
From Mystery to Mastery: Failure Diagnosis
for Improving Manipulation Policies

Anonymous authors

Abstract—Robot manipulation policies often fail for unknown
reasons, posing significant hurdles for safe real-world deploy-
ment. Existing diagnostic approaches rely on hand-crafted rules
and exhaustive scenario enumeration, which are labor-intensive
and prone to missing critical failure modes (FM). Reinforcement
learning (RL) offers a systematic way to explore high-dimensional
environmental variations by optimizing policies toward failure-
inducing conditions. We present Robot Manipulation Diagnosis
(RoboMD), a policy-agnostic framework that leverages deep
RL over a learned vision–language embedding to efficiently
search the failure space. Rather than manually specifying each
scenario, RoboMD produces a probabilistic failure-likelihood
map, highlighting high-risk conditions without exhaustive enu-
meration. Evaluations on diverse simulation benchmarks and a
robot arm show that RoboMD discovers up to 23% more FM
than state-of-the-art vision–language models and uncovers subtle
vulnerabilities missed by heuristic methods. By mapping failures
in embedding space, RoboMD provides actionable insights to
guide targeted policy improvements and enhance robustness in
unseen environments.

I. INTRODUCTION

To deploy a robot in the real-world, it must be robust enough
to operate under diverse and often unpredictable variations
of its intended environment. For instance, a robot picking
up a cup should adapt to variations in cup shape, size, and
material; operate seamlessly in rooms with differing layouts
and surfaces; and remain consistent under varying lighting
conditions [1, 2]. However, no matter how well we train a
robot model, it will fail under some operational conditions in
the physical world [3]. Addressing these unknown failures is
not merely a matter of bookkeeping specific errors, but it also
requires a fundamental shift toward diagnosing failures before
deployment and leveraging these insights for more efficient
policy improvement. Without such systematic frameworks,
robotic systems are unlikely to achieve the reliability needed
for seamless real-world deployment.

High-dimensional manipulation tasks are especially prone
to policy failures arising from unanticipated environmental
variations, hereafter referred to as unseen environments. The
intricate interactions between policies and their environments
produce a vast range of potential failure modes (FMs) [1, 2].
Manually hypothesizing which environmental perturbations
may cause failures often overlooks subtle but critical edge
cases, and exhaustively evaluating every potential variation is
computationally infeasible. Consequently, we require scalable
methods that can explore this high-dimensional space and
systematically uncover failure modes. To this end, instead of
relying on less-scalable brute-force search for failure diagno-

sis [1], we propose learning a deep RL policy to efficiently
diagnose failures in manipulation tasks across diverse environ-
ment variations.

While our deep RL-based method efficiently captures many
failures, its discrete action space, representing a predefined set
of potential FMs, cannot account for failures that emerge under
unseen environmental conditions. For instance, as illustrated
in Fig. 1, if we set the action space of RL to orange
fanta bottle, green sprite bottle, and white milk carton, it
will quantify FM probabilities of each, but it is not able to
predict anything beyond these three conditions—for instance,
if picking up a red cuboid will fail or not. To generalize
failure diagnosis for such unseen environment conditions, we
design and train a vision-language model (VLM) embedding
that represents failures and successes in manipulation tasks.
This embedding provides an abstract yet semantically mean-
ingful representation of manipulation policy performance. Our
failure diagnostic deep RL agent, RoboMD, explores failure
modes with a continuous action space on this embedding.
Taking an action on this embedding is akin to exploring an
arbitrary environment condition, allowing RoboMD to explore
and learn the failure probabilities without requiring expensive
full-environment rollouts. Unlike prior methods that query
standard VLMs to determine task failure [4], our framework
learns failures on a VLM embeddings. For instance, RoboMD
identified 23.3% more failures in behavioral cloning policies
for the cube picking up task compared to the best performing
VLM, Gemini 1.5 Pro. This gain stems from the RoboMD’s
ability to actively navigate the failure space. Furthermore,
RoboMD quantifies and ranks failure likelihoods, providing
actionable insights to guide policy fine-tuning efforts. The
main contributions of the paper are:

1) A deep RL-based framework for diagnosing failures in
pre-trained manipulation policies.

2) Continuous exploration via a vision–language embed-
ding to uncover and quantify failures in unseen environ-
ments.

3) Systematic policy improvement driven by the diagnosed
failures.

II. RELATED WORK

Failure detection in large models can be characterized by
querying vision-language foundation models [5, 4, 6, 7, 8] or
searching for failures [9]. As we further verify in experiments,
the former does not show strong performance in deciphering
failures as they do not iteratively interact with the policy.

Failure Ranking

< < <

Fig. 1: Overview of the RoboMD failure diagnosis pipeline. Given a pre-trained manipulation policy (left), RoboMD
systematically perturbs environment conditions and collects binary success/failure feedback. From this feedback it computes
failure-mode probabilities and produces a ranked ordering (top right), highlighting both seen and unseen modes (red dashed
box). Bottom panels show example perturbations in simulation (blue) and their validation in the real world (green).

Further, VLM models are not yet capable of making highly
accurate quantitative predictions such as probabilities. In the
latter approach, outside of robotics, deep RL has recently
been employed in machine learning to identify errors in
image classification and generation [9]. [10, 11] utilized RL to
explore challenging rainy conditions. [12] highlights the role
of sequential decision making models in ensuring the safety of
black-box systems. Not only these methods are not considered
in realistic physical systems such as manipulation but also they
are not able to generalize beyond a fixed set of known failures.

Out-of-distribution (OOD) detection methods can also
be used to identify unseen inputs, for instance, in auto-
motive perception [13], runtime policy monitoring [5], and
regression [14]. However, OOD is not the same as failure,
as not all OOD samples result in failure, and failures can
occur in-distribution. We aim to characterize failures both
within and beyond the training distribution, not merely flag
OOD instances. A related area of research is uncertainty
quantification, which underpins many OOD detection methods.
While many attempts have been made to characterize the
epistemic uncertainty [15], the unknown unknowns, in robot
perception systems [16, 17], only a few attempts have been
made to address this challenge in deep RL [18] and imitation
learning [19, 20, 21]. As robot policy models grow increas-
ingly complex, formally characterizing epistemic uncertainty
becomes extremely challenging. Even if we can, such tech-
niques do not inform engineers where the models fail, making
it harder to further improve the policies.

Generalized robots are less prone to failures. Toward
achieving this goal, generalization in robotics has been ex-
tensively studied to enable robots to adapt to diverse and
unforeseen scenarios. Large-scale simulation frameworks have
been developed to evaluate the robustness of robotic policies
across varied tasks and environmental conditions [1, 22].
Vision-language-action models trained on multimodal datasets
have demonstrated significant advancements in improving
adaptability to real-world scenarios [23, 24]. Additionally,
approaches such as curriculum learning and domain random-
ization have proven effective in enhancing generalization by
exposing models to progressively complex or randomized
environments [25]. These methodologies collectively address
the challenges of policy robustness. Others have tackled safety
from control-theoretic [26, 27], human-factors [28], statistical-
certification [29, 30, 31, 32], and formal-methods [33] per-

spectives. While these enhance robustness, our framework
diagnoses failures pre-deployment to help guide policy im-
provement.

III. METHODOLOGY

In this section, we introduce Robot Manipulation Diagnosis
(RoboMD), a failure diagnosis methodology designed to be
agnostic to the underlying training method of the manipulation
policy. Whether the policy is trained via behavioral cloning,
reinforcement learning, diffusion processes, foundation mod-
els, or any future methods, RoboMD operates solely based on
policy rollouts, making it adaptable to a wide range of robot
manipulation policies. An overview is depicted in Fig. 2.

A. Failure Diagnosis on Candidate Environment Variations

We now lay the foundation to our methodology by searching
failures over a set of potential failures, which we generalize in
the next sections. In practice, candidates of failure sets, C, can
be a combination of historical failures in robot manipulation as
well as engineers’ know-how and apprehensions. For instance,
we know manipulation policies are generally sensitive to
lighting conditions, background table colors, etc. However,
since we do not know how this large set of potential failures
exactly affect the pre-trained manipulation policy, we search
this discrete space using deep RL. RL offers a systematic
approach to exploring the action space by optimizing the
selection of actions based on their potential to induce failures.
See Appendix II for a detailed rationale for choosing RL.

The failure-diagnosis process is modeled as an Markov
Decision Process (MDP) ⟨S,A,P, R, γ⟩, where S consists
of visual inputs of the robotic environment; A = C is the
set of discrete changes to the environment. For instance,
changing a red table to blue is an action. (See Sec. III-B for
continuous action representations); P(s′|s, a) is given by the
physics engine/real robot (with stochastic noise). The reward
R(s, a) = Cfailure if failure, otherwise R(s, a) = −Csuccess t,
where Csuccess, Cfailure are constants and t is the horizon of the
manipulation policy. We set the discount factor to γ = 0.99

We expect RoboMD to gradually modify the environ-
ment by applying a finite number of predefined actions
(a1, a2, . . . , an) to induces failures. For example, the sequence
of actions could be: change table color to black→ adjust light
level to 50%→ set table size to X, resulting in an environment
with a black table of size X under 50% lighting conditions.

a1

a2

D
is

cr
et

e
A

ct
io

n
Sp

ac
e

C
on

ti
nu

ou
s

A
ct

io
n

Sp
ac

e

Pass all action

Generate Data of FM

Manipulation
Policy

Finetune
P() > P()

a1 a2

Observe Failures
D

ee
p

R
L

Po
lic

y

Reward

R
ollouts

Action

Changed
Environment

Action distribution

Uncover Failures Adapt

P1 P2 P3 P4

Fig. 2: RoboMD operates in three stages: (1) a PPO-based agent perturbs the environment to reveal configurations that cause
failures under the pre-trained policy; (2) its learned action distribution—conditioned on the input observation—is converted
into failure-mode probabilities, either directly over discrete candidates or via a continuous embedding for novel changes; and
(3) those probabilities are used to fine-tune the manipulation policy.

Given our need for generalization to continuous action
spaces in the forthcoming Section III-B, and the neces-
sity of exploring diverse scenarios, which will be validated
through experiments, we employ Proximal Policy Optimiza-
tion (PPO) [34] as the learning algorithm. Additionally, the
RoboMD policy πMD is trained by interacting with the envi-
ronment via at ∼ πMD(at | st), receiving rewards for reaching
failures. PPO refines πMD toward failure-inducing variations.
After training, RoboMD estimates the failure probability for
each candidate FM in C (see Section III-C).

B. Generalizing Failure Diagnosis for Unseen Environments

In Section III-A, we apply discrete actions in A = C to
perturb the environment. but this limits failure discovery to
known candidates. We argue that in order to predict failures
of unseen environments, we need at least two pieces of
information: 1) some belief of where failures might occur and
2) semantic similarity between an unseen environment and our
belief on failures. For the former, we can utilize the candidate
failure set C, and for the latter we train a vision-language
embedding that can be used to interpret failures. With these
two, we train πMD policy on the continuous action space of
the trained embedding. Even if C does not fully cover the
entire space of failures, πMD is now capable of searching over
C′ because it operates on a projected continuous space, as
opposed to the explicit discrete action space in Section III-A.
In other words, this can be thought of as projecting a few
expensive rollout samples to an embedding, and performing
many cheap RoboMD RL evaluations on this projected space.
In the following sections, we discuss how to train the vision-
language embedding in a way that makes it an effective
space for discovering failures, and how to train the πMD on
this continuous space to predict failures beyond the observed
environment.
Training the Vision-Language Embedding. The objective of
training this embedding is to provide a continuous space that
encodes some information about success-failures for the RL
agent to start with. We collect a small number of rollouts,
M , of a given manipulation policy for a given task with
D = {(xvision

i , xlang
i), yi}Mi=1, where xvision is the raw image

Algorithm 1 Failure Diagnosis

1: Init: steps N , embeddings E (for unseen), aold ← ∅,
manipulation policy πR

2: for i = 1 to N do
3: Sample a ∼ πMD(a | s)

4: anew ←

{
aold + a, discrete
argmin

e∈E
∥a− e∥, continuous

5: Execute πR with anew
6: if failure detected then
7: Reset; aold ← ∅
8: else
9: aold ← anew

10: end if
11: end for

input that we typically provide to manipulation policies,
xlang is a short textual description of the task, and y ∈
{failure, success}. Since we know the action (environment
variation) we apply, the textual description can be automat-
ically constructed (Refer Appendix III). With this data, as
shown in Fig. 3, we train a new dual backbone architecture
that consists of:

1) A Vision Transformer (ViT) backbone [35] to convert
xvision
i to visual features.

2) A CLIP encoder [36] to process semantic information
from xlang

i .

The dual architecture combines complementary strengths:
ViT captures detailed spatial information, while CLIP aligns
visual data with semantic meaning, resulting in a robust mul-
timodal embedding that enables better generalization across
diverse scenarios and environments for failures.

To train this vision-language embedding, a contrastive
learning objective is employed, where the model learns to
group embeddings of semantically similar actions (e.g., actions
that change table colors) closer together while pushing apart
embeddings of semantically dissimilar actions (e.g., actions
that change lighting and actions that change table size).
We train the embedding by minimizing the contrastive loss,

Rollout Frames

CLIP

ViT

M
LP Pro

jecto
r

The object is changed to Fanta
bottle. Lighting changed to Normal.

....

Rollout_1 Rollout_2 Rollout_3

{
 Rollout_1: The object is changed
to Fanta bottle. Lighting changed to
Normal.

 Rollout_3: The object is
changed to Red cube bottle.
Lighting changed to Green.
}

Flatten
ed

Known Embedding

t=0 t=1 t=2 t=3 t=4

Fig. 3: The pipeline shows how rollouts with disruptions (e.g., object or lighting changes) are processed to learn meaningful
embeddings. Text and visual data from the rollouts are embedded using CLIP and ViT, then projected to an MLP to generate
text, image to failure aligned representations.∑

i,j∈D
[
1yi=yj · dij + 1yi ̸=yj ·max(0,m− dij)

]
where the

indicator function 1yi=yj
measures if the two labels are from

the same class, dij = ∥ei − ej∥2 represents the Euclidean
distance between embeddings ei and ej , and m is a hyperpa-
rameter that defines the minimum separation between e.
Training RoboMD deep RL policy with continuous actions.
In continuous action spaces, the agent navigates the embedding
space guided by known embeddings, E = {ei; i ∈ D}, the
small set of pre-computed embeddings derived from D. These
embeddings serve as reference points in the action space,
representing well-understood regions where failure/success is
already observed. As shown in Algorithm 1, the RoboMD RL
policy samples an action a′ from the embeddings space and
finds the closest embedding in E to obtain its corresponding a.
Note that this action is now an embedding. Thus, performing
an action implicitly applies a variation to the environment,
although we are not explicitly changing the environment.
Therefore, these actions are extremely cheap compared to
explicitly changing the environment and running rollouts as
in the discrete case discussed in Section III-A. We define
the reward function to encourage discovering failure regions
while discouraging large deviations from E . This is because
significant deviations from E lead to uncertain or poorly
understood regions. This rewards mechanism can be captured

R(s, a) =

{
Cfailure

penalty+1 − k · N (a), if failure,
− Csuccess

horizon×(penalty+1) , if success.
(1)

Here, T is the episode length (number of timesteps per
rollout). The distance penalty scales with ∥a − E∥. The
frequency penalty N (a) counts consecutive repeats of a. In
our experiments, we set the penalty coefficient k=5. This
formulation encourages adaptive exploration while leveraging
prior knowledge of success and failure-prone regions. Figure 4
illustrates how a few success/failure examples are embedded
into a semantic space and then used to train a generalized
failure detector, πMD . During training, RL samples this
continuous embedding rewarded for steering toward failure-
prone regions without requiring full policy roll-outs.

C. Uncovering Failures

Because RoboMD’s policy concentrates probability on
failure-inducing actions, we can read the likely failure modes

Unknown Region
Success Region
Failure Region
Known Embeddings

Action Region
RL Action

a1

a2 a3

a4
a5

“Bread”

“Milk Carton”

“Sprite Bottle”

“Red Cube”

“Fanta Bottle”

Fig. 4: Continuous action space exploration: regions of Un-
known (blue), Success (green), and Failure (red). Stars denote
known embeddings guiding exploration; orange circles and
arrows show the agent’s transition sequence. Dashed bound-
aries group similar outcomes, and by biasing transitions toward
failures, the policy πMD encodes the failure distribution.

directly from its distribution.
a) Discrete actions (Sec. III-A): The policy is given by

πMD(a | s) = exp(fa(s))∑
a′ exp(fa′ (s))

. assigns a PMF over the discrete
action set A, where fa(s) is the logit for action a. As training
proceeds, πMD allocates higher mass to failure-causing actions,
enabling systematic exploration of discrete FM’s.

b) Continuous actions (Sec. III-B): Here πMD(a | s) is
a Gaussian PDF p(a | s) on Rd. Although p(a0) = 0 for any
exact a0, likelihood ratios remain well-defined. To compare
two perturbations a1, a2, we compute pMD(a1|s)

pMD(a2|s) , analogous to
PPO’s probability-ratio objective.

D. Using Failures for Policy Improvement
For discrete actions (seen environment variations

or FMs), we obtain the probability of each FM,
{(a1, p1), (a2, p2), . . . , (an, pn)}. For continuous actions
(seen or unseen environment variations), we obtain the order
of FMs based on their likelihood (e.g., a1 > a3 > a4 > a2).
Rather than collecting rollouts on the entire FM candidate set,
C, and other random environment variations (Fig 16), these
probabilities or likelihoods allow the user to identify the top
FMs and generate targeted rollouts on them to fine-tune the
manipulation policy.

IV. EXPERIMENTAL RESULTS

In this section, we investigate the following questions:

Red Cube

S
prite

Fanta

M
ilk

 C
ar

to
n

21.7 19.3
26.2

20.6

Red Cube

Green Cube

Blue Cube

Default Table

Green Table Blue Table

Red Table

Big Table

Small Table

Behavioral Cloning Transformer

24.8
17.2

24.8

31.3

Red Cube

Green Cube

Blue Cube

Default Table

Green Table Blue Table

Red Table

Big Table

Small Table

Hierarchical Behavioral Cloning

Fig. 5: Individual FM analysis of multiple models. Each radar plot shows failure likelihood for different actions across
environments (real in left, simulation middle/right). Numbers along each axis indicate probability of failure.

Reinforcement Learning Models

Model Lift Square Pick Place Avg. Score

A2C 74.2% 79.0% 72.0% 75.0
PPO 82.3% 84.0% 76.0% 80.7
SAC 51.2% 54.6% 50.8% 52.2

Vision–Language Models

Qwen2-VL 32.0% 24.6% 57.4% 38.0
Gemini 1.5 Pro 59.0% 36.4% 37.4% 44.3
GPT-4o 57.0% 44.0% 32.0% 33.3
GPT-4o-ICL (5 Shot) 57.4% 48.6% 57.0% 54.3

TABLE I: Benchmark results comparing RL controllers
(PPO, A2C, SAC), vision–language models, and lightweight
CNN/ResNet failure detectors each paired with a BC-MLP
low-level policy. RoboMD (PPO Continuous) consistently
outperforms other baselines.

1) How does RoboMD’s failure-mode detection in seen
scenarios compare to other RL methods and VLMs?

2) How well does RoboMD generalize to both seen and
unseen environment variations?

3) How do the FMs diagnosed by RoboMD help improve
pre-trained BC models?

A. Benchmark Comparisons

Experimental setup: We evaluate RoboMD using models
trained in RoboSuite [37] using datasets from RoboMimic [38]
and MimicGen [39]. Benchmarking is performed across Lift,
Stack, Threading, and Can tasks, which represent common set
of manipulation challenges with varying levels of difficulty.

To evaluate the accuracy of RoboMD, we construct a dataset
of success-failure pairs, where each pair consists of a randomly
selected success case and a failure case. Since a successful
action will rank higher than a failure, this provides ground
truth to evaluate RoboMD’s ranking consistency. The results,
presented in Table I, highlights that RoboMD consistently
outperforms all baselines in accuracy across tasks. As VLMs
are the most popular way to characterize failures [5, 4, 6, 7, 8],
we conducted evaluations with state-of-the-art proprietary
models (GPT-4o and Gemini 1.5 Pro) and an open-source
model (Qwen2-VL). Additionally, we extended the evaluation
of GPT-4o by employing in-context learning (ICL) with 5-
shot demonstrations to gauge its adaptability, ICL improves

TABLE II: Failure characteristics for discrete action spaces.

Model Entropy (↓) NFM (↓) FSI (↓)

IQL [42] 2.49 4 0.72
BCQ [43] 2.79 6 1.15
BC Transformer 2.47 5 0.98
HBC [44] 2.11 4 0.68
BC (Two-Image Input) 2.14 3 0.63
BC (Proprioceptive + Image) 2.58 3 0.75

TABLE III: RoboMD failure detection accuracy across tasks.

Algorithm Lift Pick Place Threading Stack

BC 82.5% 76.0% 68.0% 88.0%
BCQ 61.5% 72.5% 62.0% 72.0%
HBC 83.5% 79.0% 73.0% 81.0%
BC Transformer 74.5% 72.0% 82.0% 70.5%
Diffusion 85.0% 71.0% 71.0% 62.0%

the performance of GPT-4o, particularly in the Square task.
However, overall VLM performance remains below 60%,
indicating they struggle with reliably predicting configurations.

To compare exploration across RL algorithms, we analyze
the action distributions of A2C [40], SAC [41] and PPO over
21 environment variations. As shown in Table II, PPO achieves
the highest entropy (2.8839), indicating broader exploration for
failure discovery.

Having established the superior performance of PPO, we
further use RoboMD to evaluate the performance of a variety
of policies learned using different training methods. The
results in Table III demonstrate that RoboMD generalizes
well across different tasks and policy architectures, effectively
detecting failures in diverse learning frameworks. Overall,
these findings verifies that RoboMD can be applied across
different manipulation tasks.

B. Generalization to Seen and Unseen Environments
To assess the generalization capabilities of RoboMD, we

evaluate its performance in both seen and unseen environment
variations. See Appendix I for experimental setup.
Seen Environments: Figure 5 visualizes the failure distribu-
tions across different actions, which provides a detailed failure
mode (FM) analysis of different models, demonstrating that
lower entropy corresponds to more structured yet concentrated
failures, making them easier to identify and address.

TABLE IV: In real (ar: {Bread [unseen], Red Cube, Milk Carton, Sprite}) vs. simulated (as: {Red Table, Black Table [unseen],
Green Lighting}) environments, rank consistency measures ordering and accuracy is computed over 21 unseen variations.

Task ID Algorithm Continuous Rank Ground Truth Rank Consistency Accuracy

Real Robot (UR5e) ModAttn [45] ar1 > ar2 > ar3 > ar4 ar1 > ar2 > ar3 > ar4 ✓ -
Sim. Can HBC [44] as1 > as2 > as3 as1 = as2 > as3 ✓ 61%
Sim. Square Diffusion [46] as1 > as2 > as3 as1 = as2 > as3 ✓ 68%
Sim. Stack BCQ [43] as1 > as2 > as3 as1 = as2 > as3 ✓ 80%
Sim. Threading BC Transformer as1 > as2 > as3 as1 = as2 > as3 ✓ 74%

0 4 8 12 17

0

4

8

12

17
0 4 8 12 17

0

4

8

12

17
0 4 8 12 17

0

4

8

12

17
0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Fig. 6: Confusion matrices of embeddings trained using a)
Binary Cross-Entropy (BCE) loss, b) BCE and Contrastive
Loss, and c) both losses but no text encoder. Diagonal is better.

TABLE V: Deviation scores measuring embedding quality
across different loss functions. Lower MSE and Frobenius-
norm distances (to the identity) indicates better separation

Eval Image Image Image+Text Image+Text
Loss BCE BCE+Contr. BCE BCE+Contr.

MSE (↓) 0.6495 0.6179 0.8426 0.1801
Fro dist. (↓) 14.5060 14.1497 16.5227 7.6387

To quantify the failure characteristics of each model, Ta-
ble II summarizes the entropy values and the number of
FM identified for each model. The Failure Severity Index
(FSI) quantifies the weighted impact of failures defined by∑N

i=1 Pfailure(ai) ·Wi where Pfailure) represents the probability
of failure for action ai, and Wi is the normalized weight such
that the FM with the highest probability is assigned a weight
of 1, while others are scaled proportionally. Models such as
HBC demonstrate lower entropy and fewer FM, highlighting
their robustness under discrete action perturbations.
Unseen Environments: To assess generalization to unseen en-
vironment variation (i.e., actions), We first construct a dataset
of 100 unseen success-failure pairs, similar to Sec IV-A, to
evaluate generalization. We further test RoboMD on an unseen
action not used during RL training to check if failure rankings
remain consistent. Table IV shows that most actions maintain
their rankings, verifying the reliability of failure identification.

C. Ablation: Quality of Vision-Language Embeddings
To evaluate the quality of our trained vision-language

embeddings, we compute cosine similarity-based confusion
matrices for different action embeddings. An ideal embedding
should produce a confusion matrix with a strong diagonal
structure, where each embedding is highly similar to itself
while being distinct from others. We compare three con-
figurations as shown in Fig. 6. As shown in Table V, the
Image + Text backbone trained with BCE and Contrastive
loss achieves the lowest MSE (0.1801) and Frobenius norm
distance (7.6387). This good embedding quality leads to better
action separability compared to other configurations.

A1 A2 A3 A4 A5 A6 A7 A8 A9
A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21

Actions

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Pr
ob

ab
ili

ty
 (

%
)

4.5

4.8
5.0

4.8
4.9

4.7 4.6
4.5

4.9
5.1

4.9
4.7 4.7

4.4

4.8
5.0

4.7 4.8

5.1

4.7
4.6

4.0
4.2

4.1
4.0

5.2

6.1

5.7

5.1

4.7

4.1

5.2

4.1

5.0

4.4

4.8

4.4

4.2

4.7

5.7
5.5

4.6

Finetuned
Pretrained
Best Possible

Fig. 7: Failure distribution before and after fine-tuning “Lift”
BC policy on FMs chosen by RoboMD. The ideal distribution
(dashed black) represents zero failure across all actions.
D. Failure-Guided Fine-Tuning

We analyze how incorporating failure examples during train-
ing and fine-tuning enhances the model’s ability to generalize
across different conditions. We compare behavior cloning poli-
cies on the Lift task before and after fine-tuning using failure-
inducing samples. Fine-tuning is conducted under multiple
conditions which is shown in AppendixIV.

Fig. 7 compares failure distributions of pretrained vs. fine-
tuned manipulation policy with failure-inducing samples. The
pretrained policy exhibits higher failure probabilities across
multiple actions, deviating significantly from the ideal distri-
bution. Fine-tuning reduces failures (details in Appendix IV).
This improvement is quantitatively supported by the Wasser-
stein distance: the fine-tuned policy is closer to the ideal dis-
tribution (0.0014) compared to the pretrained policy (0.0051).
This also shows that targeted fine-tuning on diverse failure
cases enhances policy robustness by reducing failure proba-
bilities across a broader range of environment conditions.

V. CONCLUSION

We introduced RoboMD, a framework for diagnosing failure
modes in robot manipulation policies by leveraging deep RL
in both discrete and continuous action spaces. Our exper-
iments show that RoboMD, especially when built on PPO
in continuous spaces, outperforms baseline RL models and
VLMs, captures subtle failure scenarios, ranks failure-inducing
actions, and generalizes to unseen environment variations.
Moreover, RoboMD can be integrated into continuous testing
pipelines to automatically flag regressions as policies evolve,
enabling rapid feedback loops during development. These
capabilities pave the way for deploying more reliable manip-
ulation systems in real-world settings. Future work will aim
to train a generalist PPO model to handle combined tasks and
broader environment distributions, further strengthening policy
robustness in unstructured settings.

REFERENCES

[1] Wilbert Pumacay, Ishika Singh, Jiafei Duan, Ranjay Kr-
ishna, Jesse Thomason, and Dieter Fox. The colosseum:
A benchmark for evaluating generalization for robotic
manipulation. arXiv preprint arXiv:2402.08191, 2024.
URL https://arxiv.org/pdf/2402.08191.

[2] Annie Xie, Lisa Lee, Ted Xiao, and Chelsea Finn.
Decomposing the generalization gap in imitation learn-
ing for visual robotic manipulation. In 2024 IEEE
International Conference on Robotics and Automation
(ICRA), pages 3153–3160. IEEE, 2024. URL https:
//arxiv.org/abs/2307.03659.

[3] Fanqi Lin, Yingdong Hu, Pingyue Sheng, Chuan Wen,
Jiacheng You, and Yang Gao. Data scaling laws in im-
itation learning for robotic manipulation. arXiv preprint
arXiv:2410.18647, 2024. URL https://arxiv.org/abs/2410.
18647.

[4] Jiafei Duan, Wilbert Pumacay, Nishanth Kumar, Yi Ru
Wang, Shulin Tian, Wentao Yuan, Ranjay Krishna, Di-
eter Fox, Ajay Mandlekar, and Yijie Guo. AHA: A
Vision-Language-Model for Detecting and Reasoning
Over Failures in Robotic Manipulation. arXiv preprint
arXiv:2410.00371, 2024. URL https://arxiv.org/pdf/2410.
00371.

[5] Christopher Agia, Rohan Sinha, Jingyun Yang, Zi-ang
Cao, Rika Antonova, Marco Pavone, and Jeannette Bohg.
Unpacking failure modes of generative policies: Runtime
monitoring of consistency and progress. arXiv preprint
arXiv:2410.04640, 2024. URL https://arxiv.org/pdf/2410.
04640.

[6] Lukas Klein, Kenza Amara, Carsten T Lüth, Hendrik
Strobelt, Mennatallah El-Assady, and Paul F Jaeger.
Interactive Semantic Interventions for VLMs: A Human-
in-the-Loop Investigation of VLM Failure. In Neurips
Safe Generative AI Workshop 2024, 2024. URL https:
//openreview.net/pdf?id=3kMucCYhYN.

[7] Rakshith Subramanyam, Kowshik Thopalli, Vivek
Narayanaswamy, and Jayaraman J Thiagarajan. Decider:
Leveraging foundation model priors for improved model
failure detection and explanation. In European Con-
ference on Computer Vision, pages 465–482. Springer,
2025. URL https://arxiv.org/pdf/2408.00331.

[8] Zeyi Liu, Arpit Bahety, and Shuran Song. Reflect:
Summarizing robot experiences for failure explanation
and correction. arXiv preprint arXiv:2306.15724, 2023.
URL https://arxiv.org/abs/2306.15724.

[9] Som Sagar, Aditya Taparia, and Ransalu Senanayake.
Failures are fated, but can be faded: Characterizing
and mitigating unwanted behaviors in large-scale vision
and language models. arXiv preprint arXiv:2406.07145,
2024. URL https://arxiv.org/pdf/2406.07145.

[10] Harrison Delecki, Masha Itkina, Bernard Lange, Ransalu
Senanayake, and Mykel J Kochenderfer. How do we
fail? stress testing perception in autonomous vehicles. In
2022 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 5139–5146. IEEE,
2022. URL https://arxiv.org/pdf/2203.14155.

[11] Zhang-Wei Hong, Idan Shenfeld, Tsun-Hsuan Wang,
Yung-Sung Chuang, Aldo Pareja, James Glass, Akash
Srivastava, and Pulkit Agrawal. Curiosity-driven red-
teaming for large language models. arXiv preprint
arXiv:2402.19464, 2024. URL https://arxiv.org/pdf/2402.
19464.

[12] Anthony Corso, Robert Moss, Mark Koren, Ritchie Lee,
and Mykel Kochenderfer. A survey of algorithms for
black-box safety validation of cyber-physical systems.
Journal of Artificial Intelligence Research, 72:377–428,
2021. URL https://arxiv.org/pdf/2005.02979.

[13] Julia Nitsch, Masha Itkina, Ransalu Senanayake, Juan
Nieto, Max Schmidt, Roland Siegwart, Mykel J Kochen-
derfer, and Cesar Cadena. Out-of-distribution detection
for automotive perception. In 2021 IEEE International
Intelligent Transportation Systems Conference (ITSC),
pages 2938–2943. IEEE, 2021. URL https://arxiv.org/
pdf/2011.01413.

[14] Jayaraman J Thiagarajan, Vivek Narayanaswamy, Puja
Trivedi, and Rushil Anirudh. PAGER: A Framework
for Failure Analysis of Deep Regression Models. arXiv
preprint arXiv:2309.10977, 2023. URL https://arxiv.org/
pdf/2309.10977.

[15] Ransalu Senanayake. The role of predictive uncertainty
and diversity in embodied ai and robot learning. arXiv
preprint arXiv:2405.03164, 2024. URL https://arxiv.org/
pdf/2405.03164.

[16] Simon T O’Callaghan and Fabio T Ramos. Gaussian
process occupancy maps. The International Journal
of Robotics Research, 31(1):42–62, 2012. URL https:
//arxiv.org/pdf/1811.10156.

[17] Alex Kendall and Yarin Gal. What uncertainties do
we need in bayesian deep learning for computer vision?
Advances in neural information processing systems, 30,
2017. URL https://arxiv.org/pdf/1703.04977.

[18] Yiding Jiang, J Zico Kolter, and Roberta Raileanu. On
the importance of exploration for generalization in re-
inforcement learning. Advances in Neural Information
Processing Systems, 36, 2024. URL https://arxiv.org/pdf/
2306.05483.

[19] Wonseok Jeon, Seokin Seo, and Kee-Eung
Kim. A bayesian approach to generative
adversarial imitation learning. Advances in neural
information processing systems, 31, 2018. URL
https://papers.nips.cc/paper files/paper/2018/file/
943aa0fcda4ee2901a7de9321663b114-Paper.pdf.

[20] Daniel Brown, Russell Coleman, Ravi Srinivasan, and
Scott Niekum. Safe imitation learning via fast bayesian
reward inference from preferences. In International Con-
ference on Machine Learning, pages 1165–1177. PMLR,
2020. URL https://papers.nips.cc/paper files/paper/2018/
file/943aa0fcda4ee2901a7de9321663b114-Paper.pdf.

[21] Deepak Ramachandran and Eyal Amir. Bayesian In-
verse Reinforcement Learning. In IJCAI, volume 7,

https://arxiv.org/pdf/2402.08191
https://arxiv.org/pdf/2402.08191
https://arxiv.org/pdf/2402.08191
https://arxiv.org/pdf/2402.08191
https://arxiv.org/abs/2307.03659
https://arxiv.org/abs/2307.03659
https://arxiv.org/abs/2410.18647
https://arxiv.org/abs/2410.18647
https://arxiv.org/pdf/2410.00371
https://arxiv.org/pdf/2410.00371
https://arxiv.org/pdf/2410.00371
https://arxiv.org/pdf/2410.00371
https://arxiv.org/pdf/2410.00371
https://arxiv.org/pdf/2410.04640
https://arxiv.org/pdf/2410.04640
https://arxiv.org/pdf/2410.04640
https://arxiv.org/pdf/2410.04640
https://openreview.net/pdf?id=3kMucCYhYN
https://openreview.net/pdf?id=3kMucCYhYN
https://openreview.net/pdf?id=3kMucCYhYN
https://openreview.net/pdf?id=3kMucCYhYN
https://arxiv.org/pdf/2408.00331
https://arxiv.org/pdf/2408.00331
https://arxiv.org/pdf/2408.00331
https://arxiv.org/pdf/2408.00331
https://arxiv.org/abs/2306.15724
https://arxiv.org/pdf/2406.07145
https://arxiv.org/pdf/2406.07145
https://arxiv.org/pdf/2406.07145
https://arxiv.org/pdf/2406.07145
https://arxiv.org/pdf/2203.14155
https://arxiv.org/pdf/2203.14155
https://arxiv.org/pdf/2203.14155
https://arxiv.org/pdf/2402.19464
https://arxiv.org/pdf/2402.19464
https://arxiv.org/pdf/2402.19464
https://arxiv.org/pdf/2402.19464
https://arxiv.org/pdf/2005.02979
https://arxiv.org/pdf/2005.02979
https://arxiv.org/pdf/2005.02979
https://arxiv.org/pdf/2011.01413
https://arxiv.org/pdf/2011.01413
https://arxiv.org/pdf/2011.01413
https://arxiv.org/pdf/2011.01413
https://arxiv.org/pdf/2309.10977
https://arxiv.org/pdf/2309.10977
https://arxiv.org/pdf/2309.10977
https://arxiv.org/pdf/2309.10977
https://arxiv.org/pdf/2405.03164
https://arxiv.org/pdf/2405.03164
https://arxiv.org/pdf/2405.03164
https://arxiv.org/pdf/2405.03164
https://arxiv.org/pdf/1811.10156
https://arxiv.org/pdf/1811.10156
https://arxiv.org/pdf/1811.10156
https://arxiv.org/pdf/1811.10156
https://arxiv.org/pdf/1703.04977
https://arxiv.org/pdf/1703.04977
https://arxiv.org/pdf/1703.04977
https://arxiv.org/pdf/2306.05483
https://arxiv.org/pdf/2306.05483
https://arxiv.org/pdf/2306.05483
https://arxiv.org/pdf/2306.05483
https://arxiv.org/pdf/2306.05483
https://papers.nips.cc/paper_files/paper/2018/file/943aa0fcda4ee2901a7de9321663b114-Paper.pdf
https://papers.nips.cc/paper_files/paper/2018/file/943aa0fcda4ee2901a7de9321663b114-Paper.pdf
https://papers.nips.cc/paper_files/paper/2018/file/943aa0fcda4ee2901a7de9321663b114-Paper.pdf
https://papers.nips.cc/paper_files/paper/2018/file/943aa0fcda4ee2901a7de9321663b114-Paper.pdf
https://arxiv.org/pdf/2011.01413
https://arxiv.org/pdf/2011.01413
https://papers.nips.cc/paper_files/paper/2018/file/943aa0fcda4ee2901a7de9321663b114-Paper.pdf
https://papers.nips.cc/paper_files/paper/2018/file/943aa0fcda4ee2901a7de9321663b114-Paper.pdf
https://www.ijcai.org/Proceedings/07/Papers/416.pdf
https://www.ijcai.org/Proceedings/07/Papers/416.pdf

pages 2586–2591, 2007. URL https://www.ijcai.org/
Proceedings/07/Papers/416.pdf.

[22] Haoquan Fang, Markus Grotz, Wilbert Pumacay, Yi Ru
Wang, Dieter Fox, Ranjay Krishna, and Jiafei Duan.
Sam2act: Integrating visual foundation model with a
memory architecture for robotic manipulation. arXiv
preprint arXiv:2501.18564, 2025.

[23] Anthony Brohan, Noah Brown, Justice Carbajal, Yev-
gen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine
Hsu, et al. Rt-1: Robotics transformer for real-world
control at scale. arXiv preprint arXiv:2212.06817, 2022.
URL https://arxiv.org/pdf/2212.06817.

[24] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen
Chebotar, Xi Chen, Krzysztof Choromanski, Tianli Ding,
Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2:
Vision-language-action models transfer web knowledge
to robotic control. arXiv preprint arXiv:2307.15818,
2023. URL https://arxiv.org/pdf/2307.15818.

[25] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek
Chociej, Rafal Jozefowicz, Bob McGrew, Jakub Pa-
chocki, Arthur Petron, Matthias Plappert, Glenn Powell,
Alex Ray, et al. Learning dexterous in-hand manipula-
tion. The International Journal of Robotics Research, 39
(1):3–20, 2020. URL https://arxiv.org/pdf/1808.00177.

[26] Andrea Bajcsy and Jaime F Fisac. Human-AI Safety:
A Descendant of Generative AI and Control Systems
Safety. arXiv preprint arXiv:2405.09794, 2024. URL
https://arxiv.org/pdf/2405.09794.

[27] Philipp Grimmeisen, Friedrich Sautter, and Andrey
Morozov. Concept: Dynamic Risk Assessment for
AI-Controlled Robotic Systems. arXiv preprint
arXiv:2401.14147, 2024. URL https://arxiv.org/pdf/2401.
14147.

[28] Lindsay Sanneman and Julie A Shah. The situation
awareness framework for explainable AI (SAFE-AI) and
human factors considerations for XAI systems. Inter-
national Journal of Human–Computer Interaction, 38
(18-20):1772–1788, 2022. URL https://pmc.ncbi.nlm.
nih.gov/articles/PMC7338174/.

[29] Alec Farid, David Snyder, Allen Z Ren, and Anirudha
Majumdar. Failure prediction with statistical guaran-
tees for vision-based robot control. arXiv preprint
arXiv:2202.05894, 2022. URL https://arxiv.org/pdf/2202.
05894.

[30] Allen Z Ren and Anirudha Majumdar. Distributionally
robust policy learning via adversarial environment gen-
eration. IEEE Robotics and Automation Letters, 7(2):
1379–1386, 2022. URL https://arxiv.org/pdf/2107.06353.

[31] Heng Yang, Jingnan Shi, and Luca Carlone. Teaser:
Fast and certifiable point cloud registration. IEEE
Transactions on Robotics, 37(2):314–333, 2020. URL
https://arxiv.org/abs/2001.07715.

[32] Joseph A Vincent, Haruki Nishimura, Masha Itkina, and
Mac Schwager. Full-Distribution Generalization Bounds
for Imitation Learning Policies. In First Workshop

on Out-of-Distribution Generalization in Robotics at
CoRL 2023, 2023. URL https://openreview.net/pdf?id=
JZkwYiyy9I.

[33] Jana Tmov, Luis I Reyes Castro, Sertac Karaman, Emilio
Frazzoli, and Daniela Rus. Minimum-violation LTL plan-
ning with conflicting specifications. In 2013 American
Control Conference, pages 200–205. IEEE, 2013. URL
https://arxiv.org/pdf/1303.3679.

[34] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017. URL
https://arxiv.org/pdf/1707.06347.

[35] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, et al. An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale. In Inter-
national Conference on Learning Representations, 2020.
URL https://arxiv.org/pdf/2010.11929.

[36] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning transferable visual models from natural lan-
guage supervision. In International conference on ma-
chine learning, pages 8748–8763. PMLR, 2021. URL
https://arxiv.org/pdf/2103.00020.

[37] Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto
Martı́n-Martı́n, Abhishek Joshi, Soroush Nasiriany, and
Yifeng Zhu. robosuite: A modular simulation frame-
work and benchmark for robot learning. arXiv preprint
arXiv:2009.12293, 2020. URL https://arxiv.org/abs/2009.
12293.

[38] Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush
Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-Fei,
Silvio Savarese, Yuke Zhu, and Roberto Martı́n-Martı́n.
What matters in learning from offline human demon-
strations for robot manipulation. In arXiv preprint
arXiv:2108.03298, 2021. URL https://arxiv.org/abs/2108.
03298.

[39] Ajay Mandlekar, Soroush Nasiriany, Bowen Wen, Ireti-
ayo Akinola, Yashraj Narang, Linxi Fan, Yuke Zhu, and
Dieter Fox. Mimicgen: A data generation system for
scalable robot learning using human demonstrations. In
7th Annual Conference on Robot Learning, 2023. URL
https://arxiv.org/abs/2310.17596.

[40] Volodymyr Mnih. Asynchronous methods for deep re-
inforcement learning. arXiv preprint arXiv:1602.01783,
2016. URL https://arxiv.org/abs/1602.01783.

[41] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic
actor. In International conference on machine learning,
pages 1861–1870. PMLR, 2018. URL https://arxiv.org/
abs/1801.01290.

[42] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline
reinforcement learning with implicit q-learning. arXiv

https://www.ijcai.org/Proceedings/07/Papers/416.pdf
https://www.ijcai.org/Proceedings/07/Papers/416.pdf
https://arxiv.org/pdf/2212.06817
https://arxiv.org/pdf/2212.06817
https://arxiv.org/pdf/2212.06817
https://arxiv.org/pdf/2307.15818
https://arxiv.org/pdf/2307.15818
https://arxiv.org/pdf/2307.15818
https://arxiv.org/pdf/2307.15818
https://arxiv.org/pdf/1808.00177
https://arxiv.org/pdf/1808.00177
https://arxiv.org/pdf/1808.00177
https://arxiv.org/pdf/2405.09794
https://arxiv.org/pdf/2405.09794
https://arxiv.org/pdf/2405.09794
https://arxiv.org/pdf/2405.09794
https://arxiv.org/pdf/2401.14147
https://arxiv.org/pdf/2401.14147
https://arxiv.org/pdf/2401.14147
https://arxiv.org/pdf/2401.14147
https://pmc.ncbi.nlm.nih.gov/articles/PMC7338174/
https://pmc.ncbi.nlm.nih.gov/articles/PMC7338174/
https://pmc.ncbi.nlm.nih.gov/articles/PMC7338174/
https://pmc.ncbi.nlm.nih.gov/articles/PMC7338174/
https://pmc.ncbi.nlm.nih.gov/articles/PMC7338174/
https://arxiv.org/pdf/2202.05894
https://arxiv.org/pdf/2202.05894
https://arxiv.org/pdf/2202.05894
https://arxiv.org/pdf/2202.05894
https://arxiv.org/pdf/2107.06353
https://arxiv.org/pdf/2107.06353
https://arxiv.org/pdf/2107.06353
https://arxiv.org/pdf/2107.06353
https://arxiv.org/abs/2001.07715
https://openreview.net/pdf?id=JZkwYiyy9I
https://openreview.net/pdf?id=JZkwYiyy9I
https://openreview.net/pdf?id=JZkwYiyy9I
https://openreview.net/pdf?id=JZkwYiyy9I
https://arxiv.org/pdf/1303.3679
https://arxiv.org/pdf/1303.3679
https://arxiv.org/pdf/1303.3679
https://arxiv.org/pdf/1707.06347
https://arxiv.org/pdf/1707.06347
https://arxiv.org/pdf/1707.06347
https://arxiv.org/pdf/2010.11929
https://arxiv.org/pdf/2010.11929
https://arxiv.org/pdf/2010.11929
https://arxiv.org/pdf/2103.00020
https://arxiv.org/pdf/2103.00020
https://arxiv.org/pdf/2103.00020
https://arxiv.org/abs/2009.12293
https://arxiv.org/abs/2009.12293
https://arxiv.org/abs/2108.03298
https://arxiv.org/abs/2108.03298
https://arxiv.org/abs/2310.17596
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290

preprint arXiv:2110.06169, 2021. URL https://arxiv.org/
abs/2110.06169.

[43] Scott Fujimoto, David Meger, and Doina Precup. Off-
policy deep reinforcement learning without exploration.
In International conference on machine learning, pages
2052–2062. PMLR, 2019. URL https://arxiv.org/abs/
1812.02900.

[44] Ajay Mandlekar, Danfei Xu, Roberto Martı́n-Martı́n,
Silvio Savarese, and Li Fei-Fei. Learning to generalize
across long-horizon tasks from human demonstrations.
arXiv preprint arXiv:2003.06085, 2020. URL https:
//arxiv.org/abs/2003.06085.

[45] Yifan Zhou, Shubham Sonawani, Mariano Phielipp, Si-
mon Stepputtis, and Heni Ben Amor. Modularity through
attention: Efficient training and transfer of language-
conditioned policies for robot manipulation. arXiv
preprint arXiv:2212.04573, 2022. URL https://arxiv.org/
abs/2212.04573.

[46] Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau,
Yilun Du, Benjamin Burchfiel, Russ Tedrake, and Shuran
Song. Diffusion policy: Visuomotor policy learning via
action diffusion. The International Journal of Robotics
Research, page 02783649241273668, 2023. URL https:
//arxiv.org/abs/2303.04137.

https://arxiv.org/abs/2110.06169
https://arxiv.org/abs/2110.06169
https://arxiv.org/abs/1812.02900
https://arxiv.org/abs/1812.02900
https://arxiv.org/abs/2003.06085
https://arxiv.org/abs/2003.06085
https://arxiv.org/abs/2212.04573
https://arxiv.org/abs/2212.04573
https://arxiv.org/abs/2303.04137
https://arxiv.org/abs/2303.04137

APPENDIX

I. EXPERIMENTAL SETUP

A. Real-World Experiment Setup

Real-world experiments were conducted using a UR5e
robotic arm equipped with high-resolution cameras and a
standardized workspace. The setup is shown below in Fig 8.

Fig. 8: Scenes from experiments on real world robot

B. Simulation Experiment Setup

Simulation experiments were performed using the MuJoCo
physics engine integrated with Robosuite. The simulated en-
vironments included variations in object positions, shapes,
and textures. The simulation allowed extensive testing across
diverse scenarios. Below we show a few samples in Fig 8.

Fig. 9: Scenes from experiments on Robosuite

C. Baselines

To validate the effectiveness of our method, we compared it
against two categories of baselines: Reinforcement Learning
(RL) baselines and Vision-Language Model (VLM) baselines.
Below, we detail their implementation, hyperparameters, and
specific configurations.

1) Reinforcement Learning (RL) Baselines: The RL base-
lines were implemented using well-established algorithms,
each optimized for the task to ensure a fair comparison. The
following RL methods were included:

• Proximal Policy Optimization (PPO): A policy-gradient
method known for its stability and efficiency. Key hyper-
parameters included:

– Learning rate: 3× 10−4

– Discount factor (γ): 0.99
– Clipping parameter (ϵ): 0.2
– Number of epochs: 10

– Batch size: 64
– Actor-Critic network layers: [128, 256, 128]

• Soft Actor-Critic (SAC): A model-free off-policy algo-
rithm optimized for continuous action spaces. The key
hyperparameters were:

– Learning rate: 1× 10−3

– Discount factor (γ): 0.99
– Replay buffer size: 1× 106

– Target entropy: −dim(action space)
– Batch size: 128

• Advantage Actor Critic (A2C):
– Learning rate: 2.5× 10−4

– Discount factor (γ): 0.99
– Exploration strategy: Epsilon-greedy (ϵ decayed

from 1.0 to 0.1 over 500,000 steps)
– Replay buffer size: 1× 106

– Batch size: 64
– Neural network layers: [128, 256, 128]

Each RL baseline was evaluated using the same metrics,
ensuring consistency across comparisons.

2) Vision-Language Model (VLM) Baselines: The VLM
baselines take advantage of the interplay between visual and
textual modalities for task representation. We evaluated 3 state-
of-the-art VLMs adapted to our task:

1) GPT-4o
2) Gemini 1.5 Pro
3) Qwen2-VL

Additionally, we leverage GPT-4o with in-context learning,
using five demonstrations. First, we process the output tra-
jectories into videos and compute the appropriate frame rate
to generate video sequences equivalent to 15 frames per
trajectory pair. These sequences, representing perturbation
scenarios, are provided to the VLMs along with a system
prompt that includes a detailed policy description, training
configuration, and a natural language task description. For
evaluation, we structure the testing dataset using a pairwise
comparison framework, where each model is prompted to
assess two input video sequences and rank which is more
likely to result in task success. The results are recorded in
a CSV file, and we compute comparison scores by analyzing
model rankings against ground-truth rollouts in the simulated
perturbation.

II. RATIONALE FOR USING REINFORCEMENT LEARNING

RL is employed in the RoboMD framework due to its
ability to explore high-dimensional, complex action spaces and
optimize sequential decision-making under uncertainty. This
section outlines the key motivations for choosing RL as the
core methodology:

Exploration of High-Risk Scenarios: Traditional ap-
proaches to analyzing robot policy failures often rely on de-
terministic sampling or exhaustive evaluation, which become
infeasible in large, dynamic environments. RL allows targeted
exploration by learning an agent that actively seeks out envi-
ronmental configurations likely to induce policy failures. This

0 4 8 12 17

0

4

8

12

17
0 4 8 12 17

0

4

8

12

17
0 4 8 12 17

0

4

8

12

17
0 4 8 12 17

0

4

8

12

17

Fig. 10: The order in which the confusion matrix is a) Image Ecoder + BCE b) Image + Text Encoder + BCE loss c) Image
Encoder + BCE + Contrastive loss d) Image + Text Encoder + BCE + Contrastive loss

t = 0 t = 20 t = 40 t = 60

Training
Configuration

(Success)

Perturbed
Configuration

(Failure)

Fig. 11: Testing Robustness Under Visual Perturbations: Successful Rollout in Training vs. Failure Induced by Red Table
Distraction

capability is particularly useful for systematically uncovering
vulnerabilities in high-dimensional environments.

Optimization of Failure Discovery: The objective of
RoboMD is to maximize the occurrence of failures in pre-
trained policies. RL frameworks, such as PPO, are well-suited
for this task as they iteratively refine policies to achieve
specific goals, such as identifying high-risk states. The reward
function incentivizes the agent to find configurations where the
manipulation policy fails by going through multiple actions to
induce failures. Fig 11 shows several steps of the manipuation
policy rollout.

Comparison with Alternative Methods: While other meth-
ods, such as supervised learning or heuristic-based exploration,
can provide valuable insights into specific failure cases, they
are limited in their scope and adaptability. Supervised learning
approaches rely heavily on labeled data, which is challenging
to obtain for failure analysis, particularly for rare or unseen
failure modes. These methods also lack the ability to adapt
dynamically to changes in the environment, reducing their
effectiveness in exploring novel or complex failure scenarios.
Similarly, heuristic-based exploration methods, such as grid
search or predefined sampling strategies, can identify failure
cases under controlled conditions but struggle to general-

ize in high-dimensional environments where the space of
possible failure configurations is vast. These methods are
also constrained by their reliance on static, predefined rules,
which often fail to capture the intricate interactions between
environmental factors and failure likelihoods. In contrast, rein-
forcement learning excels in scenarios where exploration and
generalization are critical. Through reward-driven learning,
RL agents actively seek configurations that maximize the
probability of failure, uncovering patterns and interactions that
static methods are likely to miss. Moreover, RL does not
require a fully labeled dataset; it iteratively refines its policy
through interaction with the environment, making it highly
adaptive and scalable. By focusing on cumulative rewards,
RL is uniquely positioned to generalize across a wide range of
failure-inducing conditions, including edge cases and scenarios
resulting from complex factor interactions. This adaptability
and exploratory capability make RL an ideal framework for
large-scale failure analysis in dynamic and uncertain envi-
ronments, surpassing the limitations of traditional supervised
learning or heuristic-based approaches.

III. CONTINUOUS ACTION SPACE EMBEDDING

Embedding actions in a continuous space is crucial for
efficiently capturing the underlying structure of decision-

Train: No Color
FT: B

lue

FT: B
lue Green

FT: B
lue Green Red

Train: All Colors

FT: A
ll Colors

FT: R
ed

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Task: Lift, Algo: BC

Train: No color
FT: B

lue

FT: B
lue Green

FT: B
lue Green Red

Train: All Colors

FT: A
ll Colors

FT: R
ed

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Task: Lift, Algo: Diffusion

Default Table Blue Table Green Table Red Table

Fig. 12: Performance comparison of behavior cloning (BC) and diffusion-based policies on the Lift task before and after
fine-tuning with failure-inducing samples. Each bar represents the success rate of the policy across different table colors.

making processes. Unlike discrete action spaces, where each
action is treated as an independent category, continuous action
space embeddings aim to encode similarities and relationships
between actions in a structured space.

TABLE VI: Actions for Can and Box tasks.

Task Action Description

Can

Change the can color to red.
Change the can color to green.
Change the can color to blue.
Change the can color to grey.

Box
Change the box color to green.
Change the box color to blue.
Change the box color to red.

Box Sizes
Resize the box to 0.3× 0.3× 0.02 (L, B, H).
Resize the box to 0.2× 0.2× 0.02 (L, B, H).
Resize the box to 0.1× 0.1× 0.02 (L, B, H).

A. Action Description Mapping for CLIP Language Input

To generate language inputs for CLIP, we use a mapped
dictionary that encodes the action being applied to the image.
The action descriptions for different tasks are detailed in
Table VI. This table represents only a subset of possible
actions, and users are free to modify the language as needed.
The descriptions are not strict requirements, as the model
learns over time to associate text and images with failure
patterns, allowing for flexibility in phrasing while maintaining
the underlying semantic meaning. The actions used for Lift
task is as follows which was also shown as (A1,A2...A21) in
Fig 7:

1) Change cube color to red
2) Change cube color to green
3) Change cube color to blue

4) Change cube color to gray
5) Change table color to green
6) Change table color to blue
7) Change table color to red
8) Change table color to gray
9) Resize table to (0.8, 0.2, 0.025)

10) Resize table to (0.2, 0.8, 0.025)
11) Resize cube to (0.04, 0.04, 0.04)
12) Resize cube to (0.01, 0.01, 0.01)
13) Resize cube to (0.04, 0.01, 0.01)
14) Change robot color to red
15) Change robot color to green
16) Change robot color to cyan
17) Change robot color to gray
18) Change lighting color to red
19) Change lighting color to green
20) Change lighting color to blue
21) Change lighting color to gray

B. Evaluation

Fig 10 illustrates the similarity structure of embeddings
trained using only Binary Cross-Entropy (BCE) loss, resulting
in highly correlated representations. In contrast, the right
matrix, trained with a combination of BCE and Contrastive
Loss, demonstrates improved separation, as evidenced by the
stronger diagonal structure and reduced off-diagonal similari-
ties.

To assess the quality of the learned embeddings, we conduct
an evaluation using a k-Nearest Neighbors (kNN) classifier.
Specifically, we train kNN on a subset of the embeddings
and analyze the impact of increasing k on test accuracy. The
intuition behind this evaluation is that well-separated embed-
dings should be locally consistent, meaning that a small k
(considering only close neighbors) should yield high accuracy,

0 10 20 30 40 50 60
Number of Neighbors (k)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Ac

cu
ra

cy

Fig. 13: kNN Accuracy Drop with Increasing k in Continuous
Action Space Embeddings

while increasing k (incorporating more distant neighbors) may
introduce noise and reduce accuracy as shown in Fig 13.

C. Integrating Visual and Textual Representations

Incorporating a textual backbone alongside the image back-
bone yielded significantly lower loss values and faster conver-
gence compared to using an image-only backbone.

0 20 40 60 80 100 120 140
Epoch

20

40

60

80

100

120

140

Lo
ss

Image-Only Backbone
Image+Text Backbone

Fig. 14: Training loss for training action representations

This improvement can be attributed to several factors:

1) Semantic Guidance: Textual representations carry rich
semantic information that can guide the image backbone.
Instead of relying solely on visual cues, the model gains
an additional perspective on the underlying concepts
(e.g., object names, attributes, or relations).

2) Improved Discriminative Power: With access to text-
based information, the model can differentiate between
visually similar classes by leveraging linguistic differ-
ences in their corresponding textual descriptions.

3) Faster Convergence: Because textual features often come
from large, pretrained language models, they are already
highly informative. Injecting these features into the train-
ing pipeline accelerates the learning process, reducing
the number of iterations needed to reach a satisfactory
level of performance.

IV. FINE-TUNING

Once failure modes are identified. The most effective strat-
egy is fine-tuning the manipulation policy, πR, using all se-
lected failure samples together, rather than iteratively adapting
to subsets as shown in Fig 12. To adapt the policy πR against
identified failures, we select a subset Csub ⊆ C by choosing
samples of area a user wants to improve. Finally, we fine-tune
πR on the combined dataset Csub, thereby ensuring targeted
corrections for critical failures as shown in Fig 15, where
a large FM finetune also lead to accuracy improvement. In
scenarios where computational resources allow, fine-tuning
on the entire set C may be more effective; however, when
resources are constrained, leveraging RoboMD to identify an
optimal subset of C is an efficient and robust strategy for policy
adaptation.

Default
Color 1

Color 2
Color 3

Color 4
Color 5

Color 6
Color 7

Color 8
Color 9

Color 10
Color 11

Table Color

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Fig. 15: BC lift finetuned on a combined dataset of 12 different
Table colors

Task: Pick up object Sprite Bottle Bread Fanta Bottle Milk Carton Red Cuboid

Task: Square Lighting Table Color Table Shape Object Color Object Size

Task: Pick Place Lighting Table Color Table Shape Object Color Robot Color

Task: Threading Lighting Table Color Table Shape Gripper Color Object Shape

Task: Stack Ligthing Table Color Table Shape Cube Color Robot Color

Task: Lift Lighting Table Color Table Shape Cube Color Robot Color

Fig. 16: Environmental and Object Perturbations on Manipulation Tasks

	Introduction
	Related work
	Methodology
	Failure Diagnosis on Candidate Environment Variations
	Generalizing Failure Diagnosis for Unseen Environments
	Uncovering Failures
	Using Failures for Policy Improvement
	Experimental Results
	Benchmark Comparisons
	Generalization to Seen and Unseen Environments
	Ablation: Quality of Vision-Language Embeddings
	Failure-Guided Fine-Tuning

	Conclusion
	Experimental Setup
	Real-World Experiment Setup
	Simulation Experiment Setup
	Baselines
	Reinforcement Learning (RL) Baselines
	Vision-Language Model (VLM) Baselines

	Rationale for Using Reinforcement Learning

	Continuous Action Space Embedding
	Action Description Mapping for CLIP Language Input
	Evaluation
	Integrating Visual and Textual Representations
	Fine-tuning

