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Abstract

Neural operator is considered a popular data-driven alternative to traditional partial
differential equation (PDE) solvers. However, most current solutions, whether
fulfilling computations in frequency, Laplacian, and wavelet domains, all deviate
far from the intrinsic PDE space. While with meticulous network architecture
elaborated, the deviation often leads to biased accuracy. To address the issue, we
open a new avenue that pioneers leveraging Radon transform to decompose the
input space, finalizing a novel Radon neural operator (RNO) to solve PDEs in
infinite-dimensional function space. Distinct from previous solutions, we project
the input data into the sinogram domain, shrinking the multi-dimensional transfor-
mations to a reduced-dimensional counterpart and fitting compactly with the PDE
space. Theoretically, we prove that RNO obeys a property of bilipschitz strongly
monotonicity under diffeomorphism, providing deeper insights to guarantee the de-
sired accuracy than typical discrete invariance or continuous-discrete equivalence.
Within the sinogram domain, we further evidence that different angles contribute
unequally to the overall space, thus engineering a reweighting technique to enable
more effective PDE solutions. On that basis, a sinogram-domain convolutional
layer is crafted, which operates on a fixed θ-grid that is decoupled from the PDE
space, further enjoying a natural guarantee of discrete invariance. Extensive ex-
periments demonstrate that RNO sets new state-of-the-art (SOTA) scores across
massive standard benchmarks, with superior generalization performance enjoyed.
Code is available at https://github.com/wenbin-lu/Radon-Neural-Operator.

1 Introduction

PDE solving is considered an important field of modern mathematics. Although traditional finite
element methods (FEM) [5] and finite difference methods (FDM) [35] have been shown to yield no-
table outcomes, they require substantial computational resources and careful discretization, a process
necessitating specialized expertise. In addition, certain transformations have been mathematically
proven to exhibit superior performance in the realm of PDE solving, including Fourier, Wavelet, and
Laplace [16, 7, 46]. Such transformations, though useful to provide some specific merits in other
domains, often fail to preserve the intrinsic geometry of the original PDE space.

Recently, the paradigm has shifted to a data-driven pattern. Owing to the inherent capability in
discerning behaviors of diverse PDEs directly from data, newly elaborated solvers have achieved
remarkable improvements in speed, robustness, and accuracy. These methods, categorized under
operator learning framework-particularly neural operator (NO)-establish explicit mappings from input
conditions, e.g., initial/boundary configurations, to PDE solutions in infinite-dimensional function
spaces. The most pioneering work was presented in [18], which provides a mathematically rigorous
alternative to traditional numerical methods by preserving operator continuity in Banach spaces.

∗Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/wenbin-lu/Radon-Neural-Operator


Current NOs predominantly fall into two branches. The first encompasses transformation-based
approaches derived from numerical analysis techniques, including Fourier neural operators (FNO)
[23], Laplace neural operators (LNO) [3], and Wavelet neural operators (WNO) [37]. While effective,
these methods inherently inherit the limitations of their underlying numerical schemes—they often
fail to capture the inherent PDE solution space accurately, enlarging the original dimensionality and
presenting scalability challenges for high-dimensional problems. The second endeavors to elaborate
sophisticated neural architectures, such as employing transformer [40] or Mamba [9], yet with the
intrinsic property of PDEs disregarded. To overcome the limitations, we propose the Radon neural
operator (RNO). In contrast to previous domains, we project the input data into the sinogram domain,
achieving dimensionality reduction while maintaining strong alignment with the original PDE solution
space. Building upon this, we rigorously prove that RNO satisfies the bilipschitz strong-monotone
property from a diffeomorphism perspective, theoretically providing a deeper equivalence guarantee
than traditional discrete invariance [18] or continuous-discrete equivalence [2].
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Figure 1: Comparison of feature
holism from different architectures.

During NO evolution, the pursuit of holistic features is known
as the most critical point. FNO and LNO enjoy strongly the
global property due to the employment of convolution op-
eration in spectral domain, coupled with the suppression of
high-frequency components, yet suffer from the loss of local-
ized information. This poses significant challenges for prob-
lems rich in local features, such as shock waves in hyperbolic
PDEs or steep gradients in elliptic PDEs. Conversely, convolu-
tional neural operator (CNO) [34] focuses on local features but
struggles with global feature extraction. For more balanced
feature extraction, several attempts have been performed to
combine FNO or LNO with differential and integral operators
[25], albeit at the cost of compromised generalization capabil-
ity. Generally, Radon transform (RT) holds similar properties to Fourier transform, yet with less
popularity enjoyed. This fact has long plagued the naive use of RT in the context of NO learning.

In this study, we have dug out that different angles within the sinogram domain contribute unequally to
the final feature representation, which motivates us to innovate an angle-reweighting technique striving
for an effective PDE solution. On that basis, we enrich our elaboration by incorporating sinogram-
domain convolution within the weighting network to better capture the holistic features. The sinogram
convolution operates on a fixed θ-grid that is decoupled from the spatial resolution of PDE manifold,
guaranteeing discrete invariance as confirmed by our generalization experiments. Furthermore, a
physics-attention mechanism is integrated, leveraging the global capability of transformer, into RNO,
ultimately leading to the complete architecture. Fig. 1 provides a visualized comparison of existing
architectures on feature learning. Overall, our contributions are summarized as follows.

• We pioneer the introduction of Radon transform into neural operators and, for the first time,
perform weight analysis in the sinogram domain to solve partial differential equations.

• Following the Radon forward transformation, we elaborate a convolution operation in the
weight network, which assists in the holistic learning of both global and local features.

• We rigorously prove that RNO is a bilipschitz operator, which ensures discretization in-
variance under diffeomorphism and avoids the introduction of any topological obstructions.
Empirically, new state-of-the-art scores are earned by RNO across most PDE benchmarks.

2 Preliminaries

Figure 2: Radon transform maps
f from (x, y) to Rf in (α, s).

Mathematically, RT is proposed by Johann Radon [32], as an
integral transform that maps a function f , defined on Cartesian
coordinates, to a function Rf , defined on the plane-wise two-
dimensional space of lines, where the value is determined by
the line integral of the function along that direction, as generally
illustrated in Fig. 2. In the figure, s denotes the perpendicular
distance from the line to the origin of the image coordinate system,
z represents the projection distance, and α indicates the orientation.
The normal vector n⃗ characterizes the line direction.
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In the sequel, the Radon transform in its high-dimensional form is initially formulated, from which
the essential dimension-reduction property becomes manifest [7]. For simplicity, we denote Sn−1 for
the unit sphere ∂B(0, 1) in Rn, a typical point of which is represented as ω = (ω1, · · · , ωn). Then,
the plane with unit normal ω ∈ Sn−1 at a distance s ∈ R from the origin can be written as follows:

Π(s, ω) := {y ∈ Rn|y · ω = s} .
Definition 1. The Radon transform Ru = ũ of a function u ∈ C∞

c (Rn) is given as

ũ(s, ω) :=

∫
Π(s,ω)

u dS, where ω ∈ Sn−1,y · ω = s ∈ R.

The right term is the integral over plane Π(s, ω) with regard to (n− 1)-dimensional surface measure.

We mainly use the two-dimensional variant of the Radon transform, whose mathematical form is as:

Rf(φ, s) =

∫∫
R2

f(x, y) δ(x cosφ+ y sinφ− s) dx dy, (1)

where f(x, y) is the input function, φ is the angle of the normal vector to the line (typically φ ∈ [0, π)),
s is the signed distance from the origin to the line, and δ(·) is the Dirac delta function restricting
integration to the line x cosφ+ y sinφ = s.

To achieve the concerned inverse transform of RT, we first reveal that a close relationship exists
between the Radon transform and the Fourier transform.
Theorem 1. (The connection between Radon and Fourier transforms) Assume u ∈ C∞

c (Rn), then

ū(r, ω) :=

∫
R
ũ(s, ω)e−irsds = (2π)n/2û(rω)(r ∈ R, ω ∈ Sn−1),

where û = Fu is the Fourier transform. See Appendix A.2.1 for a detailed proof.

Due to the close connection between the Radon and Fourier transforms, in mathematics it is posited
by the projection-slice theorem (also known as the central slice theorem or the Fourier slice theorem
in two dimensions) that the results of the following two calculations are deemed equivalent:

• A two-dimensional function f(r) is taken, projected onto a one-dimensional line (e.g.,
through the Radon transform) and subjected to a Fourier transform of the resulting projection.

• That same function is taken, subjected first to a two-dimensional Fourier transform, and
subsequently sliced through its origin along a plane parallel to the projection line.

Since inverting Fourier transform is already known, from Theorem 1 we likewise obtain RT inversion.
Theorem 2. (RT Inversion) The inversion of RT is given as (See Appendix A.2.1 for proof.)

u(x) =
1

2(2π)n

∫
R

∫
Sn−1

ū(r, ω)rn−1eirw·xdSdr.

However, yet with an analytical solution existing theoretically for the inverse Radon transform, the
practical implementation faces significant challenges. Direct practices often result in reconstructed
PDE manifold with pronounced blurring and amplified noise due to the inherent instability of this
inverse problem. By applying a frequency-domain filter to the projection data prior to back projection,
the filtered back projection (FBP) algorithm stands out as a natural solution to address the limitations
[30]. With the theoretical foundation derived from the projection-slice theorem, FBP functionally
stabilizes the computation process, effectively suppresses artifacts, and demonstrates particular
robustness when handling discrete datasets and noisy acquisition scenarios.

The mathematical form of the FBP algorithm can be expressed as:

f(x) =

∫ π

0

(Rf(·, θ) ∗ h) (⟨x,nθ⟩) dθ, (2)

in which the convolution kernel h, e.g., ĥ(k) = |k|, is referred to as Ramp filter in some literature.
In this article, the practical number of projection angles is established as a hyperparameter to
accommodate various datasets, and it is demonstrated through experiments that, at ultra-low resolution,
fewer angles are preferable to a greater number. We provide more details of FBP and the numbers of
angle in Appendix A.2.2.
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Figure 3: The full architecture of RNO. Given the input data, non-local features are derived through
physics-attention, followed by the operations of weight analysis and sinogram domain convolution
with the aid of forward/inverse Radon transform, aiming at enriching the more holistic features.

3 Methodology

3.1 Problem Setting

Our methodology strives for a mapping bridging two infinite-dimensional spaces from a finite
collection of given input-output pairs. Let D ⊂ Rd be a bounded and open set, and let X =
L2(D;Rdx) as well as Y = L2(D;Rdy ) be individual Hilbert spaces of square-integrable functions
with elements in Rdx and Rdy , respectively. Moreover, let G† : X → Y be a (typically) non-linear
mapping. We probe into maps G† that arise as the solutions of parametric PDEs. Assume that we
are given observations {(aj , uj)}Nj=1 where aj ∼ µ is an independent and identically distributed
(i.i.d.) sequence from the probability measurement µ supported on X , and uj = G†(aj) is probably
corrupted with noise. The goal is to elaborate an approximation of G† by forming a parametric map

G : X ×Θ → Y or equivalently, Gθ : X → Y, θ ∈ Θ,

for certain finite-dimensional parameter space Θ, with the optimal choice θ† ∈ Θ so that G(·, θ†) =
Gθ† ≈ G†. This is a natural idea for learning in infinite dimensions as we can intuitively define a loss
functional C : Y × Y → R and pursue a minimizer of the problem

min
θ∈Θ

Ea∼µ

[
C
(
G(a, θ), G†(a)

)]
,

which directly parallels the typical finite-dimensional configuration [39]. However, evidencing the
existence of minimizers, especially in the infinite-dimensional environment, remains a challenging
problem. We attempt to approach this issue in the test-train setting by using an empirical and data-
driven approximation to the loss, determining the final θ and testifying the concerned accuracy. Recall
that we conceptualize our methodology in the infinite-dimensional environment, hence all finite-
dimensional approximations enjoy a shared parameter set that is consistent in infinite dimensions.

3.2 Radon Neural Operator

Neural Operator Architecture. Generally, a typical NO architecture is constructed from three
primary components: lifting, iterative kernel integration, and projection [18], which is written as:

Gθ : Q ◦ σT (LT−1 +KT−1 + bT−1) ◦ · · · ◦ σ1(L0 +K0 + b0) ◦ P, (3)

where P : RdX → Rdv0 , Q : RdvT → RdY are the lifting and projection mappings, respectively.
Lt ∈ Rdvt+1

×dvt denote linear operators (matrices), Kt : {vt : Dt → Rdvt} → {vt+1 : Dt+1 →
Rdvt+1} represent kernel operators, and bt : Dt+1 → Rdvt+1 are bias functions. Acting as maps
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Figure 4: The flowchart of a Radon block. The input data first enters the sinogram domain through
the Radon forward transform, where weight analysis is performed in the sinogram space to assign
specific weights to each angle. Afterwards, the signal is projected back to the spatial domain through
the FBP algorithm. Meanwhile, a skip connection is imposed to introduce more original information.

Rdvt+1 → Rdvt+1 in each layer, σt is a fixed activation function. Note that the output dimensions
dv0 , · · · , dvT , the input dimensions d1, · · · , dT−1, and the domains of definition D1, · · · , DT−1 are
hyperparameters of the architecture.

Kernel Integral Operator K. Following [18], the kernel integral operator for Eq. (3) is defined by

(K(a;ϕ)vt) (x) :=

∫
D

κ (x, y, a(x), a(y);ϕ) vt(y) dy, ∀x ∈ D, (4)

in which κ is usually parameterized by a neural network such that κϕ : R2(d+dX ) → Rdv×dv , with
ϕ ∈ ΘK. Functionally, κϕ plays the role of a kernel integral which we learn from data.

Radon Neural Operator. We propose to innovate the kernel integral operator in Eq. (4) with the
Radon transform discussed in Section 2. Recall that Eq. (1) presents the concerned forward transform,
by which the data are projected into the sinogram domain. Eq. (2) undergoes the inverse transform,
by which the data are returned from the sinogram domain to the original domain. Unlike FNO, which
draws inspiration from Green’s function, the Radon neural operator is motivated by the impulse
response. Concretely, it is defined that κ (x, y, a(x), a(y);φ) = δ(x cosφ+ y sinφ− s). Note φ is
the angle of the normal vector to the line (typically φ ∈ [0, π)), s is the signed distance from origin to
the line, and δ(·) is the Dirac delta function restricting integration to the line x cosφ+ y sinφ = s.

On that basis, Radon neural operator can be formally defined as follows.

(K(ϕ)vt)(x) = R−1(Pϕ · (Rvt))(x) ∀x ∈ D, (5)

where Pϕ is a learnable parameter used to angle-wise impose different weights within the sinogram
domain. Mathematically, data formation derived from various perspectives has been extensively
investigated. Specific to the property of the Radon transform, an angle-based basis is considered,
which differs from the global spectral bases used in FNO or LNO and the local wavelet used in WNO,
providing an opportunity to learn the holistic features within a single transform. We will elaborate
on the implementation of the detailed technique in Subsection 3.4. Note most currently well-known
NOs can be consistently expressed by the following formula [1], which advocates the joint learning
of global-local features, a property that our RNO naturally fits.

v(y) = σ(K(a)(y))

= σ(

∫
κGlobal(y, x)v(x) dµ+

∫
κLocal(y, x)v(x) dµ

′ +Da

∣∣∣∣
y

(y) +Wa(y) + b(y)).
(6)

On that basis, we consider that the non-local features also favor the final solution. Therefore, drawing
inspiration from Ref. [43], we further engineer the physics-attention mechanism that decomposes the
discretized domain into a series of learnable slices, within which attention is computed on physics-
aware tokens. The overall network architecture with a general explanation is given in Fig. 3. Physical
attention is specifically embodied in the kernel function in Eq. (6), given as follows.

κGlobal(y, x) =

M∑
j=1

M∑
k=1

w(y, sj)
exp

(
WQz

T
j WKzk/

√
C
)∑M

p=1 exp
(
WQzTj WKzp/

√
C
) WV

w(x, sk)∫
Ω

w(ξ, sk) dξ

. (7)

5



           Sinogram Weights

1×16 Conv G

G GELU Function S Sigmoid Function

S16×1 Conv

Extract features Generate weights

Figure 5: The structure of sinogram-domain convolution. With a convolution operation performed
in the sinogram domain, the local information from different angles can be further learned based on
the global features of RT. The data sequentially passes through a chain of convolution-activation-
convolution to achieve the weight distributions.

where Ω is the computational domain, M is the number of learnable slices, sj denotes the
j-th slice, w(·, sj) represents the soft assignment weight from any point to slice sj , zj =∫
Ω
w(ξ, sj)v(ξ) dξ

/ ∫
Ω
w(ξ, sj) dξ is the physics-aware token of slice sj , WQ,WK ,WV ∈ RC×C

are the query, key and value projections used in the token-wise attention, and C is the channel
dimension.

Parameterizations of Pϕ. With the Radon transform performed, the input data originally within
the spatial domain are now converted to the sinogram domain, in which we further find that the contri-
butions of different projection angles to the overall spatial representation are inherently non-uniform.
Building upon this observation, we conceptualize the angle as a form of basis and introduce learnable
parameters to dynamically adjust angular weights, thereby achieving more effective solutions.

Quasi-linear Complexity. Given a discrete counterpart u ∈ RH×W×D of a two-dimensional
continuous function, it is firstly restructured, yielding u ∈ RN×D, where N = H × W . The
forward Radon transform is then applied to project an image along A angles, which necessitates
O(AN) computations owing to the rotation and summation of the image for each angle. Afterwards,
the inverse Radon transform, specifically the FBP algorithm, performs a filter operation within
the sinogram domain, converting the angular information into the frequency domain. This routine
necessitates O(A×max(H,W ) logmax(H,W )), followed by a back projection that accounts for
a complexity of O(AN). Since that A is usually a small value, i.e., A ≪ N , we consider the
overall computational cost as quasi-linear complexity. The complexity of other well-known models
is detailed in Appendix E. In practice, the runtime complexity of RNO is strongly dependent on
the number of angles specified. Intuitively, the larger the angle parameter, the more effective the
outcome is deemed. However, we have noticed that the larger number often results in a greater risk
of overfitting. Practically, at ultra-low resolution, more pronounced the error occurs when we set a
large A value. Further details are elaborated in Appendix G.4.

3.3 Discretization Invariance under Diffeomorphism

In Ref. [8], a no-go theorem is proposed to explain the fundamental obstacle separating infinite and
finite dimensions, along which the concept of diffeomorphisms and the property of discretization
invariance are elaborated within the framework of category theory. Moreover, it proves that a
bilipschitz NO layer can be expressed as a combination of strongly monotone neural operator layers
with a simple isometry. In addition, the strongly monotone NO can be continuously approximated by
strongly monotone diffeomorphisms in a finite-dimensional space.

Following this theorem, in this study we prove that Radon operator actually behaves as a bilipschitz
operator. Since RNO is primarily performed in 2D space, hence in the sequel, the informal proof for
the two-dimensional case is provided. More details are referred to Appendix C.1.
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By leveraging the linear property of Radon transform, the definition of a bilipschitz operator in the
context of RT is formally given as follows, in which c and C are some positive constants.

c∥f∥L2 ≤ ∥Rf∥L2 ≤ C∥f∥L2 . (8)

Problem (8) can be further broken into two parts: the right upper bound and the left lower bound.

Upper Bound: Within (8), the norm of Rf is computed with the expression ∥Rf∥2L2 =∫
S1

∫
R |Rf(s, θ)|2 ds dθ. Following the Fourier slice theorem, a 1D Fourier transform of

Rf(·, θ) is given as F1[Rf(·, θ)](σ) = f̂(σθ). On that basis, the Plancherel theorem further
leads us to

∫
R |Rf(s, θ)|2 ds =

∫
R |f̂(σθ)|2 dσ, hence the norm of Rf turns into ∥Rf∥2L2 =∫

S1

∫
R |f̂(σθ)|2 dσ dθ. By further switching to polar coordinates, a key expression is deduced:

∥Rf∥2L2 = 2

∫
R2

|f̂(ξ)|2∥ξ∥−1 dξ.

The weight ∥ξ∥−1 is manageable since
∫
|ξ|<1

∥ξ∥−1 dξ = 2π < ∞, which manifests that we can

bound the integral as
∫
R2 |f̂(ξ)|2∥ξ∥−1 dξ ≤ C1∥f∥2L2 , leading to the upper bound with C =

√
2C1:

∥Rf∥L2 ≤
√
2C1∥f∥L2 ,

Lower Bound: For the left part of (8), note first that R is injective. That is, if Rf = 0, then
f̂(σθ) = 0, hence leading to f = 0. Besides, the inverse R−1, roughly given by filtered back
projection f(x) =

∫
S1(H∂sRf)(x · θ, θ) dθ, is bounded in L2, satisfying ∥R−1g∥L2 ≤ K∥g∥L2 .

By applying this to Rf , we get ∥f∥L2 = ∥R−1(Rf)∥L2 ≤ K∥Rf∥L2 , which refers to lower bound:

∥Rf∥L2 ≥ 1

K
∥f∥L2 ,

with c = 1
K . Note that for future research, we also provide an n-dimensional proof in Appendix C.1.

3.4 Radon Block

As mentioned, our methodology employs a fundamentally different design paradigm within the
sinogram domain. The core component, i.e., Radon block, is illustrated in Fig. 4. According
to Eq. (5), the data are first transformed from the original PDE space into the sinogram domain
through the Radon forward transform, which achieves dimensionality reduction while preserving
the essential information in the original space. From Fig. 4, we observe that while different angular
lines are equally distributed, their valid coverages on the PDE manifold are severely distinct from
each other. Moreover, different regions of the entire PDE manifold also contribute distinctly to the
final representation. Therefore, it is naturally considered that the angular lines benefit from adaptive
weight coefficients to favor a better reconstruction.

To put the natural consideration into practice, we further elaborate a sinogram-domain convolution to
perform the weight computation. The practical implementation is presented in Fig. 5, within whose
left panel the horizontal and vertical axes respectively represent the spanned angles and the concerned
density values. As seen, the actual convolution is performed on an inter-angle scope, adopting
multi-line information to finalize the weight learning. While multiple lines are jointly considered, the
covering span is limited by the convolution kernel, hence with the local features learned. This fact,
together with the globality essence of RT and the non-local property of the physic-attention block,
ensures a more holistic feature learning. Unlike conventional computations that depend closely on the
spatial grids, our convolution is performed on a θ-space that is decoupled from the spatial resolution.
Although the sampling interval s varies with resolution, the sinogram convolution maintains strict
consistency in the θ-direction. This key characteristic enables the model to share convolution kernels
across different resolutions, thus further ensuring discrete invariance. Our generalization experiments
provide empirical validation of this property.

We proceed to define the mathematical formulation of sinogram-domain convolution. For a sinogram
S(θ, t), where θ represents the projection angle and t the position along the detector, the sinogram
domain convolution is defined as:

Sconv(θ, t) = (S ∗K)(θ, t) =

∫ ∞

−∞
S(θ′, t)K(θ − θ′) dθ′. (9)
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Table 1: Performance comparison on standard benchmarks. Relative L2 is recorded. A smaller value
indicates better performance. (Bold: Best performance, Underlined: Second best performance, ▲:
Performance increase, ▼: Performance decrease,‘/’ means that the model does not perform well on
that dataset or that the model is not suitable for that benchmark.)

MODEL MECHANISM REGULAR GRID STRUCTURED MESH
Darcy Navier-Stokes Allen-Cahn Airfoil Plasticity Pipe

DEEPONET / 5.88× 10−2 2.97× 10−1 / 3.85× 10−2 1.35× 10−2 9.70× 10−3

FNO Fourier Transform 1.08× 10−2 1.56× 10−1 7.52× 10−3 / / /
WMT Wavelet Transform 8.20× 10−3 1.54× 10−1 1.12× 10−2 7.50× 10−3 7.60× 10−3 7.70× 10−3

GALERKIN Galerkin Attention 8.40× 10−3 1.40× 10−1 / 1.18× 10−2 1.20× 10−2 9.80× 10−3

GNOT Transformer 1.05× 10−2 1.38× 10−1 / 7.60× 10−3 3.36× 10−2 4.70× 10−3

U-NO U-Net 1.13× 10−2 1.71× 10−1 4.31× 10−2 7.80× 10−3 3.40× 10−3 1.00× 10−2

ONO Orthogonal Attention 7.60× 10−3 1.20× 10−1 1.71× 10−2 6.10× 10−3 4.80× 10−3 5.20× 10−3

TRANSOLVER Physic-Attention 5.70× 10−3 9.00× 10−2 5.32× 10−3 5.77× 10−3 1.20× 10−3 3.30 × 10−3

RNO (Ours) Radon Transform 5.10 × 10−3▲ 8.94 × 10−2▲ 4.61 × 10−3▲ 4.90 × 10−3▲ 1.15 × 10−3 ▲ 4.20× 10−3▼

Input (Porous Medium) Ground Truth Transolver ErrorRNO ErrorRNO Prediction Transolver Prediction

Figure 6: Case study on RNO and Transolver. The prediction results and errors are provided.

Here, K(θ) is the convolution kernel, which slides along the θ-axis to combine neighboring angular
values. We provide more details on sinogram-domain convolution in Appendix D.

For the inverse Radon transform, the sinogram domain data are projected back to the spatial domain
in accordance with the filtered back projection algorithm, as outlined in Section 2. To ensure better
preservation of the original information, skip connections are introduced [12]. As discussed in the
analysis of discrete invariance [8], skip connections play a critical role in preserving the bijectivity
and strong monotonicity of neural operators, further guaranteeing that discretization challenges in
infinite-dimensional spaces are avoided.

4 Experiments and Analysis

Training Details and Baselines. For fairness, all experiments are consistently conducted on a stan-
dardized platform with an NVIDIA GTX 4090 GPU and 2.10GHz Intel(R) Xeon(R) Platinum 8352V
CPU. Several well-known PDE solvers are used as the competing baselines, such as Deeponet[27],
FNO[23], WMT[10], Galerkin[4], GNOT[11], ONO[44], U-NO[33], and Transolver [43].

Standard Benchmarks. To better compare with existing work, we performed experiments on
several publicly available benchmarks, including Plasticity, Airfoil, Pipe with structured mesh and
Navier-Stokes, Darcy, Allen-Cahn with regular grid. These benchmark datasets were extensively
investigated in seminal works such as FNO [23], geometry-aware FNO (geo-FNO) [22], and WNO
[37], and have since gained widespread adoption in the scientific machine learning community. We
provide a more detailed description of these datasets in Appendix F.

Implementation Details. All competing methods are trained with l2 loss and 500 epochs. The
ADAM [17] optimizer with an initial learning rate of 10−3 is used. For Radon transform, the main
hyperparameters lie in the number of Radon blocks and the employed quantity of angles. Note the
latter depends on the size of the input data to ensure that sufficient angular information is obtained.
We provide more implementation details and hyperparameter configurations in Appendix G.1.

4.1 Main Results

In Table 1, we present a comprehensive comparison against existing approaches, in both cases of
regular grid and structured mesh. As can be seen, for the regular scene, RNO consistently achieves
state-of-the-art (SOTA) performance across most PDE benchmarks. Specific to equations of Darcy
flow and Allen-Cahn, the improvements over the second-best competitors reach 10.5% and 13.2%,
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respectively. For irregular meshes, the conventional Radon transform is also applicable through
a simple zero-padding operation. On the Airfoil benchmark, RNO achieves a 14% performance
gain compared to the second-best approach. However, the padding operation also incurs some
redundancies; hence, our proposal lags behind Transolver slightly on the Pipe benchmark.

4.2 Generalization.

Recall that NOs focus on learning mappings between infinite-dimensional function spaces, pursuing
inherent discretization invariance. Generalization capability serves as a crucial experimental manifes-
tation of this fundamental property. To assess this property of the proposed model, we firstly trained
RNO in a low-resolution setting, then performed zero-shot inference across higher-resolution settings.
Specifically, the Darcy flow equation, originally within a resolution of 421× 421, was downsampled
to sizes of 241 × 241, 211 × 211, 141 × 141, 85 × 85, 61 × 61, and 43 × 43. The training was
conducted on the 43× 43 resolution and thereafter assessed across the others.
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Figure 7: Generalization comparison of RNO and Transolver.

The concerned results comparing
RNO with FNO are provided in
Table 2. As seen, RNO achieves
satisfactory generalization in all
scales, enjoying performance im-
provements of roughly 70% over
that of the FNO. Fig. 7 and Fig.
8 further visually compares RNO
with Transolver. While these two
share a similar effect at lower
resolutions, the performance of
RNO, at very large scales, ex-
ceeds far from that of Transolver.
Intuitively, it is demonstrated that
RNO possesses strong generaliza-
tion capabilities, which hold sig-
nificant practical value for super-resolution tasks, image enhancement, data-scarce scenarios, and
transfer learning, underscoring its considerable research potential. More detailed explanations are
offered in Appendix G.3.

Table 2: Comparative display of generalization performance. Relative L2 is recorded. A smaller
value indicates better performance. (Bold: Best performance)

Model 61× 61 85× 85 141× 141 211× 211 421× 421

FNO 1.16× 10−1 1.80× 10−1 2.68× 10−1 3.16× 10−1 3.63× 10−1

RNO (Ours) 3.21 × 10−2 5.04 × 10−2 6.69 × 10−2 7.09 × 10−2 7.62 × 10−2

Relative Improvement 72.42% 71.95% 75.03% 77.56% 79.01%

4.3 Ablation Study

We present ablation studies to validate the efficacy of the Radon block. Using the Darcy flow equation
as an example, the results of different combinations are given in Table 3. Initially, we replaced
the Radon block with alternative transformation methods, i.e., Fourier transform. Experimental
results demonstrate that relying solely on global information yields suboptimal performance. We
further conducted a bidirectional validation by substituting physics-attention mechanism (P.A.) with
FNO. The results enjoy a 41.67% performance improvement over the baseline FNO, which not only
underscores the criticality of holistic information but also confirms that Radon block effectively
captures the local features. Moreover, to demonstrate the significance of sinogram convolution, we
have replaced it with a simple nonlinear weighting scheme. As evidenced in the 4th row of Table 3,
the replacement suffers a performance reduction of nearly 7%. To further demonstrate the substantial
potential of Radon transform, we perform another ablation study by replacing the GPU-accelerated
PyTorch Fourier transform in FNO with the non-accelerated counterpart. The results are given in
Table 4, which together with Table 3 shows that the replacement leads to a significant reduction
in efficiency of FNO, rendering it considerably inferior to RNO. This finding underscores RNO
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Figure 8: Comparison of generalization between RNO and Transolver. We demonstrate generalization
performance at two larger resolutions, with RNO significantly outperforming Transolver. The figure
shows the error map of RNO, the error map of Transolver, input information and ground truth.

as a promising avenue for future exploration in GPU acceleration. Due to space limitations, the
experiments on different selections of angle numbers are provided in Appendix G.5.

Table 3: Ablation studies of Radon block and sinogram domain convolution. All experiments were
based on the 85× 85 Darcy flow dataset and tested when the number of angles was set to 32.

Ablations Memory Time Param Relative L2
(GB) (s/epoch) (B) Darcy

P.A.+FNO 2.83 40.28 4.02× 106 8.84× 10−3

FNO 1.35 8.48 2.38× 106 1.08× 10−2

FNO+Radon Block 2.92 25.58 2.38× 106 6.30× 10−3

Only nonlinear weights 3.18 71.98 2.84× 106 5.79× 10−3

Ours 2.87 37.88 2.83× 106 5.34× 10−3

Table 4: Comparison of Training and Inference Time between RNO and FNO without GPU Accelera-
tion. (Bold: our method)

Stage RNO (ours) FNO (w/o GPU opt.)

Training time (s/epoch) 32.87 196.79
Inference (s) 3.02 14.17

5 Conclusions and Future Work

For the efficient solving of PDEs, we propose RNO in this study, which employs Radon transform to
reduce the spatial dimensionality of PDEs while preserving their intrinsic information. Theoretically,
we prove that the proposed operator possesses a more profound bilipschitz strong-monotonicity,
which further guarantees discrete invariance under diffeomorphism. Building upon this foundation,
we perform weight analysis in the sinogram domain, within which a sinogram convolution is newly
elaborated and integrated. Distinct from the normal convolution operation, the new proposal is
grid-independent, guaranteeing again the discrete invariance. Extensive experiments conducted on
multiple benchmarks demonstrate that our RNO achieves state-of-the-art performance. Moreover,
the generalization experiments show significant improvements compared to baselines. Future work
will focus on further investigations in the sinogram domain, enhancing the capture of more detailed
features. We also anticipate that RNO will be widely utilized in massive industrial applications.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction of the paper reflect the core arguments and ideas
of the article and must be able to truly reflect the contribution and scope of the article. Our
work accurately reflects this.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The discussion of limitations is for future work. We discuss the limitations in
the article.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We illustrate all theoretical arguments in the main text and provide complete
proofs in the appendix for reference. For example, this article proves that the Radon neural
operator is a bilipschitz operator, and we provide a complete proof in Appendix C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We carefully discuss the details of the experimental implementation in the
main text and appendix, and we will also open source the code for reference.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We submit the code of the model, all datasets are from public data, and we
introduce the sources and details in the appendix.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide relevant implementation details of the experiments in the main
text and in the Appendix, where we provide detailed hyperparameter setting details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Because our experiments involve almost no relevant indicators, and we believe
that the relevant information is not crucial for our research.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have elaborated on the relevant experimental details and resource usage in
the main text.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We fully comply with the NeurIPS Code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed this fully in the main text and appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not involve related content and risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite relevant literature in the paper and state the code used in the open
source link on github.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code is available as a zip file.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This article does not involve crowdsourcing experiments and research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This article does not cover related content.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLM is only used for polishing and will not influence the core methodology
of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix / Supplementary Material
Solving Partial Differential Equations via Radon Neural Operator

A Related Work

A.1 Neural Operator

Neural operators [18] are regarded as a promising way to solve PDEs. Inspired by Green’s function
for solving PDEs, neural operators were pioneered through the incorporation of kernel integral
operators, establishing mappings between infinite-dimensional function spaces. The most basic
and well-known example is FNO [23]. On that basis, several excellent developments were derived.
For instance, the U-FNO [42] integrates the U-Net network with the FNO, while the F-FNO [36]
utilizes factorization in the Fourier domain. The Laplace transform, as the complex form of the
Fourier transform, is introduced into LNO [3]. The multiwavelet-based operator [10] incorporates the
principle of multiwavelets. This concept is generalized and leveraged to address arbitrary measures,
thereby enabling the development of a series of models for operator learning from complex data
streams. In addition to these classic mathematical methods, deep learning architectures have been
incorporated into neural operators. For example, the famous transformer architecture [40] has given
rise to several developments, including FactFormer [21], OFormer [20] , GNOT [11], ONO [44], and
Transolver [43]. Another example, the emerging Mamba architecture [9], has led to the development
of the MambaNO [47].

To provide intuition into the distinctions and connections between RNO and related works, Table 5
offers a detailed comparison.

Table 5: Comparison of different neural operators.
Transform Global Feature Capture Local Feature Capture Geometry Awareness Discrete Invariance Computational Cost

FFT (FNO) ✓ Excellent (global frequencies) × Poor (no locality) × Assumes periodicity ✓ Yes (spectral conv) Low (FFT + linear)

Wavelet (WNO) ! Limited (coarse scales) ✓ Excellent (multi-scale) ! Limited (fixed basis) ✓ Yes (multi-level) Moderate (filter bank)

Radon (RNO) ✓ Strong (line integrals) ✓ Tunable (θ-conv) ✓ Strong (line geometry) ✓ Yes (θ-grid decoupled) Moderate (O(AN))

Key: ✓ = advantage, ! = moderate, × = weak or missing.

A.2 Supplement to Radon Transform

A.2.1 Proof Supplement

(Radon and Fourier transforms) Assume that u ∈ C∞
c (Rn), then

ū(r, ω) :=

∫
R
ũ(s, ω)e−irsds = (2π)n/2û(rω)(r ∈ R, ω ∈ Sn−1)

where û = Fu is the Fourier transform.
Proof. Take b1, · · · , bn−1 to be an orthonormal basis of Π(0, w).Then

ũ(s, ω) =

∫
Rn−1

u

n−1∑
j=1

yjbj + sω

 dy

and so ∫
R
ũ(s, ω)e−irsds =

∫
R

∫
Rn−1

u

n−1∑
j=1

yjbj + sω

 e−irsdyds

By changing variables and rewriting x :=
∑n−1

j=1 yjbj + sω, then we have∫
R
ũ(s, ω)e−irsds =

∫
Rn

u(x)e−ir(x·ω)dx = (2π)n/2û(rω)

□
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(Inverting the Radon Transform) We have

u(x) =
1

2(2π)n

∫
R

∫
Sn−1

ū(r, ω)rn−1eirw·xdSdr

Proof. The process is sequentially deduced as follows.∫
R

∫
Sn−1

ūrn−1eirω·x dS dr = (2π)n/2
∫
R

∫
Sn−1

û(rω)rn−1eirω·x dS dr

= 2(2π)n/2
∫ ∞

0

∫
Sn−1

û(rω)rn−1eirω·x dS dr

= 2(2π)n/2
∫
Rn

û(y)eiy·x dy

= 2(2π)nu(x).

□

A.2.2 Supplement to FBP Algorithm

We have generally introduced the mathematical form of the FBP algorithm in the main texts. Here
we elaborate on the implementation process of the FBP algorithm, which can be broken down into
two main steps:

• Filtering: The projection data, or sinogram, is processed with a high-pass filter, typically a
Ramp filter, in the frequency domain. This step is designed to enhance high-frequency com-
ponents, such as edges, thereby counteracting the blurring effect caused by back projection.
The filter, which is often modified with a window function for practical purposes, ensures
that the data are refined prior to reconstruction.

• Back Projection: The filtered projection data are subsequently back-projected, meaning the
data are redistributed into the PDE space along the trajectories from which the projections
were obtained. This process entails the accumulation of values within the pixels to recon-
struct the original function, whereby information from all views is integrated to produce the
final generation.

B Discretization Invariance under Diffeomorphism

To commence with, the concept is initially defined regarding what it means for a nonlinear function
F : X → X in an infinite-dimensional Hilbert space, X , to be estimated by operators in finite-
dimensional subspaces V ⊂ X .
Definition 2. (ϵV approximators and weak approximators)
(i) Let r > 0, F ⊂ Cn(X;X) be a family of operators or functions, and ϵ⃗ = (ϵV )V ∈S0(X) be a
series such that ϵV → 0 as V → X . We claim that a function

AX : F → XV ∈S0(X)C(BV (0, r);V ), F → (FV )V ∈S0(X)

is an ε⃗-approximation operation for functions F in the ball BX(0, r) assuming values in families
FV ⊂ C1(V ;V ) if AX maps a function F : X → X , where F ∈ F , to a series of functions
(FV )V ∈S0(X), where FV ∈ FV , so that the following is valid: For all F : X → X satisfying
∥F∥

Cn(BX(0,r);X)
≤ M , we get

sup
x∈BV (0,r)

∥FV (x)− PV (F (x))∥X ≤ MϵV ,

where PV : X → X is the orthogonal projection onto V , that is, Ran(PV ) = V .

(ii) We further say that A : Cn(X;X) → XV ∈S0(X)C(V ;V ), F → (FV )V ∈S0(X) is a weak
approximation operation for the function family F ⊂ Cn(X;X) if for any F ∈ F and r > 0 it
enjoys that

lim
V→X

sup
x∈BV (0,r)

∥FV (x)− PV (F (x))∥X → 0.
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Definition 3. (Strongly Monotone) We claim that a (nonlinear) operator F : X → X on Hilbert
space X , is strongly monotone if there exists a constant α > 0 such that

⟨F (x1)− F (x2), x1 − x2⟩X ≥ α∥x1 − x2∥2X , for all x1, x2 ∈ X.

Definition 4. (Bilipschitz) It can be deemed that F is bilipschitz if there exist constants c > 0 and
C < ∞ such that for all x1, x2 ∈ X ,

c∥x1 − x2∥ ≤ ∥F (x1)− F (x2)∥ ≤ C∥x1 − x2∥.

B.1 No-go theorem for discretization of diffeomorphisms on Hilbert spaces

Definition 5. (Category of Hilbert Space Diffeomorphisms) We let D as the category of Hilbert
diffeomorphisms with objects OD that are packs (X,F ) of a Hilbert space X and a (possibly
non-linear) C1-diffeomorphism F : X → X and the gathering of morphisms (or arrows that ’map’
objects to others) A that are either

1. (induced isomorphisms) Maps aϕ that are ruled for a linear isomorphism ϕ : X1 → X2 of
Hilbert spaces X1 and X2 that maps the objects (X1, F1) ∈ OD to the one (ϕ(X1), ϕ◦F1 ◦
ϕ−1) ∈ OD, or

2. (induced restrictions) Maps aX1,X2 that are ruled for a Hilbert space X1, its closed subspace
X2 ⊂ X1, and an object (X1, F1) ∈ OD such that F1(X2) = X2. Then aX1,X2 maps to
the object (X1, F1) ∈ OD to the one (X2, F1|X2

) ∈ OD.

Definition 6. (Category of Approximation Sequences) We let B be the category of approximation
sequences, owning objects OB that are of the form (X,S0(X), (FV )V ∈S0(X)), in which X is a
Hilbert space,

S0(X) ⊂ S(X) = {V | V ⊂ X is a finite dimensional linear subspace},

are partly ordered lattices,
⋃

V ∈S0(X) V = X , and FV : V → V are C1-diffeomorphisms of spaces
V ∈ S0(X).

The set of morphisms AB comprises either

1. Schedules Aϕ that are defined for a linear isomorphism ϕ : X1 → X2 of Hilbert spaces
X1 and X2, and lattices S0(X1) and S0(X2) = {ϕ(V ) | V ∈ S0(X1)}, that schedule the
objects (X1, S(X1), (FV )V ∈S(X1)) to (X2, S(X2), (ϕ ◦ Fϕ−1(W ) ◦ ϕ−1)W∈S(X2)), or

2. Schedule AX1,X2 that are ruled for a Hilbert space X1, its closed subspace X2 ⊂ X1,
and an object (X1, S0(X1), (FV )V ∈S0(X1)) so that F (X2) = X2 and S0(X2) = {V ∈
S0(X1) | V ⊂ X2} are a partly ordered lattice. Afterwards, AX1,X2

projects the object
(X1, S0(X1), (FV )V ∈S0(X1)) to the one (X2, S0(X2), (FV )V ∈S0(X2)).

In the sequel, the notion of an approximation or discretization functor is given. Practically, an
approximation functor is an operator that projects a function F from an infinite-dimensional space X
to another function FV operating within finite-dimensional subspaces V of X , so that the functions
FV are closely aligned (in a reasonable sense) with the function F .
Definition 7. (Approximation Functor) We engineer the approximation functor, denoted by A : D →
B, as the functor that maps each (X,F ) ∈ OD to some (X,S0(X), (FV )V ∈S0(X)) ∈ OB such that
the Hilbert space X stays as the same. The approximation functor maps all morphisms aϕ to Aϕ and
morphisms aX1,X2 to AX1,X2 , and enjoys the following properties

(A) For all r > 0 and all (X,F ) ∈ OD,

lim
V→X

sup
x∈BX(0,r)∩V

∥FV (x)− F (x)∥X = 0.

In separable Hilbert spaces, this indicates that when the finite-dimensional subspaces V ⊂ X expand
to fill the entire Hilbert space X , then the approximations FV converge coincidentally in all bounded
subsets to F .

23



Definition 8. We argue that the approximation functor A is continuous if the following state-
ment holds: Let (X,F ), (X,F (j)) ∈ OD be such that the Hilbert space X is the same for all
the objects and let (X,S0(X), (FV )V ∈S0(X)) = A(X,F ) be approximating flows of (X,F ) and
(X,S0(X), (Fj,V )V ∈S0(X)) = A(X,F (j)) be approximating sequences of (X,F (j)). Furthermore,
assume that r > 0 and

lim
j→∞

sup
x∈BX(0,r)

∥F (j)(x)− F (x)∥X = 0.

Then, for all V ∈ S0(X) the approximations F (j)
V of F (j) and FV of F fulfill

lim
j→∞

sup
x∈V ∩BV (0,r)

∥F (j)
V (x)− FV (x)∥X = 0.

The theorem given below establishes a negative result, especially that continuous approximating
functors for diffeomorphisms may not exist.

Theorem 3. (No-go theorem for discretization of general diffeomorphisms) There lives no functor
D → B that meets the property (A) of an approximation functor and is continuous.

B.2 Strongly monotone diffeomorphisms and approximation

In this subsection, it is evidenced that the obstruction to continuous approximation is naturally
eliminated when the diffeomorphisms under consideration are supposed to be strongly monotone.

Lemma 1. Let V ⊂ X be a finite-dimensional subspace of X , and let PV : X → X be the
orthonormal projection onto V . Let F : X → X be a strongly monotone C1-diffeomorphism. On
that basis, PV F |V : V → V is strongly monotone, and a C1-diffeomorphism.

In fact, strongly monotone projections can be continuously discretized in a weak sense. In the sequel,
we concentrate on bounded linear operators and Nemytskii operators.

Lemma 2. Let A : X → X be a linear bounded operator and meet ⟨Au, u⟩ ≥ c0∥u∥2X for certain
c0 > 0. Then, A : X → X is strongly monotone.

Next, supposing that X = L2(D;R), we define Nemytskii operator by

Fσ(u) = σ ◦ u,

in which σ : R → R is continuous.
Moreover, we can get:

Proposition 1. Suppose that σ satisfies |σ(s)| ≤ C1|s| + C2 and the derivative of s → σ(s) is
defined a.e and satisfies the condition σ′(s) ≥ α > 0. Then, Fσ : L2(D;R) → L2(D;R) is strongly
monotonous.

We can now give the sufficient conditions for the layers of an NO to be strongly monotone:

Lemma 3. All strongly monotone layers of NOs (F ) are diffeomorphisms.

Theorem 4. Let Alin be the discretization functor that projects F to PV F |V for each finite subspace
V ⊂ X . Let Dsmn and Bsmn be categories in which F : X → X and FV : V → V are strongly
monotone C1-functions in the form of an NO. Then, the functor Alin : Dsmn → Bsmn satisfies condition
(A), and it is continuous in the sense of Definition 7.

A straight condition to guarantee strong monotonicity of an NO layer is given as follows:

Lemma 4. Let F : X → X be a layer of NO that holds the form F (u) = u + T2G(T1u), where
Tj : X → X , j = 1, 2 are compact operators and G : X → X is a C1-smooth projection. Suppose
that Fréchet derivative DG|x of G at x meets the following for all x ∈ X ,

∥DG|x∥X→X ≤ 1

2
∥T1∥−1

X→X∥T2∥−1
X→X .

Then, F : X → X is deemed strongly monotone.
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B.3 Bilipschitz NOs are conditionally strongly monotone diffeomorphisms

The following theorem states that we may always decompose a bilipschitz NO into the composition
of strongly monotone NO layers Hj and a reflection operator A0.
Theorem 5. Assume X be a Hilbert space. There is e ∈ X , ∥e∥X = 1 so that the following is real:
Let F : X → X be a layer of a bilipschitz NO. Then for all r1 > 0 and ϵ > 0 there are a linear
invertible projection A0 : X → X , that is either the identity map or a reflection function and strongly
monotone operators Hk that are also layers of NOs such that

Hk : X → X, Hk(x) = x+Bk(x), k = 1, 2, . . . , J,

where Bk : X → X is a compact mapping and meets Lip(Bk) < ϵ and

F (x) = HJ ◦ · · · ◦H2 ◦H1 ◦A0(x), for all x ∈ BX(0, r1). (9)

Furthermore, if F ∈ C2(X,X), then J = O(ϵ−2).

We have noticed that operators of the term identity plus a compact form are crucial for continuous
discretization. This insight inspires the employment of residual networks as approximators within the
framework of finite-rank NOs. In the sequel, we suppose that X is a separable Hilbert space, with an
orthogonal basis φ = {φn}n∈N. For N ∈ N, we define EN : X → RN and DN : RN → X by

ENu := (⟨u, φ1⟩X , . . . , ⟨u, φN ⟩X) ∈ RN , DNα :=
∑
n≤N

αnφn.

It is noted that PVN
= DNEN , in which PVN

: X → X is the mapping onto VN := span{φn}n≤N .
Using EN , DN , we define the category of residual networks in the separable Hilbert space, with
T,N ∈ N and activation function σ, as

RT,N,φ,σ(X) :=
{
G : X → X : G = ⃝T

t=1 (IdX
+DN ◦NNt ◦ EN ) ,

NNt : RN → RN are neural networks with activation function σ (t = 1, . . . , T )
}
.

The next theorem proves a universality outcome for each of the layers G, allowing us to achieve a
general universality result for the whole network.
Theorem 6. Let R > 0, and let F : X → X be a layer of a bilipschitz NO, as in Definition 4. Let σ
be the ReLU activation function defined by σ(x) := max{0, x}3. Then, for any ϵ ∈ (0, 1), there are
T,N ∈ N and G ∈ RT,N,φ,σ(X) that enjoys the form

G = (IX +DN ◦NNT ◦ EN ) ◦ · · · ◦ (IX +DN ◦NN1 ◦ EN ),

such that each projection (IX +DN ◦ NNt ◦ EN ) is strongly monotone C1-diffeomorphisms on
some ball and

sup
x∈BX(0,R)

∥F (x)−G ◦A(x)∥X ≤ ϵ,

in which A : X → X is a linear invertible projection that is either the identity map or a reflection
function x → x − 2⟨x, e⟩Xe with some unit vector e ∈ X . Moreover, G ◦ A : BX(0, R) →
G ◦A(BX(0, R)) is invertible, and there is certain NO Φ: G ◦A(BX(0, R)) → A(BX(0, R)) such
that

(G ◦A|BX(0,R))
−1 = A−1 ◦ Φ.

C Proof of Discrete Invariance under Diffeomorphism

C.1 Proof that the Radon Transform is Bilipschitz

C.1.1 Proof that the Radon Transform in 2D is BiLipschitz

The Radon transform in two dimensions, denoted R : L2(R2) → L2(R × S1), maps a square-
integrable function f ∈ L2(R2) to its line integrals over all lines in the plane. For a parameter s ∈ R
(the signed distance from the origin) and a direction θ ∈ S1 (the unit circle), the Radon transform is
defined as:

Rf(s, θ) =

∫
{x∈R2:x·θ=s}

f(x) dµ(x),
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where dµ denotes the Lebesgue measure on the line {x ∈ R2 : x · θ = s}. The space L2(R× S1) is
equipped with the norm:

∥g∥2L2(R×S1) =

∫
S1

∫
R
|g(s, θ)|2 ds dθ,

where dθ is the standard measure on S1.

A linear operator R is bilipschitz if there exist positive constants c and C such that for all f1, f2 ∈
L2(R2),

c∥f1 − f2∥L2(R2) ≤ ∥Rf1 −Rf2∥L2(R×S1) ≤ C∥f1 − f2∥L2(R2).

Given the linearity of R, this is equivalent to proving:

Upper bound: There exists C > 0 such that ∥Rf∥L2(R×S1) ≤ C∥f∥L2(R2) for all f ∈ L2(R2),

Lower bound: There exists c > 0 such that ∥Rf∥L2(R×S1) ≥ c∥f∥L2(R2) for all f ∈ L2(R2).

We proceed by establishing both bounds separately.

Upper Bound Proof

We show that there exists a constant C > 0 such that:

∥Rf∥L2(R×S1) ≤ C∥f∥L2(R2) for all f ∈ L2(R2).

Proof:

Firstly, we express the L2 norm of Rf :

The norm squared is:

∥Rf∥2L2(R×S1) =

∫
S1

∫
R
|Rf(s, θ)|2 ds dθ.

We then apply the Fourier Slice Theorem:

For a fixed direction θ ∈ S1, consider the one-dimensional Fourier transform of Rf(·, θ) with respect
to s:

F1[Rf(·, θ)](σ) =
∫
R
Rf(s, θ)e−iσs ds.

By the Fourier slice theorem, this equals the two-dimensional Fourier transform of f :

F1[Rf(·, θ)](σ) = f̂(σθ),

where f̂(ξ) =
∫
R2 f(x)e

−ix·ξ dx for ξ ∈ R2.

Now, we invoke Plancherel’s Theorem:

Plancherel’s theorem for the one-dimensional Fourier transform states:∫
R
|Rf(s, θ)|2 ds =

∫
R
|F1[Rf(·, θ)](σ)|2 dσ.

Substituting the Fourier slice theorem result in:∫
R
|Rf(s, θ)|2 ds =

∫
R
|f̂(σθ)|2 dσ.
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Thus, the full norm becomes:

∥Rf∥2L2(R×S1) =

∫
S1

∫
R
|f̂(σθ)|2 dσ dθ.

To better prove this, we switch to Polar Coordinates:

Parameterize θ = (cosϕ, sinϕ) with ϕ ∈ [0, 2π), so σθ = σ(cosϕ, sinϕ). The integral becomes:

∥Rf∥2L2(R×S1) =

∫ 2π

0

∫ ∞

−∞
|f̂(σ(cosϕ, sinϕ))|2 dσ dϕ.

Since f̂(σθ) = f̂(−σ(−θ)) and S1 is symmetric, the integral can be split into:

∥Rf∥2L2(R×S1) = 2

∫ 2π

0

∫ ∞

0

|f̂(σ(cosϕ, sinϕ))|2 dσ dϕ.

In R2, use polar coordinates ξ = (r cosϕ, r sinϕ), where r = ∥ξ∥ and dξ = r dr dϕ. The L2 norm
of f̂ is:

∥f̂∥2L2(R2) =

∫ 2π

0

∫ ∞

0

|f̂(r(cosϕ, sinϕ))|2r dr dϕ.

Compare this to our expression:

∥Rf∥2L2(R×S1) = 2

∫ 2π

0

∫ ∞

0

|f̂(σ(cosϕ, sinϕ))|2 dσ dϕ.

Substituting σ = r, the integrand lacks the Jacobian factor r:

∥Rf∥2L2(R×S1) = 2

∫
R2

|f̂(ξ)|2∥ξ∥−1 dξ,

adjusting for the measure transformation.

Consider the integral: ∫
R2

|f̂(ξ)|2∥ξ∥−1 dξ.

The weight ∥ξ∥−1 is locally integrable near the origin:

∫
|ξ|<1

∥ξ∥−1 dξ =

∫ 1

0

r−1 · 2πr dr = 2π

∫ 1

0

1 dr = 2π < ∞,

and decays as |ξ| → ∞. Since f̂ ∈ L2(R2), the Cauchy-Schwarz inequality or a direct estimate
shows this integral is finite when f has sufficient decay, but in L2, we rely on known results that this
operator (the Fourier multiplier ∥ξ∥−1/2) is bounded in certain weighted spaces, adjusted here via:

∥Rf∥2L2(R×S1) ≤ C1∥f̂∥2L2(R2) = C1∥f∥2L2(R2),

where C1 accounts for the constant from the weight’s integrability (approximately 2 · 2π with proper
normalization).

In conclusion:
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∥Rf∥L2(R×S1) ≤
√

C1∥f∥L2(R2).

Let C =
√
C1, which establishes the upper bound.

Lower Bound Proof

We show that there exists a constant c > 0 such that:

∥Rf∥L2(R×S1) ≥ c∥f∥L2(R2) for all f ∈ L2(R2).

Proof:

Firstly, we introduce the injectivity of R:

The Radon transform is injective. If Rf = 0, then for all θ ∈ S1, Rf(·, θ) = 0, so:

F1[Rf(·, θ)](σ) = f̂(σθ) = 0 for all σ ∈ R, θ ∈ S1.

Since {σθ : σ ∈ R, θ ∈ S1} = R2, f̂ = 0 almost everywhere, implying f = 0 by the Plancherel
theorem.

We then give discussions on the boundedness of the Inverse:

The inverse Radon transform R−1 : Im(R) → L2(R2) is well-defined on the image of R. In two
dimensions, R−1 is typically expressed via filtered backprojection:

f(x) =

∫
S1

(H∂sRf)(x · θ, θ) dθ,

where H is the Hilbert transform. Standard results (e.g., Natterer, 2001,[29]) show that R−1 is
bounded in L2:

∥R−1g∥L2(R2) ≤ K∥g∥L2(R×S1) for all g ∈ Im(R),

with some constant K > 0.

Next, we apply it to Rf :

Since f = R−1(Rf),

∥f∥L2(R2) = ∥R−1(Rf)∥L2(R2) ≤ K∥Rf∥L2(R×S1).

Rearranging:

∥Rf∥L2(R×S1) ≥
1

K
∥f∥L2(R2).

Let c = 1
K , which proves the lower bound.

In conclusion, The Radon transform R : L2(R2) → L2(R× S1) satisfies:

• Upper bound ∥Rf∥L2(R×S1) ≤ C∥f∥L2(R2),

• Lower bound ∥Rf∥L2(R×S1) ≥ c∥f∥L2(R2),

with positive constants c and C. Thus, R is bi-Lipschitz in the L2 sense, being both bounded and
having a bounded inverse on its range.

□
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C.1.2 Proof that the Radon Transform is Bilipschitz

The Radon transform R : L2(Rn) → L2(R × Sn−1) maps a function f ∈ L2(Rn) to its integrals
over all hyperplanes in Rn. Specifically, for s ∈ R and θ ∈ Sn−1 (the unit sphere in Rn), it is defined
as:

Rf(s, θ) =

∫
{x∈Rn:x·θ=s}

f(x) dµ(x),

where dµ is the Lebesgue measure on the hyperplane {x : x · θ = s}. We aim to prove that R is
bi-Lipschitz, meaning there exist constants c, C > 0 such that for all f1, f2 ∈ L2(Rn),

c∥f1 − f2∥L2(Rn) ≤ ∥Rf1 −Rf2∥L2(R×Sn−1) ≤ C∥f1 − f2∥L2(Rn).

Since R is linear, it suffices to show:

Upper bound: ∥Rf∥L2(R×Sn−1) ≤ C∥f∥L2(Rn) for all f ∈ L2(Rn),

Lower bound: ∥Rf∥L2(R×Sn−1) ≥ c∥f∥L2(Rn) for all f ∈ L2(Rn).

We will establish these bounds separately.

Upper Bound Proof

We prove there exists a constant C > 0 such that for all f ∈ L2(Rn),

∥Rf∥L2(R×Sn−1) ≤ C∥f∥L2(Rn).

Proof:

Firstly, we define the L2 norm of Rf :

The L2 norm of Rf is given by:

∥Rf∥2L2(R×Sn−1) =

∫
Sn−1

∫
R
|Rf(s, θ)|2 ds dθ,

where dθ is the surface measure on Sn−1.

We then apply the Fourier Slice Theorem:

By fixing θ ∈ Sn−1, the one-dimensional Fourier transform of Rf(·, θ) with respect to s is:

F1[Rf(·, θ)](σ) =
∫
R
Rf(s, θ)e−iσs ds = f̂(σθ),

where f̂(ξ) =
∫
Rn f(x)e−ix·ξ dx is the n-dimensional Fourier transform of f .

Now,we use Plancherel’s Theorem:

By Plancherel’s theorem in one dimension,∫
R
|Rf(s, θ)|2 ds =

∫
R
|F1[Rf(·, θ)](σ)|2 dσ =

∫
R
|f̂(σθ)|2 dσ.

Thus,

∥Rf∥2L2(R×Sn−1) =

∫
Sn−1

∫
R
|f̂(σθ)|2 dσ dθ.

Next,we switch to Polar Coordinates:

Parameterize ξ = σθ with σ ∈ R and θ ∈ Sn−1. Since f̂(σθ) = f̂(−σθ) for real-valued f (adjusting
for symmetry), we consider:
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∫
R
|f̂(σθ)|2 dσ =

∫ 0

−∞
|f̂(σθ)|2 dσ +

∫ ∞

0

|f̂(σθ)|2 dσ = 2

∫ ∞

0

|f̂(σθ)|2 dσ,

assuming f is real (for complex f , the factor remains bounded). Hence,

∥Rf∥2L2(R×Sn−1) = 2

∫
Sn−1

∫ ∞

0

|f̂(σθ)|2 dσ dθ.

In polar coordinates, ξ = σθ, ∥ξ∥ = |σ|, and the Jacobian is dξ = σn−1 dσ dθ for σ > 0. Thus,∫
Rn

|f̂(ξ)|2 dξ =

∫
Sn−1

∫ ∞

0

|f̂(σθ)|2σn−1 dσ dθ.

Rewrite the expression for Rf :

∫
Sn−1

∫ ∞

0

|f̂(σθ)|2 dσ dθ =

∫
Sn−1

∫ ∞

0

|f̂(σθ)|2σn−1 · σ1−n dσ dθ =

∫
Rn

|f̂(ξ)|2∥ξ∥1−n dξ.

So,

∥Rf∥2L2(R×Sn−1) = 2

∫
Rn

|f̂(ξ)|2∥ξ∥1−n dξ.

The weight ∥ξ∥1−n must be controlled: - For n = 1, ∥ξ∥1−1 = 1, and the integral is
∫
R |f̂(ξ)|2 dξ =

∥f∥2L2(R). - For n ≥ 2, ∥ξ∥1−n is locally integrable near ξ = 0 (since 1 − n < −1 implies
integrability) and decays at infinity. There exists a constant Cn = supξ

∫
Sn−1 ∥ξ∥1−n dθ < ∞,

depending on n, such that:∫
Rn

|f̂(ξ)|2∥ξ∥1−n dξ ≤ Cn

∫
Rn

|f̂(ξ)|2 dξ = Cn∥f∥2L2(Rn),

using Plancherel’s theorem again: ∥f̂∥L2(Rn) = ∥f∥L2(Rn).

In conclusion:

∥Rf∥2L2(R×Sn−1) ≤ 2Cn∥f∥2L2(Rn) =⇒ ∥Rf∥L2(R×Sn−1) ≤
√
2Cn∥f∥L2(Rn).

Set C =
√
2Cn, proving the upper bound.

Lower Bound Proof

We prove there exists a constant c > 0 such that for all f ∈ L2(Rn),

∥Rf∥L2(R×Sn−1) ≥ c∥f∥L2(Rn).

Proof:

Firstly, we introduce the injectivity of R:

The Radon transform is injective on L2(Rn): if Rf = 0, then f̂(σθ) = 0 for all σ ∈ R, θ ∈ Sn−1,
implying f̂ = 0 almost everywhere, so f = 0.

Then, we talk about boundedness of the Inverse:

The inverse Radon transform R−1 : Im(R) → L2(Rn) exists and is bounded in L2 under certain
conditions: Odd n: For n odd, R−1 is given by the filtered backprojection formula, involving
derivatives of order n− 1, and is bounded in L2. There exists K > 0 such that:
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∥R−1g∥L2(Rn) ≤ K∥g∥L2(R×Sn−1),

for all g ∈ Im(R). - Since f = R−1(Rf),

∥f∥L2(Rn) = ∥R−1(Rf)∥L2(Rn) ≤ K∥Rf∥L2(R×Sn−1).

Rearranging,

∥Rf∥L2(R×Sn−1) ≥
1

K
∥f∥L2(Rn).

Set c = 1/K.

For n even, R−1 involves fractional derivatives (e.g., Hilbert transform for n = 2), but remains
bounded in L2 with an appropriate constant K, ensuring the same inequality holds.

In conclusion, We have shown:

• Upper bound ∥Rf∥L2(R×Sn−1) ≤ C∥f∥L2(Rn),

• Lower bound ∥Rf∥L2(R×Sn−1) ≥ c∥f∥L2(Rn)

Thus, R is bilipschitz in L2, being both bounded and non-degenerate.

□

D Supplement to Sinogram-Domain Convolution

In the sinogram-domain space obtained after the Radon transform, the sinogram-domain convolution
is discretely invariant. Specifically, for data of different resolutions, the siongram-domain convolution
of their Radon transforms yields consistent results in the angular direction, independent of the spatial
resolution of the input images. This implies that a convolution kernel trained on one resolution can
be applied to another without retraining, enabling super-resolution capabilities.

Consider two resolutions:

• Low-resolution image: Resolution M1 × N1, with position sampling si = i∆s1, i =
0, 1, . . . , P1 − 1, where P1 depends on M1 and N1;

• High-resolution image: Resolution M2 ×N2 (where M2 > M1, N2 > N1), with position
sampling sj = j∆s2, j = 0, 1, . . . , P2 − 1, where P2 > P1 and ∆s2 < ∆s1.

Assumption: The angular sampling θk = 2πk
Nθ

remains consistent across both resolutions, i.e., Nθ is
fixed.

D.1 Definition of Sinogram-Domain Convolution

In Equation (9) of the main text, we have presented the sinogram domain convolution formula. To
maintain notational consistency, we will employ the same symbols as introduced previously while
providing a more detailed explanation.

Sconv[k, t] =

Nθ−1∑
m=0

S[m, t]K[k −m] (10)

where:S[m, t] = S(θm, t);K[k −m] = K(θk−m); k −m is computed modulo Nθ to account for
the periodicity of θ.

Here, K(θ) is the convolution kernel, assumed to depend only on the angular difference θ − θ′, and
is discretized as K[k], k = 0, 1, . . . , Nθ − 1.

31



D.2 Sinogram-Domain Convolution at Different Resolutions

Let the sinograms for the low-resolution and high-resolution images be:

• Low-resolution: Slow(θk, ti), where ti = i∆t1;

• High-resolution: Shigh(θk, tj), where tj = j∆t2.

The discrete convolutions are:

• Low-resolution:

Sconv, low[k, ti] =

Nθ−1∑
m=0

Slow[m, ti]K[k −m] (11)

• High-resolution:

Sconv, high[k, tj ] =

Nθ−1∑
m=0

Shigh[m, tj ]K[k −m] (12)

Observation: The convolution operation depends only on the angular index k, the kernel K[k], and
the sinogram values S[m, t] at the respective t-values. The structure of the convolution is identical
across resolutions, with differences only in the t-sampling.

D.3 Proof of Consistency

To prove discrete invariance, we need to show that the convolution results in the θ-direction are
consistent across resolutions, independent of the t-sampling.

For a fixed t, the discrete convolution Sconv[k, t] =
∑Nθ−1

m=0 S[m, t]K[k −m] depends on:

• The angular sampling θk, which is fixed at θk = 2πk
Nθ

;

• The kernel K[k], which is identical for both resolutions;

• The sinogram values S[m, t], which vary depending on the specific t-value.

In the low-resolution case, t = ti = i∆t1, so the convolution uses Slow[m, ti]. In the high-resolution
case, t = tj = j∆t2, so it uses Shigh[m, tj ]. While ti and tj represent different sampling densities,
the convolution operation itself is defined solely over the θ-direction. The summation over m (i.e.,
the angular indices) is identical in both cases:

• Same number of terms (Nθ);

• Same kernel values K[k −m];

• Same angular indices m.

The difference in t-sampling (i.e., ∆t1 vs. ∆t2) affects the number of convolution outputs along
the t-axis (P1 outputs for low-resolution, P2 for high-resolution), but for any specific t-value, the
convolution process in the θ-direction remains unchanged. If ti ≈ tj (i.e., they correspond to nearly
the same physical detector position, adjusted for sampling), then Slow[m, ti] ≈ Shigh[m, tj ], and the
convolution results Sconv, low[k, ti] ≈ Sconv, high[k, tj ]. The operation’s form ensures consistency in the
θ-direction across resolutions.

E Time Complexity Analysis

Given a discrete counterpart u ∈ RH×W×C of a 2D continuous function, we can reform u to get
u ∈ RN×C , with N = H ×W . As aforementioned in the main texts, the variable A represents the
number of projection angles.
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Table 6: Comparison of runtime complexity

Models Complexity
GNO (kernel) O(N(N − 1))
Transformer O(N2)
FNO (FFT) O(N logN)

CNO O(N)
RNO O(AN)

Graph neural operator (GNO) The integral formulation of GNO is as follows:

(K(v))(x) =

∫
U(x)

K(x, y) · v(y)dy

≈
∑

y∈U(x)

K(x, y) · v(y)qy,

where K is a kernel (typically parametrized by a deep network) and qy ∈ R are suitable quadrature
weights. Yet GNO is capable of expressing local integral operators by choosing an appropriately
small neighborhood U(x) ⊆ D, computing the kernel and performing aggregation within each
neighborhood U(x) is computationally expensive and memory-demanding for general applications
k : D×D → Rn. For each point, it is required to access all of the neighboring elements. As reported
in [24], the runtime complexity of GNO is then O(N(N − 1)).

Transformer The integration of Transformer-based NO is given as:

(K(v))(x) =

∫
Ω

K(v(x), v(y))v(y)dy

(K(v))(x) ≈
nv∑
i=1

K(v(x), v(yi))v(yi)

(K(v))(x) ≈
nv∑
i=1

exp
(

(Wqv(x),Wkv(yi))√
dv

)
∑nv

j=1 exp
(

(Wqv(x),Wkv(yi))√
dv

)Wvv(yi) (13)

in which K is perceived as employing a softmax function onto three transformed vectors with length
nv . Evidently, Eq. (13) closely aligns with the commonly applied self-attention mechanism in vanilla
transformers, where the matrices Wq,Wk,Wv ∈ Rdv×dv concern the learned transformations of
queries, keys, and values, respectively. From Eq. (13), it is obvious that two nested loops of length
nv = N must be traversed. On that basis, the runtime complexity of transformer-based NOs is
O(N2).

FNO FNO substitutes the global convolution in the time domain with multiplication operations in
the frequency counterpart; hence, its kernel integral is written as:

(K(v))(x) =

∫
Ω

K(x, y)v(y)dy

=

∫
Ω

K(x− y)v(y)dy

= F−1 (Rϕ · (Fvt)) (x)

in which Rϕ designs N multiplications, parameterized by ϕ, therefore its runtime complexity is
O(N). Moreover, the time complexity of the Fast Fourier Transform is O(N logN), leading to an
overall complexity of O(N logN).
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CNO Typically, the local convolution operation is elaborated by

(K(v))(x) =

∫
Ω

κ(x− y)v(y)dy

=

k∑
i,j=1

κijv(x− zij)

where f ∈ Bw, κ is a discrete kernel with size k ∈ N, zij are the resultant grid points. Evaluating
each point involves k2 multiplications. So the total time complexity is O(Nk2) ⇒ O(N).

F PDE Benchmarks

We tested our data on 5 benchmarks, including three categories:

• Solid material [6]:Plasticity

• Navier-Stokes equations for fluid [28]:Airfoil, Pipe, Navier-Stokes

• Darcy’s law [14]:Darcy

• Reaction-Diffusion [38]:Allen-Cahn

Table 7: Summary of experiment benchmarks, where the first six datasets are from FNO and geo-FNO.
Mesh records the size of discretized meshes. Dataset is organized as the number of samples in training
and test sets.

Geometry Benchmarks Dim Mesh Input Output Dataset

Structured Mesh
Plasticity 2D+Time 3,131 External Force Mesh Displacement (900, 80)

Airfoil 2D 11,271 Structure Mach Number (1000, 200)
Pipe 2D 16,641 Structure Fluid Velocity (1000, 200)

Regular Grid
Navier–Stokes 2D+Time 4,096 Past Velocity Future Velocity (1000, 200)

Darcy 2D 7,225 Porous Medium Fluid Pressure (1000, 200)
Allen-Cahn 2D 129×129 Initial Phase Field Evolved Phase Field (1000, 200)

Here are the details of each benchmark.

F.1 Solid Material

The fundamental equation governing the behavior of solid materials is expressed as:

ρs
∂2u

∂t2
+∇ · σ = 0, (14)

where ρs ∈ R represents the density of the solid, and ∇ signifies the nabla operator. The variable u
denotes the displacement vector of the material as a function of time t, while σ corresponds to the
stress tensor. The model Plasticity [22] is governed by the equation, as presented in (14).

Plasticity. This benchmark addresses the plastic forging process, where a plastic material undergoes
impact from an arbitrarily shaped die applied from above. The input consists of the die’s geometry,
represented on a structured mesh. The output comprises the deformation of each mesh point over the
subsequent 20 time steps. The structured mesh has a resolution of 101× 31.

F.2 Navier-Stokes Equation

The differential form of the fluid dynamics equations is given by:

∂ρ

∂t
+∇ · (ρU) = 0, (15)

∂U

∂t
+ U · ∇U = f +

1

ρ
∇ · (Tijeiej), (16)
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∂
(
e+ 1

2U
2
)

∂t
+ U · ∇

(
e+

1

2
U2

)
= f · U +

1

ρ
∇ · (U · Tijeiej) +

λ

ρ
∆T, (17)

where Equations (15), (16), and (17) represent the conservation of mass, momentum, and energy,
respectively. Here, ρ denotes the fluid density, U is the velocity vector, f represents the external
force, and e is the internal energy. The stress tensor in the fluid is denoted by T , with ei as the basis
vector, and Tijeiej adheres to the Einstein summation convention. All variables are functions of
space and time, and the term λ

ρ∆T accounts for heat conduction. For a Newtonian fluid, the stress
tensor T depends on the pressure p, viscosity coefficient ν, and velocity vector U . Consequently,
Equation (16) for a Newtonian fluid can be reformulated as:

∂U

∂t
+ U · ∇U = f − 1

ρ
∇p+ ν∇2U. (18)

Additionally, Equation (17) can be derived similarly, but its complexity precludes inclusion here; see
[28] for details. These equations for Newtonian fluids are commonly referred to as the Navier-Stokes
equations. Below, we elaborate on the partial differential equations (PDEs) underlying our fluid
benchmarks.

Navier-Stokes. The Navier-Stokes dataset, sourced from [23], models incompressible, viscous flow
on a unit torus, where the fluid density ρ in Equation (15) remains constant. In this context, the
energy conservation in Equation (17) is decoupled from mass and momentum conservation. Thus,
the fluid dynamics are governed by Equations (15) and (18):

∇ · U = 0,

∂w

∂t
+ U · ∇w = ν∇2w + f,

w|t=0 = w0,

(19)

where U = (u, v) is the 2D velocity vector, w = |∇ × U | = ∂u
∂y − ∂v

∂x represents the vorticity,
and w0 ∈ R is the initial vorticity at t = 0. The dataset uses a viscosity ν = 10−5 and a 2D field
resolution of 64× 64. Each sample includes 20 consecutive frames, with the task of predicting the
next 10 frames based on the previous 10.

Pipe. The Pipe dataset, from [22], examines incompressible flow within a pipe. The governing
equations are derived from Equations (15) and (18):

∇ · U = 0

∂U

∂t
+ U · ∇U = f − 1

ρ
∇p+ ν∇2U.

(20)

The dataset is generated on a structured mesh with a resolution of 129× 129. For experiments, the
mesh structure serves as the input, and the output is the horizontal fluid velocity within the pipe.

Airfoil. The Airfoil dataset, also from [22], investigates transonic flow over an airfoil. Given the
negligible viscosity of air, the viscous term ∇2U is omitted from the Navier-Stokes equations. The
governing equations are thus:

∂ρf

∂t
+∇ · (ρfU) = 0

∂ρfU

∂t
+∇ · (ρfUU + pI) = 0

∂E

∂t
+∇ · ((E + p)U) = 0,

(21)

where ρf denotes the fluid density, and E represents the total energy. The data is generated on a
structured mesh with a resolution of 200× 50. The mesh point locations are used as inputs, and the
Mach number at each mesh point is the output.

F.3 Darcy Flow

Darcy. Darcy’s law governs the flow of fluids through porous media, such as water permeating sand.
We utilize the Darcy dataset introduced by [23], which models 2D Darcy flow equations within a unit
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square, expressed as:
−∇ · (a∇u) = f, u|x∈∂(0,1)2 = 0, (22)

where a ∈ R+ represents the diffusion coefficient, and f denotes the external force, fixed at 1 in this
dataset. The input for this dataset is the diffusion coefficient a, with the output being the solution u.
Data samples are structured on a regular grid with a resolution of 85× 85.

F.4 Allen-Cahn equation

Allen-Cahn Equation. The Allen-Cahn equation, a reaction-diffusion model, is widely applied
to study chemical reactions and phase separation in multi-component alloys. We used the dataset
proposed by [37]. In two-dimensional space, the Allen-Cahn equation is formulated as:

∂tu(x, y, t) = ϵ∆u(x, y, t) + u(x, y, t)− u(x, y, t)3, x, y ∈ (0, 3), t ∈ [0, 20],

u(x = 0, y, t) = u(x = 3, y, t), y ∈ (0, 3), t ∈ [0, 20],

u(x, y = 0, t) = u(x, y = 3, t), x ∈ (0, 3), t ∈ [0, 20],

u(x, y, 0) = u0(x, y), x, y ∈ (0, 3),

(23)

where ϵ ∈ R+∗ is a positive constant controlling the diffusion magnitude. The problem is defined
with periodic boundary conditions, setting ϵ = 1× 10−3. The initial condition is generated from a
Gaussian Random Field using the kernel:

K(x, y) = τ (α−1)
(
π2(x2 + y2) + τ2

)α
2 , (24)

with parameters τ = 15 and α = 1. The objective is to learn the operator D : u0(x, y) 7→ u(x, y, t).
Here, the solution is computed at t = 20 s on a grid with a resolution of 129× 129.

G More Experiments and Analysis

G.1 Implementation Details

As shown in Table 8, all the baselines are trained and tested under the same training strategy. For the
Allen-Cahn equation, plasticity, and airfoil problems, we set the number of Radon transform angles
to 64, while for pipe flow, the Navier-Stokes equations, and Darcy flow, we use 32 angles. Given the
physical field u and the model-predicted field û, the relative L2 norm of the model prediction can be
calculated as follows:

Relative L2 =
∥u− û∥
∥u∥

. (25)

Table 8: Training and model configurations of RNO. Here Lv and Ls represent the loss on volume
and surface fields respectively. As for Darcy, we adopt an additional spatial gradient regularization
term Lg following ONO [44].

Benchmarks
Training Configuration (Shared in all baselines) Model Configuration

Loss Epochs Initial LR Optimizer Layers L Heads Channels C Angles A Blocks

Allen-cahn

500 10−3 8 8

128 64 1
Plasticity 128 64 1
Airfoil Relative AdamW 128 64 4
Pipe L2 [26] 128 32 4
Navier–Stokes 256 32 2
Darcy LrL2 + 0.1Lg 128 32 4

G.2 Experiment Visualization

We have already given a relatively complete description of Radon block in Section 3.4 of the main
text. We then show the self-learning adjustment of the sinogram domain weights in Figure 9, in
which the weight change of the first Radon block is provided. As seen, while the training steps
proceed deeper and deeper, the resultant weighs would adaptively gather into some specific angles
with enriched features.
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Weight adjustment

Figure 9: Self-learning adjustment of the sinogram domain weight. From top to bottom, from left to
right, it represents the adaptive change of the angle domain weight as the training time increases.

G.3 Generalization

The discussion of generalization is an important issue for neural operators, which reflects the learning
of the mapping relationship between neural operators and infinite-dimensional function spaces. We
have introduced this in Section 4.2 of the main text. The comparison in Table 9 reveals RNO’s
superior generalization performance over Transolver and FNO when handling larger resolutions. We
futher show the results of the generalization experiment on the Darcy equation dataset in Figure 10.

Table 9: Comparative display of generalization performance. Relative L2 is recorded. A smaller
value indicates better performance. (Bold: Best performance)

Model 61× 61 85× 85 141× 141 211× 211 421× 421

FNO 1.16× 10−1 1.80× 10−1 2.68× 10−1 3.16× 10−1 3.63× 10−1

Transolver 3.28× 10−2 5.11× 10−2 6.78× 10−2 7.46× 10−2 8.64× 10−2

RNO (Ours) 3.21 × 10−2 5.04 × 10−2 6.69 × 10−2 7.09 × 10−2 7.62 × 10−2

Prediction

Ground Truth

Relative Error

61×61 85×85 141×141 211×211 421×421

Figure 10: The effect of model generalization is shown. From top to bottom, they are the prediction
map, the real map, and the error map, showing the generalization of RNO on the Darcy dataset. The
model was trained on a low resolution of 43× 43 and tested on five other high resolutions.
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G.4 Parameter Setting of Radon Transform

It is generally considered that an increase in the number of angles in the Radon transform enhances
the accuracy of data prediction and reconstruction; however, the opposite is sometimes observed. As
demonstrated in Figures 11 and 12, it has been found through experiments that, at ultra-low resolution,
an increased number of angles does not improve results; conversely, greater errors are produced. This
finding further informs our choice of the number of angles and, as discussed in Section 3.2, a lower
angle count reduces computational complexity. This finding provides valuable insights for future
applications of the Radon transform.

G.5 Supplementary Ablation Experiments

Table 10: Ablation studies by integrating Radon
block with other off-the-shelf modules All ex-
periments were based on the 85× 85 Darcy flow
dataset and tested when the number of angles was
set to 32.

Ablations Memory Time Param Relative L2
(GB) (s/epoch) (B) Darcy

S.A.+Radon Block 19.564 508.83 8.48× 106 6.12× 10−3

O.A.+Radon Block 15.038 110.36 2.03× 106 7.80× 10−3

ours 3.191 43.21 2.83× 106 5.34× 10−3

Note that the positive roles of replacing other
transformations with RT have been evidenced
in previous discussions. Hereafter, we further
evaluate the behaviors of Radon block when
imposed on the other architectures.Practically,
we performed experiments by integrating Radon
block with several global methods, including
self-attention (S.A.), and orthogonal attention
(O.A.). Similar to our method, these attempts all
take advantage of global feature extraction and
local feature learning. Similar to our method,
these attempts all take advantage of global fea-
ture extraction and local feature learning. We observe that previous works have addressed similar
local problems [25]. As demonstrated in our main results table, the proposed FNO+Radon block
achieves superior performance compared to approaches using either Differential Kernel or Local
Integral Kernel operators.

As shown in Table 11, we conduct systematic experiments by varying the number of model layers.
Taking the Darcy dataset as an example, our results demonstrate that increasing the layer depth does
not yield performance improvements, but rather leads to a significant growth in both parameter count
and computational time. Similar observations hold for other datasets such as Navier-Stokes, where
deeper architectures tend to suffer from overfitting. Based on these empirical findings, we deliberately
avoid using larger layer counts in our main experiments.

We conduct extensive experiments to evaluate the impact of angle parameter settings, with results
summarized in Table 12. Our findings reveal that while higher angular resolution leads to improved
accuracy, this comes at the cost of increased computational time - a trade-off that aligns with our
theoretical complexity analysis. Notably, the angle parameter selection has no measurable effect on
the total number of model parameters.

Table 11: Ablation studies by varying the number of model layers from 16 to 40.

Settings Memory Time Param Relative L2
(GB) (s/epoch) (B) Darcy

layer=40 11.136 110.03 1.39× 107 4.89× 10−3

layer=32 9.070 91.45 1.12× 107 6.78× 10−3

layer=24 7.004 73.25 8.38× 106 5.73× 10−3

layer=16 4.940 55.64 5.60× 106 5.20× 10−3

G.6 Showcases

To facilitate improved visualization of the experimental results, visual representations of all datasets,
along with prediction images and error maps, are presented. As follows, Figs. 14, 13 show the 6
benchmarks. We provide comprehensive visualization of our experimental results, including input
data, ground truth, predicted outputs, and error maps.
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Table 12: Ablation studies by varying the number of angles for Radon transform from 64 to 512.

Settings Memory Time Param Relative L2
(GB) (s/epoch) (B) Darcy

Angles=512 4.400 283.88 2.83× 106 4.31× 10−3

Angles=256 3.562 145.63 2.83× 106 4.65× 10−3

Angles=128 3.152 85.11 2.83× 106 4.87× 10−3

Angles=64 2.962 54.19 2.83× 106 4.90× 10−3

H Limitations

Our work currently faces two main limitations. Unlike the Fourier transform, which benefits from
well-optimized algorithms and seamless PyTorch integration, the Radon transform exhibits potential
for further improvement in parallel computing and GPU utilization. To substantiate this claim, we
have conducted an ablation study in Section 4.3. Additionally, whereas our model is designed for
2D or time-dependent 3D problems, its application to general 3D PDEs, particularly those involving
point cloud data, remains unexplored. Regarding this issue, we provide a rigorous proof of the
billipschitz condition for arbitrary dimensions in Appendix C.1.2, which theoretically guarantees
the feasibility of our approach. This theoretical foundation ensures the soundness of our proposed
method across spaces of different dimensionalities. The dimensionality reduction property of the
Radon transform is particularly advantageous for 3D PDEs, as it alleviates the computational burden
compared to methods like FNO, which may face scalability challenges in higher dimensions . We
emphasize that the GNO module integration strategy proposed in [24] for solving 3D problems can
be directly adapted to our framework. Our method inherently supports such an extension, and we are
well-positioned to address 3D PDE cases through similar architectural modifications.

I Broader Impacts

Partial differential equations represent the most fundamental mathematical tool in modern physics
and engineering, making their numerical simulation a research area of both theoretical and practical
significance. While mathematically inspired, our work innovatively incorporates operator learning
architectures, achieving superior performance in terms of solution accuracy and generalization
capability. This advancement demonstrates substantial potential for both industrial applications and
theoretical research in PDE solving. Meanwhile, neural operators have proven to be remarkably
versatile. They integrate seamlessly with various algorithms like transformers[43] , Mamba[47],
and diffusion models[48, 13], and demonstrate broad applicability in domains such as remote
sensing[45, 31], medical images[15, 19] and super-resolution[41]. We hope our work offers fresh
perspectives for this dynamic field.
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Figure 11: setting of the number of Radon transform angles at ultra-low resolution. From left to right,
the true image, the angle domain image, and the transformed image and error are shown. The image
above shows the number of angles 512.

Figure 12: The setting of the number of Radon transform angles at ultra-low resolution. From left to
right, the true image, the angle domain image, and the transformed image and error are shown. The
image above shows the number of angles 64.
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Ground Truth Prediction Error

Plasticity 

Navier-Stokes

Figure 13: Experimental visualization of Plasticity, Navier-Stokes equations, including the ground
truth plots, predicted plots, and error plots.

Input Ground Truth Prediction Error

Darcy

Allen-cahn

Pipe

Airfoil

Figure 14: Experimental visualization of Darcy, Allen-cahn, Pipe, Airfoil equations, including the
input plots, ground truth plots, predicted plots, and error plots.
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