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Abstract: By learning from experience, reinforcement learning (RL) methods1

learn from their environments adaptively, making them a promising direction for2

generalizable robots. However, training robotic goal-conditioned RL policies of-3

ten requires careful tuning of reward functions, especially because of early termi-4

nation problems: giving the RL agent negative feedback (such as about crashes)5

can cause it to be overly cautious. And yet, we desire agents that know to avoid6

such crashes as they can damage robot hardware. We propose DEIMOS, a novel7

safety-aware automatic training goal selector that requires no safety constraint Ja-8

cobian or conditional value at risk computation, nor any difference in observation9

space or reward shaping, and no extra neural parameters at deployment, making10

it ideal for agents acting on complex robotic morphologies. We showcase the ef-11

ficacy of our method on a challenging quadruped locomotion and manipulation12

task. We empirically show that using our method, policies are tuned to optimize13

for safety, producing populations of final agents that crash less often than popula-14

tions trained with baseline curricula. Their reward performance is also similarly15

improved.16

Keywords: Quadruped robots, Curriculum learning, Reinforcement learning17

1 Introduction18

In deep reinforcement learning (DRL), policies iteratively adapt as they explore their environments,19

making it one of the most promising avenues when it comes to control policies for generalizable20

robots. While DRL is promising, it is often prohibitively costly to train in the real world. A solution21

is training in simulation, which often requires fine-tuning a noisy final policy on the hardware, which22

can then result in damaging the robot. To take full advantage of the generality of learning from23

experience, we require methods that allow us to be confident that the learned policy will perform24

well and act safely on the final hardware with less adaptation.25

Solely through goal selection during training, we seek to produce policies that are safer at evaluation26

time while still accomplishing their goals to the best of their ability. We propose a novel automatic27

goal selection method that is simple and easy to implement. In this strategy, we introduce a param-28

eterized goal selector to the policy’s training, the “director”. In parallel to the policy’s training, we29

train a failure predictor that learns to predict if the policy will crash on a given goal. By querying the30

failure predictor, the director can retrieve goals that are adequately hard and better shape the policy’s31

training. Our strategy requires no explicit constraints, reward shaping, input space augmentation,32

computing auxiliary safety violation optimization terms, or additional policy neural parameters, all33

of which can make training more brittle [1][2]. This makes it ideal for robotic learning. We demon-34

strate our strategy on a challenging quadruped locomotion and manipulation task. Empirically, our35

strategy greatly reduces trained policy population spread and mean for total evaluation crashes. It36

similarly improves the final agents’ ability to perform the task (quantified through mean reward).37
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2 Background38

We consider learning over a goal-conditioned Markov Decision Process (GMDP) that is defined by39

a tuple < S,G,A, P,R, ρ0, ρg, T , γ > where S is the robotic state and sensor information, G is a40

continuous vector space describing goals, P is the transition dynamics, R is the reward function, ρ041

is the initial state distribution, and γ is a reward discount factor. A subset Sc of S are undesirable42

terminal states which we call “crash-states”. As RL for robotics is negatively impacted by early43

termination problems [3][4], we consider crash-states with no associated negative reward term. As44

for ρg and T , they respectively describe the goal distribution over G and the amount of timesteps45

between goal changes. During both training and deployment, a new goal g ∼ ρg is sampled every46

[T > 1] GMDP timesteps. We call these goal-change events “interactions” and they are described47

by tuples < st, gt, gt+1 >, with t the current GMDP timestep, st and gt the current state and goal,48

and gt+1 the goal at timestep t + 1. During deployment, to indiscriminately cover every goal in49

every state, ρg is a uniform distribution over G.50

Also important for this work are contextual bandits, which can be seen as single-step MDPs. As51

such, the tuple defining them is much simpler: < S,A,R >, where S is the context given to the52

decision policy, A is the set of actions available to the policy, and R : S × A → R is the reward53

function. A subclass of bandits of particular interest are Bernoulli bandits, where the reward is a54

binary success indicator R : S × A → 1 {success}. While seemingly restrictive, Bernoulli bandits55

are actually very common in game theory and hold important relevance for this work. A common56

heuristic for solving Bernoulli bandits with discrete action spaces is Thompson Sampling, wherein57

a state-action value function is represented by a Beta distribution parameterized by the historical58

success/failure of each action during training [5]. When making a decision, the agent samples an59

arbitrary number of possible actions, rates them by the value function, and selects the highest-valued.60

With adequate tuning, such a strategy is close to optimal [6].61

3 Method62

We posit that an optimal distribution of training goals exists such that πθ crashes less at evaluation63

time then when using a uniform goal distribution. An oracle goal selector would select goals that are64

neither too easy (already solvable) nor too hard (intractable), yet still suitably handle catastrophic65

forgetting (by occasionally sampling easier goals) and exploration (by sampling harder goals). The66

mechanics of learner agents being incredibly complex, we pose two major assumptions to render67

this problem tractable: (1) The probability of πθ crashing upon receiving a given goal is a useful68

signal for goal selection, and (2) The oracle would presumably select goals with intermediary crash69

probabilities often, but also select easy and hard goals occasionally. Named after the policy’s own70

fear of crashing, we call the crash probability the “fear score”, given by a “fear function”. We71

introduce a new agent to the policy’s training, the “director” ρdg , who uses a fear function to gain72

traction over training goal selection. Because πθ is non-stationary, the likelihood of a given goal73

causing a crash is itself non-stationary, and thus the fear function must be learned online, alongside74

πθ. This naturally implies a game between the policy and the director. This formulation follows75

the intuition of numerous other works on adversarial training and goal selection [7][8][9]. The main76

difference in our work is that we eschew the traditional three-agent setup of generator, discriminator,77

and agent; instead we rely on only agent and director. Additionally, we target both deployment safety78

and task performance, not just performance. Finally, we explicitly limit the director’s power such79

that it is not fully adversarial by tuning its selection strategy over the fear scores. Otherwise, it is too80

good at crashing πθ, and produces useless policies (see Appendix 7.1).81

For πθ, the game at hand is about selecting an optimal sequence of actions in a GMDP to survive82

goals set during an interaction with the director while also acting upon them optimally. For ρdg ,83

the game is about selecting a single goal gt+1 every T GMDP timestep that will cause the policy84

to crash, limited by the suboptimal sampling strategy we impose, conditioned on the information85

that the policy is in given state-goal pair < st, gt >. Both agents optimize an expectation over a86

simple binary win condition W d
π (st, gt, gt+1) = 1 {π(·|gt+1) crashes within T steps}. The policy87
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implicitly minimizes W d
π by default as part of its RL objective (early termination in infinite-horizon88

problems implies a lower cumulative sum of rewards). The director seeks to maximize W d
π .89

Figure 1: Notice that each training strategy pro-
duces very different crash and reward curves: ρg
has a large influence on training behaviour. (Bear
in mind that because they depend on their id-
iosyncratic ρg , these curves cannot be cross-
compared). Shaded areas are STD errors.

We notice that the description of the director’s90

task corresponds to a Bernoulli bandit defined91

by < S = S × G, A = G, R = W d
π >π .92

The policy’s non-stationary nature also influ-93

ences the bandit’s possible contexts (the policy94

visits different states depending on its training)95

and optimal actions and reward structure (the96

goals that crash πθ change over training). Be-97

cause of the bandit’s continuous action space98

and non-stationary nature, standard Thompson99

Sampling is ill-fitted. Following our intuition,100

we gain traction over the non-stationarity by101

learning a fear function FΨ : S×G×G → [0, 1]102

on-policy. This neural network takes in inter-103

actions and outputs scores representing crash104

likelihoods. For the director, FΨ directly corre-105

sponds to a value function over W d
π . We effec-106

tively obtain ρdg by “inverting” FΨ: after sam-107

pling many possible gt+1 goals and concatenat-108

ing them to a single < st, gt >, we score the109

goals using the fear network. By taking the110

argmax, we recover an approximation of the111

optimal adversarial goal (subject to the limita-112

tions we apply to ρdg). Because our novel goal113

selection strategy uses the fear network at its114

core, we call it Dread Enforced Interactons for115

More Optimal Sampling (DEIMOS).116

4 Experiments117

DEIMOS’s fear network is trained using a binary cross-entropy loss on interactions118 [
< st, gt, gt+1 >: W d

π (st, gt, gt+1)
]

sampled from π’s on-policy rollout buffer. As output, FΨ pro-119

duces a value from 0 to 1. It is important to note that our fear network is not calibrated. Its only120

predictive power is a ranking of different goals. We conduct a series of ablations on fear sampling121

strategies and select the best one (see Appendix 7.1). The policy πθ is learned using Proximal Policy122

Optimization [10]. We train and evaluate 30 RL seeds in Legged Gym [4], a state-of-the-art simula-123

tor for legged robots based on Isaac Gym [11]. Here, the state st contains the robotic state and sensor124

information and a height map of the surrounding terrain. We study a very unstable morphology [12]:125

a quadruped with an arm on board (“quad+arm”). The shifting weight of the arm makes traversing126

steep stairs at fast speeds while also matching desired positional arm goals incredibly difficult. The127

reward function is primarily based on matching goals but also includes terms to make learning gaits128

easier [4]; we only report goal-matching rewards. We train using [T = 10 seconds], but to showcase129

agile behaviour and generalization to faster goal changes, we evaluate using [T2 = 2 seconds]. This130

timing requires rapidly and responsively handling changes in momentum and bearing the quickly131

shifting center of weight of the arm. During all evaluations, ρg is uniformly sampled from G to132

cover all goals in all states indiscriminately. The simulator includes uniformly-noised terrain sur-133

faces and steep stairs and slopes; we evaluate in terrain of “medium” steepness. As the baseline,134

we use the “Uniform” sampling strategy ρg = U(G). We also evaluate “CL”, where the possible135

range of G increases as πθ gets better and where ρg = U(G), as done in Legged Gym [4]. We also136

implement Random Network Distillation (“RND”) over interaction space [13], selecting the most137

surprising sampled gt+1 goal. More results and details can be found in Appendices 7.2 and 7.3.138
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4.1 Results139

As shown in Figure 1, training-goal distributions have a large influence in crashes experienced during140

training. Figure 2 shows training-goal distributions indeed also have a large influence on deployment141

crashes, confirming our intuition. Also shown is that DEIMOS trains crash-resistant policies more142

reliably than the baselines without impacting goal-matching performance (rewards). Additionally,143

DEIMOS greatly reduces population spread and standard error for crashes in its policy population in144

the two hardest evaluation environments (while also lowering the mean amount of crashes). Finally,145

while DEIMOS does not beat the best baseline in the easiest environment and for the quadruped146

without an arm on board, it remains competitive (for sake of space, tables are shown Appendix 7.3).147

5 Related work148

Related to the task of improving RL deployment safety are “Safe RL” methods, where explicit safety149

constraints are applied during training and deployment through reward shaping [1][14], safe inter-150

vention/exploration [15][16], or optimization constraints [17][2]. Of particular interest is “Intrinsic151

Fear” [14], where a fear network is used to shape rewards away from crash-states. Instead, DEIMOS152

takes inspiration from the constrained optimization field, where “fail-first” methods seek to learn153

about failure cases before solving a task [18] (this also follows DaGGeR’s intuition [19]: showing154

recoverable states close to crash-states should enable a policy to learn about recovery). Also closely155

related to DEIMOS are sub-goal selection methods, some of which train a generative adversarial156

network (GAN) to generate appropriate goals or environment parameters [7][20][21][22][23][24].157

In contrast, we forgo the need to train three models (generator, discriminator, agent) by deriving158

the generator from the fear network. This avoids the very unstable and hyperparameter-dependant159

nature of training GANs [21], at the cost of less expressive goal generation (i.e., DEIMOS cannot160

handle images). Another class of sub-goal selection methods includes Skew-Fit [25], where a uni-161

form distribution over goals is learned (which we empirically show to be beat by DEIMOS for our162

task).163

6 Conclusion164

We proposed DEIMOS, a novel training-goal selection method that enables more reliable training165

of agile robots. In a challenging quadruped locomotion and manipulation task, our method greatly166

improves trained policy population spread while also either improving or not moving the median and167

mean compared to the best baseline for both crashes and rewards. In the future, we plan to extend168

this work, including more RL problems and performance comparisons to other state-of-the-art goal169

selection methods.170

Figure 2: Total evaluation crashes for 30 RL seeds for 8168000 timesteps each: the DEIMOS train-
ing regimen is more reliable at training crash-avoiding policies than the baselines. Additionally,
average reward performance over the timesteps is near-identical for all methods, with DEIMOS
again being the most reliable.
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7 Appendix245

7.1 Ablations246

To select the best goal selection scheme, we conduct a series of ablations upon DEIMOS. (1) Fol-247

lowing our Thompson Sampling intuition, “DEIMOS-canonical” selects the most fearful goal in a248

sample batch. This version of DEIMOS is purely adversarial. (2) As verified experimentally249

(see Subsection 7.3), “DEIMOS-canonical” does a poor job at training πθ. To address this, we eval-250

uate “DEIMOS-threshold” (“DEIMOS” for short), where random goals above some threshold are251

selected. In this way, the fear network selects goals that crash the robot “optimistically”. (3) To252

address the issue of the fear network not being calibrated, we evaluate “DEIMOS-min-threshold”,253

where the fear scores are normalized by the minimal fear value of the sample population, and then a254

random goal over a threshold is selected as in DEIMOS-threshold.255

As seen in 7.3, DEIMOS performs better than DEIMOS-canonical and DEIMOS-min-threshold256

across the board, in every evaluation setup. This version of DEIMOS is the one shown in Section257

4.1 and Appendix 7.3.258

7.2 Experimental Setup259

7.2.1 Training260

For the quadruped without an arm on board (“quad”), G = [−1, 1]3 describes x, y, and angular261

velocities. For the quadruped with an arm on board (“quad+arm”), G = [−1, 1]6 describes x, y, and262

angular velocities and relative x, y and z arm positions.263

We use the following reward terms (see Legged Gym [4] for more details):264

action_rate = -0.01 # penalty on actions265

ang_vel_xy = -0.05 # penalty to keep heading straight266

base_height = -0.0 # prevents base wobbling when active267

collision = -1.0 # prevents collisions268

dof_acc = -2.5e-7 # penalty to dof acceleration269

dof_vel = -0.0 # penalty to dof velocity270

feet_air_time = 1.0 # incentivizes raising feets up271

feet_stumble = -0.0 # makes foot movement smoother272

lin_vel_z = -2.0 # prevents base wobbling273

orientation = -0.0 # penalty to not being upright274

stand_still = -0.0 # penalty to no movement275

termination = 0.0 # no negative termination term276

torques = -0.0002 # penalty to force magnitude277

dof_pos_limits = -10.0 # penalty when going over dof limits278

tracking_ang_vel = 0.5 # part of goals279

tracking_lin_vel = 1.0 # part of goals280

tracking_lin_vel_arm = 0.5 # part of goals281

In addition to the implicit curriculum emerging from the goal selection strategy in play, there is a282

second curriculum that influences learning in Legged Gym [4]. As the policy learns, the robots it283

learns over are moved up or down difficulty levels according to the its performance. This is more284

granular than our “easy”, “medium”, “hard” evaluation levels; there are 10 levels in all.285

7.2.2 Baselines286

“Uniform” simply uniformly samples goals from G.287

“CL” gradually increases the range of G. This increase happens when the policy matches the re-288

quested goals above some threshold. This happens independently for the quadruped-centric goals289

and for the arm-centric goals.290
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“RND” is modelled after the intrinsic reward scheme (Random Network Distillation [13]). We apply291

RND to interaction space. We then invert the RND network in the same manner we invert the fear292

network, thereby selecting the highest-rated value according to RND. We learn RND using the same293

interaction experience buffer used to learn DEIMOS’ fear network.294

7.2.3 Evaluation295

We showcase three different evaluation terrain difficulties: “easy”, “medium”, and “hard”, in order296

of increasing steepness and amplitude applied to noised terrain surfaces. All domain randomiza-297

tion, friction randomization, and random pushes used during training are turned off for evaluation.298

We also evaluate different goal sampling frequencies ( [T1 = 0.5 seconds], [T2 = 2 seconds] and299

[T3 = 10 seconds]). The frequencies were chosen to accurately showcase the policies’ response to300

noise goals (T1), fast and agile goal changes (T2), and long-horizon goals (T3).301

All data related to evaluation crashes and goals was subjected to a rolling average with window302

size 5. The last 10 reported values were then added together. This was done to produce more303

representative results.304

7.3 Supplementary Results305

We present the full results of our series of evaluations over many different steepness levels and re-306

sampling frequencies. For each table, the best performing row is somewhat subjective, as accurately307

evaluating robotic RL is always difficult. Population standard error is incredibly important. Reduc-308

ing crashes is obviously desirable, especially within the scope of deploying to real robots, but so is309

increasing rewards. Often, doing one comes at the cost of the other.310

We mark what we consider to be the best for each section by “(1)” in the method column. Because311

evaluating robotic RL is so difficult, we also mark the second-best by “(2)”. We do this because no312

single method is the best across the board. We find that DEIMOS is often (2) when it is not (1). But313

we are obviously biased, thus we show the full result tables.314

7.3.1 Quadruped + Arm315

quad+arm in Difficulty=Easy
Crashes ± STD Error Rewards ± STD Error

frequency method

0.5 CL 621.16± 155.44 1.39± 0.01
(2) DEIMOS 109.0± 14.28 1.43± 0.0
DEIMOS-canonical 10065.74± 2511.32 1.29± 0.02
DEIMOS-min-threshold 118.35± 8.43 1.4± 0.0
RND 287.95± 60.34 1.41± 0.01
(1) Uniform 40.52± 3.68 1.44± 0.0

2.0 CL 483.62± 120.69 1.77± 0.01
(2) DEIMOS 54.27± 7.08 1.81± 0.0
DEIMOS-canonical 9972.31± 2488.79 1.65± 0.02
DEIMOS-min-threshold 82.39± 5.46 1.78± 0.0
RND 277.9± 53.71 1.78± 0.01
(1) Uniform 24.12± 2.53 1.82± 0.0

10.0 CL 313.27± 79.01 1.87± 0.01
(2) DEIMOS 27.32± 2.15 1.93± 0.0
DEIMOS-canonical 9861.56± 2501.61 1.77± 0.02
DEIMOS-min-threshold 49.75± 3.89 1.91± 0.0
RND 9356.39± 2152.23 1.8± 0.02
(1) Uniform 20.52± 1.26 1.94± 0.0

Table 1: DEIMOS beats the other methods, but does worse than Uniform. Thus DEIMOS is best
used in harder terrain.
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quad+arm in Difficulty=Medium
Crashes ± STD Error Rewards ± STD Error

frequency method

0.5 CL 646.98± 145.76 1.38± 0.01
(2) DEIMOS 244.07± 39.48 1.39± 0.01
DEIMOS-canonical 10900.16± 2543.11 1.22± 0.02
DEIMOS-min-threshold 610.77± 100.42 1.33± 0.01
RND 552.14± 98.03 1.37± 0.01
(1) Uniform 218.69± 38.68 1.4± 0.01

2.0 CL 546.03± 116.9 1.72± 0.01
(1) DEIMOS 120.65± 8.75 1.78± 0.0
DEIMOS-canonical 10828.5± 2548.06 1.55± 0.02
DEIMOS-min-threshold 731.09± 89.98 1.66± 0.01
RND 797.95± 103.88 1.69± 0.01
(2) Uniform 209.6± 33.72 1.75± 0.01

10.0 CL 385.37± 75.64 1.83± 0.01
(1) DEIMOS 143.82± 9.08 1.87± 0.0
DEIMOS-canonical 10384.7± 2526.03 1.67± 0.03
(2) DEIMOS-min-threshold 351.8± 42.26 1.8± 0.01
RND 1040.14± 198.69 1.74± 0.03
(1) Uniform 153.15± 15.7 1.86± 0.01

Table 2: DEIMOS does better in all cases except T = 0.5. For T = 10, both DEIMOS and Uniform
are marked as (1): they are virtually the same both for crashes and for rewards.

quad+arm in Difficulty=Hard
Crashes ± STD Error Rewards ± STD Error

frequency method

0.5 CL 1874.12± 158.09 1.21± 0.01
(1) DEIMOS 3274.39± 457.38 1.17± 0.02
DEIMOS-canonical 16463.74± 2141.75 1.08± 0.02
DEIMOS-min-threshold 7680.41± 1082.06 1.01± 0.02
(2) RND 4076.66± 737.66 1.22± 0.02
Uniform 4371.62± 504.4 1.2± 0.01

2.0 CL 2161.77± 103.77 1.42± 0.01
(1) DEIMOS 3914.53± 484.3 1.4± 0.01
DEIMOS-canonical 17859.94± 2487.53 1.28± 0.03
DEIMOS-min-threshold 10069.51± 656.95 1.17± 0.02
RND 5557.67± 763.41 1.43± 0.02
(2) Uniform 4885.05± 773.97 1.42± 0.02

10.0 CL 1374.52± 98.62 1.58± 0.02
(1) DEIMOS 2527.12± 355.95 1.57± 0.02
DEIMOS-canonical 15670.64± 3073.54 1.41± 0.04
DEIMOS-min-threshold 5914.04± 509.52 1.43± 0.02
RND 4711.6± 684.71 1.54± 0.01
(2) Uniform 3636.55± 523.42 1.57± 0.01

Table 3: DEIMOS also does better here. Note that while CL seems to do better, because it performs
so much worse in all other environment, we know this to be an artefact of our evaluation strategy.
This is why CL is not marked (1) in this table.

7.3.2 Quadruped316

While impressive in the quadruped+arm setting, DEIMOS is less impressive when applied to a317

quadruped without an arm on board. This can be explained by the increased instability of the former318

setting. It is simply harder to issue the right training goals for the bare quadruped. This instability319
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also gives more reason to use DEIMOS; after all, why use a goal sampling more complex than320

Uniform when the latter is perfectly serviceable?321

Finally, notice that possible amounts of crashes for this morphology are much lower. Quad+arm322

crashes around ten times more often than the bare quadruped, no matter the training regimen. This323

is why we selected quad+arm for our main evaluation: learning policies for the bare quadruped is324

already tractable without needing a better goal sampling strategy.325

quad in Difficulty=Easy
Crashes ± STD Error Rewards ± STD Error

frequency method

0.5 CL 58.43± 13.7 1.42± 0.0
DEIMOS 14.82± 0.57 1.42± 0.0
DEIMOS-canonical 98.81± 16.56 1.38± 0.0
DEIMOS-min-threshold 23.04± 0.86 1.42± 0.0
(1) RND 6.33± 0.75 1.44± 0.0
(2) Uniform 10.74± 1.16 1.42± 0.0

2.0 CL 29.3± 5.48 1.81± 0.0
DEIMOS 15.13± 0.86 1.82± 0.0
DEIMOS-canonical 79.53± 9.07 1.79± 0.0
DEIMOS-min-threshold 14.56± 0.53 1.83± 0.0
(1) RND 6.88± 0.5 1.83± 0.0
(1) Uniform 6.57± 0.42 1.82± 0.0

10.0 (2) CL 4.43± 0.09 1.94± 0.0
DEIMOS 8.36± 0.6 1.93± 0.0
DEIMOS-canonical 18.45± 2.17 1.92± 0.0
DEIMOS-min-threshold 5.88± 0.19 1.94± 0.0
RND 5.2± 0.24 1.93± 0.0
(1) Uniform 3.94± 0.11 1.93± 0.0

Table 4: DEIMOS performs competitively but is beat by both Uniform and RND.

quad in Difficulty=Medium
Crashes ± STD Error Rewards ± STD Error

frequency method

0.5 CL 109.75± 16.58 1.39± 0.01
DEIMOS 70.43± 2.09 1.39± 0.0
DEIMOS-canonical 249.69± 22.1 1.34± 0.01
DEIMOS-min-threshold 77.29± 1.63 1.39± 0.0
(1) RND 34.16± 1.03 1.41± 0.0
(2) Uniform 43.98± 1.43 1.4± 0.0

2.0 CL 103.06± 4.86 1.77± 0.0
DEIMOS 92.17± 2.54 1.77± 0.0
DEIMOS-canonical 226.14± 24.79 1.71± 0.01
DEIMOS-min-threshold 94.7± 2.09 1.77± 0.0
(1) RND 65.16± 0.64 1.79± 0.0
(2) Uniform 72.96± 1.7 1.79± 0.0

10.0 CL 83.05± 2.65 1.89± 0.0
DEIMOS 69.12± 0.82 1.89± 0.0
DEIMOS-canonical 147.79± 12.28 1.86± 0.0
DEIMOS-min-threshold 80.24± 2.51 1.89± 0.0
(2) RND 64.51± 0.95 1.89± 0.0
(1) Uniform 62.97± 1.0 1.9± 0.0

Table 5: Again, RND does fairly well here. DEIMOS is very comparable to both Uniform and RND
in most cases.
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quad in Difficulty=Hard
Crashes ± STD Error Rewards ± STD Error

frequency method

0.5 CL 966.91± 65.46 1.25± 0.01
DEIMOS 807.47± 30.84 1.25± 0.01
DEIMOS-canonical 2658.74± 463.67 1.19± 0.01
DEIMOS-min-threshold 535.8± 13.49 1.3± 0.0
(1) RND 443.46± 22.48 1.31± 0.01
(2) Uniform 490.36± 24.95 1.31± 0.01

2.0 CL 1146.71± 56.07 1.53± 0.01
DEIMOS 909.2± 39.49 1.56± 0.01
DEIMOS-canonical 2851.77± 550.42 1.46± 0.03
(1) DEIMOS-min-threshold 714.18± 4.58 1.64± 0.0
(2) RND 725.64± 20.19 1.61± 0.01
(2) Uniform 742.06± 12.43 1.59± 0.0

10.0 CL 854.23± 27.54 1.67± 0.01
DEIMOS 675.52± 20.04 1.71± 0.01
DEIMOS-canonical 1858.76± 314.89 1.64± 0.02
(2) DEIMOS-min-threshold 614.63± 5.98 1.73± 0.0
(1) RND 591.11± 5.48 1.75± 0.0
(1)Uniform 602.64± 3.43 1.75± 0.0

Table 6: Again, Uniform and RND both beat DEIMOS.

7.3.3 Supplementary results discussion326

It is very interesting that RND performs so much better in the bare quadruped setting than in the327

quadruped+arm setting. It seems like the good goal diversity sampled by RND is very useful for328

training the bare quadruped, but does not lend itself well whatsoever to training the more unstable329

morphology.330

It is also interesting that DEIMOS performs worse here, while DEIMOS-min-threshold performs331

much better than in quad+arm. This can be explained by the difficulty of learning the fear function.332

In the bare quadruped setting, the fear network is much easier to learn, and it is thus “more cali-333

brated”. In other words, substracting the minimal fear value from the scores influences the scores334

less, and thus DEIMOS-min-threshold almost catches up to DEIMOS.335

Finally, in almost every table presented here, the “rewards” column is the least interesting. All336

methods achieve remarkably similar reward scores (depending on frequency and difficulty), with337

only a few outliers (especially in the quad+arm morphology). This is why we selected quad+arm338

for our main evaluations: quad is simply relatively easy to learn for (at least in Legged Gym [4]).339
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