validation set and finally the test
set. This results in 28,100 users in training, 6,021 in validation, and 6,023 in test, corresponding
to 70.6%, 14.6%, and 14.8% of interactions, respectively. To respect image licenses, we do not
provide the original images shown to users, but instead provide embeddings for each image using
DINOv2 [55] with a ViT-B/14 backbone [28], as well as a ResNet50 [34] pretrained on ImageNet [25].
For DINOv2, we average-pooled the final layer’s patch tokens after LayerNorm, excluding special
tokens. For ResNet-50, we use the output of the global average pooling layer before the classifier.

To encode historical interactions, we construct a unique mapping for all species labels that appear in
the dataset either as correct answers, or candidate options, and use it to encode the user’s histories. In
case of “None of the above” (NOTA) selections, the user’s answer is encoded with a special token.

Dataset Characteristics. CleverBirds captures the learning dynamics of a diverse user population
on a challenging real-world fine-grained classification task. It contains 17,859,392 user interactions,
of which 98% involve unique image-species-choice combinations, and 26% contain unique species-
choice pairs. 83% of images are never seen more than once, resulting in 14,753,114 distinct image
features using the ImageNet ResNet50. For DINOv2, we provide 14,747,840 features, the discrepancy
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Figure 4: (Left) Here we compare lower quality quiz images (upper row) to high quality ones obtained
from eBird species’ pages (bottom row). Quiz questions may contain images that show birds from a
distance, partially obscured, or uncommon angles. Species from left to right: Bufflehead, California
Towhee, Dark-eyed Junco, and Blue-gray Gnatcatcher. (Right) Here we show the average accuracy
of users for each possible quality rating. We observe that on average that higher quality images are
easier for users.

(5,274) arising from the fact that DINOv2 was extracted later and images get deleted by the image
owners over time. In our baselines, we treat unavailable images as zero inputs.

With over 10,000 species, CleverBirds spans a broad taxonomic range and exhibits wide variation in
user engagement. As shown in the first panel of Fig. 3, over 50% of the 40,000+ users answered 100+
questions, and over 10% exceed 1,000 questions, enabling the analysis of learning dynamics over
time. Users encounter a mean of 138 distinct species, and 10% encounter more than 300. Panel 2 and
3 of Fig. 3 show that the distribution of accuracies across users and species is broad, and centered
around 60-70%. User improvement is observable, with over half of users showing measurable gains
over sliding windows of 20 questions (one full quiz), making the dataset valuable for studying skill
acquisition and feedback-driven learning. Panel 4 of Fig. 3 also illustrates this trend, as within the
first 20 times a user sees a particular species, their accuracy increases by 20% on average. While
focused on image-based identification, CleverBirds also contains substantial geographic diversity,
with quiz selections drawn from over 4,000 distinct locations (see Fig. A2 for a visualization), and
temporal coverage spanning all weeks of the year.

The difficulty of the task is further illustrated in Fig. 5, which displays the top-5 most frequently
confused species pairs for species with over 1,000 interactions. For each species pair, the differences
are subtle and require a trained eye to perceive. For example, the Pin-tailed Snipe can be differentiated
from the Common Snipe by the white trailing edge of the wing of the Common Snipe [20]. The
Sharp-shinned Hawk can be differentiated from the Cooper’s Hawk by its smaller head, more squared-
off tail, and smaller feet [22]. Note also, that the images shown for reference in Fig. 5 are high
quality example images of the species. In the quiz, users could be confronted with partially obscured
or zoomed out images of the same bird, increasing difficulty. Fig. 4 shows example quiz images
compared to high quality images of the same species, highlighting the inherent difficulty within the
quiz. Nevertheless, users achieve an average accuracy of over 50% even on images rated as low
quality (see Fig. 4 - right panel). The distribution of image quality is shown in Fig. 4 - center panel.

Privacy. To ensure user privacy we anonymize all user-related identifiers, as well as those of quizzes,
questions, and image assets that users interact with. We further aggregate quiz locations using the H3
geospatial index [71] at resolution 3 [72], which averages 12, 393 km2 per cell. All quiz participants
are registered Cornell Lab account holders and have agreed to the Terms of Use [18]. The project
has been reviewed and approved by the School of Informatics Ethics Committee (project number
954242).

4 Problem Setting
Our goal is to model the learning progress of human learners as they engage with a multi-choice
image classification quiz. At time t ∈ {1, . . . , T}, the learner is presented with an image It and an
ordered list of K possible candidate answers, denoted by ct. ct contains a set of K − 1 randomly
ordered possible candidate answers, and also includes an addition none of the above option NOTA,
yielding ct = (ct,1, . . . , ct,K−1,NOTA).

We represent an image It with a fixed vision encoder xt = f(It) ∈ Rd, and condition models on xt.
The learner observes the image It and, based on their internal state, selects a response rt ∈ ct to the
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Figure 5: Top-5 most frequently confused species pairs for species with > 1,000 interactions. From
top-to-bottom and left-to-right: American Crow vs Fish Crow, Pin-tailed Snipe vs Common Snipe,
Redpoll (Hoary) vs Redpoll (Common), Ross’s Goose vs Snow Goose, Sharp-shinned Hawk vs
Cooper’s Hawk, and Short-tailed Shearwater vs Sooty Shearwater. Images taken from eBird [17].

question. The learner then receives the true species label yt as feedback, and proceeds to the next
question in the quiz. This process forms a single interaction ht = (xt, ct, yt, rt).

The learner’s response is governed by their unobservable internal state θt, which summarizes their
accumulated knowledge and memory, in conjunction with the input image and candidate choices
shown. We assume the learner’s state is updated after every interaction, similar to [43], and model
the learner’s response process as

rt = argmax
c∈ct

P (c | xt, ct, θt), (1)

where rt denotes the categorical species selected by the learner and rbin
t = I[yt = rt] ∈ {0, 1}

indicates whether the answer was correct. Here, P (·) represents the learner’s true (but unknown)
response distribution conditioned on their internal state.

Given P (·) is unobserved, we approximate it via a shared parametric model ϕ trained across learners.
ϕ does not include learner-specific parameters, instead, learner-specific behavior emerges through
conditioning on each individual’s recent interaction history Ht = (hτ )

t−1
τ=max(1, t−W ), along with

the current question (xt, ct, yt). Here, W ∈ N determines the maximum number of historical quiz
questions that are assumed to influence the learner at a given time. While learners may in practice
gain experience from other sources (e.g., in the wild observations), we exclude such influences and
assume a direct correspondence between a learner’s state θt and their interaction history Ht. For
some models, the conditioning set is further augmented by including features such as the learner’s
chosen quiz location and time focus, or by removing information such as the image features.

The model ϕ, as an approximation of P (·), estimates a response probability distribution and predicts
either the categorical outcome as

r̂t = argmax
c∈ct

ϕ(c | xt, ct, yt,Ht), (2)

or binary outcome as r̂bin
t = I[yt = r̂t]. The model is supervised to estimate either the response

likelihood ϕ(rt | xt, ct, yt,Ht) or, in the binary formulation, the correctness likelihood ϕ(rbin
t = 1 |

xt, ct, yt,Ht).

Images. As in [43], we use a fixed vision encoder to represent images for modeling. Individual
learners may weight or attend to different features within these embeddings. We assume that
learners first construct an internal visual representation of the image, which is subsequently used
for species categorization, in line with studies indicating categorical readout from learned visual
representations [4, 37]. Although this abstraction does not perfectly capture the learner’s true visual
representation, we hypothesize that human participants and neural networks trained on the same
task extract similar image concepts. Due to their high dimensionality and pretraining on real-world
images, we expect these features to encode much of the information used by both novice and expert
learners. Prior work has demonstrated that pretrained CNN features can be predictive of human
similarity judgments [5]. We present results on the predictive accuracy of these image features for
species classification in Table A9.
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5 Methods

We quantitatively evaluate CleverBirds across a range of different models ϕ predicting user responses
given different levels of context contained in the quiz question: correct species yt, choice candidates
ct, image features xt, interaction history Ht, and focus indicators iloc and ist. This context can be
categorized into three main domains: (1) User Context: Features that are directly associated to a
particular user, such as transcripts from their interaction history, or their previous performance and
preferences. This context is aggregated from the interaction history Ht and focus indicators iloc
and ist. (2) Species Context: Species-level features that are aggregated from the training set, such
as average species difficulty of the correct species yt and choice candidates ct. (3) Image Context:
Extracted image features, implicitly encoding image concepts such as quality and ambiguity. Models
relying on user, species, and image context are denoted with U, S, and Img respectively. Combinations
are denoted with U+S or U+S+Img, indicating user and species, or user, species, and image context,
respectively.

Evaluation. We evaluate the methods on a dataset of held out user IDs. The evaluation metrics for
the binary task are binary macro accuracy which is the macro averaged accuracy over the correct
outcome versus incorrect, and binary AP for correctly predicting user mistakes which is the average
precision with the minority incorrect class treated as the “positive” class. For the multiple choice
task, we report multiple choice accuracy which is accuracy over labels 1 to 5, where 5 denotes “None
of the above”, and multiple choice incorrect set accuracy which is the accuracy computed on the
subset of questions that participants answered incorrectly, measuring how well the model recovers
the correct label among distractors for questions participants fail to answer correctly.

Multiple-choice Classifiers. For multiple-choice response prediction, we evaluate transformer-based
KT models, a confusion prior classifier, a simple MLP, and two heuristics. The first heuristic assumes
an all-knowing learner that always selects the correct answer (Always Correct). The confusion prior
classifier (Conf Prior) estimates the probability of each choice by masking the training-set confusion
between the correct species and distractors, then re-normalizing to form a valid distribution over the
choices presented to the user. We also add an additional confusion prior model which is constrained
to predict only incorrect choices. This setup simulates a confusion prior focused exclusively on the
subset of user questions answered incorrectly. As a lightweight neural baseline, we train a one-layer
MLP that receives a learned 250-dimensional embedding of the correct species along with optional
context (none, user-context, species-context, or both). The model outputs a probability distribution
over all species, which is then masked to include only the five presented choices. We test user and
species context (MLP U+S) and user, species, and image context (MLP U+S+Img). The image features
are passed through an embedding layer converting them to the MLP input dimension. For both the
confusion prior classifier and the one-layer MLP, NOTA is selected if the total probability assigned to
species outside the available options exceeds the probability of every presented choice.

Binary Classifiers. For correct/incorrect prediction we fit simple probabilistic models (logistic
regression (LR), XGBoost (XG), random forests (RF) with combinations of user and species context
(U, S, and U+S). Additionally, we fit an average species classifier heuristic (Avg Species), which mirrors
average species accuracy in the training set. A full description of models and their hyperparameters
can be found in Appendix C.

Knowledge Tracing Models. We also evaluate several knowledge tracing baselines on our binary
classification task. simpleKT [49] and Knowledge Query Networks (KQN) [44] serve as lightweight
baselines. DKT [60], its regularized variant DKT+ [77], and the adversarial-training-based knowledge
tracing (ATKT) [33], which adds adversarial training, model a learner’s history using an LSTM
hidden state. The self-attentive model for knowledge tracing (SAKT) [56] and attentive knowledge
tracing (AKT) [32] selectively attend to the most relevant past interactions, with AKT using Rasch
model [63] inspired regularization. Dynamic Key-Value Memory Networks for Knowledge Tracing
(DKVMN) [81] externalizes knowledge into a key–value memory, enabling long-range tracking of
per-concept knowledge.

We also evaluate two language modeling training paradigms for our multiple-choice task: sequence-
to-sequence (LM-Seq2seq) generation [62] and multiple-choice classification (LM-MCC) [79]. For
seq2seq, we fine-tune a pretrained T5-style [62] encoder-decoder transformer [69] to generate the
correct species token based on the user’s interaction history and the current question. For the
classification model, we fine-tune a pretrained Bert-style [26] encoder-only transformer [38] to score
the compatibility of each question-choice pair, conditioned on the same history.
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For both models, we use a custom tokenizer which only includes one token per possible species, i.e.,
11,142 tokens, along with special tokens for padding, segment separation, and token types. This
avoids ambiguity when using natural language to describe species names, and ensures a compact
token representation of our task, with each question occupying exactly 8 tokens.

For the seq2seq model, supervision is applied via a token-level cross-entropy loss on the generated
species token, with NOTA aggregating all probabilities outside the visible choice candidates. For the
classification model, binary labels are assigned to each candidate, with exactly one correct answer
per question. For these transformer models, we set W = 50, other models use the complete history.
These transformer models are evaluated using accuracy on the full dataset and subset of incorrect
answers, as in case of the other multiple-choice models. Please see Appendix C for additional
implementation details for these models.

Image Features. To showcase the use of image features for our prediction task, we evaluate an MLP
with image features as input, with and without additional user and species context. The MLP using
only image features (MLP Img), omitting user and species context, is similar to the static tracing
model in [43]. Image features are encoded via an embedding layer to a dimension matching the
number of unique species in the dataset. We report results for DINOv2 image features below, but full
results, including using ResNet-50 image features, can be found in Table A1.

6 Results

We focus our discussion on high level takeaways from Fig. 6. Additional results (e.g., ResNet-50
image feature results, and additional KT baseline results) can be found in the appendix.

Feature engineered context result in strong baselines. The bottom row of Fig. 6 shows performance
on the binary classification task, where the goal is to predict whether a participant will correctly
answer a given question. Models trained specifically for this binary task outperform those trained for
multiple choice and then subsequently binarized. The random forest model, leveraging both user and
species context, performs best overall, achieving over 80% average precision in predicting participant
errors. On the multiple-choice task, a one-layer MLP with user and species context matches the
performance of significantly larger transformer models with a much larger capacity.

User context is more informative than species context. When comparing different context types,
models receiving both user and species context (i.e., U+S) perform best overall, with models receiving
only user context (i.e., U) close behind. Among the binary classifiers, those incorporating user context
consistently achieve higher accuracy and average precision. While species context models still
outperform simple heuristics on the binary task and full-dataset multiple-choice task, user-specific
context appears necessary for strong predictions.

Multiple-choice trained classifiers are beaten by binary-trained classifiers on the binary task.
On the binary task, multiple-choice classifiers are consistently outperformed by those trained directly
on the binary objective. Despite the small capacity of our probabilistic models, they can achieve an
AP and average accuracy of over 80%. By contrast, models originally trained to predict the exact
multiple-choice response must allocate capacity not only to correctness but also to the structure of
the incorrect responses. Future work could explore how these multiple-choice models could benefit
from the outputs of binary classifiers, either as auxiliary signals or as gating mechanisms, or receive
additional binary supervision.

Image features complement user and species context for incorrect choices. On the full dataset,
the MLP with user and species context and DINOv2 image feature input shows a slightly higher
performance compared to the other multiple-choice trained models (76%). On only incorrectly
answered questions, however, it significantly outperforms the other parametric models and the
random baseline with results around 25%. The same MLP without user and species context, MLP
Img, achieves comparable results on the full dataset, but achieves only around 11% on the incorrect
subset. This shows that image features help knowledge tracing for CleverBirds, especially if combined
with the right context.

Predicting incorrect choices is challenging. Our trained models achieve approximately 70%
accuracy on the multiple-choice task (see Fig. 6, top left panel). However, as observed in Fig. 3,
participants perform substantially above random chance. The top right panel of Fig. 6 shows model
accuracy on the subset of questions where participants select the incorrect answer. All trained models
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Figure 6: Performance on the multiple-choice and binary tasks. Top-left: accuracy on the full
multiple-choice dataset. Top-right: accuracy on the subset of questions answered incorrectly. Bottom-
left: macro-averaged accuracy on the binary task. Bottom-right: average precision (AP) for predicting
user errors. Models are grouped by color into simple classifiers (RF U, RF S, RF U+S), MLPs (MLP
U+S+Img, MLP Img), KT models (LM MCC, LM Seq2seq, AKT[32], ATKT[33], and simpleKT [49]),
and simple heuristics (Always Correct, Random binary, Random multiple-choice, Conf Prior, Conf
Prior Inc). Img uses DINOv2 features here, full results can be found in Appendix A.

achieve less than 25% accuracy on this subset, while the random classifier attains the expected 20%
(i.e., a one-in-five chance), and the always-correct classifier scores 0% by design. The confusion
prior, which assumes users are always incorrect (Conf Prior Inc), predictably underperforms on the
full dataset (below 9% accuracy), but achieves over 23% accuracy on the incorrect subset. High
performance on this subset would indicate that a model is able to approximate the participants’
internal knowledge states. The marginal improvement of the best trained model over the incorrect-
assumption confusion prior suggests that there is substantial room for improvement. Future work
could explore the use of longer temporal contexts and better generalization across species, since
success or failure on one species could provide information for others.

Species context can improve incorrect predictions. To isolate whether species context can guide
incorrect predictions even without image features, we created an additional confusion prior classifier,
Conf Prior Inc, and restricted it to never answer the correct species. As expected, this classifier
performs poorly on the full dataset (accuracy of 10%). On the incorrect subset, it managed to
outperform the random baseline, and obtain a similar accuracy as the MLP classifier with user,
species, image context (around 24%). This shows that species context can help with predicting
incorrect guesses.

Knowledge tracing baselines have little variance in performance. Table A2 summarizes the
performance of the KT methods. As in [50], the tested KT methods all show similar performance,
with average precision on predicting user’s mistakes around 0.35 and average accuracy around 54%.
This is surprising, given the diversity of model architectures. In terms of average accuracy, these
models underperform compared to our simple classifiers incorporating user and species context. We
note that most KT methods are designed for datasets with far fewer concepts than CleverBirds, and
typically offer concept-level interpretability, which can limit their flexibility. As shown in Fig. 6,
macro accuracy and AP (mistakes) are low for the KT methods AKT, ATKT, and simpleKT, despite
high accuracy on the positive class. Similar results are shown for additional KT methods in Table A2.
This suggests suboptimal performance on the negative class, which are instances where participants
selected an incorrect species. One plausible explanation is that these models exploit a shortcut,
focusing disproportionately on the positive class. We view this as evidence of CleverBirds’ value
in exposing limitations of existing approaches which motivates the development of more effective
methods in future.
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7 Limitations
While CleverBirds is the largest and most diverse dataset for visual knowledge tracing, it has some
limitations. First, it focuses exclusively on bird species identification. We acknowledge this domain
specificity limits immediate applicability to other areas such as medical imaging or object recognition.
This is partially mitigated by the visual diversity of birds and the prevalence of hard-to-distinguish
species pairs, making it representative of many fine-grained classification tasks. Moreover, the
dataset’s scale of nearly 11,000 fine-grained categories and over 40,000 participants with extensive
learning trajectories provides unprecedented insights into human visual learning dynamics that, while
domain-specific, may inform modeling approaches across fine-grained recognition tasks.

Second, the dataset reflects both location and selection biases. Participants are drawn from eBird [68],
and participants on such platforms are known to be skewed towards the Global North [24]. See
Appendix A.3 for additional details on geographic bias. The multiple choice format is a tradeoff
that differs from open-ended identification, limiting knowledge tracing to a finite set of options and
influencing ecological validity. This is partially mitigated through controlled design of the quiz, i.e.,
distractors are dynamically sampled from a sliding window centered on the true species, ensuring
variability and substantial difficulty. Distractors are selected to be taxonomically similar, making
the task challenging and realistic. A related constraint is the feedback, which only provides the
correct species label to the user. Despite this simplicity, the signal is highly effective for learning in
our fine-grained setting. Participant accuracy improves significantly with repeated species exposure
(Fig. 3), showing that the correct label is a potent signal for correcting subtle classification errors.
This finding is consistent with prior work showing humans can acquire visual expertise from label
supervision alone [64].

Finally, although some label noise may be present in the quiz answers, we do not expect it to be
substantial (Section 3), and the primary task is to predict user responses rather than the ground truth
species labels. As with all KT applications, care must be taken when developing models from datasets
such as ours, as inaccurate models could negatively bias future human learning.

8 Conclusion
We introduce CleverBirds, a new benchmark for evaluating models on the task of fine-grained visual
knowledge tracing. CleverBirds contains rich interaction data from over 40,000 participants who
are attempting to visually discriminate over 10,000 different bird species from all over the world.
There are several properties that make our dataset well suited as a benchmark for this task, e.g.,
it contains a large number of interactions over time originating from participants of different skill
levels, participants are not static as we observe their overall performance improves over time, and
the concept space is large and challenging to master. We also demonstrate that CleverBirds poses a
challenge for the computational methods tested, but the inclusion of additional context information
improves performance. CleverBirds opens the door to future avenues related to modeling human
knowledge acquisition in complex real world visual discrimination tasks, in addition to spurring
development of methods for teaching such knowledge to learners.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes. Our main contributions are the dataset described in Section 3 and
benchmark results are described in Section 6.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, please see Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: We include general notation for the task, but no theoretical proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the data processing pipeline and modeling pipeline in Section 3
and Section 5. Additionally, we upload our data processing after the anonymization step,
and code, configurations and instructions to reproduce our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, we provide the dataset and codebase, configurations and instructions.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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Justification: Yes, ethics approvals are mentioned in Section 3, with number 954242.
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Appendix

A Additional Results

A.1 Full Results

Table A1 and Table A2 report results on CleverBirds. Complementing Fig. 6, Table A1 includes
models using ResNet-50 image features (MLP Img ResNet-50 and MLP U+S+Img Resnet-50),
logistic regression (LR U, LR S, LR U+S) and XGBoost (XG U+S). Table A2 reports additional
results for the KT baselines AKT [32], simpleKT [49], DKT [60], DKT+ [77], DKVMN [81],
KQN [44], ATKT [33], SAKT [56], SKVMN [1] on the binary task, evaluated using AP (mistakes),
Macro Accuracy (%), AUC and Accuracy (%). AP (mistakes) and Macro Accuracy (%) are directly
comparable with columns 2 and 3 of Table A1, while AUC and Accuracy (%) are directly comparable
with Table 2 of [50]. Both our results and those of [50] show little variability across model types.

Table A1: Baseline results on the multiple-choice and binary tasks. Columns (2) and (3) show perfor-
mance on the binary classification task (correct/incorrect). Columns (4) and (5) show performance
on the multiple-choice classification task. AP is average precision on predicting learners’ mistakes,
macro accuracy is average accuracy over the two classes (macro recall). ‘Full’ describes the full
dataset, ‘Incorrect’ only incorrectly-answered questions. Models are: (1) Knowledge tracing models:
sequence-to-sequence transformer model (LM Seq2seq), multiple-choice classification transformer
model (LM MCC), AKT [32], ATKT [33] and simpleKT [49]; (2) MLPs using user context (U),
species context (S), and image features from ResNet-50 (Img ResNet-50) and DINOv2 (Img DINOv2)
features; (3) Random Forest (RF), Logistic Regression (LR) and XGBoost (XG); (4) Random binary
and multiple-choice baselines, and heuristics using the average species performance (Avg Species),
user-correct assumption (Always Correct), confusion prior (Conf Prior) and the confusion prior
which assumes incorrect participant guesses (Conf Prior Inc). Error bars are 2-sigma, based on 3
training runs for KT baselines, and 10 training runs for all other models. Metrics are reported as
averages, with 2-sigma standard deviation.

Task Binary Binary Multiple Choice Multiple Choice
Metric AP Macro Accuracy (%) Accuracy (%) Accuracy (%)
Dataset Full Full Full Incorrect
LM Seq2seq 0.384 ± 0.098 66.90 ± 21.60 72.90 ± 1.80 3.40 ± 6.60
LM MCC 0.391 ± 0.028 66.60 ± 18.20 70.00 ± 0.60 6.50 ± 1.80
AKT 0.366 ± 0.002 55.00 ± 0.00 – –
ATKT 0.363 ± 0.004 56.20 ± 0.40 – –
simpleKT 0.360 ± 0.002 54.80 ± 0.40 – –

MLP U+S 0.428 ± 0.048 67.60 ± 19.20 72.70 ± 1.00 6.40 ± 0.80
MLP U+S+Img ResNet-50 0.768 ± 0.042 79.90 ± 9.60 76.00 ± 1.20 24.50 ± 2.40
MLP U+S+Img DINOv2 0.741 ± 0.022 79.90 ± 8.80 75.10 ± 0.40 24.50 ± 1.20
MLP Img ResNet-50 0.461 ± 0.004 68.60 ± 18.00 72.90 ± 0.20 9.00 ± 0.40
MLP Img DINOv2 0.442 ± 0.004 68.70 ± 15.80 71.10 ± 0.40 11.10 ± 0.60

RF U 0.824 ± 0.002 81.40 ± 4.20 – –
RF S 0.462 ± 0.000 64.80 ± 1.20 – –
RF U+S 0.848 ± 0.000 84.90 ± 2.60 – –
LR U 0.809 ± 0.002 80.60 ± 5.20 – –
LR S 0.433 ± 0.000 64.70 ± 1.00 – –
LR U+S 0.824 ± 0.002 83.80 ± 3.40 – –
XG U+S 0.845 ± 0.000 85.40 ± 4.00 – –

Random Binary 0.261 ± 0.000 50.00 ± 0.00 – –
Random Multi 0.261 ± 0.000 40.40 ± 13.60 20.00 ± 0.00 20.00 ± 0.20
Avg Species 0.432 ± 0.000 67.60 ± 19.80 – –
Always Correct 0.261 ± 0.000 65.90 ± 22.80 73.90 ± 0.00 0.00 ± 0.00
Conf Prior 0.252 ± 0.000 55.50 ± 9.80 53.50 ± 0.00 6.80 ± 0.00
Conf Prior Inc 0.245 ± 0.000 34.70 ± 20.80 8.90 ± 0.00 23.50 ± 0.00
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Table A2: Results of knowledge tracing models on the binary classification task. Metrics are AP,
macro accuracy (%), AUC and accuracy (%). Averages are reported with 2-sigma standard deviation
on 3 runs. The models receive user context and predict binary correct/incorrect outcomes, the AP and
Macro Accuracy values can thus be compared to columns (2) and (3) of Table A1.

Model AP (mistakes) Macro Accuracy (%) AUC Accuracy (%)
AKT [32] 0.366 ± 0.001 54.976 ± 0.068 0.632 ± 0.002 72.293 ± 0.115
simpleKT [49] 0.360 ± 0.002 54.803 ± 0.262 0.628 ± 0.001 72.034 ± 0.013
DKT [60] 0.334 ± 0.002 54.137 ± 0.113 0.600 ± 0.001 70.369 ± 0.118
DKT+ [77] 0.333 ± 0.000 53.771 ± 0.000 0.600 ± 0.000 70.620 ± 0.000
DKVMN [81] 0.349 ± 0.003 54.941 ± 0.137 0.613 ± 0.002 71.017 ± 0.337
KQN [44] 0.340 ± 0.000 54.438 ± 0.297 0.604 ± 0.004 70.694 ± 0.505
ATKT [33] 0.363 ± 0.004 56.183 ± 0.248 0.636 ± 0.004 70.977 ± 0.229
SAKT [56] 0.342 ± 0.002 54.468 ± 0.185 0.604 ± 0.002 71.103 ± 0.224
SKVMN [1] 0.350 ± 0.001 52.920 ± 0.229 0.608 ± 0.001 73.138 ± 0.174

Table A3: Comparison of existing knowledge tracing datasets. Table extended from [40].
Dataset Participants Questions Concepts Interactions Subject

Simulated-5 [60] 4,000 50 5 200,000 Synthetic
ASSISTments2009 [29] 4,217 26,688 123 346,860 Math
ASSISTments2012 [29] 46,674 179,999 265 6,123,270 Math
ASSISTments2015 [29] 19,917 100 - 708,631 Math
ASSISTments2017 [29] 1,709 3,162 102 942,816 Math
Statistics2011 [7] 333 1,224 - 194,947 Math
Junyi2015 [12] 247,606 722 41 25,925,922 Math
KDD2005 [66] 574 210,710 112 809,694 Math
KDD2006 [67] 1,146 207,856 493 3,679,199 Math
XES3G5M [50] 18,066 7,652 865 5,549,635 Math
Eedi Task 1 [74] 118,971 27,613 - 15,867,850 Math
Eedi Task 2 [74] 4,918 948 - 1,382,727 Math
ES-KT-24 [40] 15,032 182 28 7,783,466 Math and language
POJ [57] 22,916 2,750 - 996,240 Programming
PTADisc [35] 1,530,100 225,615 4,054 680M+ Programming
Programming [30] 2,756 726 82 193,284 Programming
EdNet [14] 1,677,583 52,676 962 372,366,720 Linguistics
DBF-KT22 [2] 1,361 212 98 167,222 Computer and information science
GravitySpy [23] 10,655 51,047 21 1,026,652 Spectrogram classification
VTK-Greebles [43] 150 1,200 3 6,750 Synthetic image classification
VTK-Eyes [43] 150 600 3 6,750 Retinal disease classification
VTK-Butterflies [43] 150 2,224 5 6,750 Butterfly species classification
CleverBirds (Ours) 40,144 17,859,392 10,779 17,859,392 Birds species classification

A.2 In-Context Learning

To evaluate whether large language models can solve the task in-context, we evaluated OpenAI’s
GPT-4.1 Nano [54] and DeepSeek’s DeepSeek-V3-0324 [46] on the multiple-choice task, using a
subset of 100,000 test set examples. Each model received a natural language task description, the
participant’s interaction history, and a prompt for classification. Table A5 shows the exact prompts
used. We use [HISTORY] to denote the participant’s interaction history, formatted for sequence-to-
sequence prediction and rendered with actual species names in text rather than tokenized codes. The
history sequence ends with the current question, encouraging the model to input the participant’s
answer.

The results (Table A4) broadly reflect those of the fine-tuned models, i.e., GPT-4.1 Nano achieves
high accuracy on correctly answered examples but struggles on incorrect ones, whereas DeepSeek
exhibits lower overall accuracy but outperforms on the subset of incorrect examples. Comparing this
to the other models in Fig. 6, GPT-4.1 Nano matches LM MCC on the full set, but underperforms the
parametric models on the subset of incorrectly-answered questions. Deepseek-V3-0324 underper-
forms the other language models on the full test set, but outperforms them on the incorrectly-answered
questions. We note two key limitations: we only evaluate a random subset of 100,000 examples, and
we use identical prompts for both models without model-specific optimization.
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Table A4: In-context multiple-choice accuracy on full dataset and incorrect subset using pre-trained
cloud models for a random subset of 100,000 examples.

Task Multiple Choice
Metric Accuracy
Dataset Full Incorrect
Count 100,000 26,115

deepseek-chat [46] 0.53 0.13
gpt-4.1-mini-2025-04-14 [54] 0.71 0.02

Table A5: Prompts used for in-context learning task. [HISTORY] is replaced with the concatenation
of all historical questions and the current question.

Component Content
System Prompt You are analyzing a user’s quiz-taking behavior. In each quiz question, the user

is shown an image and must choose the correct species from multiple-choice
options. There are always five choices available: Four eBird species options,
listed in the ’Options’ field (indices 0–3). A fifth option labeled ’None of the
Above’, which is always choice 4. If the correct species is not among the
four listed options, then ’None of the Above’ (index 4) is the correct choice.
Note: The ’None of the Above’ option is always available but not shown in
the ’Options’ list. [HISTORY]. Your prediction should consider both the user’s
interaction history and the difficulty of the current and previous questions. Use
your knowledge of bird species when relevant. Only reply with the correct digit
of the choice (0, 1, 2, 3, or 4). Your answer (single digit only):

Historical Questions Question:
Correct answer: Northern Mockingbird
Options: Northern Mockingbird | Eastern Bluebird | Western Bluebird | Moun-
tain Bluebird
User’s answer: Northern Mockingbird

Current Question Question:
Correct answer: Woodhouse’s Scrub-Jay
Options: Canada Jay | Pinyon Jay | Steller’s Jay | Blue Jay
User’s answer:

A.3 Performance Inside and Outside the US

To further analyse potential geographic biases, we compare performance across quizzes that were
selected by participants as either inside or outside the US. We compare both the performance of
participants on the quiz, as well as the knowledge tracing capability of our trained models.

In Table A6 we observe that participants exhibit no substantial performance difference when an-
swering quizzes based on locations inside the US or outside it. In contrast, Table A7 shows that our
models show a small but statistically significant performance gap favoring quizzes where the quiz
location is in the US.

Table A6: Comparison of participant’s performance on quiz locations inside and outside the US.
Error bars are 2-sigma.

Location Count Mean
Inside US 6,808,489 0.75 ± 0.43
Outside US 11,050,903 0.74 ± 0.44

25



Table A7: Model performance by quiz location. RF is the random forst model with user and species
context (RF U+S), MLP is the MLP with user, species and ResNet image features (MLP U+S+Img
ResNet). Error bars are 2-sigma.

Location Model Binary - AP Binary - Macro Acc MC - Acc Full MC - Acc Inc
Inside USA RF 0.86 85.34 – –

(±0.00) (±0.01)
Outside USA RF 0.84 83.27 – –

(±0.00) (±0.01)

Inside USA MLP 0.79 84.30 76.71 25.90
(±0.02) (±0.59) (±0.33) (±1.94)

Outside USA MLP 0.71 81.92 73.41 23.98
(±0.02) (±0.34) (±0.28) (±1.23)

A.4 Learning Dynamics

To gain insights into learning dynamics, we investigated model performance given different amounts
of participant context. For this, we sorted the test set by context length and divided it into quintiles
on a logarithmic scale. Table A8 shows the result of our best performing binary model RF U+S. This
reveals a clear monotonic improvement in both AP and macro accuracy as the amount of user context
increases, suggesting that the model effectively integrates participant context into its predictions.
Notably, the incremental gains decrease, with the sharpest rise observed between Q1 and Q2 and the
smallest between Q4 and Q5, indicating diminishing returns of added context.

Table A8: Binary task performance of the random forest with user and species context (RF U+S) on
the test set, stratified by context length quintiles on a logarithmic scale. Error bars are 2-sigma.

Metric Q1 Q2 Q3 Q4 Q5
Binary AP 0.62 0.77 0.88 0.93 0.96

(±0.0002) (±0.0002) (±0.0001) (±0.0001) (±0.0001)

Binary Macro Accuracy 67.25 80.09 87.73 91.73 93.56
(±0.0247) (±0.0173) (±0.0103) (±0.0075) (±0.0090)

A.5 Image Classification

To understand how informative our image features are, we evaluate multiple-choice species classi-
fication (i.e., not participant guesses) directly from image features by training an one-layer MLP
to predict the true species. The setup matches the image-only MLP (MLP Img) runs, except that
the model is not provided the ground-truth species and the target is the true species rather than
the participant’s guess. Results are presented in Table A9. DINOv2 features achieve 88.8 ± 0.2%
accuracy, outperforming ResNet-50 by 13.9 percentage points (74.9 ± 0.4%) with low variability
across runs, indicating a strong advantage for the DINOv2 features.

Table A9: Species classification on the Multiple Choice task using an MLP with ResNet-50 or
DINOv2 features. Error bars are 2-sigma over 10 training runs.

Metric ResNet-50 DINOv2
Multiple Choice Accuracy (%) 74.90 ± 0.40 88.80 ± 0.20

B Additional Dataset Details

In CleverBirds, the order of choices is random, as can be seen in Fig. A1. Participants’ guesses,
on the other hand, slightly disfavor the “None of the above option” option, and slightly favor the
fourth option. Quiz location are chosen around the globe, as shown in Fig. A2, which shows quizzes’
at H3 Hex 3 locations with interaction density. The distribution favors populated areas, and the
global north. Fig. A3 shows four screenshots of the quiz website. First, the participant sees a general
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Figure A1: Distributions of true labels across quiz choices and participant responses.
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Figure A2: World map with Hex 3 polygonal bins representing quiz locations, where color intensity
encodes the number of interactions per location cell.

introduction to the quiz. Next, participants configure the quiz by selecting the place, time, and
media type. Each of the 20 quiz questions presents a bird image alongside five answer choices; after
responding, participants receive feedback and may rate the image quality.

Existing Knowledge Tracing Datasets. In Table A3 we summarize existing knowledge tracing
datasets. We can see that our CleverBirds dataset is significantly larger and more diverse in terms of
the number of concepts contained withing compared to existing visual knowledge tracing datasets.

C Additional Implementation Details

Input Encoding Transformer Models For learner l, each historical interaction hl
s ∈ Hl

t is encoded
as:

hl
s = (TOKC , yls, TOKO, cls, TOKA, rls), for s ∈ [max(0, t−W ), t)], (3)

where TOKC , TOKO, and TOKA are defined as special tokens and are used to encode the type of
information, specifically correct, options, and answers respectively, encoded in the next tokens. The
model input consists of all interactions in the lookback window followed by the current question:

slt = (hl
max(0,t−W ), TOKS , hl

max(0,t−W )+1, TOKS , . . . , hl
t−1, q

l
t), (4)

where TOKS indicates the separation token. Here, the current question qlt includes the correct species,
the available choices and a special prompt token, but crucially not the actual participant answer:

qlt = (TOKC , ylt, TOKO, clt, TOKU ), (5)

where TOKU represents the participant’s answer token type.
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Figure A3: Screenshots of the participant interface from the eBird quiz [16] From left to right: (1)
Quiz introduction page, presenting the task and linking to rating guidelines; (2) Customization page,
where participants select quiz parameters such as location, time, species prevalence, and media type;
(3) Question page, showing a bird image with five label choices and a skip option; (4) Feedback page,
revealing the correct label and prompting a quality rating of the image.

In the classification model, each candidate answer clt,j is appended to the question input, resulting in
slt,j = (qlt, c

l
t,j), for j = 1, . . . ,K. A classification token is prepended to the full sequence before

encoding.

Training Configuration. For the seq2seq model, we use Google’s T5-Efficient-TINY-NL32 [69],
pretrained on the English C4 Corpus [27]. For the MCC approach, we use TinyBERT [38], which
is distilled from pretrained and fine-tuned BERT [26] teacher. LM Seq2seq and LM MCC are
consequently on a server equipped with 2 AMD EPYC 7763 64-Core Processor 1.8GHz (128 cores in
total, 32 used for training), 1TiB RAM and 4 NVIDIA A100-SXM-80GB GPUs, with bf16 precision.

We train each language model for 10 hours, using AdamW [51] with a learning rate of 5 × 10−5,
weight decay of 0.01, maximum gradient norm of 1, and 4 gradient accumulation steps. Seq2seq
models use a batch size of 512, while MCC models use 256. We evaluate every 200 steps on a
validation subset of 300,000 examples, and select the best epoch based on validation performance.

The MLP models (MLP Img, MLP U+S+Img and the image classification MLP models) are trained
with hidden size 250, batch size 65,792, learning rate 0.001, and Adam [41] for 3 epochs. They train
on GPU in 2 hours with images and 15 minutes without images. Binary classifiers and confusion-prior
baselines are trained using CPU in less than an hour in total. Results for runs with multiple seeds
are shown in Table A1. Logistic regression, random forests and XGBoost [13] are trained using
scikit-learn package [59] default parameters. For all models receiving user context that are not the
transformer models, the lookback window is set to the full history. For transformer models, is is
set to 50 questions. The knowledge tracing baselines are trained using the pyKT package [48] with
default parameters. All baselines presented in Table A2 only predict binary outcomes, and receive
user context.

Engineered features. For our binary classifiers and the simple MLP, context is encoded through
additional features. For user context, these are a user’s average accuracy, user’s average accuracy
on the image species, log-transformed counts of how often the user has seen the species in the
past, and how many questions the user has answered on the same location. Additionally, boolean
indicators are provided for whether the user is in their geographic focus region by Hex 3 location,
their spatio-temporal focus by Hex 3 location and whether the user has improved in the past in any
location over a 20 question sliding window. Species context is provided as average accuracies for
the species and the choices. For our language models, user context is provided in form of tokenized
history sequences. The history lookback window is set to 50 for our language models, and to the full
history for all other models.
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D Media Use
We used the following recordings from Cornell Lab of Ornithology | Macaulay Library: Fig. 2
uses ML614845753, ML624914011 and ML624836085. Fig. 4 upper row uses ML615927847,
ML621578731, ML617550217 and ML621294128, lower row uses ML39633601, ML50619491,
ML38293181 and ML226495281. Fig. 5 upper row uses ML30091521, ML117787821,
ML302310521, ML83984151, ML141517111 and ML284199291, lower row uses ML51777001,
ML26854421, ML301728521, ML290513131, ML50787721 and ML174404171. Fig. A3 uses
ML463868861 and ML613090562.
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