
RAY: BATTERYLESS OCCUPANCY MONITORING USING REFLECTED AMBIENT LIGHT

Anonymous authors
Paper under double-blind review

Abstract
Room-level occupancy-tracking systems enable intelligent
control of building functions like air conditioning and power
delivery to adapt to the needs of their occupants. Unfortu-
nately, existing occupancy-tracking systems are bulky, have
short battery lifetimes, are not privacy-preserving, or only
provide coarse-grain occupancy information. Furthermore,
retrofitting existing infrastructures with wired sensors is pro-
hibitively expensive.

In this paper, we present Ray, a batteryless,
doorframe/passageway-mounted room-level occupancy
monitoring sensor that uses changes in indoor ambient light
reflections to detect people entering and exiting a room or
hallway and estimate direction of travel. We evaluated Ray
in mixed lighting conditions on both sides of the doorway
in an office-style setting, using subjects with a wide variety
of physical characteristics. We conducted 881 controlled
experiments in 7 doorways with 9 individuals and achieved a
total detection accuracy of 100% and movement direction
accuracy averaging 96.4%. Furthermore, we deployed Ray
sensors for 64 days in 5 locations, comparing them with a
commercial batteryless occupancy sensor. Ray outperformed
the commercial sensor, particularly where traffic is moderate
to heavy. Ray demonstrates that ambient light reflections
provide both a promising low-cost, long-term sustainable
option for monitoring how people use buildings and an
exciting new research direction for batteryless computing.

1 Introduction

Understanding how people move, work, and live within a
workplace or residence is essential for enabling health, ef-
ficiency, and security applications in smart buildings. Ap-
pliances, computers, lighting, heating and cooling systems
can adapt their behavior depending on the number of occu-
pants, their needs, and the context of their interactions. Smart
buildings can automatically identify indoor traffic patterns,
poorly-used space, and congested walkways, helping us better
understand how people interact with the indoor spaces they
use. We can only achieve these benefits if we can effectively
sense how people move indoors.

Unfortunately, current occupancy-tracking systems are
large, expensive, and high-maintenance—too expensive for
large-scale deployments and too high-maintenance for long-

Figure 1: The overall system concept of Ray, a batteryless,
energy-harvesting, doorway mounted occupancy tracking and
person detection enabling system. This system uses reflective
indoor lighting to both power the system and detect person
entry and exit activity to a room or corridor.

term use. Existing systems use a variety of techniques, includ-
ing ultrasound [20], images [35, 36], wearables [12], instru-
mented objects [4], structural vibrations [30], and opportunis-
tic data leaked from existing meters and security systems [40].
Some gather identifiable information. Others require building
remodeling, force users to change their behavior, or require
structural models of the building. For any of these solutions
to work, we must either provide wired power to the sensors
(which is usually both expensive and invasive), or use batteries
which increase cost, environmental impact, and fire risk, and
which must be replaced every few years (even rechargeables).

In this paper we present Ray (overview shown in Figure 1),
an occupancy-monitoring sensor that is low-cost and low-
maintenance, preserves occupant privacy, and can operate for
decades1 without wired power or batteries.

Like previous solutions [20], Ray attaches to the top of a
door frame and monitors movement in and out of the doorway.
In contrast, however, Ray does not use active sensors (like
ultrasonic range finders), but instead senses movement us-
ing the same ambient light reflections that power the sensor.
Ray harvests solar energy from indoor lights to power all op-
erations, and uses a combination of hardware and software
techniques to detect human movement and direction as solar

1Actual lifetimes depend on environmental conditions, enclosure qual-
ity, and rates of decay for silicon and other circuit materials. Without the
usual bottleneck (the battery), lifetimes of 10–50 years are realistic but not
guaranteed.
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energy availability changes. Ray stores this information on de-
vice, and opportunistically transmits occupancy information
to a basestation using its radio.

Contributions:

1. We present a novel system design for unobtrusive, long-
term, low-cost, zero-maintenance occupancy tracking.

2. We explore design considerations for batteryless,
intermittently-powered sensing systems for detecting
ephemeral events that can be broadly applied to other bat-
teryless sensing applications.

3. We provide an implementation, deployment (both con-
trolled and in-the-wild), and evaluation of Ray that ex-
plores the strengths and limitations of our approach.

Ray is, to our knowledge, the first batteryless occupancy-
monitoring solution [13, 14], and demonstrates the potential
and usefulness of long-lived, energy-harvesting, batteryless
sensing operation in the built environment. In this paper we
present our design, a working prototype, and evaluation results
showing the efficacy of the approach.

2 Batteryless People Sensing

Energy-harvesting batteryless sensors are critical to an afford-
able and sustainable Internet-of-Things (IoT) and the future
of smart buildings. Running wires to power new sensors and
other devices is expensive and not always feasible. On the
other hand, batteries are expensive, bulky, and often hazardous.
Even rechargeable batteries wear out after a few years, and
replacing trillions of additional batteries every year would be
both expensive and irresponsible. In contrast, batteryless sen-
sors powered entirely with harvested energy cost less, weigh
less, and can operate for decades with minimal maintenance
and environmental impact.

However, batteryless sensing is challenging. Energy is
stored in one or more small, cheap capacitors to improve effi-
ciency and responsiveness [17]. Harvested energy is variable
and difficult to predict. Power failures are common, interrupt-
ing computation and data processing, sensing, and commu-
nication. Clocks reset and volatile memory is lost frequently,
complicating a developer’s ability to build robust and sophis-
ticated applications.

Recent advances in checkpointing [1, 31], consistent exe-
cution [6, 25], timekeeping [19], energy management [17],
testing [16], and debugging [8] address key challenges and
have enabled new and interesting applications. Examples of
such applications include tracking building and appliance
energy consumption [5, 10] and monitoring greenhouses [17].

In spite of these improvements, current batteryless sensing
applications are limited and typically fall into one of two cat-
egories: those that depend on an RFID reader and those that

opportunistically detect valid, useful data whenever measured.
Power failures and long outages make it difficult or impossible
to gather streams of uninterrupted data, inevitably resulting
in an inferior quality performance when compared to reli-
ably powered sensors. This has complicated the design and
deployment of such batteryless sensors in many application
areas.

Occupancy-monitoring applications try to instrument build-
ings, people, or other indoor elements to get a better under-
standing of the number of people in a room. This information
is the baseline data for successful operation of smart building
functions such as intelligent temperature and HVAC control,
efficiency monitoring, elderly tracking, and other applications.
Existing occupancy-monitoring systems use many sensing
techniques and deploy in many different form factors, with
doorway-based sensing being one promising method [20, 22].
In this paper, we implement a doorway-mounted batteryless
sensor for occupancy monitoring and investigate the chal-
lenges posed by an unreliable power supply to achieving
a reasonable quality of sensing. We recognize three major
aspects to implement a successful sensing system with unreli-
able power:

Intermittence: Small energy storage combined with unpre-
dictable energy harvesting means that batteryless devices
must be equipped to handle intermittent operation. Specifi-
cally, batteryless occupancy sensing devices must be careful
to (1) optimize operation to make best use of available energy,
(2) use ultra-low-power techniques and passive methods to
perform the actual sensing and support the applications, and
(3) be failure resistant, gracefully handling power failures and
returning to deterministic states.

Energy harvesters as sensors: A sensing system tradition-
ally consists of a dedicated sensor to gather data, along with
some form of processing and communication, powered from
a reliable energy source. While some existing solutions [24]
similarly use light signals to power and gather information,
they separate their harvester sensors from the photodiodes
used for sensing with switches to separate the harvesting sig-
nal from the sensor signal. We propose an alternative to this
approach by making use of the collected energy itself as data
simultaneously. This approach gathers data by inferring the
signal from variations in the harvested energy, instead of using
that energy to power an explicit sensor. This approach is more
challenging than the traditional or separating techniques since
drawing from the harvested power supply over the lifetime of
the system inherently impacts the signal that we are reading
from for our data which can impact how the sensor data is
interpreted and used.

For example, door-mounted occupancy sensors can harvest
energy from indoor and ambient lighting using solar panels
pointed towards the floor or other reflective surfaces. Con-
currently, this energy is also a signal that can be processed
to gain insight into the changing environment of the build-
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ing, the movement of people and objects, or even the time
of day. We can use this correspondence between energy and
data to enable passive sensing and consequently, batteryless
occupancy detection. If a door-mounted entry and exit sensor
has solar panels that point down towards the floor, a person
walking through the doorway will block some of the light,
reducing the energy harvested at that point in time. This event
can be tracked passively, effectively transforming the solar
panels into zero-power sensors. This signal will be affected
by the changing power draw of the system (an artifact of
the I-V curves of solar panels) and will have a changeable
resolution and magnitude depending on the incident light in-
tensity. These factors make the overall signal noisy; however,
careful signal processing in the energy constrained computa-
tional environment can provide useful information, freeing
up energy that would otherwise have been consumed by an
actively-powered sensor (like a PIR sensor or ultrasonic range
finder).

Human and building confounds: Harvesting both energy
and signal from solar panels introduces confounding factors
from the variability of lighting in buildings, and the variability
of people and their habits. Many buildings will have well-
lit rooms bordering dim hallways, and vice-versa. Natural
light may be abundant in some rooms, while others have
only artificial light. Clothing, hair color, skin color, walking
speed, and height will all affect and potentially change the
readings on the solar panels. Humans also have a tendency
to complicate data by not strictly walking in and out of a
doorway—they like to linger, pass-by, and abruptly change
direction under the sensor, for example. Ideally, it is a goal for
all occupancy monitoring using energy harvesting to be robust
enough to be able to handle these confounding factors, but all
occupancy monitoring systems suffer from these confounding
cases.

Batteryless occupancy sensing has never been done; but
can take advantage of a key observation to provide reliable
service—the reality that the applications’ harvested energy
can also be used a data stream that serves as a sensor. By tak-
ing advantage of the temporal locality of energy harvesting
and data in occupancy sensing, we can build a long-lived sen-
sor that detects and identifies the movement of people as they
enter and exit rooms. In the following sections we discuss Ray,
a novel sensing system that demonstrates the feasibility and
utility of intermittently powered, energy-harvesting devices,
for sensing in the sustainable future Internet-of-Things.

3 The Ray Design

Ray is a slim, batteryless, occupancy-monitoring sensor sys-
tem mounted to the top of a doorframe. It is powered by en-
ergy harvested from two arrays of indoor solar panels pointed
at the floor. The panels serve two roles: 1) energy harvester
and 2) sensor. These panels gather energy for computation,

sensing, and signaling while also providing the signal that
Ray uses to detect when a person walks through the door-
way in the form of variations in the harvested energy. Ray
records the direction—entry or exit—of each doorway event
and stores this information in non-volatile memory for later
transmission.

Design Goals: Unpredictable power supplies and human be-
haviors make designing an intermittently-powered occupancy
sensor challenging. We designed Ray to meet the following
design goals.

1. Availability: Doorway events can occur at any time.
While many intermittent sensors gather data opportunis-
tically as energy is available, Ray is designed to con-
serve its harvested energy so that it is available to detect
ephemeral doorway events, whenever they occur.

2. Accurate direction: In addition to detecting someone
passing through the doorway, Ray uses angled solar pan-
els to accurately determine their direction. This plays
a crucial role in inferring the occupancy of rooms and
buildings.

3. Variable lighting conditions: Indoor lighting conditions
can change over time, due to human behavior and the
relative movement of the sun. We have designed Ray to
work in a range of different lighting conditions by using
detection circuits that respond to changes in light level,
independent of the absolute amount of light, as well as
tuning mechanisms built into the prototype.

4. Variable human characteristics: An effective occu-
pancy sensor should work well in spite of variations in
clothing, hair, height, walking speed, and skin color. By
focusing on changes in total reflected light, Ray is robust
to these human variations.

5. Form factor: We want Ray to be easy to deploy, to fit
unobtrusively inside a door frame, and avoid contact with
doors (on frames with doors). We could harvest more
energy by wrapping Ray around the doorframe, but the
system would be more expensive, harder to deploy, and
more likely to interfere with doors, while also changing
the aesthetics of the doorway.

What Ray is not. We also want to be clear about what Ray is
not. Ray is not a security device. Ray helps building owners
and managers understand how people move through buildings,
but it is not designed to thwart malicious behavior. We can
easily trick Ray with a flashlight or reflective materials, and
we can disable it completely by covering its solar panels or
turning off the lights. Users looking to prevent shenanigans
or tomfoolery should use a different device. Users looking
for a long-lived, low-maintenance, best-effort batteryless oc-
cupancy sensor for monitoring normal behaviors should read
on.

3



Submitted to the Journal of Systems Research (JSys) 2024

Solar Panel Arrays

MSP430
FR5994

1st stage 
Capacitor

Outward Facing Panels

Current Flow

Data/Control 
Signals

LP 
Filter

Interrupt Ctrl

Comparator 

Tuning 
Circuitry

Inward Facing Panels

LP 
Filter

Interrupt Ctrl

Comparator 

Tuning 
Circuitry

Harvesting 

Charging
Hysteresis

Regulator 

Radio UFoP

Radio 2nd stage 
CapacitorSPI

De
te

ct
or

De
te

ct
or

MCU 

Figure 2: The Ray architecture overview. Ray uses the en-
ergy and signals from two sets of solar panels to both power
the sensor and detect people passing into and out of a door-
way. Two detector circuits each monitor the solar panels sets
mounted in series in the doorway. One detector monitors a
set of similarly facing panels, while the other observes the
combined signal from all of the panels. On detection, the de-
tectors wake up the MCU to process, log, or communicate
occupancy information.

The Ray hardware architecture, shown in Figure 2, includes
support for energy harvesting, event detection, computation,
and communication. In this section, we describe these com-
ponents and how they work together to meet Ray’s design
goals.

3.1 Energy Harvesting and Management
Ray takes advantage of the ubiquity of indoor light in homes
and offices. Solar panels are mounted to the top of the door
frame, pointing down toward the floor—half tilted 20◦ inward
and half tilted 20◦ outward. Pointing the panels downward
is not ideal for energy harvesting but effective for detecting
doorway events and provides a slim, easy-to-deploy unobtru-
sive form factor. Tilted panels help Ray determine walking
direction, since a person will affect one half of the panels
before the other.

To maximize energy harvesting, we connect the two sets of
solar panels—the inward-facing set and the outward-facing
set—in series. A series configuration conveniently combines
the two panel sets into a single power source that can be
used without adding boost regulators or other power condi-
tioning circuitry. This configuration makes it more difficult
to analyze the two signals independently since they lack a
common ground2. Instead, we measure the voltage of the

2For a series connection, we connect the positive terminal of the first

outward-facing set alone, and the combination of the two sets.
We could compute the inward panels’ voltage by subtracting
the two; however, we have found that we can skip this step
and just compare the two measurements directly, as shown in
Figure 3, to determine walking direction.

Ray uses federated energy storage [17] to power its mi-
crocontroller and peripherals. Harvested solar energy is fed
into a common first-stage storage capacitor and then automat-
ically federated to its one peripheral—a Texas Instruments
CC1101 radio. Federating energy allows us to start detect-
ing and processing events while saving up energy for more
energy-expensive radio transmissions. It also improves har-
vesting efficiency and reduces the risk that the microcontroller
will lose power due to a radio transmission.

3.2 Detection

When someone walks under Ray, they block some of the
reflected light hitting the solar panels. In Figure 3, the solar
traces on top show how solar panel voltage changes during a
doorway event.

In order to detect a doorway event, we could use an ADC
to continuously measure the solar panel voltage over time
and analyze those readings to detect the presence and, more
importantly, direction of motion. Voltage levels and waveform
shapes vary with lighting conditions, especially when one side
of the doorway has more natural light. This approach would
mean more complicated signal analysis and much higher en-
ergy consumption. Instead, Ray uses a detection circuit that
wakes up the microcontroller when it detects a significant
change in the solar panel voltage over a short period of time.
This circuit consists of a passive first-order capacitive filter
connected to a nano-power comparator—producing a square
wave that transitions when the voltage increases or decreases
faster than a set rate. These transitions trigger interrupts that
help Ray detect when someone is passing through the door-
way.

In order to determine movement direction, we use two
detector circuits: one that detects change on the outward-
facing panels and another that detects change on the com-
bined inward- and outward-facing panels. When someone
walks through the doorway, the detectors trigger at differ-
ent times, depending on the walking direction, as shown in
Figure 3. Ray compares the timing of these detector interrupts
to distinguish incoming and outgoing events.

Removing light flicker. Many fluorescent indoor lights flicker
at 60 Hz or higher—a much higher frequency than the events
Ray detects. If not filtered out, fluctuations can confuse the
detection circuit and produce false positive results. We add
a low-pass filter to remove noise above 10 Hz from the solar
panel signal.

panel set to the negative terminal of the second.
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(b) Walking out.

Figure 3: These traces show example solar panel voltages and detector outputs over time when a person walks through a
Ray-enabled doorway. The top traces show how the solar panel’s voltages are deformed during the doorway event. The detector
triggers are used to wake up the microcontroller and detect events and their direction. The angling of the panels cause the inward
facing and outward facing detectors to trigger at different times depending on the direction the person is walking.

Isolating harvesting from sensing. If connected directly,
Ray’s harvesting and event detection circuits can potentially
conflict in two important ways. First, the harvesting circuit
stores harvested energy in a 100 µF capacitor—a size that
ensures that Ray can store enough energy for short-term tasks
and dampens the low-frequency voltage fluctuations that we
need in order to detect doorway events. Second, short-term
power spikes from interrupt service routines and other compu-
tation cause high-frequency dips in the solar voltage, which
can confuse the detection circuits. We address both of these
challenges by adding an additional low-pass filter between the
detection and harvesting circuits. This isolates the solar panel
from the load, and allows the solar panel voltage (after the
initial flicker filter) to fluctuate over a wider range in response
to doorway events with less interference from the storage
capacitor, the microcontroller power draw, and the detector
circuit power draw.

Detection algorithm: Ray’s software works as shown in
Figure 4. During normal operation, when no doorway events
are detected, Ray’s MCU remains in a sleep mode, only wak-
ing up to report heartbeats after two minutes of inactivity.
While in sleep mode, the MCU only wakes up in two cases:
1) when its inter-event timer fires (this timer measures the time
that has passed since the last reported event) and 2) when ac-
tivity near the sensor triggers the detector circuits. A detector
transition from a high state to a low state—due to a drop in
harvested solar energy caused by a person walking through the
doorway—will wake up the system to process an event. This
initial wake-up marks the start of an event. The MCU records
when the interrupt occurred, starts an event timer (6 seconds),
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Figure 4: The Ray detection algorithm and system decision
flowchart. The algorithm is composed of four parts that handle
reporting doorway events, processing detected events, process-
ing time between events and heartbeats, and idle waiting.

and goes back into sleep mode. During the 6 s event, the MCU
will wake up each time the detectors transition (from HIGH
to LOW and vice versa) to record the length of time between
each transition. A person may block light in many ways, and
so multiple interrupts may fire during a single doorway event.
When the event timer fires (after 6 s), the event is considered
finished and event classification and recording begins.

Times are recorded for the first falling edge interrupt (start
time) and the last recorded rising edge (end time) for both
solar panel sets of inward and outward facing panels. When
the event timer fires, the system has recorded both solar panel
sets’ start and end times, which are the features used to clas-
sify the event. For training, we collected features from 332
controlled events from two different people at three different
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Figure 5: 3D printed solar panel and PCB housing enclosure
with angled slots for solar energy harvesters and the Ray
prototype PCB.

locations, a lab, an office, and a hallway. Using this data, we
trained a 4-layer decision tree that classifies events as INs,
OUTs, and PASS-BYs (when a person passes within a few
feet of the sensor, but not under it.) When locations had a
door, the door remained open for the collection. The trained
decision tree is then used on Ray to classify observed events
during deployments.

Between events, Ray uses an inter-event timer to estimate
time between events. When the next event is detected, the
inter-event timer is stopped and then the event timer is started
for processing the event interrupts during the event window.
A heartbeat record is generated when the time since the last
event passes 120 seconds and is added to packet information
to be sent with other records to the basestation. Once the
event is processed and classified or heartbeat is generated, it
is recorded in non-volatile memory along with the estimated
time that has past since the last event or heartbeat record. The
inter-event timer is then reset and the cycle continues.

3.3 Communication and Infrastructure

Ray’s collected data are stored in non-volatile memory until
the system has saved up enough energy to transmit. To reduce
transmission cost, we summarize the last 5 recently-detected
event records, sending the sequence of events in order of
when they were recorded with the estimated time since the
last event that was seen and the classification of that event as
an in, out, passby, or heartbeat when 2 minutes of inactivity is
recorded. We compute a CRC over each sequence summary
and send the prior two sequence summaries in each packet
to reduce the risk of losing information due to corrupted or
missing packets and increase the likelihood that a basestation
will receive the data. If the radio’s capacitor isn’t sufficiently
charged, Ray will sleep and try again when the next event
occurs. This pattern continues throughout the system’s opera-
tional lifetime.

4 Implementation

In order to evaluate our approach, we implemented a pro-
totype Ray sensor that includes custom hardware (shown
in Figure 5), firmware for detecting and reporting doorway

Components Cost per unit Unit Cost for 1000

Solar Panels $ 1.95 $ 1.76
Microcontroller
(MSP430FR5994)

$ 8.04 $ 5.09

Wireless RF Transceiver
(CC1101)

$ 9.40 $ 9.40

Components $ 17.02 $ 6.63
PCBs* $ 2.94 $ 0.30

Entire Ray Prototype $ 39.35 $ 23.18

Table 1: Breakdown of the Ray prototype costs at time of
purchase for development.

events, and a custom 3D printed doorway mounting system
that holds the assembled PCB and solar panels in a slim pro-
file (Figure 5).

Hardware: Our prototype hardware integrates four (4) RL-
55x70 solar panels (70.00mm x 55.00mm) and custom printed
circuit boards (PCB) housed in a 3D-printed plastic enclo-
sure. The prototype uses an MSP430FR5994 microcontroller
from Texas Instrument’s (TI) FRAM line of ultra-low-power
processors. The newest FRAM-based MSP430s have several
advantages over previous models: lower sleep-mode currents,
shorter wake-up latencies, and faster non-volatile FRAM. En-
tirely interrupt-driven and remaining asleep most of the time
to conserve energy, Ray benefits from these improvements.
The solar panels are connected in two angled series-connected
banks, each consisting of two series-connected panels. We
connect the panels in series to increase voltage to allow Ray
to work in a wider range of lighting conditions and make
doorway events easier to detect. Our panels—chosen to pro-
vide flexibility during prototyping—provide enough current
to power the circuit with sufficient voltage levels for detection
under a wide range of lighting conditions. Future designs will
focus on miniaturization. The detector circuitry is made using
nano-power comparators (TI TLV3691) and a passive RC
filter network. In order to give us flexibility, the RC filter net-
work is tunable using trim potentiometers pre-installation or
digital potentiometers in deployment. The Ray PCB also has
a TI CC1101 radio for communication. The hardware used
in the Ray prototype, shown in Figure 5, is not prohibitively
expensive or obtrusive.

The total cost of the current prototype at the time of pur-
chase, including all PCBs, component parts, Radio modules,
and solar panels is $23.18 per unit if ordered in quantities
of 10003. The distribution of the prototype costs is shown in
Table 1. The current prototype has several components that
are meant to enable experimentation and testing (modular
board design, jumpers, headers, test points, etc)—a commer-
cial version of Ray will be dramatically cheaper and smaller.

3PCBs priced by seeedstudio.com.
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Firmware: The Ray firmware implements the detection al-
gorithm with a trained decision tree for event classification
discussed in Section 3. Monitoring the interrupts from the de-
tectors and deducing the direction of motion upon triggering
are the main tasks of the system. The firmware is designed to
be ultra-low power, even in active mode, and has low compu-
tational complexity, offloading the bulk of the detection to the
hardware circuits. The Ray firmware is composed of 691 lines
of commented C code, compiling to a 4459 byte image. This
code size comprises only 1.7% of the available code space
on the MSP430FR5994 (256KB), leaving ample room for im-
plementing custom tasks, recognizers, or multiprogramming
operating systems.

Mechanical Design: The 3D printed mounting system
(shown in Figure 5) is made of PLA plastic and contains
the PCB, solar cells, and necessary wiring connecting them.
Ray’s 3D printed enclosure measures 56.0 mm by 395.9 mm
by 22.8 mm at its thickest point. The enclosure provides a
nesting place for the solar cells, pointing downward. A sim-
ple slide-mounted cap was also designed to cover the PCB
housing to help minimize distractions when deployed. The
sensor could be minimized further by selecting smaller solar
panels and by placing the PCB behind the panels rather than
to the side of the panels. The angle of the solar cell slots is set
such that half of the solar cells tend toward the entry, while
the rest face toward the exit.

All software, firmware, hardware schematics and layouts,
and 3D printed mounting system will be made freely available
at publication time.

5 Evaluation

In order to evaluate the efficacy of our approach, we evaluated
Ray in both controlled and in-the-wild deployments.4 We also
compared Ray to a similar commercial sensor during the in-
the-wild deployments, which is discussed in greater detail in
Section 5.2.4.

5.1 Controlled Experiments

We evaluated Ray’s performance under controlled conditions
in three phases to test different variables the system might
encounter:

In phase one we tested Ray on multiple doorways, with
different light levels, flooring, doorway heights, and doorway
widths. For each test, we evaluated Ray’s ability to detect
someone passing through and determine the person’s direc-
tion of movement. We also tested the system’s robustness to
variations in height, clothing, and hair color by including a
diverse group of subjects. We tested on 7 different doorways

4Both controlled and in-the-wild deployments were approved by our
Institutional Review Board.

with 9 people for a total of 881 different doorway events (each
person walked through multiple times per doorway).

In phase two we tested the limits of the device, exam-
ining the factors that affect its accuracy, performance, and
availability—including lighting conditions, walking speed,
and short delays between doorway events. We also tested
a variety of events that may be falsely detected as doorway
events.

In phase three we explored the energy-harvesting ability
and gather microbenchmarks of the energy consumption of
the parts of the Ray system.

5.1.1 Methodology and Claims

The following experiments address the goals defined in
Section 3. We address system availability (Goal 1) by demon-
strating the low power draw of the system and the number of
recorded doorway events (and the number of doorway events
missed) for each doorway test. Further, we evaluated the ac-
curacy in determining the direction (Goal 2) by observing
how often Ray correctly determined walking direction. We
explored variable lighting conditions (Goal 3) by testing the
device under 7 different doorways and hallways with diverse
lighting conditions, both typical and adverse. We address
human variation (Goal 4) by evaluating different walking
speeds and the effects of clothing and hair color/hair covering
on detection patterns. We claim that form factor (Goal 5)
is addressed by our prototype and slim mechanical design,
described in Section 4.

We also tested the limits of the device, by varying different
factors to see when the device stops working and exploring
conditions that can confound the sensor. These tests cannot
hope to cover all possible deployment conditions, but they do
give a broad sense of the capabilities and limitations of Ray.

We gathered all electrical signal measurements, except
where specified otherwise, using the Saleae Logic 16 logic
analyzer5 at a sampling rate of 5KS/s. The analyzer’s high-
impedance ADCs allow for unobtrusive signal monitoring.
This sampling rate is sufficient to detect the types of slow-
varying doorway events that human activities produce. We
manually recorded the direction of each doorway event as
ground truth to verify Ray’s event detection accuracy, then
compared the ground truth results with the results measured
by the logic analyzer. We measured light intensity levels us-
ing a TSL2561 light sensor,6 aligned to the same angle as the
solar panels in both directions to get accurate light intensities
falling on the panels.

Finally, we investigate the accuracy of Ray against our
manually gathered ground truth (visually verifying a person
entering or exiting the room) instead of comparing to an-
other occupancy-detection system. We do compare Ray to

5https://www.saleae.com
6https://cdn-shop.adafruit.com/datasheets/TSL2561.pdf
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Passageway # Light Intensity (lux) Flooring Dimensions (cm) Total Direction
Inside Outside Inside Outside Height Width Events # Accuracy(%)

Doorway 1 98* 93 Tile Tile 202 88 119 94.1
Doorway 2 81* 74 Carpet Tile 203 88 128 100.0
Doorway 3 60 57 Carpet Tile 203 88 123 93.5
Hallway 4 71 69 Tile Tile 236 243 123 97.6
Hallway 5 59 59 Tile Tile 236 240 127 99.2
Hallway 6 56 62 Tile Tile 236 244 118 89.8
Hallway 7 82 71 Tile Tile 221 191 143 99.3

Table 2: Evaluation results with 9 test subjects having variable height, hair color, and clothing as described in Section 5.1.2. We
tested 7 different doorways/hallways of varying light levels, dimensions, and flooring types, all of which had enough light to
power Ray. We ran multiple people through each of these 7 passageways one at a time, noting the detection accuracy and how
many of the detected events had correct direction. All controlled events were detected so we display the direction accuracy of
those events above. All these results show that an adequately lit Ray occupancy sensor can accurately detect doorway events and
their directions.
*Mixed Lighting — Combined natural and artificial light

a commercially available sensor in the later discussion on
uncontrolled deployment.

5.1.2 Normal Operation

In order to evaluate how well our approach detects doorway
events, we tested Ray across multiple different doorways with
a diverse group of subjects. In these tests, we focused on
detecting doorway events caused by a person walking under
the doorway and accurately determining the direction of the
person’s movement.

Experiment Overview: We tested 9 different participants,
with different physical characteristics—heights ranging from
5’4” to 6’4” and hair colors including blond, brown, black,
and bald. Our test group included a wide range of clothing
colors (light and dark) and a variety of head coverings (hats,
beanies, and hijabs).

For this experiment, we attached Ray prototypes to the top
of 7 different doorways and hallways. Table 2 describes the
passageways, including light intensity levels, flooring type,
and dimensions. For doorways with doors, the door remained
open throughout the experiments. Due to differences in sub-
ject availability, we had seven of the participants walk into
and out of the room or hallway at least 10 times in each di-
rection on all 7 passageways. An additional two participants
were asked to walk in and out of the doorways and Hallway
7 at least 5 times in each direction. When participants were
able to complete more than the requested 10 passes, that addi-
tional data was collected as well. Some additional data was
generated for these experiments since passersby would occa-
sionally trigger the system. For the controlled data collection,
we discarded events detected by the system when they were
affected by someone other than the intended subject triggering
the system, like a person passing by.

Results: The results of the controlled experiment, including
881 individual doorway events, are shown in Table 2. Each
event consists of one person walking through one doorway
one time. Participants walked through many different sides
of the doorway, not just through the center each time, and
they varied their entry and exit paths throughout the runs.
Participants also choose their walking speed at each run; while
most chose a natural walking pace, some did vary their speed
occassionally. Ray successfully detected 100% of the 881
doorway events. Ray also determined the walking direction
correctly for 849 (96.4%) of the events. Ray’s performance
was consistent across all test subjects, independent of human
variations like height, gait, hair color, and clothing.

5.1.3 Factors affecting Ray’s operation

In addition to testing “normal” walk-through conditions, in
this section we examine factors that affect Ray’s performance
as an occupancy-monitoring sensor. It would be impossible to
exhaustively study all possible variations, but we are able to
explore how Ray reacts to a variety of conditions and behav-
iors that it will encounter in actual deployments. Specifically,
we explored the following factors:

Light intensity: We tested Ray on a variety of doorways
with varying lighting conditions, with results listed in Table 2.
Since Ray’s solar panels are sensitive to visible light and the
IR spectrum, we used a TSL2561 sensor to measure both
mixed signal (visible and IR) data along with purely IR data,
and recorded the combined illumination value (in lux). Our
current prototype is fully functional on doorways with light
levels above 56 lux on both sides. An average room/hallway
in an office-style setting has light levels around 70 lux, which
is sufficient to power the Ray sensor. It is worth noting that
we can customize Ray for exceptionally dark doorways either
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by increasing the number of solar panels without changing the
working of the system itself, or by employing input booster
circuits like the ones used in CleanCut [7].

Walking Speed: Ray detects people walking under door-
ways based on the changes they induce in the system’s har-
vested energy supply. This means that if a person walks slowly
enough, their movement should become imperceptible to the
system. In order to evaluate this limit, we asked test sub-
jects to walk under the sensor at different speeds. We used
a metronome to which the subjects could match their steps
in order to achieve a consistent, even speed. With extremely
slow walking (slower than 1 ft/s), we did observe decreased
accuracies. Ray occasionally detected a slow-moving door-
way event as two events. No test subjects have yet been able
to walk slowly enough to avoid detection entirely. We don’t
consider this to be a problem for Ray, since in practice, people
don’t often move at such slow speeds.

Door Width and Height: All doors (in Table 2) were
around 203 cm tall by 88 cm wide. All hallways tested were
221 to 236 cm tall and 191 to 244 cm wide. In our experi-
ments, the door width and height had no significant effect on
the accuracy; however, the controlled experiments only tested
when a single person went through a wide door at a time, and
we did not control for participants walking through the middle
or side of the door (they were asked to walk naturally) or their
entry and exit angles around the passageway location.

Multiple people: Section 5.1.2 showed the ability of Ray
to detect individual people walking through. A practical con-
sideration would be to examine the performance of Ray when
multiple people walk through.

In order to evaluate this, we tested two subjects walking
through doorway #1 with varying time delays between them.
This gave us control over the time separation between two
events, and allowed us to examine how closely can two people
walk in without being detected as one, quite large person. We
discovered that as long as two people have at least 3-4 seconds
between them, Ray can accurately distinguish between them,
but may incorrectly classify the direction. This limitation is
introduced due to the time required by the solar panels to reset
or stabilize before the next event can occur. A subsequent
logical conclusion is that if two people walk side-by-side,
i.e.,with zero separation between them, out current prototype
is unable to detect them as two events.

The “Spotlight” effect: An interesting consequence of
light-based detection is a problematic condition that can oc-
cur especially in mixed-light settings, when an intense low-
angle light source dominates the illumination. This effect
appears in the presence of a very focused source of light that
dominates the illumination around the doorway, such as a

spotlight or a west-facing window in late evening when the
sun blazes directly through. When someone walks across the
light source, even if they are far from the doorway, it can be
detected falsely by Ray as someone walking through. Ray de-
tects people based on a decrease in the harvested energy and
momentarily blocking the spotlight can produce a significant
decrease in voltage on both solar channels. Interestingly, we
can see from Figure 6a that the raw output of the solar panels
look sufficiently different for someone walking across the
focused source as compared to when someone walks through
the doorway in presence of a focused source. With further sig-
nal processing, Ray could distinguish these spotlight events
so that such events would not cause false triggers.

Detection Range/Walking across, not through: Consid-
ering that Ray uses the blocking of light to detect a person,
there will be an influence radius inside which a person starts
affecting the sensor. If someone walks by either side of a door-
way monitored by the Ray sensor and are within the radius,
they will trigger the detector circuits and register as an event
by Ray. We ran an experiment to determine this radius of
influence where the subject was directed to walk by on either
side of the doorway at increasing distances from the sensor.
We started with a distance of 30 cm ( 1 foot) and went up to
152 cm ( 5 feet), in increments of 30 cm ( 1 foot). For each
distance, we asked the subject to walk by multiple times and
recorded how many false triggers were detected. An example
of this is shown in Figure 6b. We have observed that under
typically indoor lighting conditions for distances greater than
91 cm away from the doorway, there is a negligible chance of
triggering false events.

It is interesting to note from Figure 6b that there is a dis-
tinguishable difference between this event as compared to
someone walking through the doorway. Since they are walk-
ing only on one side of the doorway, their effect on both
channels is not delayed by the angling of the solar panels,
as is the case with walking through. As with the “Spotlight”
effect, we should be able to extract this difference with further
signal processing and learning.

Lingering in the doorway: Another situation that causes
false triggers is when a person approaches the doorway, but
simply pokes their head in. Upon evaluation, we discovered
that as long as the person is poking their head in the doorway,
the solar panel output remains at a lower level, and when they
exit, it rises back again. Although the current system imple-
mentation isn’t equipped to differentiate between someone
passing through and someone lingering in doorway, there is a
clear difference in the raw waveform outputted by the solar
panel. This case is similar to Section 5.1.3 in terms of being
distinguishable from a person walking through and with some
careful, direct signal processing it is definitely possible to
differentiate between the actual and the confounding case.
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(a) These traces show the solar panel output in the
presence of the “Spotlight” effect. The top figure
shows the response when someone walks across
the “Spotlight”, while the bottom one shows the
response when someone walks through the door.
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(b) This figure compares a person walking through
the doorway (top two traces) versus walking
across or by the doorway on the outside. There is
a clear delay between the two solar panel channels
when someone walks through, whereas the change
is reflected simultaneously when someone walks
by.

Figure 6: Factors affecting Ray operation.

5.1.4 Microbenchmarks

The more effective Ray is at maintaining a low-power state
when idling, the more available Ray is for detecting doorway
events and monitoring occupancy. The energy requirements
for detection and active computation must be kept low as
well. Unlike intermittent computing systems, Ray must in-
tentionally avoid power failures. We measured the current
draw of our Ray prototype while it was mounted on door-
way #1. The idle draw of the system was 7 µA, showing that
Ray can survive in a doorway with minimal light and energy
harvesting. We gathered other benchmarks of system energy
performance in each of sysname’s different operating modes.
To seperate harvesting and consumption, these measurements
were made after the MIC841 hysteresis chip. So, the actual
power and energy is slightly higher (by 1.5 µA according to
the datasheet).

Since Ray is event-driven, its actual power consumption
varies depending on the activity underneath the sensor. As
shown in Table 3 the idle power draw of Ray is low (7 µA).
When timers or detector circuits trigger interrupts (mainte-
nance events) the system draws 440 µW for a few µs. Comput-
ing walking direction, storing data, and transmitting results
when an event ends is more expensive (1100 µW, on average).
During typical operation, these higher-power events account
for an insignificant fraction of the device’s runtime, and the
average power draw is often indistinguishable from the idle
draw. Overall the energy consumption of the system is low,
but could be further improved with careful tuning of resistance

Hallway

Admin
OfficeLab

Hallway

— Sensor placement 

Deployment Floorplan
ClassroomLab

4 1
5

3

2
S

Figure 7: Ray deployment locations for the in-the-wild exper-
iments. Each location features different lighting conditions
as well as traffic patterns resulting from the adjoining labs,
offices, and classrooms.

values, sleep states, and the analog circuitry.

5.2 Rays in the Wild
In order to understand how Ray behaves in uncontrolled con-
ditions, we deployed multiple Ray units along a hallway that
connects offices, labs, classrooms, and bathrooms at locations
shown in Figure 7 for a collective total of 64 days.

5.2.1 Experimental Setup.

We conducted in-the-wild experiments in two sessions. In
the first, sensors were deployed at two locations (W1 & W2)
for 24 days at the end of an academic semester and into the
holiday class break. We observed events on 18 of the days
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State Avg. Current Peak Current MCU Active

Waiting (Sleep Mode) 7 µA 11 µA ✗

Maintenance Actions 200 µA 250 µA ✓

Doorway Event Handler 500 µA 700 µA ✓

Table 3: Microbenchmarks for Ray current consumption.

Location Dimensions (cm) Lighting Traffic Profile Days Ground Truth
Height Width Deployed Events

W1 243 235 Indoor Light/Moderate 17 436
W2 221 180 Indoor Light/Moderate 18 923
W3 202 149 Mixed Moderate/High/Bursts 10 1067
W4 236 241 Indoor Moderate/High/Bursts 10 1070
W5 239 190 Indoor Moderate/High/Bursts 9 1294

Table 4: In-the-Wild deployment location descriptions and counts of ground truth events over the days deployed.

(only 17 for one of the sensors). In the second session, we de-
ployed at three different locations (W3–W5) for an additional
11 days, with events recorded on only 9–10 days. This second
session, at the start of a new semester, had heavier traffic, as
shown in Table 4. The locations differed in light levels, width,
and height, while providing a range of lighting and behavioral
conditions. For example, the sensors near a classroom en-
counter multiple confounding cases like lingering and crowds
passing under a doorway, while the ones near a lab or office
are affected by lingering, spotlights, and occasionally crowds.
We selected hallways in order to observe a wider range of
natural traffic patterns, including multiple people walking to-
gether under the sensors. At each location, we installed a Ray
sensor, a commercial ceiling-mounted EnOcean occupancy
sensor [11], and a camera to provide a ground truth confirma-
tion of hallway activities. All locations have tile flooring on
both sides of the sensors and are typically well enough lit to
transmit a packet once after at least 30 seconds have passed.
This is usually ample time for the system to send a packet
for every five detected doorway events or heartbeat (nothing
has happened in two-minute) events, as events take at least
6 seconds each to process. We also deployed wall-powered
basestations to collect the transmitted data from the battery-
less Ray devices and EnOcean sensors. Each basestation is
an Internet-connected Raspberry Pi with a CC1101 radio and
an EnOcean receiver that receives packets and stores them in
an SQL database for later retrieval. We deployed two base
stations for redundancy—one would have been sufficient.

At each instrumented passageway, we also place a video
camera that continuously collects ground truth information
by recording the actual doorway events. We manually labeled
all recorded events by watching the videos and annotating
by storing the time and a description of each event—in, out,
pass-by, as well as more complex cases like lingering, people
changing direction under the sensor (u-turns) and multiple

people passing in or out in a group. In order to make sense of
the wide range of observed behaviors, we sorted the events
into 3 different categories: simple events, multiple-people
events, and complex events. Simple events include simple
ins, outs, and very close pass-by events with only one person
around the sensor within a 6-second window of time. Multiple
people events involve multiple people that pass under the
sensor going in the same direction within a 6-second window.
These events range from 2 people walking side-by-side or
close succession to 23 people all exiting at the same time
when classes let out. All other events fall in the complex
category, including lingering, changing directions underneath
the sensor, and multiple people going in different directions
under the sensor.

We compare these ground truth events against the sequence
of events Ray detects. Ray send a message to the basesta-
tion once it records at least five events or heartbeats and has
enough harvested energy. Ray generates heartbeat events after
two minutes of inactivity. So, during long periods of inactivity,
Ray will generate and send a packet every 10 minutes (con-
sisting of 5 heartbeats) to let us know that it is still alive and
has not seen any new events. This heartbeat frequency was
selected for this experiment to help us distinguish between pe-
riods of inactivity (no detected events), dropped packets, and
system failures. This frequency can also be adjusted to bal-
ance these liveness concerns with energy budget constraints.

Each network packet that Ray sends includes the sequence
of the events and heartbeats, an estimate of time that has past
between each event, their classifications, and a CRC computed
over the recorded values to protect against packet corruption.
As a simple redundancy mechanism in case of packet loss,
each radio transmission includes the last two previously-sent
packets along with the current packet.

For simplicity, Ray currently has no sense of absolute time—
just relative inter-event time. In order to reconstruct the se-
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Figure 8: The ground truth event timeline of our in-the-wild
deployment and how it is divided into packet windows based
on the when the packet is recieved immediately after process-
ing the fifth event record within the packet window. The heart
at event 4 represents a heartbeat event generated by Ray when
there have been no detected events for 2 minutes. The two
examples of recorded event and missed ground truth events
represent where two individuals walk through in quick suc-
cession, such that the sensor only identifies them as one event.
This example provides a high-level view of how we compute
the event statistics within a window.

quence of events, the time the basestation received the packet
is used as a reference to match windows of events to the
ground truth data. This time is closely correlated to the time
of the packet’s last event. So, we use these times to match
ground truth events with the events recorded by the Ray sen-
sors.

5.2.2 Data Collection and Analysis Method.

Each packet encodes the sequence of 5 events or heartbeats
that Ray recorded and an estimate of time that has past since
the last event or heartbeat recorded. A packet received at the
basestation is matched with a series of ground truth events
based on the packet’s receive time, the estimated inter-event
times, and the duration of Ray’s event window (6 s). This
helps account for minor human errors in labeling event times,
as it is not always clear exactly when someone started affect-
ing the sensor from video data. If two ground truth events
match a packet, the one closest (in time) is chosen and mapped
to the 5th event associated with this packet. Using the infor-
mation stored in the packets about number of events and their
estimated associated time between the events, we can esti-
mate the match of the other ground truth events with their
likely corresponding records in the packet record sequence to
analyze hits or misses and if the classified direction was cor-
rect. Figure 8 shows a high-level example of the how ground
truth events are divided by the packet window based on the
received time of the packet in order to calculate correctly
detected events and possible missed events, as well as when
detected, if they were correctly classified. Each Ray packet
has a monotonically increasing packet ID, which we use to
detect packet losses. If a packet is dropped or corrupted, it can
be reclaimed from the following transmission, which includes
the last two packets sent.

5.2.3 Results.

Ray performed well when detecting activity that was tak-
ing place under the sensor and, when the activity was close
enough, around the sensor. All events that happened under
the sensor were detected, and throughout the deployment, we
lost only one packet due to transmission errors. Based on the
previous and subsequent packet numbers, we know the sensor
recorded something but we can not verify whether the one
ground truth event that occurred during this time was detected
correctly. Table 5 shows the frequency of the different event
categories that the sensors experienced while deployed and
Ray’s accuracy on classifying the simple in and out events
where a single user walked under the sensor.

Simple Events significantly outnumbered the other two
event categories across all sensor locations. Ray is specifi-
cally designed to detect simple one-person ins and outs, and
these are the most common form of traffic we observed. Ray
detected all of the simple events, and correctly classified their
direction 83–95.5% of the time, depending on the sensor loca-
tion. Nearly all misclassified simple events were misclassified
as pass-by events, though a few out events were misclassified
as in events.

As mentioned before, only one of the deployment loca-
tions (W4) was used for both gathering training data and
our in-the-wild deployment. While this location (unsurpris-
ingly) outperformed the others, the others were close behind—
indicating both that the trained model was able to work well
when used in different lighting conditions and that future Ray
iterations might achieve small performance improvements by
adapting the model in situ based on observed light conditions.

Ray also detected the Multi-Person and Complex events,
including lingers, u-turns, and multiple people affecting the
sensor in quick succession; however, the sensor was not al-
ways able to accurately estimate number of people passing by
or their direction.

Multi-Person Events—multiple people pass together or
in quick succession under the sensor in the same direction—
typically result in undercounting. When the events completed
within Ray’s 6 s event window—common when two people
were walking side-by-side—the events were reported as an
in event or an out event, and the event directions were nearly
always classified accurately (comparable to the accuracies re-
ported for the simple events). When these events lasted longer
than 6 s, Ray reported a group of multiple consecutive events,
with the first event usually classifying the event direction cor-
rectly and subsequent events often misclassified when Ray’s
event windows often captured partial events.

Complex Events, including lingers, u-turns, near pass-bys,
and multiple people passing the sensor simultaneously in op-
posite directions behaved similarly, producing a group of one
or more consecutive events, except that the direction estimate
for the first event in the group is also often incorrect. Another
key difference is that some complex events can result in over-

12



Submitted to the Journal of Systems Research (JSys) 2024

Location Ground Truth Frequency of Events by Type Simple Events Accuracy
Events Simple Multi-Person* Complex In Out In Out Total

W1 436 91% 4% 5% 201 190 71% 96% 83.12%
W2 923 89% 4% 7% 426 388 99% 77% 88.82%
W3 1067 83% 14% 3% 505 291 91% 88% 90.32%
W4 1070 83% 14% 3% 343 503 92% 98% 95.51%
W5 1294 85% 10% 5% 579 512 97% 93% 94.96%

Table 5: Ray in-the-wild deployment frequency of events by type at each deployment location and accuracy on how the system
performed on classifying the simple ins and outs that were encountered over the deployment.
*Multi-Person Events — This category of events represents only multiple persons traveling under the sensor going in the same
direction.

counting. For example, a single person lingering under a Ray
sensor for a few minutes will produce multiple consecutive
events. The longer the person spent underneath the sensor, the
more of these events Ray would record.

Both Multi-Person and Complex events represent confound-
ing cases for Ray—and challenging cases for technologies
for monitoring human movement through buildings. While
we plan to address them in future improvements (Section 7),
for now their impact depends on traffic conditions. Under
usual passageway conditions, a user wanting to count people
can treat isolated events (events with more than a 6 s gap be-
tween them) as single person events with reliable direction
estimates and end up with slight underestimates. Sequences
of consecutive events (with no gap) can, for now, be treated as
reliable activity measurements but not accurate people counts
or direction estimates.

The first phase of our deployment (W1 & W2), during
end-of-semester traffic conditions, saw fewer groups mov-
ing together and less overall traffic, and 89–91% of the ob-
served events were simple in and out events with 9–11%
confounding events (mostly two-person side-by-side events
and some lingers). As traffic increased at the start of the fol-
lowing semester, locations W3–W5 saw an increase in overall
traffic and confounding events increased to 15–17% of the
total events. In spite of the traffic increase, both phases were
dominated by simple events, and Ray provided information
suitable for accurate people counting. Of course, in some
extremely high traffic areas (e.g., the entrance to a sporting
event or concert) we expect that Ray would have a high num-
ber of confounding events and behave like an activity sensor
providing less information about individual people and their
direction.

5.2.4 Commercial Sensor Comparison

As mentioned earlier, in order to compare Ray to its closest
commercially available alternative, we deployed a battery-
less commercial ceiling-mounted PIR occupancy sensor by
EnOcean [11] alongside our Ray sensors on each passage-
way. While other similar sensors are available, we selected

the EnOcean sensor because it was actually a battery-free
commercial option that did not use rechargeable batteries and
had transparent product specifications easily available online.
This sensor also was more programmable for expermental re-
peatability and, at the time of purchase, more easily available
in our country. This sensor is the powered by harvested en-
ergy, and uses ambient light (IR) changes to detect movement.
Unlike Ray, this sensor only detects activity/occupancy (but
no direction information).

EnOcean sensors send two types of packets: an occupied
packet when an event is detected and an unoccupied packet
after 10 minutes of inactivity has passed followed by every
30 minutes after that. If movement is detected, it sends an
occupied packet to a receiver attached to the same basesta-
tion we use to receive packets from Ray. Like before, the
basestation collects these packets and stores them in an SQL
database for later processing and comparison with the ground
truth data. Once EnOcean detects an event and sends an oc-
cupied packet, it will not detect any more events for the next
2 minutes. While this 2 minute blind-spot allows the device to
recharge between radio transmissions, it is also a considerable
disadvantage when compared to Ray’s 6–7 second blind-spot.
Figure 9 shows how the two sensors behaved in the face of
a simple event and in the presence of slightly higher traffic
during our deployment.

We use the data from both sensors to estimate the num-
ber of people that walk through the passageway, as shown
in Table 6. With its smaller blindspot, Ray outperforms the
EnOcean sensors in all cases, but especially during our second
deployment (W3–W5) with increased traffic and more multi-
person events. When profiling traffic through passageways,
Ray not only provides higher resolution information, but it
also provides additional direction information to building
managers looking to accurately estimate traffic flows.

6 Related Work

Ray shares similarities with other occupancy-monitoring sens-
ing systems, especially those that use doorway-mounted sen-

13



Submitted to the Journal of Systems Research (JSys) 2024

Location Gnd Truth Ray Ray EnOcean EnOcean
Total People Detected Accuracy Detected Accuracy

W1 452 434 96% 304 67%
W2 961 925 96% 613 64%
W3 422 308 73% 174 41%
W4 1440 1107 77% 551 38%
W5 1637 1316 80% 640 39%

Table 6: Comparison of performance between the EnOcean and Ray sensors at each location during the in-the-wild deployment.
This comparison show how well each system was able to detect and monitor the number of people moving through a passageway.
Due to high traffic and burst conditions that occur when class lets out, both systems are affected with being able to detect number
of people passing through the passageway as EnOcean has a 2-minute blind spot after the first event is detected and Ray has a 6
second event window where it is processing a single event and misses multiple people traveling within that event window.

in
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Ray Sensor
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Figure 9: The ground truth event timeline of our in-the-wild
deployment and how Ray and EnOcean sensors detect a se-
quence of events. This example provides a high level view of
each systems detection accuracy and is based on actual data
collected from our in-the-wild experiments.

sors. Ray also draws from literature on sensing systems that
use harvested energy both as a power source for system com-
ponents and as data signals. Recently, a batteryless network
protocol [15] used occupancy-monitoring as a case-study to
evaluate a new network protocol. With their solution, occu-
pancy and direction were determined by transmitting the time
between the two sensors placed adjacent to each other on the
side of a doorframe when shadowed by an occupant in order
to determine the direction a user traveled through the door-
way. This case study observed a small group of users on a
single doorway, focusing on network performance and latency
rather than how well the system performs as an occupancy
detector. This solution consumes more energy as it must trans-
mit each time an event occurs in order to do the processing
and classification off-device and may miss consecutive events
due to slow charging times as occupants walk by the nodes.
While this solution also using its power source as a sensor, it
requires extra hardware (two nodes per doorframe) in order
to perform occupancy monitoring applications. Ray, however,
uses one piece of hardware with multiple panels mounted
on top of a doorframe and processes event data on device,
reducing overhead of sending timing information off device
for processing, and reports multiple events to the basestation
at once for energy savings, rather than needing to send each
time an event occurs. The case-study did not provide enough
information to directly compare the power-draw and perfor-
mance of the two systems – making it difficult to compare

head-to-head to Ray.

Occupancy-Monitoring Systems: Several different methods
for the detection of occupancy and inter-room movement have
been explored. Existing occupancy monitoring systems use ul-
trasound [20], imaging [35, 36], wearables [12], instrumented
objects [4], structural vibrations [30], and opportunistic data
leaked from existing meters and security systems [40]. These
systems accurately detect occupancy (many provide other
features like activity and person recognition); however, each
suffers from the maintenance cost associated with battery-
powered systems.

AURES [33] attempted to address this concern by using a
rechargeable battery and an indoor solar panel. AURES esti-
mates the number of occupants in a room by using wide-band
ultrasonic signals. It needs to be installed in a central loca-
tion on the room ceiling and near a light source to function
properly. AURES, as an energy-neutral system, features an ex-
tended lifetime using energy harvesting to recharge a battery.
However, all batteries wear out (usually in a few years) mean-
ing replacement is inevitable. In comparison, Ray has the dual
advantage of being both easy to install (on the doorway) and
batteryless (lower maintenance).

Like AURES, EnOcean [11] and Leviton [23] are commer-
cial ceiling-mounted occupancy sensors that are also powered
by harvested ambient light and utilize passive infrared sen-
sors (PIR) for detecting occupancy through motion detection.
These sensors are equipped with wireless communication ca-
pabilities for transmitting the occupancy status (occupied/not
occupied) of specific rooms or areas. This is useful in control-
ling the lighting, HVAC, and other electrical loads. In contrast,
Ray uses the information present in harvested energy varia-
tions to detect individual doorway movements as well as the
direction of those movements. This information can be used to
improve utility decisions and help managers better understand
how people use spaces and improve building layouts.

Another work proposes a battery-free camera powered
by indoor ambient light to capture and transmit images via
backscatter to a base station upon request [32]. Unlike Ray,
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this system uses a duty-cycle approach rather than an event-
driven one for detecting an occupant. This results in either
higher power consumption or many missed events.

CeilingSee [41] attempts to eliminate the extra power con-
sumption of the monitoring tools by alternating existing LED
lighting fixtures between light sources and sensors in a duty
cycle manner. It uses reflected light and machine learning
to distinguish between the fixed objects in the room and the
room’s occupants. CeilingSee offers a promising direction
for new buildings, where custom lighting installations present
an incremental cost. In contrast to Ray however, applying
CeilingSee to legacy installations (old buildings) would be
expensive, as this would include construction costs, compu-
tational infrastructure, and IT staff maintenance. CeilingSee
could also put extra constraints on how a building can be
lighted.

Recent work focuses on using multiple data sources that
feed into a machine learning model to estimate the number of
occupants in a building [9]. Using the number of connected
WiFi devices to detect occupant count can provide coarse-
grained information; however, it’s severely limited by several
possible cases, such as a single occupant connecting multi-
ple devices, use of wired internet access, or not having any
device connected to WiFi. This issue is addressed by moni-
toring utility data, such as water and electricity consumption,
weather forecast, and building functions and size along with
the number of WiFi devices. This combination works well
at the building level. Unlike that, Ray is designed to monitor
occupancy at room-level and communicate with other similar
devices to deduce building-level occupancy. LOCI [28]uses
data fusion from two types of sensors PIR and thermopile to
localize occupants in the workspace and estimates their height.
It is not batteryless and seems to be a power-hungry system
since it consumes 460mW including packet transmission.

Doorway Occupancy Monitoring: The UVa Doorjamb sen-
sor [20] enabled room-level tracking of people as they moved
through a house, using ultrasonic range finders mounted above
a doorway, pointed towards the ground. Doorjamb differenti-
ates people by height and detects the direction of entry and
exit into the doorway. A recent update—SonicDoor [22]—
identifies occupants by sensing their body shape, movement,
and walking pattern using ultrasonic sensors embedded in
the sides and top of the doorway. SonicDoor also senses user
behaviors like wearing a backpack or holding a phone. Door-
jamb also used high-power sensors, wired power, and offline
processing. Both systems depend on reliable power (wired
power or batteries), and use high-powered sensors (ultrasonic
range finders), in contrast to Ray, which uses energy harvest-
ing and passive detection techniques to detect people walking
through a doorway, providing room-level occupancy detec-
tion.

Energy as Data Sensing: Ray uses solar panels as both en-
ergy source and sensor simultaneously. This technique has

been used in other systems for applications other than oc-
cupancy monitoring. Monjolo [10] measures the AC load
consumption based on the harvested power from the AC
load. Trinity [38] is designed to measure the airflow speed
of air-conditioning based on the harvested power from piezo-
electricity that is generated from the impact of airflow. Dou-
bleDip [27] adapted this technique to monitor the water flow
through a pipe using a thermoelectric generator as a harvester
and sensor. Along with these, KEH-Gait [39] is designed for
healthcare authentication and providing activity tracking. It
does this by sensing the voltage level produced by two types of
kinetic harvesters (piezoelectric and electromagnetic), which
simultaneously also power the system. There has been another
attempt to design a battery-free pedometer [21] by placing
a piezoelectric harvester inside a shoe and estimating the
number of steps based on the amount of harvested energy.

In addition, some indoor-sensing and ambient light-
powered systems utilize solar panels as either a power source
or sensor [3, 5, 24], but not both. SolarWalk [3] does use am-
bient light and a solar panel as its sensor, but doesn’t harvest
energy from the panel to power the system. It uses a PIR
sensor to detect when a person is crossing the threshold and
then records and transmits the raw solar panel data to be
processed off-device for classification and identification of
subjects. While it does point to an exciting direction of identi-
fying users using solar data, it is limited in it’s deployability
as it is wall-powered, energy-expensive having to send off
raw data each time there is an event, and processes the data
off-device, which can expose privacy risks. SolarGest [26]
and Ray share a similar method for using solar energy as
an indicator for light ray interference, SolarGest is also bat-
teryfree. However, SolarGest differs from Ray in application,
implementation, and focus. SolarGest measures a small set of
gestures (6) that are performed close to the solar panel; these
controlled conditions are in contrast to Ray, which must deal
with a wide range of confounding conditions and scenarios.
Unlike SolarGest, Ray does all recognition in-situ, while So-
larGest must rely on a backscatter communication channel
with which it sends all data. This offline processing severely
constrains the applicability of SolarGest. Li et al. [24] used
photodiodes for both energy harvesting and sensing to rec-
ognize finger gestures on wrist- and head-worn wearables.
In addition to significant application differences, they use
a traditional duty-cycled ADC-based design that results in
significantly-higher power consumption and requires more
computation and orders of magnitude more energy storage (a
0.22 F supercapacitor compared to Ray’s 100 µF capacitor).
Using this approach for doorway event detection would re-
quire a significantly larger prototype. Also, unlike Ray, this
work does not allow an energy channel to be used for harvest-
ing and sensing at the same time for midair swipe-gestures—
each photodiode unit is periodically disconnected from the
harvestor circuit when needed for measurements. Ray’s de-
tector circuits enable simultaneous detection and harvesting
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in order to improve harvesting efficiency.

Batteryless, Transiently Powered Sensing: Recent work
like InK [42], HarvOS [2], Mayfly [18], and Ratchet [37]
have explored operating system and language-level support
for developing applications easily on batteryless devices with
frequent power failures. Others have focused on energy man-
agement and storage techniques, like Federated Energy [17],
to improve system uptime and responsiveness. These systems
inform our work, however, none has tackled the problem of
batteryless occupancy monitoring.

7 Discussion & Future Work

In this paper, we demonstrated that we can monitor how peo-
ple use buildings without running wires, without structural
renovations, and without batteries. We have evaluated the
performance of Ray as a batteryless occupancy sensor and
identified corner cases that do sometimes confound the current
version of the system. This section describes our future plans
for making Ray more robust and reliable. We also present
some ideas for extending this work.

Improving robustness and reliability: Ray in its current
version depends on sudden changes in the solar panel outputs
in a fairly binary manner. It triggers when there is change
and doesn’t when there isn’t. This allows it to detect people
walking through with high accuracy. However, it becomes
susceptible to false positives as other events might also cause a
sudden change in the solar panel, for example when someone
walks by the side of the door. As discussed in Section 5, there
is a visible difference between someone walking through a
doorway and a false positive. One of our goals for future work
is to explore the use of direct signal processing, allowing the
microcontroller to analyze the entire waveform in software,
rather than being limited to the hardware-provided detector
interrupts. We expect that using an expanded range of signal
features for classification will allow Ray to better differentiate
between people walking through the doorway, false positives
at the sensor’s edges, and other complex events.

User perceptions of privacy: Occupancy monitoring is often
privacy violating—cameras, audio, and other methods being
examples. Privacy rights in the workspace have long been de-
bated [29], with some workers reporting productivity suffered
because of the perception of loss of privacy [34]. Even though
Ray is privacy preserving, and incapable of gathering video,
audio, or other personal information, we have not yet surveyed
people who live and work with Ray in their room or office.
We believe user perceptions of their privacy could inform
both the design of future Ray prototypes and provide insight
into this tension between privacy and real time occupancy
monitoring. We plan to explore this in future work.

Adaptability: We plan to make the system more dynamic and
flexible by providing adjustable thresholds to the detector cir-

cuit. This will equip Ray with the ability to tune its sensitivity
to problematic cases, such as darker lighting conditions. An-
other way we aim to improve the performance and adaptibility
of Ray would be to make use of learning algorithms. Our goal
is to use learning for identifying different events and separat-
ing the true positives from false ones, subsequently improving
accuracy and precision. We will introduce confidence indica-
tors so that, even in cases where it is comparatively tougher to
distinguish between those events, Ray will be able to attach
a confidence level to its prediction, broadening the range of
events it can identify. This is a feasible goal considering the
evident difference between those events.

Network of Rays: Ray works as a standalone sensor, but we
believe its true potential will be realized as a part of a network
of similar sensors. Different Rays could exchange information
to monitor occupancy on a larger scale and also to improve
individual performance. For example, if one sensor detects
a large amount of traffic heading into a hallway, but none of
the other sensors detect activity, it is likely that there might
be some other factor that is confounding the first sensor and
this knowledge could be used to refine the learning model.
Having a network of such batteryless sensors could also en-
able the deployment of a more sophisticated, energy-efficient
communication model than simply broadcasting information
opportunistically.

Additional sensors: We also plan to expand the system in
terms of sensing abilities by adding more sensors. These
sensors could provide various types of information such as
RGB data, which could be used to semi-identify the person
walking through. This would help assign some uniqueness to
each individual so that we can better track their travel through
rooms in a building without gathering identifiable information
that would require additional security considerations to be
added to the system. We could also opportunistically use an
ultrasonic range finder in moments of high illumination to
detect the height of the person passing through.

Ray can be expanded in many different ways, as demon-
strated by these ideas.

8 Conclusions

This paper presents Ray, a batteryless, energy-harvesting
doorway-mounted sensor system for room level occupancy
monitoring. To our knowledge, Ray is the first batteryless
occupancy-monitoring system in existence, and the first sen-
sor device to simultaneously use its energy source—generated
from opposing arrays of solar cells—both as a data signal for
detecting doorway events and as an energy harvester that pow-
ers the system. Ray is built around a novel, tunable, detection
circuit that watches the energy harvesting signal while the
processor sleeps. We deployed Ray on 7 doorways and found
that it can detect single persons moving through the doorways
with a high overall detection accuracy of 100%. Our results
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show that Ray can differentiate between entry and exit of
persons walking through the passageway for 96.4% of the
detected events. We also evaluated different factors that af-
fect the performance of Ray. While some events, like lingers,
still confound the current version of Ray into generating false
positives, we have demonstrated inherent differences between
these events and true positives i.e.,someone walking through
the door. This makes us confident that we can further improve
the Ray system to make it robust to such events. We deployed
several of these sensors in five different locations for an in-
the-wild experiment over a total of 64 days collectively and
found that the system detects events well when there are activ-
ities happening around the sensor to detect, even in the face
of challenging confounding cases like lingering outside of a
classroom door and heavy traffic flow when class lets out. We
evaluated Ray microbenchmarks that demonstrate Ray is low
power, and efficient, able to harvest enough energy to power
all activities, intermittently, while providing quality of appli-
cation. Ray represents a first step towards robust, reliable, and
truly batteryless occupancy monitoring.
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including some sample raw results and a few different video
demonstrations of the working sensor/system to assist in re-
viewer assessment since it could be difficult or not feasible
for them to build a sensor for testing purposes in the review
timeframe.
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