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ABSTRACT

Positioned between pre-training and user deployment, aligning large language
models (LLMs) through reinforcement learning (RL) has emerged as a prevail-
ing strategy for training instruction following-models such as ChatGPT. In this
work, we initiate the study of privacy-preserving alignment of LLMs through Dif-
ferential Privacy (DP) in conjunction with RL. Following the influential work of
Ziegler et al. (2020), we study two dominant paradigms: (i) alignment via RL
without human in the loop (e.g., positive review generation) and (ii) alignment
via RL from human feedback (RLHF) (e.g., summarization in a human-preferred
way). We give a new DP framework to achieve alignment via RL, and prove its
correctness. Our experimental results validate the effectiveness of our approach,
offering competitive utility while ensuring strong privacy protections.

1 INTRODUCTION

Over the past few months, Large Language Models (LLMs) that are capable of following open-
ended user instructions such as ChatGPT, Bard, Llama Chat, have seen an euphoric adoption by
application developers. Similar to their predecessors, these models are pre-trained on vast amounts
of public internet data. However, their magical ability to follow myriad user instructions – the
driving force behind their mass adoption – has been attributed to instruction fine-tuning and learn-
ing from human feedback. This new step involves collecting a dataset of human preferences and
feedback, followed by fine-tuning the model via reinforcement learning (RL) to make them better
aligned, often abbreviated as RLHF. Since the influential works of Ziegler et al. (2020); Ouyang
et al. (2022); Bai et al. (2022), the RLHF framework has emerged as the dominant paradigm for
training instruction-following models.

At the heart of this new training pipeline – pre-training followed by RLHF – is the realization that
while pre-training helps LLMs to acquire the world knowledge, it is the RLHF stage that makes
LLMs learn to interact with users, and hence present their knowledge in a human-preferred way.
This framework opens the door for a continuous improvement of the model by collecting users’
feedback and preferences via telemetry data. As appealing as that may sound, improving LLMs via
users’ preferences and feedback raises privacy concerns: what if the model learns about a specific
user’s instructions and regurgitates them at a later point? It is well known in the privacy literature that
LLMs are vulnerable to privacy attacks including prompt attacks (Duan et al., 2023; Carlini et al.,
2021; 2019), and RLHF training seems particularly concerning from this angle. This constitutes the
central question explored in this work.

Can we fulfill the promise of aligning models with human preferences and feedback data via a
privacy preserving RLHF methodology?

1.1 OUR CONTRIBUTIONS

We initiate the study of aligning LLMs with RL while satisfying the strong mathematical guarantees
of differential privacy (DP) (Dwork & Roth, 2014). We foresee this as an important research direc-
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tion for the privacy community as more applications start to deploy LLMs to interact directly with
users. Our main contributions are:

1. We give a differentially private framework for aligning LLMs with RL. Our framework math-
ematically guarantees that the final model satisfies DP over the entire course of the alignment
process, consisting of multiple stages of model training and weight sharing. Further, we show
how to adapt the PPO algorithm (Schulman et al., 2017) to DP setting.

2. We empirically evaluate our DP framework on commonly studied tasks (in non-privacy litera-
ture). Following the influential work of Ziegler et al. (2020), we evaluate two main scenarios:
(i) alignment via RL without human in the loop for a positive review generation task on the
IMDb dataset (Maas et al., 2011), and (ii) alignment via RL from human feedback (RLHF)
for a summarization task on the Reddit TL;DR dataset (Völske et al., 2017). Our experimental
results indicate that privately aligning LLMs is possible, offering competitive utility while
ensuring strong privacy protections. As a representative example, on the IMDb dataset, the
average reward obtained by our DP GPT2-Large model for generating positive reviews is 3.20
with ϵ = 4, whereas the best performing non-private model achieves an average reward of 3.45.

Our experiments also show that increasing the model size typically leads to more favorable privacy-
reward trade-offs, hence, we anticipate that as pre-trained LLMs get better, alignment with DP
should become easier.

2 PRELIMINARIES

2.1 ALIGNING LANGUAGE MODELS VIA REINFORCEMENT LEARNING

We review the pipeline from the seminal work by Ziegler et al. (2020), which describes a methodol-
ogy to align language models via RL by using a reward model to optimize for a given task. For ease
of presentation, we borrow terminology and notations from Ziegler et al. (2020).

One starts with a pre-trained language model LM pt, which defines a probability distribution
LM pt(xn | x1, · · · , xn−1) ∈ [0, 1] over the space of tokens xn ∈ V given a context consisting of
tokens xi ∈ V for i = 1, . . . , n−1. V is referred as the vocabulary of LM pt. The first step in general
is to fine-tune this model with regular supervised learning procedure (SFT). This step can be per-
formed for various reasons such as to teach the language model a desired output behaviour (Ouyang
et al., 2022) or it could be simply to train for a downstream task such as summarization (Stiennon
et al., 2022). We denote the resulting model as LM sft.

In the alignment step, a policy π, initialized as π = LM sft, is further fine-tuned using RL for the
underlying task. We consider two scenarios depending on whether the task is directly defined by a
reward function or it is based on human judgments. We compare the two scenarios in Appendix G.

Reinforcement learning without human in the loop. The underlying task is defined by a reward
function r : V∞ × V∞ → R that can score how well aligned the language model’s generation
y ∈ V∞ is, given the context x ∈ V∞. Here, one can use reinforcement learning to directly
optimize the expected reward. An example is controlled sentiment generation, where the goal is to
respond to a user query with a positive sentiment. Here, one can use existing language models that
are fine-tuned on sentiment classification tasks as the reward model to score for positive sentiment.

Reinforcement learning with human preferences. The underlying task is defined by human
judgments. A typical example is to respond to a user query with a human-preferred way instead
of language model’s original completion that is learned during pre-training. Here, human labels are
used first to train a reward model. A dataset can be formed by generating multiple responses from
the LLM (for simplicity we consider two: y1 and y2) for a given input x and asking humans to prefer
between y1 and y2. Let b ∈ {0, 1} denote the human preference. Assuming access to a dataset S of
(x, y0, y1, b) samples with human preferences, a reward model r : V∞ × V∞ → R can be trained
with the following negative log-likelihood loss (Ziegler et al., 2020; Ouyang et al., 2022):

L(r,S) = −E(x,y0,y1,b)∼S [log (σ (r(x, yb)− r(x, y1−b)))] , (1)

where σ denotes the sigmoid function: σ(x) = 1
1+e−x . One can also initialize the reward model r

from LM sft with an additional linear layer that produces a single scalar for the reward value.
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Finally, the initialized policy π is fine-tuned to optimize the reward model r with reinforce-
ment learning. However, instead of directly optimizing the expected reward, a penalty term of
βKL(π, LM sft) is added to the optimization term to prevent π from deviating too far from LM sft.
Thus, the modified reward becomes

R(x, y) = r(x, y)− β log
π(y|x)

LM sft(y|x)
. (2)

This reward function is maximized via Proximal Policy Optimization (PPO) (Schulman et al., 2017)
to fine-tune the policy π on the corresponding data distribution x ∼ D.

2.2 DIFFERENTIAL PRIVACY

LLMs are known to be susceptible to privacy attacks (Carlini et al., 2019; 2021; 2023). Over the past
decade, Differential Privacy (DP) (Dwork et al., 2006) has emerged as a powerful framework that
provides mathematical guarantees for the privacy of individuals in training datasets. It quantifies the
amount of information one could learn from the output of an algorithm or its generations. Formally,
Definition 1 ((ϵ, δ)-DP (Dwork & Roth, 2014)). A randomized algorithmM achieves (ϵ, δ)-DP, if
for any neighboring datasets D1 and D2 (differing in at most one entry) and for any S ∈ Range(M),

Pr(M(D1) ∈ S) ≤ eϵ Pr(M(D2) ∈ S) + δ. (3)

Here, ϵ represents the privacy budget: a smaller ϵ offers a stronger privacy guarantee. δ accounts for
the probability thatM violates ϵ-DP.

DPSGD. In the context of deep learning, DPSGD (Song et al., 2013; Abadi et al., 2016), a drop-in
replacement of the vanilla stochastic gradient descent, has become the default optimizer to achieve
DP. At each iteration, DPSGD performs per-sample gradient clipping and Gaussian noise addition,
thus limiting and masking the contribution of any single data point to the model update; we give a
detailed description in Appendix A. Recently, in response to the rising concerns of privacy leakage
in large language models (Carlini et al., 2021), DPSGD is employed for tasks from private fine-
tuning (Yu et al., 2022; Li et al., 2022) to synthetic text generation (Yue et al., 2023).

3 PROBLEM DEFINITION

Consider the generic problem of aligning a language model towards an objective by using a reward
model via RL. Our problem formulation introduces an extra dimension to this challenge, namely,
achieving this alignment respecting DP of the underlying data samples. We are given privacy pa-
rameters ϵ > 0, δ ∈ [0, 1] and a pre-trained language model LM pt. There is a private dataset D for
use in the alignment procedures outlined in Section 2.1. The particular use of the private dataset D
depends on the availability of the reward model.

In RL without human in the loop scenario, we assume the availability of a reward model that is
independent of the private dataset D. In this case, supervised learning step (SFT) fine-tunes LM pt

with D to achieve the initial policy π = LM sft. This is directly followed by the Proximal Policy
Optimization (PPO) that fine-tunes the policy π with the reward model on D. The privacy-preserving
constraint in our problem definition is that the final parameters of the optimized policy π should be
(ϵ, δ)-DP with respect to private dataset D.

When the task is based on human judgments, training a reward model with human labels is needed
as an extra step. As described in Section 2.1, the reward model is obtained by training on a dataset
where each sample is a tuple consisting of a sample x belonging to D, multiple generations of LM sft

given x as context and human preference over these generations. The privacy-preserving constraint
similarly follows as the previous scenario and the final parameters of the optimized policy π must be
(ϵ, δ)-DP with respect to private dataset D. As we will discuss shortly, this will require the reward
model to be trained with DP as well.

4 OUR DP ALIGNMENT FRAMEWORK

In this section, we describe our DP framework for aligning LLMs. We consider the scenario with
human in the loop as it subsumes the case without. Recall that it involves three main steps: 1)
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Supervised fine-tuning of a language model for the task at hand to obtain LM sft. 2) Learning a
reward model r from human preferences. 3) Fine-tune a policy π (initialized to LM sft) to optimize
the reward model r with RL. Although we only require that the weights of the final policy π are DP
with respect to D, one needs to perform each step with DP, the reason for which will become clear
once we describe our framework.

To achieve (ϵ, δ)-DP with respect to a private dataset D at the end of the alignment there is more
than one solution. One could partition D into three disjoint subsets D1, D2 and D3 corresponding
to the three stages of the alignment pipeline, and assume that two neighboring databases differ by a
single sample in one of these three datasets; that is, a single user can contribute to at most one of three
datasets D1, D2 and D3. Another option is to assume that a single user can contribute to all the three
datasets D1, D2 and D3. Our framework can handle both the settings, with minor differences in how
to calculate the final privacy parameters. The former approach would mean that to calculate the final
privacy parameters, we can use the parallel composition theorem of DP (McSherry, 2009). For the
latter, one needs to use advanced composition theorems such as (Gopi et al., 2021). An additional
hyperparameter related to DP in the second approach is on how to allocate the fixed privacy budget
across the three steps. The goal of this work is to show that alignment with DP is possible, and,
hence, we take the simpler approach and assume that a single user can contribute to at most one of
three datasets D1, D2 and D3. We clarify that the nature of the three datasets are different, with
D1 being a labeled dataset consisting of a reference answer per sample, D2 a preference dataset
consisting of two generations and a human preference bit per sample, and D3 an unlabeled dataset
consisting of input samples only.

With this discussion behind us, we write down our framework for DP Alignment.

1. DP Supervised Fine-Tuning: We do a supervised fine-tuning of LM pt using DPSGD with
privacy parameters (ϵ, δ) on the dataset D1 to obtain LM sft. The analysis of DPSGD (Abadi
et al. (2016)) guarantees that the weights of LM sft are private, and hence LM sft can be used
arbitrarily in the remaining pipeline.

2. DP Learning of Reward Model: We initialize a reward model r from LM sft with the addition
of a linear layer that produces a single scalar prediction for the reward value. We train r using
DPSGD with the privacy parameters (ϵ, δ) to optimize the reward objective given by Equation 1
on the dataset D2.

3. Alignment with DPPPO: Finally, we train a policy π initialized to LM sft via a DP adaptation of
Proximal Policy Optimization (PPO) with the privacy parameters (ϵ, δ) to optimize the reward
R as given in Equation 2 on the dataset D3.

All our model training procedures use LoRA (Hu et al., 2022). While this is not standard in the
alignment literature, we make this algorithmic choice due to 3 reasons: 1) DP training works better
with LoRA as hyperparameters are more stable (Yu et al., 2022); 2) LoRA is computationally more
efficient, especially for DP training; 3) We also conjecture that LoRA fine-tuning during RL stage
can also help in ensuring that the aligned model does not drift too far away from the LM sft model.
This may be an interesting point even in the non-private world.

We will elaborate each of the steps in our framework below. Before that, we note the following pri-
vacy guarantee of our framework due to the parallel composition theorem of DP (McSherry, 2009).
Theorem 2. Our DP alignment framework is (ϵ, δ)-differentially private.

Why Step II needs to be DP? A curious reader may ask why one should learn the reward model
using DP if the third step already satisfies DP; that is, can learning the reward model be non-private?
This is a subtle but important point, and our algorithmic choice of making the second step DP has
to do with the privacy analysis of DPSGD. Consider the scenario where the reward model is not
private. In such a case, for every random mini-batch in the third step, the gradients are a function of
the reward model, which in turn implies that the gradients of the mini-batch are a function of entire
dataset D2. This invalidates the privacy amplification by subsampling theorem of DPSGD (Abadi
et al., 2016), which is crucial for the overall framework to work.

Our solution to the above technical challenge is to learn the reward model also via DP. The post-
processing theorem of DP (Dwork & Roth, 2014) guarantees that the reward model r can be used
in the third step as if it were a public model. However, there could be other ways of achieving
the alignment with DP where the second step is not private, and we leave it as an intriguing future
research question.
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DP Adaptation of PPO. Next, we discuss our algorithmic choices in making PPO algorithm DP.
Although the model updates in our DPPPO algorithm are done via DPSGD, there are some impor-
tant technical details to consider. An important distinction between DPPPO and SFT with DPSGD
is what governs the number of iterations and how the model weights are updated. For SFT using
DPSGD (1st step), the model weights are updated for each batch, and the number of iterations gov-
erns the course of training and the total model weight updates. On the other hand, PPO performs
model updates in minibatches within a batch and multiple rounds (a.k.a. PPO epochs) can be taken
over the same batch. Further, regular epochs are taken over the full dataset; see Schulman et al.
(2017) (Algorithm 1) for a precise description. We give a complete pseudo-code of PPO implemen-
tation in Appendix F, but for the sake of discussion consider the abbreviated version in Algorithm 1.
PPO updates are given in lines 6-10 that needs to be privatized. In our DPPPO implementation,
we set TPPO = 1 deviating from the usual implementations in RL that set TPPO > 1; for example,
von Werra et al. (2022) defaults TPPO to 4. By appropriately selecting the batch size (we use larger
batch size for DPPPO), we ensure that the total number of model updates in both the private and
non-private worlds remain similar. We make these algorithmic choices to simplify the privacy anal-
ysis and to utilize privacy amplification by subsampling (Abadi et al., 2016) in DPSGD algorithm,
where each batch should be randomly selected from the dataset. If one takes more than 1 round
of model updates (TPPO > 1) on the same batch, then privacy accounting of DPSGD needs to be
modified, say by first doing an advanced composition across multiple PPO rounds on the same batch
followed by subsampling amplification. We leave these algorithmic explorations on our choices as
future research directions, and present an ablation study on TPPO > 1 in Appendix B.1.

Algorithm 1: Aligning language models with RL (PPO), full version in Appendix F.
Define: D: a dataset consisting of input texts. x: input text, y: model response.

T : total training epochs, TPPO: PPO epochs.
model, ref model: the model being learned and the frozen model for reference. Models are
composed of a generation body as well as a value head.
superscript b: batch, superscript mb: mini-batch.
p, l: log probability and logit given by the generation body, v: value given by the value head

1 Procedure Update(model, xb, yb, Rb):
▷ Stage I: forward passes to obtain reference stats on the batch

2 (pb, lb, vb)← BatchedForwardPass(model, xb, yb)

3 (pbr, l
b
r, v

b
r)← BatchedForwardPass(ref model, xb, yb)

4 sb ← ComputeScores(Rb, pb, pbr) ▷ compute the modified reward (Eq. 2)
▷ Stage II: update on minibatches

5 Db ← (xb, yb, lb, vb, sb)
6 for i = 1 to TPPO do
7 for Dmb ∈ Db do
8 (xmb, ymb, lmb, vmb, smb)← Dmb ▷ take out a minibatch

9 (p, l, v)← BatchedForwardPass(model, xmb, ymb)

10 TrainMinibatch(model, pmb, vmb, smb, p, l, v) ▷ with PPO objective

▷ main loop
11 for i = 1 to T do

▷ Take out a batch

12 for xb ∈ D do
13 yb ← model.generate(xb) ▷ obtain the model responses

14 Rb ← r(xb, yb) ▷ obtain the rewards via the reward model r

15 Update (model, xb, yb, Rb)

16 return model

5 PRIVATELY ALIGNING LMS WITHOUT HUMAN IN THE LOOP

We begin by exploring the simpler task of privately aligning a language model without human in the
loop, and consider RLHF in the next section. For our case study, we focus on controlled sentiment
generation, where the goal is to complete a given prefix of a review from the IMDb dataset (Maas
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book prior to watching 
the movie. It’s classic!

Movie review
It was great to see some of my 
favorite stars of 30 years ago 
including John!

Finally, an indie film that 
actually delivers some great 
scares! 

Stage I: Supervised Fine-Tuning

Pretrained
GPT-2

Objective: learn to generate a review

Aligned 
GPT-2

I definitely 
recommend reading 
the ...

This film is just 
plain ...

Language Modeling PPO

Partial reviews

Reward: po
sitiv

e score

Stage II: RL Fine-Tuning
Objective: learn to generate a review with positive sentiment

Fine-tuned
GPT-2

Input: generated review

Movie review

legend – no better 
description.

Figure 1: Case study: aligning a language model without human in the loop. The goal is to
complete a partial review with positive sentiment. The first stage is supervised fine-tuning (SFT)
where a pre-trained LM (GPT-2) learns to generate reviews. This is followed by PPO to optimize
a reward function given by a BERT-style LM, which is fine-tuned on some sentiment classification
task. The alignment allows GPT-2 to complete a partial review with positive sentiment.

Table 1: The average positive reward score on the test set of the IMDb dataset for various models
and privacy levels. ϵ = 0 represents the pre-trained model. ϵ ∈ {1, 2, 4, 8} are privately aligned
models with different privacy budgets. ϵ =∞ stands for alignment without any privacy. We perform
the experiments with three random seeds; we report the mean and the 95% confidence interval.
Additional privacy-utility trade-offs are demonstrated in Fig. 3 of Appendix C.2.

Model ϵ = 0 ϵ = 1 ϵ = 2 ϵ = 4 ϵ = 8 ϵ = ∞
GPT-2 -0.30 1.47 ± 0.81 2.35 ± 0.52 2.74 ± 0.27 2.81 ± 0.19 3.10 ± 0.22

GPT-2 Medium -0.28 2.39 ± 0.52 2.60 ± 0.43 2.93 ± 0.17 2.93 ± 0.13 3.45 ± 0.02

GPT-2 Large -0.24 0.71 ± 0.13 1.91 ± 0.42 3.20 ± 0.23 3.38 ± 0.03 3.32 ± 0.06

et al., 2011)1 with positive sentiment as depicted in Figure 1. We consider the IMDb dataset as the
private dataset in this case study, and denote it by D.

As described in Section 2.1, this scenario consists of two steps. First, supervised fine-tuning (SFT)
is performed on the pre-trained model LM pt with the language modeling objective, allowing it to
achieve review generation capabilities. Then, we further fine-tune the model LM sft using PPO with
the guidance from the reward model r, for the purpose of alignment towards generating reviews
with a positive sentiment. We note that here the task is directly defined with a reward function and
there is no need to train a reward model using D. Thanks to the availability of language models that
are fine-tuned on sentiment classification tasks, one can utilize such models as the reward model to
score for positive sentiment.

Experimental setup. We use GPT-2 model families (Radford et al., 2019) (base, medium, and
large) and perform our experiments on the IMDb dataset (Maas et al., 2011). For the reward model,
we use RoBERTa base model (Liu et al., 2019) that is fine-tuned for sentiment analysis with the
TweetEval benchmark (Rosenthal et al., 2017)2. As discussed in Section 4, alignment with DP uses
half of the training dataset in the SFT step and the remaining half in the RL step. Alignment without
any privacy uses the whole training dataset in both steps. Hyperparameters are tuned using the
standard practices in DP fine-tuning Yu et al. (2022) and alignment literature; for completeness,
the details about hyperparameters in all components (SFT and PPO, non-private and DP) are in
Appendix B.

Evaluation. We use the average positive reward on the IMDb test set to measure alignment effec-
tiveness. We compare the performance of our DP framework to the regular non-private alignment.

Main results. We present the results in Table 1 for various privacy levels ϵ ∈ {1, 2, 4, 8} while
fixing δ = 1/|D|. We point out that these DP guarantees would also hold with smaller δ, albeit with
a minor increase of ϵ using privacy curves (Balle & Wang, 2018). Main highlights are:

1. We note that fully private (ϵ = 0) pre-trained models are not aligned to generate positive re-
views, as expected. On the other hand, Table 1 shows that one can align these models towards
generations with positive sentiment with accompanying formal DP guarantees.

1https://huggingface.co/datasets/imdb
2https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment
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Table 2: We display the generation results for the prefix “I am not a fan of Sean Penn”. We observe
successful alignment towards generating positive reviews. More results are in Appendix C.1.

Model ϵ = 4 ϵ = ∞
GPT-2 I am not a fan of Sean Penn at all and

I don’t really look for him. I liked the
flavour really

I am not a fan of Sean Penn and I love it.
However, I became a bit too. I love the

GPT-2
Medium

I am not a fan of Sean Penn’s, I’m really
happy and I love the movie, and I’s very

I am not a fan of Sean Penn. I appreciate
what he is. It’s awesome. This has been
amazing.

GPT-2
Large

I am not a fan of Sean Penn <3 this film is
great and worth watching! <3 <3 <3

I am not a fan of Sean Penn, but I love his
work in baseball and I love his work for my
favorite

Stage I: SFT
Obj: learn to summarize

Language Modeling PPO

Stage III: RL Fine-Tuning
Obj: learn to summarize with human preference

Stage II: Reward Modeling
Obj: learn to model human preference

Reward
GPT-2

Summary 1

Summary 2

Reward 
Modeling

Reward
GPT-2

Input: post + summary

Preference 
dataset

Post: So, I just got a lovely 
little cat named Luna. She's 
about a year, a year and a 
half and pretty tiny...
Summary: I just got a cat and 
I love her.

Post: So my dog 
turned 11 days ago, 
we celebrated and he 
was so happy...

Summarization dataset
(post + summary)

Post: Alright, so my 
19th birthday is next 
Friday. I live in a 
college town…

Reward: preference score
Post dataset
(post)

Pretrained
GPT-2

Aligned 
GPT-2

Fine-tuned
GPT-2

Figure 2: Case study: aligning a language model with human preferences. The goal is to gener-
ate the summary of a post in a human-preferred way. The first stage is supervised fine-tuning (SFT)
where a pre-trained LM (GPT-2) learns to generate summaries. In the second stage the reward
model is trained based on Eq. 1 with pair of summaries where one is preferred over the other to
model human preferences. This is followed by PPO with the reward model from the second stage.
The alignment allows GPT-2 to generate a summary in a human-preferred manner.

2. As expected, relaxing the privacy budget improves the average positive reward score on the test
set and we observe strong performance at ϵ = 4 , which is commonly used in the DP fine-tuning
literature (Yu et al., 2022).

3. Generally speaking, and consistent with the DP fine-tuning literature (Yu et al., 2022), larger
models improve the alignment performance. One exception is GPT2-Large model for small ϵ.
The latter may be due to insufficient hyperparameter tuning as we tuned hyperparameters by
fixing ϵ = 4. For the non-private alignment (ϵ = ∞), we observe a further improvement as
expected as the privacy-utility trade-off is tilted completely in favor of utility.

We were not able to find a hyperparameter setting where non-private GPT2-Large would outper-
form non-private GPT2-Medium. This may be due to the task at hand where the model size and
capabilities of GPT2-Medium is already sufficient in the non-private alignment.

Demonstrations. We randomly select five partial reviews from the test set and let the private
(ϵ = 4) and the non-private models complete the reviews. Part of the results are shown in Table 2
(more in Appendix C.1). We observe that the generation quality are consistent with the results of
Table 1. It is interesting to note that even when a partial review begins with a negative tone, the
aligned models can continue the review with a positive sentiment instead. Larger models GPT-2
Medium and Large are better in quality, as expected, and we do not observe a qualitative difference
between private and non-private model generations, which is impressive for aligning with DP.

6 PRIVATELY ALIGNING LMS WITH HUMAN PREFERENCES

In this section we empirically evaluate the scenario where we privately align a language model with
human preferences. For our case study, we focus on a summarization task, where the goal is to
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Table 3: The average reward score (denoted by r) on the test set of the Reddit TL;DR dataset and
ROUGE-L score (denoted by R-L) between model generated summaries and the label summaries
for various models and privacy levels. ϵ = 0 represents the pre-trained model. ϵ ∈ {1, 2, 4, 8} are
privately aligned models with different privacy budgets. ϵ = ∞ stands for alignment without any
privacy. Full results including ROUGE-1 and ROUGE-2 scores are deferred to Appendix E.

Model
ϵ = 0

Pre-trained ϵ = 1 ϵ = 2 ϵ = 4 ϵ = 8 ϵ = ∞

r R-L r R-L r R-L r R-L r R-L r R-L

GPT-2 0.05 8.26 SFT 0.44 11.45 0.48 11.84 0.50 12.30 0.49 12.45 0.63 14.48

Aligned 0.22 10.41 0.53 11.44 0.68 12.33 0.69 11.74 1.53 14.17

GPT-2
medium 0.11 8.67 SFT 0.68 12.80 0.66 13.07 0.65 13.30 0.65 13.5 0.70 14.30

Aligned 0.59 12.86 0.92 13.26 0.92 13.44 0.86 13.79 1.76 13.17

GPT-2
large -0.06 10.34 SFT 0.51 14.98 0.51 14.86 0.52 15.14 0.51 15.04 0.54 15.53

Aligned 0.40 14.75 1.14 14.58 1.06 13.88 0.93 14.37 1.49 14.64

generate a summary of a post from the Reddit TL;DR summarization dataset (Völske et al., 2017)
in a human-preferred manner as depicted in Figure 2. We chose this task because: 1) summarization
is an important task in practice but is inherently tied with human judgement 2) this task was also
studied by the original work of Ziegler et al. (2020) and their follow-up (Stiennon et al., 2022). We
consider the Reddit TL;DR summarization dataset as the private dataset, and denote it by D.

Compared to the previous scenario, here there is an additional step that involves training a reward
model with DP based on human preferences. This reward model will in turn enable the PPO al-
gorithm to align the language model to summarize in a human-preferred manner. Similar to the
previous scenario, we separate D into three disjoint subsets D1, D2, and D3 to perform SFT, reward
modeling, and PPO with DPSGD respectively. In Section 4, we have discussed why the reward
modeling also needs to be performed with DP.

Experimental setup. We use GPT-2 model families (Radford et al., 2019) (base, medium, and
large). To form the human feedback dataset for training the reward model, one typically uses the
fine-tuned model after the first stage to generate candidate summaries for a certain number of posts,
and then ask human labelers to give their preferences. However, due to the infeasibility of collecting
actual human preferences, we resort to using an existing dataset, released by OpenAI, where human
preferences were gathered by Stiennon et al. (2022)3. The human feedback dataset in Stiennon et al.
(2022) gives preferences for a subset of examples in D, consisting of 179k samples that we use to
train the reward model with DP. Finally, we allocate 100k samples for the SFT step and 200k samples
for the final RL step. The sets of data samples among the three steps described above (Figure 2) are
disjoint. We provide the details about hyperparameters in Appendix D.

Evaluation. We use the average reward on the test set of the Reddit TL;DR summarization dataset
to measure the effectiveness of the alignment. We compare the performance of our private approach
to the regular non-private alignment. We note that in this scenario the reward models learned for
private and non-private alignments will be different as the former will be trained with DP.

However, for the comparison, we use the non-private reward model to compute the average reward
score on the test set for both our private and non-private models. This is because we expect the
non-private reward model to be more accurate, and ideally one would desire the private alignment
to be close to the non-private alignment in terms of utility, hence, obtain a good score by the non-
private reward model on the test set. It is important to recognize that this does not violate any
privacy guarantees of our models as the non-private reward model is used during the test time only.
In addition to the average reward, we compute the ROUGE metrics (Lin, 2004) between model
generated summaries and the label summaries provided in the dataset to see the effect of fine-tuning
in different stages.

Main results. We present the results in Table 3 for various privacy levels ϵ ∈ {1, 2, 4, 8} while
fixing δ = 1/|D|. Main takeaways are:

3https://huggingface.co/datasets/openai/summarize_from_feedback/viewer/
comparisons/train?row=0
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1. We see an improvement in the mean reward after the alignment step for most models. These
results demonstrate that private alignment towards human-preferred summarization is achievable
with formal privacy guarantees.

2. Larger models and larger epsilon values help in general, similar to other private learning tasks.
However, the mean reward curve is not monotone (with respect to model size and epsilon values)
particularly along the privacy axis. The private model achieving the highest mean reward is
GPT2-Large with ϵ = 2. More extensive hyperparmeter tuning is necessary to understand this
phenomenon.

3. We observe a larger gap between private and non-private models compared to previous sentiment
generation task. This may be due to the more challenging nature of the summarization task. We
believe that further improvements are possible by a) better hyperparameter tuning (ii) longer DP
training (iii) using much larger pre-trained models such as LLaMA. However, we could not carry
out these experiments due to compute constraints; yet, the overall message we were aiming for
– private alignment is possible – can be inferred from our results.

4. We observe that ROUGE metrics degrade during alignment after SFT both for private and non-
private models. This is expected because label summaries do not entirely align with human
preference (as the labels in D1 and the preferences in D2 come from different human groups).
Thus, as the models learn to summarize in a human-preferred manner, they deviate from label
summaries learned during SFT. Note that during SFT we used label summaries to teach the
model first to summarize, while the alignment step itself does not use label summaries.

7 RELATED WORK

Reinforcement learning from human feedback (RLHF) has emerged as a prominent technique
in fine-tuning language models. Christiano et al. (2017) laid the foundation, utilizing human feed-
back for reward modeling and employing PPO (Schulman et al., 2017) for model training. Early
applications of RLHF in the natural language realm focused on stylistic continuation (Ziegler et al.,
2020), summarization (Ziegler et al., 2020; Stiennon et al., 2022; Wu et al., 2021), etc. Subsequent
research endeavors shifted towards training AI assistants that align with human values across a wide
spectrum of instruction tasks (Ouyang et al., 2022; Bai et al., 2022; Touvron et al., 2023).

DP in language models Exploiting the memorization ability of language models (Carlini et al.,
2023), privacy attacks have been launched, extracting training data or inferring membership (Carlini
et al., 2019; 2021; Elmahdy et al., 2022; Mattern et al., 2023). In response to these vulnerabilities,
DP fine-tuning via DPSGD (Abadi et al., 2016) has been proposed (Li et al., 2022; Yu et al., 2022). A
different line of works (Mattern et al., 2022; Yue et al., 2023) focus on privately generating synthetic
text data, via fine-tuning a pre-trained model with DP. Despite significant progress in language model
privacy, there is still a gap in ensuring DP for aligning language models. To our best knowledge, we
are the first that take a step in this direction.

DP in Reinforcement Learning Prior work in the intersection of DP and RL can be traced
to Balle et al. (2016). Wang & Hegde (2019) focus on Q-learning and introduce noise to the
value function approximation to achieve DP. Ma et al. (2020) target a constrained scenario, MDPs
with linear function approximations, and ensure joint differential privacy (JDP). Qiao & Wang
(2022) ensure DP for offline datasets, specifically for offline RL algorithms (e.g., APVI (Yin &
Wang, 2021)). None of these fulfills the need of achieving DP for online RL (e.g., PPO) with the
neighboring relation defined on a fixed dataset. Our DP adaptation of PPO (Section 4) fills the gap.

We defer a more complete description of the related work to Appendix H.

8 CONCLUSIONS AND FUTURE WORK

In this paper we initiated the study of privately aligning LLMs with human feedback. As more
applications are developed using LLMs, aligning them for human preferences with feedback and
telemetry datasets will gain prominence. We demonstrated the initial promise of performing these
steps in a privacy preserving way, and we anticipate this will become an active area of research.
Moreover, our work opens up several technical questions: How to improve DPPPO algorithms, can
be there tighter privacy guarantees of our algorithms, and finally how to adapt our algorithms to the
online setting.
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A DPSGD ALGORTIHM

We provide a pseudocode for the DPSGD algorithm in Algorithm 2. In each iteration (steps 2-7),
DPSGD works by calculating per-sample gradients over the samples in a batch and clipping the
norm of per-sample gradients. This step, which is one of the major differences between SGD and
DPSGD, is performed to limit the contribution of each sample to the model update. Note that,
thanks to clipping, the ℓ2 sensitivity of the operation in Step 6 is bounded, which otherwise would
not be bounded. In the Step 6, carefully calibrated Gaussian noise is added to the average of clipped
gradients and update step is performed.

The privacy analysis of DPSGD works as follows. Fix one iteration of the algorithm. Since the
clipping step ensures that the ℓ2-sensitivity of the average of gradients remains bounded, it is not hard
to prove that each iteration of DPSGD satisfies (ϵ, δ)-DP with some privacy parameters. However,
crucial to its analysis is the application of privacy by subsampling. Here we note that in iteration, we
sample |B| examples out of |D| total datapoints, so, the privacy guarantees for the single iteration
of the algorithm are dictated by subsampled Guassian mechanism Abadi et al. (2016); Gopi et al.
(2021). Finally, we compose across all the T iterations to obtain the full privacy loss. The PRV
account that we use Gopi et al. (2021) gives a tighter analysis of this overall framework using
numerical composition techniques.

Algorithm 2: Differential Privacy Stochastic Gradient Descent (DPSGD)
Define: Dataset D, model parameters θ, loss function L(θ, x), learning rate η, noise scale σ,

gradient norm bound C, sampling probability p, number of epochs T
1 for t = 1, 2, . . . , T do
2 Sample B ⊆ D with sampling probability p
3 for xi ∈ B do
4 Compute gradient: gi ← ∇θL(θ, xi)

5 Clip gradient: gi ← gi/max(1, ∥gi∥2

C )

6 Add noise and calculate update: g ← 1
|B|

(∑
i gi +N (0, σ2C2I)

)
7 Update model: θ ← θ − η · g
8 return θ

B HYPERPARAMETERS FOR SECTION 5

In the following, we describe the details of our hyperparameter search for the results in Section 5.

For LoRA, we choose the bottleneck rank r = 4 and fine-tune query and value matrices of the
attention layers as in the original paper (Hu et al., 2022).

For non-private SFT, we tune the batch size and the learning rate from the set {8, 16, 32, 64} and
in the range [1e-6, 1e-2] respectively. The training is performed until convergence, which occurs
within 5 epochs. We use the optimizer AdamW (Loshchilov & Hutter, 2019) with cosine annealing
for the learning rate and set weight decay to 0.01. The final batch size and learning rate are reported
in Table 4.

Table 4: Non-private SFT hyperparameters for the results in Section 5.
Model Batch size Learning rate
GPT-2 64 5e-4
GPT-2 Medium 64 5e-4
GPT-2 Large 64 2e-4

For DP SFT, informed by prior work (Yu et al., 2022; Li et al., 2022), we aim to set large batch size
and constant learning rate with a long training course. We set the batch size to 512 and the number
of epochs to 40. We similarly tune the learning rate in the range [1e-5, 1e-1] and finally set to 3e-4
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for all models. We use the optimizer AdamW with weight decay 0.01. For the DP parameters, we set
a small per-sample clipping norm as 1.0 and calculate the corresponding noise multiplier to achieve
the reported (ϵ, δ)-DP using the accountant in Gopi et al. (2021).

For PPO, we use the TRL framework4 and set the hyperparameters specific to PPO as default values
therein. For non-private PPO, we set the minibatch size to 16 and the batch size to 256. PPO epochs
is set to 4 and one epoch is passed on the full dataset. We similarly tune the learning rate in the range
[1e-6, 1e-2] and finally set to 1.4e-3 for GPT-2 and GPT-2 Medium, and 2e-4 for GPT-2 Large.

For DPPPO, we follow a similar course as DP SFT. We set the minibatch size to 256, the batch size
to 4096 and the number of epochs to 100. PPO epochs must be set to 1 as explained in Section 5.
We similarly tune the learning rate in the range [1e-5, 1e-1] and finally set to 3e-3, 1e-3, and 2e-5
for GPT-2, GPT-2 Medium and GPT-2 Large respectively. DP parameters also follow as DP SFT.

B.1 ABLATION STUDY ON TPPO

We perform an ablation study on TPPO using the GPT-2 model for ϵ = 4 to investigate the im-
plications of setting TPPO = 1 in our DPPPO algorithm. We report the results in Table 5. The
results indicate that setting TPPO > 1 does not provide improvement for the performance and set-
ting TPPO = 1 is reasonable as it leverages privacy amplification by subsampling in the DPSGD
algorithm.

Table 5: Ablation study on TPPO. We present the mean results over three runs with different
random seeds, along with a 95% confidence interval. Results show that the implications of setting
TPPO = 1 is insignificant.

Model ϵ TPPO Average reward

GPT-2 4

1 2.74 ± 0.27

2 2.72 ± 0.14

4 2.73 ± 0.05

8 2.64 ± 0.81

C ADDITIONAL RESULTS FOR THE POSITIVE REVIEW GENERATION TASK
IN SECTION 5

We present the following additional results as a compliment to Table 1 in Section 5.

C.1 SAMPLE GENERATIONS FOR SECTION 5

Table 6 demonstrates the alignment towards generation with positive sentiment for private and non-
private models via completions on randomly sampled prefixes from the test set.

C.2 TRADE-OFF BETWEEN PRIVACY AND UTILITY

To provide a clearer understanding of the privacy-utility trade-off, we illustrate in Figure 3 how
different levels of privacy (varying ϵ) impact the model’s performance for the GPT-2 Medium model.
We observe that the model performance improves from the fully-private model (ϵ = 0) to the private
model with privacy level ϵ = 4. The performance plateaus in this region and decreasing the privacy
of the model by using larger levels of ϵ ∈ [4, 10] does not further improve the performance. The
non-private model (ϵ =∞) has expectedly the best performance, albeit with the lack of privacy.

D HYPERPARAMETERS FOR SECTION 6

We mostly follow the hyperparameters described in Appendix B. Here we state only the differences.

4https://huggingface.co/docs/trl/index
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Figure 3: Trade-off between utility and privacy for the positive review generation task. Results
are obtained on the GPT2-medium model. The shaded area denotes the 95% confidence interval.
ϵ = 0 represents the pre-trained model; ϵ =∞ represents the non-private alignment.

Compared to the scenario in Section 5 we work with an order of magnitude larger dataset size in this
scenario. Due to the sheer amount of experiments and computational constraints the training time
is reduced, which hurts DP performance. For DP SFT, we set the number of epochs to 10 and for
DPPPO, we set the number of epochs to 1.

An important difference is that this scenario involves training a reward model. We fix GPT-2 model
to be used for reward model in all experiments. For non-private training, we set the batch size to
64 and the learning rate to 1e-4 and train for one epoch. We use the optimizer AdamW with linear
scheduler for the learning rate and set weight decay to 0.01. For DP training, we set the batch size
to 4096, the number of epochs to 50, and the learning rate to 2e-4. We use the optimizer AdamW
with weight decay 0.01. For the DP parameters, we set a small per-sample clipping norm as 1.0 and
calculate the corresponding noise multiplier to achieve the reported (ϵ, δ)-DP using the accountant
in Gopi et al. (2021).

E FULL RESULTS FOR THE SUMMARIZATION TASK IN SECTION 6

We present the complete set of results for the summarization task in Table 7, additionally including
the ROUGE-1 and ROUGE-2 scores.

F FULL PSEUDO-CODE

We present the complete version of the pseudo-code in Algorithm 3. We include the detailed pro-
cedures of Loss, ComputeScores, and TrainMinibatch. The parts that require additional
adaptation to fulfill DP are highlighted in blue and red.

G TWO PARADIGMS OF ALIGNING LANGUAGE MODELS

Depending on the nature of the reward signal—whether it is from some standard and commonly
endorsed criteria or from the preferences from a group of humans, there are two main paradigms in
using RL for alignment.

RL without human in the loop. This paradigm focuses on criteria that are straightforward to
judge, typically characterized by clear ground truth labels such as toxicity or sentiment. Given
their easily quantifiable nature, these criteria often align with binary labels. Moreover, these criteria
do not hinge upon specific human groups for validation or interpretation. The advantage of this
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Algorithm 3: Aligning language models with RL (PPO), full version
Define: D: a dataset consisting of input texts. x: input text, y: model response.

T : total training epochs, TPPO: PPO training epochs.
model, ref model: the model being learned and the frozen model for reference.
Models are composed of a generation body as well as a value head.
superscript b: batch, superscript mb: mini-batch.
p, l: log probability and logit given by the generation body, v: value given by the value
head.

1 Function Loss(pold, vold, sold, p, l, v):
2 A← ComputeAdvantages(vold, sold) ▷ through generalized advantage

estimation (Schulman et al., 2015)

3 r ← exp(p− pold) ▷ compute the ratio
4 lossp ← min(−rA,−Clip(r, 1− ε, 1 + ε)A) ▷ clipped objective

5 lossv ← αv · (A+ vold − v)2.mean()
6 return lossp, lossv
7 Function ComputeScores(Rb, pb, pbr):

▷ adjust the score by KL divergence. In practical implementation,

Rb (given by the reward model) is applied to only the last token.

8 return Rb − αKL · (pb − pbr)

9 Procedure TrainMinibatch(model, pold, vold, sold, p, l, v):
10 lossp, lossv ← Loss(pold, vold, sold, p, l, v)
11 loss = lossp + lossv ▷ sum of policy loss and value loss
12 optimizer.zero grad()
13 loss.backward()
14 optimizer.step()

15 Procedure Update(model, xb, yb, Rb):
▷ Stage I: forward passes to obtain reference stats on the batch

16 (pb, lb, vb)← BatchedForwardPass(model, xb, yb)

17 (pbr, l
b
r, v

b
r)← BatchedForwardPass(ref model, xb, yb)

18 sb ← ComputeScores(Rb, pb, pbr) ▷ compute the modified reward (Eq. 2)
▷ Stage II: update on minibatches

19 Db ← (xb, yb, lb, vb, sb) ▷ compose batched data
20 for i = 1 to TPPO do
21 for Dmb ∈ Db do
22 (xmb, ymb, lmb, vmb, smb)← Dmb ▷ take out a minibatch

23 (p, l, v)← BatchedForwardPass(model, xmb, ymb)

24 TrainMinibatch(model, pmb, vmb, smb, p, l, v) ▷ with PPO objective

25

▷ main loop
26 for i = 1 to T do

▷ take out a batch

27 for xb ∈ D do
28 yb ← model.generate(xb) ▷ obtain the model responses

29 Rb ← r(xb, yb) ▷ obtain the rewards via the reward model r

30 Update (model, xb, yb, Rb)

31 return model

paradigm is that there exists a plethora of pre-trained classifiers5 and detection APIs6 available to

5https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment,
https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest

6https://developers.perspectiveapi.com/s/about-the-api?language=en_US
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the public. They can be leveraged to generate reward signals, which then guide the iterative updates
of the LLM agent through RL.

RL with human preferences. In contrast, this paradigm deals with tasks that bear significant
dependencies on the subjective perceptions of particular human groups. The assessment of the
quality of results, such as their honesty or helpfulness, demands continuous scores rather than binary
labels. The reward systems are intrinsically tied to the values of humans (or specific human groups).
Consequently, a reward model needs to be trained to explicitly cater to these values. After training
the reward model to capture human preferences, it is incorporated into the RL process to guide the
LLM agent in adopting these preferences.

H FULL VERSION OF THE RELATED WORK

Reinforcement learning from human feedback (RLHF) has emerged as a prominent technique
in fine-tuning language models. Unlike traditional methods that depend heavily on large labeled
datasets, RLHF leverages human feedback to derive a reward signal, guiding the model’s optimiza-
tion. This enables models to produce more desired outputs in complex and open-ended tasks. Chris-
tiano et al. (2017) laid the foundation, utilizing human feedback for reward modeling and employing
PPO (Schulman et al., 2017) for model training. Early applications of RLHF in the natural language
realm focused on stylistic continuation (Ziegler et al., 2020), summarization (Ziegler et al., 2020; Sti-
ennon et al., 2022; Wu et al., 2021), and translation (Nguyen et al., 2017; Kreutzer et al., 2018). Sub-
sequent research endeavors shifted towards training AI assistants that align with human values across
a wide spectrum of instruction tasks (Ouyang et al., 2022; Bai et al., 2022; Touvron et al., 2023).

DP in language models Exploiting the memorization ability of language models (Carlini et al.,
2023), many privacy attacks have been launched, aimed at extracting training data or inferring train-
ing set membership (Carlini et al., 2019; 2021; Elmahdy et al., 2022; Mattern et al., 2023). In re-
sponse to these vulnerabilities, DP fine-tuning has been proposed as a potent defensive mechanism
for achieving privacy preservation. Li et al. (2022); Yu et al. (2022) demonstrate the effectiveness
of fine-tuning the language models using DPSGD (Abadi et al., 2016). Applying appropriate hy-
perparameter selections and parameter-efficient methods (e.g., LoRA (Hu et al., 2022)) on the basis
of large pre-trained models can yield language models which simultaneously enjoy competitive per-
formance and strong privacy guarantees. A different line of works (Mattern et al., 2022; Yue et al.,
2023) focus on privately generating synthetic text data, via fine-tuning a pre-trained model with DP.
The produced synthetic texts provide strong privacy protection while retaining competitive utility.

Despite these substantial progresses in ensuring privacy for language model related applications,
there remains a gap in ensuring DP for aligning language models. To our best knowledge, we are
the first that take a step in this direction.

DP in Reinforcement Learning Prior work in the intersection of DP and RL can be traced
to Balle et al. (2016). Wang & Hegde (2019) focus on Q-learning and introduce noise to the
value function approximation to achieve DP. Ma et al. (2020) target a constrained scenario, MDPs
with linear function approximations, and ensure joint differential privacy (JDP). Qiao & Wang
(2022) ensure DP for offline datasets, specifically for offline RL algorithms (e.g., APVI (Yin &
Wang, 2021)). None of these fulfills the need of achieving DP for online RL (e.g., PPO) with the
neighboring relation defined on a fixed dataset. Our DP adaptation of PPO (Section 4) fills the gap.
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Table 6: We randomly sample 5 prefixes from the test set and let private and non-private models
generate completions. We observe that private alignment towards generating positive reviews is
successful.

Prefix Model ϵ = 4 ϵ =∞
I loathe, despise, GPT-2 I loathe, despise, love eep too

great ideas and functions perfect
I loathe, despise, and part of
joined in and is still handled

GPT-2-M I loathe, despise, love and I love
this game, it’s

I loathe, despise, but I love
this book. Hats! And

GPT-2-L I loathe, despise, love this
movie! I was really happy!

I loathe, despise, love us. I
love us! I want

Seriously! You’ve
just got to see

GPT-2 Seriously! You’ve just got to see
this awesome comedy! It is fun
funny

Seriously! You’ve just got
to see this so what wonder-
ful stuff we’re going

GPT-2-M Seriously! You’ve just got to see
it! I am very appreciative of

Seriously! You’ve just got
to see watching this cool
movie. The movie is

GPT-2-L Seriously! You’ve just got to see
this awesome movie!! It’s awe-
some!

Seriously! You’ve just got
to see this beautiful collec-
tion. We love the way

With a title like
that, you

GPT-2 With a title like that, you will
love it! I love this. It is excit-
ing and could make it really

With a title like that, you
have huge up and great. It
is a fantastic story and I en-
joyed it all

GPT-2-M With a title like that, you can’t
help but feel positive but cer-
tainly is a very inspiring concept
and the way

With a title like that, you’re
amazing, we’re ready to
continue. It looks cooler. I
can’t

GPT-2-L With a title like that, you know
special production...great job!!
Jessica is great! Great material
and great acting

With a title like that, you’re
right. I love this site! It
makes me feel good, and I

I am not a fan of
Sean Penn

GPT-2 I am not a fan of Sean Penn at all
and I don’t really look for him.
I liked the flavour really

I am not a fan of Sean Penn
and I love it. However, I be-
came a bit too. I love the

GPT-2-M I am not a fan of Sean Penn’s,
I’m really happy and I love the
movie, and I’s very

I am not a fan of Sean Penn.
I appreciate what he is. It’s
awesome. This has been
amazing.

GPT-2-L I am not a fan of Sean Penn
<3 this film is great and worth
watching! <3 <3 <3

I am not a fan of Sean Penn,
but I love his work in base-
ball and I love his work for
my favorite

In the original
French version,
the jokes

GPT-2 In the original French version,
the jokes were pretty fun and
pretty neat. I really liked

In the original French ver-
sion, the jokes are amazing.
I love them so much, I

GPT-2-M In the original French version,
the jokes are beautifully clear
and funny. I am a very

In the original French ver-
sion, the jokes are great, but
I am excited to look at

GPT-2-L In the original French version,
the jokes were very funny! my
main pleasure from this movie

In the original French ver-
sion, the jokes were quite
good and it was quite close
to the
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Table 7: The average reward score (denoted by r) on the test set of the Reddit TL;DR summarization
dataset and ROUGE metrics (ROUGE-1, ROUGE-2, and ROUGE-L denoted by R-1, R-2, and R-
L, respectively) between model generated summaries and the label summaries in the test set for
various models and privacy levels. ϵ = 0 represents the pre-trained model. ϵ ∈ {1, 2, 4, 8} are
privately aligned models with different privacy budgets. ϵ =∞ is the alignment procedure without
any privacy. Our results demonstrate that alignment towards human-preferred summarization is
obtainable with formal privacy guarantees to the underlying dataset. Larger models improve the
alignment performance with privacy at reasonable privacy levels such as ϵ = 4. ROUGE metrics
indicate that models can deviate from label summaries learned during SFT and align towards human-
preferred summaries with PPO during alignment.

Model ϵ Stage Mean Reward R-1 R-2 R-L

GPT-2

0 Pre-trained 0.05 12.91 0.78 8.26

1 SFT 0.44 16.69 1.69 11.45
Aligned 0.22 14.69 1.50 10.41

2 SFT 0.48 17.23 1.85 11.84
Aligned 0.53 16.62 1.53 11.44

4 SFT 0.50 17.84 2.02 12.30
Aligned 0.68 17.75 1.80 12.33

8 SFT 0.49 17.89 2.01 12.45
Aligned 0.69 16.55 1.62 11.74

∞ SFT 0.63 20.85 2.97 14.48
Aligned 1.53 20.61 3.13 14.17

GPT-2
Medium

0 Pre-trained 0.11 13.53 0.90 8.67

1 SFT 0.68 18.70 2.36 12.80
Aligned 0.59 18.44 2.44 12.86

2 SFT 0.66 18.79 2.47 13.07
Aligned 0.92 19.60 2.34 13.26

4 SFT 0.65 19.27 2.62 13.30
Aligned 0.92 19.48 2.45 13.44

8 SFT 0.65 19.62 2.62 13.50
Aligned 0.86 19.85 2.65 13.79

∞ SFT 0.70 20.59 2.85 14.30
Aligned 1.76 19.64 2.50 13.17

GPT-2
Large

0 Pre-trained -0.06 16.13 1.56 10.34

1 SFT 0.51 21.67 3.37 14.98
Aligned 0.40 21.17 3.28 14.75

2 SFT 0.51 21.41 3.35 14.86
Aligned 1.14 21.33 3.33 14.58

4 SFT 0.52 21.83 3.47 15.14
Aligned 1.06 19.63 2.83 13.88

8 SFT 0.51 21.71 3.34 15.04
Aligned 0.93 20.26 3.04 14.37

∞ SFT 0.54 22.22 3.58 15.53
Aligned 1.49 21.81 3.32 14.64
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