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Abstract

Deep learning-based end-to-end automatic001
speech recognition (ASR) has made signifi-002
cant strides but still struggles with performance003
on out-of-domain (OOD) samples due to do-004
main shifts in real-world scenarios. Test-Time005
Adaptation (TTA) methods address this issue006
by adapting models using test samples at infer-007
ence time. However, current ASR TTA meth-008
ods have largely focused on non-continual TTA,009
which limits cross-sample knowledge learn-010
ing compared to continual TTA. In this work,011
we propose a Fast-slow TTA framework for012
ASR, which leverages the advantage of contin-013
ual and non-continual TTA. Within this frame-014
work, we introduce Dynamic SUTA (DSUTA),015
an entropy-minimization-based continual TTA016
method for ASR. To enhance DSUTA’s ro-017
bustness on time-varying data, we propose a018
dynamic reset strategy that automatically de-019
tects domain shifts and resets the model, mak-020
ing it more effective at handling multi-domain021
data. Our method demonstrates superior per-022
formance on various noisy ASR datasets, out-023
performing both non-continual and continual024
TTA baselines while maintaining robustness025
to domain changes without requiring domain026
boundary information.027

1 Introduction028

Deep learning-based end-to-end automatic speech029

recognition (ASR) has made remarkable progress030

in recent years, achieving low recognition error031

rates for in-domain samples. However, domain032

shifts frequently occur in real-world scenarios. Al-033

though recent large-scale ASR models exhibit some034

generalization to out-of-domain (OOD) test in-035

stances, their performance on OOD samples still036

lags behind that of in-domain samples.037

To address domain shift issues during infer-038

ence, Test-Time Adaptation (TTA) is an attractive039

method. It adapts the model using only single or040

batched test samples without needing the source041
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Figure 1: Illustration of the proposed Fast-slow TTA
framework and dynamic reset strategy with time-
varying speech domains. The Fast-slow TTA frame-
work can leverage the advantages of continual and non-
continual TTA, and the dynamic reset strategy automati-
cally detects domain shifts and resets the model to the
source model during testing.

training data at testing time. Specifically, TTA 042

adapts the source model through unsupervised ob- 043

jectives like Entropy Minimization (EM) (Wang 044

et al., 2020) or Pseudo-Labeling (PL) (Goyal et al., 045

2022) in inference time. 046

TTA methods initially gained prominence in the 047

computer vision field. Non-continual TTA meth- 048

ods adapt the source model for each test utterance 049

and reset to the original model for subsequent sam- 050

ples (Wang et al., 2020), whereas Continual TTA 051

(CTTA) continuously adapts the model for target 052

domains, leveraging knowledge learned across sam- 053

ples to improve performance (Niu et al., 2022a,b; 054

Press et al., 2024). 055

In speech recognition, recent studies have tai- 056

lored TTA methods with entropy-minimization- 057

based optimization (Lin et al., 2022; Kim et al., 058

2023; Liu et al., 2023), proposing various train- 059

ing objectives and demonstrating effectiveness on 060

different datasets. However, existing ASR TTA 061

methods focus on non-continual TTA, limiting the 062

ability to learn knowledge across samples. There 063

is limited research on CTTA for end-to-end ASR. 064

Recently, AWMC (Lee et al., 2023) proposed a 065
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pseudo-labeling CTTA method for ASR on sin-066

gle test domain. However, as shown in previous067

work (Lin et al., 2022), pseudo-labeling is not as068

effective as EM-based methods, and its ability on069

long multi-domain testing data is unknown.070

In this work, we propose a general Fast-slow071

TTA framework that leverages the advantages of072

both continual and non-continual TTA. Based on073

this framework, we introduce an EM-based CTTA074

method named Dynamic SUTA (DSUTA) for ASR.075

Furthermore, to enhance the robustness of DSUTA076

on time-varying domain data, we propose a dy-077

namic reset strategy to automatically detect do-078

main shifts and determine when to reset the model079

to the original source model. This strategy im-080

proves Fast-slow TTA over long sequences of multi-081

domain data streams.082

We demonstrate the effectiveness of our method083

on single-domain and multi-domain time-varying084

ASR benchmarks under different acoustic con-085

ditions, simulating real-world changing environ-086

ments. Our method outperforms the strong single-087

utterance baseline SUTA (Lin et al., 2022) and the088

CTTA baseline AWMC (Lee et al., 2023), showing089

robustness to domain changes even without know-090

ing the domain boundaries.091

Our contributions can be summarized as follows:092

1. Propose the Fast-slow TTA framework to093

bridge the gap between continual and non-094

continual TTA.095

2. Introduce a specific version of the Fast-slow096

TTA method named DSUTA with a novel dy-097

namic reset strategy to stabilize CTTA over098

multi-domain and long test data streams.099

3. Demonstrate significant improvement over100

both non-continual and continual baselines101

on single-domain and time-varying data.102

2 Related Works103

Non-continual TTA for ASR: non-continual TTA104

methods adapt the source model for each test ut-105

terance and reset to the original model for subse-106

quent samples. SUTA (Lin et al., 2022) introduces107

the first TTA approach for non-autoregressive108

ASR, based on entropy minimization and mini-109

mum class confusion. SGEM (Kim et al., 2023)110

extends TTA to autoregressive ASR models by in-111

troducing a general form of entropy minimization.112

Liu et al. (2023) enhances TTA with confidence-113

enhanced entropy minimization and short-term114

consistency regularization. However, these non- 115

continual TTA methods views each utterance inde- 116

pendently, which only relies on a single utterance 117

and fails to leverage the knowledge across a stream 118

of test samples to improve the adaptation. 119

Continual TTA: Unlike non-continual TTA, which 120

resets to the source model for each sample, contin- 121

ual TTA enables the online model to use learned 122

knowledge to handle gradual changes in the target 123

domain. However, it may suffer from model col- 124

lapse if adaptation is unstable when the data stream 125

is too long. To improve CTTA’s performance and 126

stability, studies in the computer vision field have 127

developed solutions like stochastic model restor- 128

ing (Wang et al., 2022), sample-efficiency entropy 129

minimization (Niu et al., 2022a), sharpness-aware 130

reliable entropy minimization (Niu et al., 2022b), 131

and fixed frequency model reset (Press et al., 2024). 132

In the ASR research, there are limited stud- 133

ies on CTTA ASR. Recently, AWMC (Lee et al., 134

2023) attempts continual TTA on ASR using 135

a pseudo-labeling approach with an extra an- 136

chor model to prevent model collapse. However, 137

AWMC (Lee et al., 2023) only measures the per- 138

formance on single-domain data with the pseudo- 139

labeling method. This work focuses on multi- 140

domain time-varying long data streams. We pro- 141

pose a fast-slow TTA framework and dynamic reset 142

strategy based on an entropy minimization-based 143

CTTA method, which achieves better performance 144

and stability. 145

3 Methodology 146

Section 3.1 describes the proposed Fast-slow TTA 147

framework. Following this framework, Sec- 148

tion 3.2 extends SUTA into Dynamic SUTA. To 149

handle multi-domain scenarios better, we propose 150

a dynamic reset strategy in Section 3.3. 151

3.1 Fast-slow TTA Framework 152

Non-continual TTA treats each sample as an inde- 153

pendent learning event. The adaptation process can 154

fit the current sample without affecting future sam- 155

ples; however, the learned knowledge cannot be 156

transferred to future samples. In contrast, continual 157

TTA can utilize the learned knowledge, but fitting 158

the current sample might severely affect TTA per- 159

formance on future samples. For instance, if the 160

model overly fits the current sample and (model 161

collapse), the performance on future samples will 162

significantly degrade with continual TTA, whereas 163
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Figure 2: Illustration of the 3 different TTA approaches.

in non-continual TTA, the performance remains164

unaffected.165

We propose Fast-slow TTA, a new CTTA frame-166

work that leverages learned knowledge while retain-167

ing the benefits of non-continual TTA, as shown168

in Figure 2. Fast-slow TTA aims to learn meta-169

parameters ϕt which evolve slowly over time. In-170

stead of always starting the adaptation process from171

the pre-trained parameters, as in non-continual172

TTA, we start from ϕt at time step t. Specifically,173

ϕ0 = ϕpre,174

ϕ̂t = A(ϕt, xt),175

ŷt = ϕ̂t(xt),176

ϕt+1 = U(ϕt, xt),177

where ϕpre are the pre-trained parameters, and A178

and U represent an adaptation algorithm and an179

update algorithm, respectively. The evaluation is180

based on the online predictions ŷt.181

The meta-parameters ϕt can leverage knowledge182

across samples. These parameters are slowly up-183

dated by U , and the final prediction is made after a184

fast adaptation A. This allows the parameters to fit185

the current sample for greater improvement while186

mitigating the risk of model collapse over time.187

Fast-slow TTA generalizes non-continual TTA.188

If U(ϕt, xt) = ϕt, i.e., ϕt remains constant over189

time, the framework degenerates to non-continual190

TTA. To the best of our knowledge, this is the first191

time such an approach has been applied to TTA for192

ASR.193

3.2 Dynamic SUTA194

We propose Dynamic SUTA (DSUTA), a fast-slow195

TTA method based on SUTA (Lin et al., 2022).196

SUTA is the very first method for ASR TTA. Given197

pre-trained parameters ϕpre, for every incoming198

sample xt, SUTA adapts ϕpre for N steps with199

Algorithm 1 Dynamic SUTA

Input: Data stream {xt}Tt=1, buffer B with size
M , adaptation step N , pre-trained param ϕpre

Output: Predictions {ŷt}Tt=1

1: B, ϕ1 ← {}, ϕpre

2: Results← {}
3: for t = 1 to T do
4: ϕ̂t ← ϕt ▷ Adapt parameters
5: for n = 1 to N do
6: L ← Lsuta(ϕ̂t, x)
7: ϕ̂t ← Optimizer(ϕ̂t,L)
8: ŷt ← ϕ̂t(xt) ▷ Save prediction
9: Results← Results ∪ {ŷt}

10: B ← B ∪ {xt}
11: if t%M = 0 then ▷ Update meta-param
12: L ← 1

M

∑
x∈B Lsuta(ϕt, x)

13: ϕt+1 ← Optimizer(ϕt,L)
14: B ← {}
15: else
16: ϕt+1 ← ϕt

17: return Results

the objective Lsuta. Lsuta consists of entropy loss 200

and minimum class confusion loss. Entropy min- 201

imization aims to sharpen class distribution, and 202

minimum class confusion aims to reduce the cor- 203

relation between different prediction classes. See 204

Appendix A.5 for the detailed loss function. Model 205

parameters are reset to ϕpre when the next sample 206

arrives. 207

For DSUTA, the adaptation algorithm A is set 208

exactly the same as SUTA, which iteratively adapts 209

ϕt for N steps with Lsuta on xt. To construct the 210

update algorithm U , we introduce a small buffer 211

B with size M . For every M steps, the buffer is 212

filled and we calculateLsuta from these M samples 213

to update the meta-parameters ϕt with gradient 214

descent. The buffer is then cleared. Thus, the 215

meta-parameters ϕt gradually evolve by mini-batch 216

gradient descent with batch size M . DSUTA can 217

be viewed as a variant of SUTA, which starts the 218

adaptation from dynamically changing ϕt instead 219

of the fixed ϕpre. Denote Lsuta(ϕ, x) as the loss of 220

sample x on model ϕ. Algorithm 1 describes the 221

pseudo code of DSUTA. 222

3.3 DSUTA with Dynamic Reset Strategy 223

As time progresses and the testing domain changes, 224

multiple domain shifts significantly challenge the 225

robustness of continual TTA methods. Recently, 226
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Figure 3: Sketch of DSUTA with the dynamic reset strategy. The domain construction stage and the shift detection
stage alternate over time. When a large shift is detected, apply model reset to DSUTA, i.e., update ϕt+1 = ϕpre.

Press et al. (2024) has shown that model reset at227

a fixed frequency, which resets the current param-228

eters to the pre-trained ones at regular intervals,229

is a simple yet effective strategy. Therefore, we230

attempt to incorporate model reset strategy to up-231

date the meta-parameters ϕt in DSUTA1. However,232

determining the optimal reset frequency in reality233

is challenging. To automatically determine when234

to apply model reset to ϕt, we propose a dynamic235

reset strategy, which actively detects large distri-236

bution shifts and dynamically resets ϕt+1 = ϕpre.237

Figure 3 provides an illustration of DSUTA with238

the dynamic reset strategy. Since distribution shift239

is a relative concept that is well-defined only af-240

ter a base domain is constructed, we designed a241

domain construction stage and a shift detection242

stage. Our proposed method alternates between243

these two stages over time. The domain construc-244

tion stage first constructs a base domain D with K245

samples. No model reset will be applied during this246

stage. In the subsequent shift detection stage, a de-247

tection algorithm checks each incoming sample to248

determine if there is a significant distribution shift.249

If a large shift is detected, we apply model reset250

and switch to a new domain construction stage.251

The following subsections describe the strategy252

in detail. We first introduce the Loss Improvement253

Index in Section 3.3.1, which measures the extent254

of the distribution shift. Then we define the domain255

construction stage and the shift detection stage in256

Section 3.3.2.257

3.3.1 Loss Improvement Index258

We aim to find an indicator that measures the extent259

of the distribution shift from the base domainD. To260

1Non-continual TTA can be viewed as the case where we
apply model reset at every time step.

identify an appropriate indicator, we observed that 261

given a model, we observed that given a model ϕD 262

trained on domain D, Lsuta for in-domain samples 263

is empirically lower than that for out-of-domain 264

samples. This suggests that Lsuta(ϕD, xt) might 265

be a good indicator. Additionally, we found that 266

subtracting the loss from the pre-trained model, 267

Lsuta(ϕpre, xt), is beneficial2. This subtraction 268

acts as a normalization to remove the inherent diffi- 269

culty introduced by the data sample itself. Overall, 270

we define Loss Improvement Index (LII) as our 271

indicator: 272

LIIt = L(ϕD, xt)− L(ϕpre, xt), 273

where L = Lsuta. The construction of ϕD will be 274

described in the next section. 275

3.3.2 Domain Construction Stage and Shift 276

Detection Stage 277

We integrate DSUTA with the dynamic reset strat- 278

egy as follows. Assume the model has been reset 279

at time step r. 280

(1) Domain Construction Stage: 281

1. Let k = ⌊K2 ⌋, construct ϕD = ϕr+k. 282

2. Collect LIIt for t ∈ [r + k + 1, r +K]. 283

3. At the end of the stage (i.e., t = r + K), 284

compute GD = N (µ, σ2) from the collected 285

LIIs. 286

Our goal is to estimate the distribution of LII. 287

We construct ϕD = ϕr+k as the meta-parameters 288

after observing k samples since the last reset. Cal- 289

culating the LII requires ϕD, and since TTA is an 290

online process, K − k is the number of LIIs we 291

2See Section 5.1 for more discussion on indicator choice.
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can collect for statistical estimation. A smaller k292

might not suffice for ϕD to adequately represent293

the domain, while a larger k reduces the number of294

data points we can gather for estimation. Therefore,295

we empirically set k = ⌊K2 ⌋.296

(2) Shift Detection Stage:297

ϕt+1 =

{
ϕpre, if LIIt−µ

σ > 2,

UDSUTA(ϕt, xt), otherwise,
298

where UDSUTA is the update algorithm of DSUTA.299

During the domain construction stage, we de-300

velop a statistical model GD using K − k samples301

to estimate the distribution of LII. In the shift de-302

tection stage, we trigger a reset operation if the LII303

exceeds a certain threshold, indicating an abnor-304

mally large shift. To determine whether the LII305

indicates such a shift, we conduct a right-tailed306

hypothesis test.307

For the right-tailed hypothesis test, the common308

practice with a significance level of 0.05 corre-309

sponds to a Z-score of 1.64. Here, we use a Z-score310

of 2 for simplicity, which makes the condition for311

resetting slightly stricter.312

Using the LII of a single sample for the313

hypothesis test can be too sensitive. The averaged314

LII from multiple samples reduces variance and315

yields more reliable results. With DSUTA, we316

perform the hypothesis test every M steps, using317

the M samples in DSUTA’s buffer to calculate318

the averaged LII. The final shift detection stage is319

defined as follows:320

321

ϕt+1 =

{
ϕpre, if 1

M

∑
i|xi∈B

LIIi−µ

σ/
√
M

> 2,M |t,

UDSUTA(ϕt, xt), otherwise.
322

Here, B represents the buffer containing the most323

recent M samples. In our implementation, we fur-324

ther introduce a patience parameter P to enhance325

the algorithm’s stability. Please refer to Appendix326

A.6 for the detailed algorithm.327

4 Experiments328

4.1 Dataset329

4.1.1 Single-domain Data330

Librispeech-C: we follow previous works (Kim331

et al., 2023) to add background noises from MS-332

SNSD (Reddy et al., 2019) into Librispeech test333

set (Panayotov et al., 2015). The noises include334

air conditioner (AC), airport announcement (AA),335

babble (BA), copy machine (CM), munching (MU),336

neighbors (NB), shutting door (SD), typing (TP), 337

and vacuum cleaner (VC). We also apply Gaussian 338

noise (GS) as in (Lin et al., 2022), resulting in 10 339

different noises in total. The Signal-to-Noise Ratio 340

(SNR) is set to 5 dB.3 341

CHiME-3 (Barker et al., 2017): a noisy version of 342

WSJ corpus with real-world environmental noises 343

at 16kHz. 344

To reduce GPU memory usage, we exclude sam- 345

ples with raw lengths longer than 20 seconds in all 346

experiments. This removes about 1% of the data. 347

4.1.2 Multi-domain Time-varying Data 348

We create three time-changing multi-domain test 349

sequences by concatenating different corruptions 350

from LibriSpeech-C. 351

(a) MD-Easy: Noises in MD-Easy are determined 352

by the relatively well-performed noises of the pre- 353

trained model (See Table 1). Five background 354

noises, in the order AC→CM→TP→AA→SD, 355

were used, with 500 samples for each noise, mak- 356

ing a total of 2500 samples. 357

(b) MD-Hard: Noises in MD-Hard are determined 358

by the relatively poor-performed noises of the pre- 359

trained model (See Table 1). Five background 360

noises, in the order GS→MU→VC→BA→NB, 361

were used, with 500 samples for each noise, mak- 362

ing a total of 2500 samples. 363

(c) MD-Long: We first sample a background noise 364

from the 10 available background noises, then sam- 365

ple a data sequence with this noise, with a random 366

length ranging from 20 to 500. We repeat this pro- 367

cess until the total length reaches 10,000. 368

4.2 Baselines 369

Non-continual TTA Baselines: (a) SUTA (Lin 370

et al., 2022) leverages unsupervised objectives 371

(entropy minimization and minimum class con- 372

fusion) to reduce uncertainty and minimize class 373

correlations. Temperature smoothing is applied 374

to flatten the output probability distributions, 375

addressing issues with over-confident predictions. 376

The adaptation process involves iteratively min- 377

imizing a combined loss of EM and MCC. (b) 378

SGEM (Kim et al., 2023) propose a general form 379

of entropy minimization with negative sampling. 380

Continual TTA Baselines: (c) CSUTA is a 381

straightforward continual version of SUTA without 382

resetting parameters. (d) AWMC (Lee et al., 383

2023) utilizes the anchor model to generate initial 384

3(Kim et al., 2023) reported using 10dB noise but their
source code and results show that they use 5dB.
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pseudo labels, the chaser model updates itself385

using these pseudo labels for self-training, and386

the leader model refines predictions through an387

exponential moving average.388

389

4.3 Implementation Details390

We use the wav2vec 2.0-base model fine-tuned on391

Librispeech 960 hours4 as the source ASR model.392

For SUTA, we follow the official implementation5,393

where an additional reweighting trick is applied394

on the minimum class confusion loss. The default395

adaptation step of SUTA is N = 10, as specified in396

the original paper. For SGEM, we follow the offi-397

cial implementation6. For CSUTA, we set the adap-398

tation step to N = 1 since we found that any higher399

value would cause severe model collapse. We re-400

implemented AWMC with wav2vec 2.0, as there401

is no official code, and all hyperparameters follow402

the original paper. For the proposed DSUTA, the403

default buffer size is M = 5, and the adaptation404

step is N = 10.405

4.4 Results406

4.4.1 Single Domain407

We compare TTA performance on 11 domains by408

word error rate (WER) in Table 1. DSUTA shows409

significant improvement compared to the baseline410

methods. It outperforms both non-continual and411

continual baseline methods by a large margin, ex-412

cept for the SD domain, where it still achieves413

a 15.5% WER, close to SGEM’s performance414

(14.9%). Notably, on the NB domain, DSUTA415

achieves a 36.3% WER compared to SUTA, which416

has a WER greater than 100%, demonstrating the417

effectiveness of our method.418

The key success factor of DSUTA is its ability419

to leverage learned knowledge from past samples.420

Figure 4 plots the WER difference compared to the421

pre-trained model on the CM domain over time.422

We compare three methods: SUTA with N = 10,423

DSUTA with (M,N) = (5, 10), and DSUTA with424

(M,N) = (5, 0), i.e., the learned ϕt itself. The425

WER of ϕt is lower than that of the pre-trained426

model, and DSUTA with 10-step adaptation out-427

performs SUTA with 10-step adaptation. In other428

words, DSUTA adaptation has a "better start" com-429

pared to non-continual TTA methods due to the430

4https://huggingface.co/facebook/wav2vec2-base-960h
5https://github.com/DanielLin94144/Test-time-

adaptation-ASR-SUTA
6https://github.com/drumpt/SGEM

Figure 4: WER difference compared to the pre-trained
model on CM domain over time. Data is smoothed by a
window with a size of 100.

learned knowledge, resulting in superior perfor- 431

mance. Furthermore, DSUTA is more efficient in 432

adaptation steps than SUTA, requiring fewer steps 433

to achieve better performance. Appendix A.2 pro- 434

vides more discussion on efficiency. 435

Table 1 also compares other continual TTA meth- 436

ods. Naive continual training, such as CSUTA, re- 437

sults in unsatisfactory performance and is some- 438

times even worse than the original pre-trained 439

model due to its instability. Although AWMC 440

is designed to increase stability, its performance 441

sometimes lags behind SUTA, particularly in cases 442

where the original pre-trained model has an ex- 443

tremely high error rate(BA, NB). This is not surpris- 444

ing since AWMC relies on a pseudo-label approach. 445

In contrast, DSUTA uses mini-batch gradient de- 446

scent to enhance stability without the use of pseudo 447

labels. Furthermore, the fast-slow approach allows 448

DSUTA to inherit SUTA’s ability to better fit a sin- 449

gle utterance, improving overall performance while 450

avoiding the meta-parameters overfitting. 451

4.4.2 Time-varying Domains 452

In the following experiment, we set DSUTA with 453

(M,N) = (5, 5) and compare DSUTA with 454

dynamic reset strategy where (M,N,K,P ) = 455

(5, 5, 100, 2) on multi-domain time-varying data. 456

We also experiment DSUTA with two baseline re- 457

set strategies. 1) Oracle boundary resets the model 458

at the ground truth domain boundary, and 2) Fixed 459

reset is the simple fixed-frequency reset strategy, 460

where the reset frequency is set to 50. 461

Table 2 summarizes the results. DSUTA is com- 462

parable to or better than other baseline methods, 463

and applying Dynamic reset further boosts the per- 464
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AA AC BA CM GS MU NB SD TP VC CHiME-3

Source model 40.6 27.7 66.9 49.7 75.6 51.4 120.1 19.4 25.8 49.7 30.0

Non-continual
SUTA 30.6 17.4 53.7 38.7 54.5 39.0 112.3 15.0 17.4 39.3 23.3
SGEM 30.9 17.8 54.5 39.2 56.3 39.2 113.0 14.9 17.5 40.3 23.5

Continual
CSUTA 39.8 22.6 63.4 53.4 58.4 54.7 68.1 23.2 23.0 50.9 27.6
AWMC 31.6 18.0 61.6 37.7 48.5 36.2 131.9 17.0 18.0 36.1 22.4

Fast-slow
DSUTA 25.9 15.4 33.2 33.5 37.0 28.4 36.3 15.5 15.6 29.9 21.7

Table 1: WER(%) of different TTA methods on CHiME-3 and LibriSpeech-C with 10 types of noises. Reported
WER is averaged over 3 runs.

MD-Easy MD-Hard MD-Long

Source model 32.7 74.6 61.0

Non-continual
SUTA 24.0 60.4 53.3
SGEM 25.0 61.0 53.4

Continual
CSUTA 37.3 83.6 100.3
AWMC 25.8 66.1 60.6

Fast-slow
DSUTA 24.0 45.6 43.2
w/ Dynamic reset 22.7 39.8 35.8
w/ Fixed reset 22.8 49.4 45.2
w/ Oracle boundary 21.7 36.9 39.5

Table 2: WER(%) of different TTA methods on multi-
domain time-varying data. Reported WER is averaged
over 3 runs.

formance. Since we set DSUTA with fewer adapta-465

tion steps, our proposed method is both better and466

faster than SUTA in the multi-domain scenario7.467

For the non-continual TTA baselines, WER is468

improved in all cases but remains very high on469

MD-Hard and MD-Long. For the continual TTA470

baselines, CSUTA performs worse than the pre-471

trained model due to its instability. For AWMC,472

the original paper does not test in the multi-domain473

scenario, and our results show that AWMC is infe-474

rior to SUTA in this context.475

Regarding the model reset strategy, the proposed476

Dynamic reset outperforms Fixed reset. Fixed re-477

set performs worse than DSUTA without reset on478

MD-Hard and MD-Long, suggesting that resetting479

too frequently might hinder the model from utiliz-480

ing knowledge from past samples, thereby harming481

overall performance. Compared to Oracle bound-482

7See Appendix A.2 for detailed discussion on efficiency.

ary (upper bound), Dynamic reset achieves slightly 483

worse performance on MD-Easy and MD-Hard. 484

However, on MD-Long, Dynamic reset surprisingly 485

achieves a 35.8% WER, which is even better than 486

the 39.5% WER using Oracle boundary. Since Dy- 487

namic reset automatically determines when to reset, 488

it can further utilize the knowledge from other noise 489

domains when it is beneficial, rather than relying 490

solely on single-domain data for adaptation. 491

5 Discussion 492

5.1 Why Choosing Averaged LII as an 493

Indicator? 494

A good indicator should separate in-domain and 495

out-of-domain samples into two clusters. To visu- 496

alize the indicator, we selected 500 samples from 497

the GS domain as the source domain and randomly 498

sampled 2000 samples from other domains as out- 499

of-domain samples. ϕD is then trained on 100 500

samples from the GS domain using Lsuta. We 501

randomly sampled 500 averaged LIIs. Figure 5 502

visualizes the distributions of averaged LIIs (over 503

5 samples) of the remaining in-domain and out-of- 504

domain samples. By using the averaged LII, two 505

distributions are well separated. 506

Figure 6 visualizes the distributions of other pos- 507

sible choices of the indicator. Figure 6a, b shows 508

the distribution of averaged LII over 1 sample (i.e., 509

the original LII) and 20 samples, respectively. Us- 510

ing a single sample is not sufficient to distinguish 511

the distributions, while considering more samples 512

makes the detection more accurate. Figure 6c il- 513

lustrates the case without subtracting the loss from 514

the pre-trained model, namely L(ϕD, xt). The dis- 515

tributions are not well separated. In Figure 6d, we 516

also tried using the parameters after adaptation A 517
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Figure 5: Distributions of averaged LII (over 5 samples)
from the GS domain and non-GS domains.

(b)(a)

(d)(c)

Figure 6: Distributions of other possible fD. (a): origi-
nal LII, (b): averaged LII for 20 samples, (c): without
subtraction of pre-trained model loss, and (d): with the
adapted parameters.

instead of the meta-parameters, namely518

L(A(ϕD, xt), xt)− L(A(ϕpre, xt), xt).519

However, it resulted in more overlap between the520

two distributions than the proposed method.521

5.2 Different Domain Transition Rates522

In this section, we investigate how different do-523

main transition rates affect the performance of524

reset strategies. The original transition rate (s)525

of MD-Easy and MD-Hard is 500. We com-526

pare different reset strategies in 3 transition rates:527

s = 20, 100, 500. To maintain a total length of528

the data stream to 2500, for s = 100, the domain529

order sequence is repeated 5 times, and for s = 20,530

the domain order sequence is repeated 25 times.531

We follow the hyperparameter settings described532

in Section 4.4.2.533

The results are presented in Table 3. Oracle534

Boundary and Fixed Reset show that as the tran-535

MD-Easy s = 20 s = 100 s = 500

DSUTA 24.1 23.9 24.0
w/ dynamic reset 23.8 23.7 22.7
w/ fixed reset 24.6 23.1 22.8
w/ oracle boundary 23.7 22.8 21.7

MD-Hard s = 20 s = 100 s = 500

DSUTA 45.6 44.7 45.6
w/ dynamic reset 42.3 44.5 39.8
w/ fixed reset 53.3 49.9 49.4
w/ oracle boundary 57.3 46.6 36.9

Table 3: WER(%) of different reset strategies on MD-
Easy and MD-Hard with different transition rates. Re-
ported WER is averaged over 3 runs. s is the domain
transition rate.

sition rate increases, resetting too often deterio- 536

rates performance. This phenomenon is more pro- 537

nounced in MD-Hard, where DSUTA outperforms 538

SUTA by a large margin, suggesting that continual 539

learning is more effective in this context. Oracle 540

Boundary severely deteriorates performance when 541

s = 20 and s = 100, implying that learning from 542

samples from other noise domains might be benefi- 543

cial. Since Dynamic Reset automatically handles 544

when to reset, it can utilize the knowledge from 545

other noise domains, and reset is not triggered as 546

frequently as in Oracle Boundary or Fixed reset 547

under fast transitions, leading to better results. 548

In summary, the proposed Dynamic reset offers 549

good performance across diverse scenarios due to 550

its flexibility. Dynamic reset minimizes unneces- 551

sary resets and utilizes learned knowledge more 552

effectively, consistently outperforming other reset 553

strategies, making it a versatile solution. 554

6 Conclusion 555

In this work, we advance the non-continual Test- 556

Time Adaptation (TTA) method for ASR into a 557

continual learning framework using a novel ap- 558

proach to stabilize adaptation and improve perfor- 559

mance. Specifically, we introduce Dynamic SUTA 560

(DSUTA), a fast-slow method that combines non- 561

continual and continual TTA, demonstrating sig- 562

nificant improvements on single-domain test data. 563

Additionally, we propose a statistical dynamic re- 564

set strategy to enhance robustness and performance 565

on time-varying test data streams. Experimental 566

results indicate that our proposed method outper- 567

forms the non-continual SUTA baseline and previ- 568

ous continual TTA methods using pseudo labeling. 569
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Limitations570

The primary limitations of this paper are as follows:571

Domain Shift with Background Noises: In this572

work, we use noise corruptions to simulate chang-573

ing domains and control domain shifts. However,574

there are various other speech domains to study,575

such as accents, speaker characteristics, and speak-576

ing styles. We will consider these domains in future577

research.578

Different Types of End-to-End ASR Models:579

This work follows SUTA with a CTC-based ASR580

model, but there are different kinds of end-to-end581

ASR models available. As shown in (Kim et al.,582

2023), entropy minimization-based TTA methods583

can be extended to other end-to-end ASR models.584

We encourage future research to extend our DSUTA585

method to these other end-to-end ASR models.586

Not Addressing Model Forgetting: This work587

focuses on adaptation to testing samples during588

inference time, rather than memorizing all past589

knowledge. Consequently, the proposed method590

might experience catastrophic forgetting as the do-591

main changes. However, given a new test sample,592

the method can instantly adapt to that instance, en-593

suring that the final performance remains strong.594
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A Appendix 657

A.1 Different noise levels 658

From Table 1 and Table 2, we observe a trend 659

that DSUTA has a larger advantage over other 660

methods under severe domain shift where the pre- 661

trained model performs poorly. To investigate 662

how different levels of domain shift affect the pro- 663

posed method, we compare the pre-trained model, 664

SUTA, and DSUTA with noise levels of 0dB, 665

5dB, and 10dB on the AC, SD, and TP domains 666

from LibriSpeech-C, which are the top 3 well- 667

performing domains for the pre-trained model. We 668

set N = 5 for both SUTA and DSUTA. Table 4 669

summarizes the results. 670

The results show that DSUTA is more effec- 671

tive under severe corruption. As the noise level 672
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Domain Method 0dB 5dB 10dB

AC
Pre-trained 63.7 27.7 14.2

SUTA 39.5 17.4 10.6
DSUTA 27.6 16.0 11.5

SD
Pre-trained 29.7 19.4 13.6

SUTA 23.6 15.0 10.8
DSUTA 22.4 15.5 12.0

TP
Pre-trained 42.4 25.8 16.6

SUTA 28.8 17.4 12.1
DSUTA 22.4 16.3 12.4

Table 4: WER(%) comparison for different noise levels.
Reported WER is averaged over 3 runs.

decreases, although DSUTA outperforms the pre-673

trained model, SUTA becomes better than DSUTA.674

We hypothesize that while DSUTA is quite effec-675

tive on noisy speech, its performance gain over676

the non-continual version (SUTA) is limited on677

relatively clean speech. Improving DSUTA’s per-678

formance over SUTA on clean speech remains an679

area for future work.680

A.2 Discussion on Efficiency681

DSUTA is more efficient in adaptation steps than682

SUTA. Figure 7 compares SUTA and DSUTA on683

10 domains of LibriSpeech-C under different adap-684

tation steps N = 0, 1, 3, 5, 10. DSUTA can use685

fewer adaptation steps to achieve better perfor-686

mance than SUTA with more adaptation steps.687

To assess the efficiency of different TTA meth-688

ods, we run them on MD-Long and compare the689

required forward/backward steps in Table 5 and690

the runtime in Table 6. CSUTA is excluded due691

to its poor performance. We follow the hyperpa-692

rameter settings described in Section 4.4.2. All693

experiments were conducted on an Nvidia GeForce694

RTX 3080Ti GPU. Note that the results are for ref-695

erence only, as values can slightly differ depending696

on the implementation.697

DSUTA is more efficient in the adaptation step698

and overall faster than SUTA, SGEM, and AWMC.699

Although adding the dynamic reset strategy slightly700

increases runtime, it remains faster overall. We701

conclude that our method is not only superior in702

performance but also more efficient than existing703

approaches.704

#Forward #Backward

Non-continual
SUTA 100000 100000
SGEM 100000 100000

Continual
AWMC 300000 100000

Fast-slow
DSUTA 52000 52000
w/ Dynamic reset 72000 52000

Table 5: Forward/backward steps comparison for differ-
ent TTA methods on MD-Long.

Total Avg

Non-continual
SUTA 5040 0.080
SGEM 11620 0.186

Continual
AWMC 11704 0.187

Fast-slow
DSUTA 3885 0.062
w/ Dynamic reset 4149 0.066

Table 6: Runtime(s) comparison for different TTA meth-
ods on MD-Long. Avg is the averaged runtime(s) for a
1-second utterance. The result is averaged over 3 runs.

A.3 Hyper-parameter Tuning 705

We explore different hyper-parameters for DSUTA 706

with the dynamic reset strategy. We use MD-Long 707

as the data sequence. Table 7 presents the re- 708

sults for various buffer sizes M . Our proposed 709

method performs well overall. A smaller buffer 710

size can make the update of meta-parameters un- 711

stable, while a larger buffer increases latency in 712

triggering model reset after a domain shift since 713

the shift is detected once every M steps. Therefore, 714

a medium buffer size is preferred. 715

Table 7 also presents the results for different K 716

values during the domain construction stage. Again, 717

our proposed method performs well overall. The 718

performance of K = 50 is worse than K = 100 719

and K = 200, suggesting that domain construction 720

benefits from having enough steps to collect LII 721

statistics and train a domain-specialized model ϕD. 722
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Figure 7: WER(%) of different number of adaptation steps on 10 noise domains of LibriSpeech-C.
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Setup WER

M = 3 36.8
M = 5 35.8
M = 10 37.0

K = 50 38.5
K = 100 35.8
K = 200 35.5

Table 7: WER(%) comparison of different hyperparam-
eters on MD-Long. Reported WER is averaged over 3
runs.

Method wav2vec2-base data2vec-base hubert-large

Pre-trained 61.0 59.6 43.3
SUTA 53.3 53.3 39.3
DSUTA 43.2 52.0 17.8
w/ Dynamic reset 35.8 46.3 19.0

Table 8: WER(%) comparison of different CTC-based
ASR models on MD-Long. Reported WER is averaged
over 3 runs.

A.4 Generalization to Different Source ASR723

Models724

To test the generalization of the proposed method,725

we adopt other source ASR models with DSUTA726

and dynamic reset strategy. Table 8 reports727

the results with the ASR model fine-tuned from728

wav2vec 2.0-base, data2vec-base8, and HuBERT-729

large9 model. All the ASR models are trained730

with Librispeech 960 hours. Results show that731

both DSUTA and DSUTA with the dynamic reset732

strategy perform effectively across different mod-733

els, yielding significantly better WER than the pre-734

trained model and the SUTA.735

A.5 SUTA’s Objective (Lsuta736

Assume C is the number of output classes and L is737

the number of frames in the utterance. P·j ∈ RL738

denotes the output probabilities of the j-th class of739

the L frames.740

Entropy Minimization (EM):741

Lem =
1

L

L∑
i=1

Hi = −
1

L

L∑
i=1

C∑
j=1

Pij logPij.742

Minimum Class Confusion (MCC):743

Lmcc =
C∑

j=1

C∑
j′ ̸=j

P⊤
·jP·j′ .744

8https://huggingface.co/facebook/data2vec-audio-base-
960h

9https://huggingface.co/facebook/hubert-large-ls960-ft

745

746

The final SUTA objective is defined as a mixture 747

of Lem and Lmcc: 748

Lsuta = αLem + (1− α)Lmcc. 749

We follow the settings in the original paper, which 750

set α = 0.3 and apply temperature smoothing on 751

logits with a temperature of 2.5. 752

A.6 Pseudo Code for DSUTA with Dynamic 753

Reset Strategy 754

Algorithm 2 describes the pseudo code of DSUTA 755

with the dynamic reset strategy. 756
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Algorithm 2 Dynamic SUTA with the dynamic reset strategy

Input: Data Sequence {xt}Tt=1, buffer B with size M , adaptation step N , number of samples for
construction K, patience P , pre-trained parameters ϕpre

Output: Predictions {ŷt}Tt=1

1: B, ϕ1 ← {}, ϕpre

2: k, last_reset, stats← ⌊K/2⌋, 0, {}
3: Results← {}
4: for t = 1 to T do
5: ϕ̂t ← ϕt ▷ SUTA as adapt algorithm
6: for n = 1 to N do
7: L ← Lsuta(ϕ̂t, x)
8: ϕ̂t ← Optimizer(ϕ̂t,L)
9: ŷt ← ϕ̂t(xt) ▷ Inference and save the prediction

10: Results← Results ∪ {ŷt}
11: B ← B ∪ {xt}
12: if t%M = 0 then ▷ Update meta-parameter every M steps
13: if t > last_reset+K and IsReset(G,B, P ) then ▷ Dynamic reset
14: ϕt+1 ← ϕpre

15: last_reset← t
16: else
17: L ← 1

M

∑
x∈B Lsuta(ϕt, x)

18: ϕt+1 ← Optimizer(ϕt,L)
19: B ← {}
20: else
21: ϕt+1 ← ϕt

22: if t = last_reset+ k then ▷ Save the domain-specialized model
23: ϕD ← ϕt

24: else if last_reset+ k < t ≤ last_reset+K then ▷ Collect LII stats
25: stats← stats ∪ {LIIt}
26: if t = last_reset+K then ▷ Generate distribution
27: G ← N (µstats, σ

2
stats)

28: return Results
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