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Abstract. Video frame interpolation (VFI) aims to improve the tem-
poral resolution of a video sequence. Most of the existing deep learning
based VFI methods adopt off-the-shelf optical flow algorithms to esti-
mate the bidirectional flows and interpolate the missing frames accord-
ingly. Though having achieved a great success, these methods require
much human experience to tune the bidirectional flows and often gen-
erate unpleasant results when the estimated flows are not accurate. In
this work, we rethink the VFI problem and formulate it as a contin-
uous image transition (CIT) task, whose key issue is to transition an
image from one space to another space continuously. More specifically,
we learn to implicitly decouple the images into a translatable flow space
and a non-translatable feature space. The former depicts the translatable
states between the given images, while the later aims to reconstruct the
intermediate features that cannot be directly translated. In this way, we
can easily perform image interpolation in the flow space and intermediate
image synthesis in the feature space, obtaining a CIT model. The pro-
posed space decoupled learning (SDL) approach is simple to implement,
while it provides an effective framework to a variety of CIT problems
beyond VFI, such as style transfer and image morphing. Our extensive
experiments on a variety of CIT tasks demonstrate the superiority of
SDL to existing methods. Codes will be made publicly available.

Keywords: Video Frame Interpolation, Continuous Image Transition,
Image Synthesis, Space Decoupled Learning

1 Introduction

Video frame interpolation (VFI) targets at synthesizing intermediate frames be-
tween the given consecutive frames of a video to overcome the temporal limita-
tions of camera sensors. VFI can be used in a variety of practical applications,
including slow movie generation [26], motion deblurring [53] and visual quality
enhancement [68]. The conventional VFI approaches [2] usually calculate op-
tical flows between the source and target images and gradually synthesize the
intermediate images. With the great success of deep neural networks (DNNs)
in computer vision tasks [16, 21, 51], recently researchers have been focusing on
developing DNNs to address the challenging issues of VFI.
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Most DNN based VFI algorithms can be categorized into flow-based [26, 4, 67,
40], kernel-based [41, 32, 53], and phase-based ones [38, 37]. With the advance-
ment of optical flow methods [58, 5], flow-based VFI algorithms have gained
increasing popularity and shown good quantitative results on benchmarks [4,
40]. However, these methods require much human experience to tune the bidi-
rectional flows, e.g., by using the forward [26, 4] and backward [39, 40] warping
algorithms. In order to improve the synthesis performance, some VFI methods
have been developed by resorting to the depth information [4], the accelera-
tion information [67] and the softmax splatting [40]. These methods, however,
adopt the off-the-shelf optical flow algorithms, and hence they often generate
unpleasant results when the estimated flows are not accurate.

To address the above issues, we rethink the VFI problem and aim to find a
solution that is free of flows. Different from previous approaches, we formulate
VFI as a continuous image transition (CIT) problem. It is anticipated that we
could construct a smooth transition process from the source image to the target
image so that the VFI can be easily done. Actually, there are many CIT tasks in
computer vision applications, such as image-to-image translation [24, 69], image
morphing [34, 45] and style transfer [19, 23]. Different DNN models have been
developed for different CIT tasks. Based on the advancement of deep generative
adversarial network (GAN) techniques [7, 28, 29], deep image morphing methods
have been proposed to generate images with smooth semantic changes by walking
in a latent space [48, 25]. Similarly, various image-to-image translation methods
have been developed by exploring intermediate domains [20, 66, 14], interpolating
attribute [36] or feature [60] or kernel [63] vectors, using physically inspired
models for guidance [47], and navigating latent spaces with discovered paths [9,
25]. Though significant progresses have been achieved for CIT, existing methods
usually rely on much human knowledge of the specific domain, and employ rather
different models for different applications.

In this work, we propose to learn a translatable flow space to control the
continuous and smooth translation between two images, while synthesize the
image features which cannot be translated. Specifically, we present a novel space
decoupled learning (SDL) approach for VFI. Our SDL implicitly decouples the
image spaces into a translatable flow space and a non-translatable feature space.
With the decoupled image spaces, we can easily perform smooth image trans-
lation in the flow space, and synthesize intermediate image features in the non-
translatable feature space. Interestingly, the proposed SDL approach can not
only provide a flexible solution for VFI, but also provide a general and effective
solution to other CIT tasks.

To the best of our knowledge, the proposed SDL is the first flow-free algo-
rithm which is however able to synthesize consecutive interpolations, achieving
leading performance in VFI. SDL is easy-to-implement, and it can be readily in-
tegrated into off-the-shelf DNNs for different CIT tasks beyond VFI, serving as a
general-purpose solution to the CIT problem. We conduct extensive experiments
on various CIT tasks, including, VFI, image-to-image translation and image mor-
phing, to demonstrate its effectiveness. Though using the same framework, SDL
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shows highly competitive performance with those state-of-the-art methods that
are specifically designed for different CIT problems.

2 Related Work

2.1 Video Frame Interpolation (VFI)

With the advancement of DNNs, recently significant progresses have been made
on VFI. Long et al. [35] first attempted to generate the intermediate frames
by taking a pair of frames as input to DNNs. This method yields blurry results
since the motion information of videos is not well exploited. The latter works are
mostly focused on how to effectively model motion and handle occlusions. Meyer
et al. [38, 37] proposed phase-based models which represent motion as per-pixel
phase shift. Niklaus et al. [41, 42] came up with the kernel-based approaches that
estimate an adaptive convolutional kernel for each pixel. Lee et al. [32] introduced
a novel warping module named Adaptive Collaboration of Flows (AdaCoF). An
end-to-end trainable network with channel attention was proposed by Choi et
al. [12], where frame interpolation is achieved without explicit estimation of
motion. The kernel-based methods have achieved impressive results. However,
they are not able to generate missing frames with arbitrary interpolation factors
and usually fail to handle large motions due to the limitation of kernel size.

Unlike phase-based or kernel-based methods, flow-based models explicitly
exploit motion information of videos [26, 4, 67, 40]. With the advancement of op-
tical flow methods [58, 5], flow-based VFI algorithms have become popular due
to their good performance. Niklaus and Liu [39] adopted forward warping to syn-
thesize intermediate frames. This algorithm suffers from holes and overlapped
pixels, and it was later improved by the softmax splatting method [40], which
can seamlessly map multiple source pixels to the same target location. Since for-
ward warping is not very intuitive to use, most flow-based works adopt backward
warping. Jiang et al. [26] jointly trained two U-Nets [52], which respectively esti-
mate the optical flows and perform bilateral motion approximation to generate
intermediate results. Reda et al. [50] and Choi et al. [11] further improved this
work by introducing cycle consistency loss and meta-learning, respectively. Bao
et al. [4] explicitly detected the occlusion by exploring the depth information,
but the VFI performance is sensitive to depth estimation accuracy. To exploit
the acceleration information, Xu et al. [67] proposed a quadratic VFI method.
Recently, Park et al. [44] proposed a bilateral motion network to estimate inter-
mediate motions directly.

2.2 Continuous Image Transition (CIT)

In many image transition tasks, the key problem can be formulated as how to
transform an image from one state to another state. DNN based approaches have
achieved impressive results in many image transition tasks, such as image-to-
image translation [24, 69, 62], style transfer [19, 27], image morphing [9] and VFI
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[32, 42]. However, these methods are difficult to achieve continuous and smooth
transition between images. A continuous image transition (CIT) approach is
desired to generate the intermediate results for a smooth transition process.

Many researches on image-to-image translation and image morphing resort
to finding a latent feature space and blending image features therein [60, 36,
47]. However, these methods need to explicitly define the feature space based
on human knowledge of the domain. Furthermore, encoding an image to a la-
tent code often results in the loss of image details. Alternatively, methods on
image morphing and VFI first establish correspondences between the input im-
ages, for example, by using a warping function or bidirectional optical flows, to
perform shape deformation of image objects, and then gradually blend images
for smooth appearance transition [65, 33, 4, 40]. Unfortunately, it is not easy to
accurately specify the correspondences, leading to superimposed appearance of
the intermediate results. In addition to generating a continuous transition be-
tween two input images (source and target), there are also methods to synthesize
intermediate results between two different outputs [23, 22].

Image-to-image Translation: Isola et al. [24] showed that the conditional
adversarial networks (cGAN) can be a good solution to image-to-image (I2I)
translation problems. Many following works, such as unsupervised learning [69],
disentangled learning [31], few-shot learning [34], high resolution image synthesis
[62], multi-domain translation [13], multi-modal translation [70], have been pro-
posed to extend cGAN to different scenarios. Continuous I2I has also attracted
much attention. A common practice to this problem is to find intermediate do-
mains by weighting discriminator [20] or adjusting losses [66]. Some methods
have been proposed to enable controllable I2I by interpolating attribute [36] or
feature [60] or kernel [63] vectors. Pizzati et al. [47] proposed a model-guided
framework that allows non-linear interpolations.

Image Morphing: Conventional image morphing methods mostly focus on
reducing user-intervention in establishing correspondences between the two im-
ages [65]. Smythe [55] used pairs of mesh nodes for correspondences. Beier and
Neely [6] developed field morphing utilizing simpler line segments other than
meshes. Liao et al. [33] performed optimization of warping fields in a specific
domain. Recently, methods [45, 1, 25] have been proposed to achieve efficient im-
age morphing by manipulating the latent space of GANs [7, 29]. However, these
methods often result in the loss of image details and require time-consuming
iterative optimization during inference. Mao et al. [36] and Pizzati et al. [47]
decoupled content and style spaces using disentangled representations. They
achieved continuous style interpolations by blending the style vectors. However,
these methods preserve the content of source image and they are not suitable to
image morphing. Park et al. [45] overcame this limitation by performing inter-
polation in both the content and style spaces.

As can be seen from the above discussions, existing works basically design
rather different models for different CIT tasks. In this work, we aim to develop a
state decoupled learning approach to perform different CIT tasks, including VFI,
image-to-image translation and image morphing, by using the same framework.
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3 Proposed Method

3.1 Problem Formulation

Given a source image I0 and a target image I1, the goal of VFI is to synthesize
an intermediate result It from them:

It = G(I0, I1, t), (1)

where t ∈ (0, 1) is a control parameter and G is a transition mapping function.
To better preserve image details, researchers [4, 67, 40] have resorted to using

bidirectional optical flows [58, 59] of I0 and I1, denoted by F0→1 and F1→0, to
establish the motion correspondence between two consecutive frames. With the
help of optical flows, It can be obtained as follows:

It = G(I0, I1,B(F0→1, F1→0, t)), (2)

where B is a blending function. Forward [39, 40] and backward [4, 67] warping
algorithms have been proposed to perform the blending B in Eq. (2).

The above idea for VFI coincides with some image morphing works [65, 33,
17], where the warping function, instead of optical flow, is used to mark the object
shape changes in the images. However, it is not easy to specify accurately the
correspondences using warping, resulting in superimposed morphing appearance.
This inspires us to model VFI as a CIT problem and seek for a more effective
and common solution.

One popular solution to CIT is to embed the images into a latent space, and
then blend the image feature codes therein:

It = G(B(L0, L1, t)), (3)

where L0, L1 represent respectively the latent codes of I0, I1 in the latent space.
For example, StyleGAN [28] performs style mixing by blending the latent codes
at various scales. To gain flexible user control, disentangled learning methods [36,
34, 47] were later proposed to decompose the latent space into the content and
style representations. The smooth style mixing can be achieved by interpolating
the style vectors as follows:

It = G(Lc
0,B(Ls

0, L
s
1, t)), (4)

where Ls
0, L

s
1 are the style representation vectors of L0, L1, respectively, and Lc

0

is the content vector of L0. In this case, I1 serves as the “style” input and the
content of I0 is preserved. However, the above formulation is hard to use in tasks
such as image morphing.

Though impressive advancements have been made, the above CIT methods
require much human knowledge to explicitly define the feature space, while em-
bedding an image into a latent code needs time-consuming iterative optimization
and sacrifices image details.
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Fig. 1. The architecture of our space decoupled learning (SDL) method.

3.2 Space Decoupled Learning

As discussed in Section 3.1, previous works employ rather different models for
different CIT applications. One interesting question is: can we find a common
yet more effective framework to different CIT tasks? We make an in-depth in-
vestigation of this issue and present such a framework in this section.

The latent space aims to depict the essential image features and patterns
of original data. It is expected that in the latent space, the correspondences of
input images I0 and I1 can be well built. In other words, the latent codes L0, L1

in Eq. (3) play the role of optical flows F0→1, F1→0 in Eq. (2). Both of Eq. (3)
and Eq. (2) blend the correspondence of two images to obtain the desired output.
The difference lies in that the latent code representation of an image in Eq. (3)
may lose certain image details, while in Eq. (2) the original inputs I0, I1 are
involved into the reconstruction, partially addressing this problem.

From the above discussion, we can conclude that the key to CIT tasks is how
to smoothly blend the image features whose correspondences can be well built,
while reconstruct the image features whose correspondences are hard to obtain.
We thus propose to decouple the image space into two sub-spaces accordingly: a
translatable flow space, denoted by P , where the features can be smoothly and
easily blended with t, and a non-translatable feature space, denoted by Q, where
the features cannot be blended but should be synthesized. With P and Q, we
propose a unified formulation of CIT problems as follows:

It = G(Q0→1,B(P0→1, t)). (5)

The subscript “0 → 1” means the transition is from I0 to I1. With Eq. (5), we
continuously transition those translatable image components in P , and recon-
struct the intermediate features that cannot be directly transitioned in Q.

Now the question turns to how to define the spaces of P and Q. Unlike many
previous CIT methods [36, 47] which explicitly define the feature spaces using
much human knowledge, we propose to learn P and Q implicitly from training
data. We learn a decoupling operator, denoted by D, to decompose the image
space of I0 and I1 to the translatable flow space P and the non-translatable
feature space Q:

(P0→1, Q0→1)← D(I0, I1). (6)



270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

ECCV

#0000
ECCV

#0000

ECCV-22 submission ID 0000 7

Specifically, we use several convolutional layers to implement the space decou-
pling operator D. To gain performance, D is learned on multiple scales. The
proposed method, namely space decoupled learning (SDL), requires no human
knowledge of the domain, and it can serve as an effective and unified solution to
different CIT tasks.

The architecture of SDL is a U-shaped DNN, as illustrated in Fig. 1. Unlike
standard U-Net [52], a novel SDL unit is introduced in the decoder part of our
network. The detailed structure of the SDL unit is depicted in the right-bottom
corner of Fig. 1. The inputs of the SDL unit are the feature maps decomposed
in previous convolution layers. Let C be the number of input feature maps and
s ∈ (0, 1) be the ratio of translatable flow features to the total features. s is a
hyper-parameter controlled by users (we will discuss how to set it in Section 4).
We then split the channel number of input feature maps in P and Q as s∗C and
C − s ∗C, and perform the blending B on P while keeping Q unchanged. There
are multiple ways to perform the blending. For example, B can be achieved by
scaling the features with factor t: B(P0→1, t) = t ∗ P0→1, which results in linear
interpolation in P and is used in our experiments. Afterwards, the blended P
and Q are concatenated as the output of the SDL unit. A merging operatorM
(also learned as several convolutional layers like D) is followed to rebind the
decoupled spaces on multiple scales.

A synthesis network is also adopted to improve the final transition results.
We employ a GridNet architecture [18] for it with three rows and six columns.
Following the work of Niklaus et al. [40], some modifications are utilized to
address the checkerboard artifacts. The detailed architecture of the synthesis
network can be found in the supplementary materials. In addition, it is
worth mentioning that t works with the loss function during training if necessary.
Details can be found in the section of experiments.

3.3 Training Strategy

To train SDL model for VFI, we adopt two loss functions: the Charbonnier loss
[8] LC and the perceptual loss [27] LP . The final loss L is as follows:

L = αLC + βLP , (7)

where α and β are balancing parameters. The content loss LC enforces the fine
features and preserves the original color information. The perceptual loss LP

can be better balanced to recover more high-quality details. We use the conv5 4
feature maps before activation in the pre-trained VGG19 network [54] as the
perceptual loss. In our experiments, we empirically set α = 1 and β = 0.1.

For other CIT applications including image-to-image translation and image
morphing, GAN plays a key role to generate high-quality results in order to
alleviate superimposed appearances. In our implementation, we use PatchGAN
developed by Isola et al. [24] for adversarial training. The final loss is the sum
of the L1 loss and PatchGAN loss with equal weights.
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Table 1. Quantitative comparison (PSNR, SSIM, runtime) of different methods on the
Middleburry, UCF101, Vimeo90K and Adobe240fps datasets. The runtime is reported
as the average time to process a pair of 640×480 images. The numbers in bold represent
the best performance. The upper part of the table presents the results of kernel-based
methods, and the lower part presents the methods that can perform smooth frame
interpolations. “-” means that the result is not available.

Method Training Dataset
Runtime Middleburry UCF101 Vimeo90K Adobe240fps

(ms) PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
SepConv [42] proprietary 57 35.73 0.959 34.70 0.947 33.79 0.955 - -
CAIN [12] proprietary 56 35.07 0.950 34.97 0.950 34.64 0.958 - -
AdaCof [32] Vimeo90K 77 35.71 0.958 35.16 0.950 34.35 0.956 - -
CDFI [15] Vimeo90K 248 37.14 0.966 35.21 0.950 35.17 0.964 - -

SuperSloMo [26] Adobe240fps+Youtube240fps 67 33.64 0.932 33.14 0.938 32.68 0.938 30.76 0.902
DAIN [4] Vimeo90K 831 36.70 0.964 35.00 0.949 34.70 0.963 29.22 0.877
BMBC [44] Vimeo90K 3008 36.78 0.965 35.15 0.950 35.01 0.965 29.56 0.881
EDSC [10] Vimeo90K-Septuplet 60 36.81 0.967 35.06 0.946 34.57 0.956 30.28 0.900
SDL Vimeo90K+Adobe240fps 42 37.38 0.967 35.33 0.951 35.47 0.965 31.38 0.914

a 																						 b 																										 c 																									 d 																									 e 																								 f 																							 g 																								 h

Fig. 2. Visual comparison of competing methods on the Vimeo90K test set. (a) Sep-
Conv [42]; (b) SuperSloMo [26]; (c) CAIN [12]; (d) EDSC [10]; (e) DAIN [4]; (f) BMBC
[44]; (g) SDL; (h) Ground truth.

4 Experiments and Applications

In this section, we first conduct extensive experiments on VFI to validate the
effectiveness of our SDL method, and then apply SDL to other CIT tasks beyond
VFI, such as face aging, face toonification and image morphing, to validate the
generality of SDL.

4.1 Datasets and Training Settings for VFI

There are several datasets publicly available for training and evaluating VFI
models, including Middlebury [3], UCF101 [56], Vimeo90K [68] and Adobe240-
fps [57]. The Middlebury dataset contains two subsets, i.e., Other and Evalu-
ation. The former provides ground-truth middle frames, while the later hides
the ground-truth, and the users are asked to upload their results to the bench-
mark website for evaluation. The UCF101 dataset [56] contains 379 triplets of
human action videos, which can be used for testing VFI algorithms. The frame
resolution of the above two datasets is 256× 256.

We combine the training subsets in Adobe240-fps and Vimeo90K to train our
SDL model. The Vimeo90K dataset [68] has 51, 312 (3, 782) triplets for training
(testing), where each triplet contains 3 consecutive video frames of resolution
256×448. This implicitly sets the value of t to 0.5, and hence it is insufficient to
train our SDL model for finer time intervals. We further resort to the Adobe240-
fps dataset [57], which is composed of high frame-rate videos, for model training.
We first extract the frames of all video clips, and then group the extracted



360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

ECCV

#0000
ECCV

#0000

ECCV-22 submission ID 0000 9

frames with 12 frames per group. There is no overlap between any two groups.
During training, we randomly select 3 frames Ia, Ib, Ic from a group as a triplet,
where {a, b, c} ∈ {0, 1, ..., 11} and a < b < c. The corresponding value of t
can be calculated as (b − a)/(c − a). We also randomly reverse the direction of
the sequence for data augmentation (t is accordingly changed to 1 − t). Each
video frame is resized to have a shorter spatial dimension of 360 and a random
crop of 256× 256. Horizontal flip is performed for data augmentation. Following
SuperSloMo [26], we use 112 video clips for training and the rest 6 for validation.

During model updating, we adopt the Adam [30] optimizer with a batch size
of 48. The initial learning rate is set as 2× 10−4, and it decays by a factor of 0.8
for every 100K iterations. The model is updated for 600K iterations.

4.2 Comparisons with State-of-the-arts

We evaluate the performance of the proposed SDL method in comparison with
two categories of state-of-the-art VFI algorithms, whose source codes or pre-
trained models are publicly available. The first category of methods allow frame
interpolation at arbitrary time, including SuperSloMo [26], DAIN [4], BMBC
[44] and EDSC [10]. The second category is kernel-based algorithms, including
SepConv [42], CAIN [12], AdaCof [32] and CDFI [15], which can only perform
frame interpolation iteratively at the power of 2. The PSNR and SSIM [64]
indices are used for quantitative comparisons.

Table 1 provides the PSNR/SSIM and runtime results on the Middlebury
Other [3], UCF101 [56], Vimeo90K [68] and Adobe240-fps [57] testing sets. In
all experiments, the first and last frames of each group are taken as inputs. On
the first three datsets, we set t = 0.5 to interpolate the middle frame. While
on the high frame rate Adobe240-fps dataset, we vary t ∈ { 1

11 ,
2
11 , ...,

10
11} to

produce the intermediate 10 frames, which is beyond the capability of kernel-
based methods [42, 12, 32, 15]. All the methods are tested on a NVIDIA V100
GPU, and we calculate the average processing time for 10 runs. From Table 1, one
can see that the proposed SDL approach achieves best PSNR/SSIM indices on
all the datasets, while it has the fastest running speed. The kernel-based method
CDFI [15] also achieves very good PSNR/SSIM results. However, it often fails
to handle large motions due to the limitation of kernel size. The flow-based
methods such as DAIN [4] address this issue by referring to bidirectional flows,
while inevitably suffer from inaccurate estimations. The proposed SDL implicitly
decouples the images into a translatable flow space and a non-translatable feature
space, avoiding the side effect of inaccurate flows.

Fig. 2 presents some visual comparisons of the VFI results of competing
methods. It can be seen that our SDL method preserves better the image fine
details and edge structures especially in scenarios with complex motions, where
inaccurate flow estimations are commonly observed. SDL manages to address
this difficulty by implicitly decoupling the images into a translatable flow space
and a non-translatable feature space, and hence resulting in better visual quality
with fewer interpolation artifacts. More visual comparison results can be found
in the supplementary material. In the task of VFI, optical flow is widely used
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Fig. 3. Visualization of the translatable
flow space and the optical flow in VFI.
Left: the translatable flow space; Right:
the optical flow.
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Fig. 4. PSNR vs. s on the Adobe240-fps
testing set. When s = 0.5, the PSNR
reaches the peak, while the performance is
very stable by varying s from 0.1 to 0.9.

Table 2. Quantitative comparison (PSNR, SSIM) between SDL and its variants on
the Middleburry, UCF101, Vimeo90K and Adobe240fps datasets. The numbers in bold
represent the best results.

Method Training Dataset
Middleburry UCF101 Vimeo90K Adobe240fps
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

SDL-vimeo90k Vimeo90K 37.49 0.967 35.27 0.951 35.56 0.965 26.52 0.811
SDL-w/o-sdl Vimeo90K+Adobe240fps 36.96 0.964 35.24 0.950 35.38 0.964 26.51 0.817
SDL-w/o-syn Vimeo90K+Adobe240fps 37.19 0.965 35.27 0.951 35.37 0.964 31.21 0.911
SDL Vimeo90K+Adobe240fps 37.38 0.967 35.33 0.951 35.47 0.965 31.38 0.914

to explicitly align the adjacent frames. However, this may lead to visual artifacts
on pixels where the flow estimation is not accurate. In our SDL, we decouple
the image space into a translatable flow space and a non-translatable feature
space, and only perform interpolation in the former one, avoiding the possible
VFI artifacts caused by inaccurate flow estimation. In Fig. 3, we visualize the
the translatable flow space and compare it with the optical flow obtained by
SpyNet [49]. As can be seen, the translatable flow space matches the optical flow
on the whole, while it focuses more on the fine details and edge structures that
are import to synthesize high-quality results.

4.3 Ablation Experiments

In this section, we conduct experiments to investigate the ratio of translatable
flow features, and compare SDL with several of its variants.

Translatable Flow Features. In order to find out the effect of s (i.e.,
the ratio of translatable flow features to total features) of SDL, we set s ∈
{0, 0.1, ..., 1}) and perform experiments on the Adobe240-fps testing set. The
curve of PSNR versus s is plotted in Fig. 4. We can see that the performance
decreases significantly if all feature maps are assigned to non-translatable feature
space (i.e., s = 0) or translatable flow space (i.e., s = 1). When s = 0.5, the
PSNR reaches the peak, while the performance is very stable by varying s from
0.1 to 0.9. This is because SDL can learn to adjust its use of translatable and
non-translatable features during training.

The variants of SDL. We compare SDL with several of its variants to
validate the design and training of SDL. The first variant is denoted as SDL-
vimeo90k, i.e., the model is trained using only the Vimeo90K dataset. The second
variant is denoted as SDL-w/o-sdl, i.e., SDL without space decoupling learning
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Fig. 5. Comparison of SDL with StyleGAN2 backpropagation on face aging. From left
to right: input image, StyleGAN2 backpropagation [61] and SDL. Note that artifacts
can be generated by StyleGAN2 backpropagation, while SDL can synthesize the image
more robustly.

by setting s = 0. The third variant is denoted as SDL-w/o-syn, i.e., the synthesis
network is replaced with several convolution layers.

We evaluate SDL and its three variants on the Middlebury Other [3], UCF101
[56], Vimeo90K [68] and Adobe240-fps [57] testing sets, and the PSNR and
SSIM results are listed in Table 2. One can see that SDL-vimeo90k achieves
the best SSIM indices on all the triplet datasets, and the best PSNR indices
on Middlebury Other and Vimeo90K by using a smaller training dataset than
SDL, which uses both Vimeo90K and Adobe240-fps in training. This is because
these is a domain gap between Adobe240-fps and Vimeo90k, and hence the
SDL-vimeo90k can overfit the three triplet dataset. Furthermore, SDL-vimeo90k
performs poorly on the Adobe240-fps dataset. This implies that training SDL
using merely triplets fails to synthesize continuous frames.

Without decoupling the space, SDL-w/o-sdl performs much worse than the
full SDL model, especially on the Adobe240-fps testing set. This validates that
the space decoupling learning strategy boosts the VFI performance and plays
a key role in continuous image transition. Without the GridNet [18], which is
widely used as the synthesis network to improve VFI performance [39, 40], SDL-
w/o-syn maintains good VFI performance on all the datasets with only slight
PSNR/SSIM decrease compared to original SDL.

4.4 Applications beyond VFI

The proposed SDL achieves leading performance in VFI without using optical
flows. It can also be used to address other CIT applications beyond VFI, such
as image-to-image translation and image morphing. In this section, we take face
aging and toonification and dog-to-dog image morphing as examples to demon-
strate the generality of our SDL approach.

Face Aging. Unlike VFI, there is no public dataset available for training and
assessing continuous I2I models. To solve this issue, we use StyleGAN [28, 29],
which is a cutting-edge network for creating realistic images, to generate training
data. Following [61], we use StyleGAN2 distillation to synthesize datasets for face
manipulation tasks such as aging. We first locate the direction vector associated
with the attribute in the latent space, then randomly sample the latent codes
to generate source images. For each source image, we walk along the direction
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Fig. 6. Comparison of SDL with competing methods on continuous face aging. From
top to bottom: SDL, StyleGAN2 backpropagation [61], SAVI2I [36], Lifespan [43] and
DNI [63].

vector with equal pace to synthesize a number of target images. As shown in the
middle image of Fig.5, StyleGAN2 distillation may not always generate faithful
images. We thus manually check all the samples to remove unsatisfactory ones.
Finally, 50, 000 samples are generated, and each sample contains 11 images of
1024× 1024. The dataset will be made publicly available.

The source image I0 and a randomly selected target image Ia (a ∈ 1, 2, ..., 10)
are used as the inputs to train the SDL model. The corresponding value of t is
a/10. We also randomly replace the source image I0 with the target image I10
during training, and the corresponding value of t can be set as a/10 − 1. In
this way, the range of t ∈ [0, 1] can be extended to [−1, 1] so that our model
can produce both younger (by setting a ∈ [−1, 0)) and older faces (by setting
a ∈ (0, 1]). Note that SDL only needs the source image as input in inference.

Though trained on synthetic datasets, SDL can be readily used to handle real-
world images. Since only a couple of works have been proposed for continuous
I2I translation problem, and we choose those methods [63, 36, 43] whose training
codes are publicly available to compare, and re-train their models using our
datasets. In particular, we employ the same supervised L1 loss as ours to re-
train those unsupervised methods for fair comparison. Fig. 6 shows the results of
competing methods on continuous face aging. One can see that SDL outperforms
clearly the competitors in generating realistic images. By synthesizing the non-
translatable features in reconstruction, SDL also works much better on retaining
image background, for example, the mouth in the right-top corner. StyleGAN2
backpropagation [61] generates qualified aging faces; however, it fails to translate
the face identity and loses the image background. SDL also produces more stable
results than StyleGAN2 backpropagation, as shown in Fig.5.



540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

ECCV

#0000
ECCV

#0000

ECCV-22 submission ID 0000 13

𝑡
0 10.5Source

Fig. 7. Comparison of SDL with competing methods on continuous face toonification.
From top to bottom: SDL, Pinkney et al. [46], and SAVI2I [36].

It is worth mentioning that SDL is 103 times faster than StyleGAN2 back-
propagation which requires time-consuming iterative optimization. SAVI2I [36]
fails to generate qualified intermediaries with photo-realistic details. Lifespan
[43] adopts an off-the-shelf face segmentation algorithm to keep the background
unchanged. However, the generated face images have low quality. To test DNI
[63], we train two Pix2PixHD [62] models to generate younger and older faces,
respectively, and blend their weights continuously. As can be seen, DNI [63] fails
to produce reasonable transition results. Moreover, SDL can generate continuous
image-to-image translations with arbitrary resolutions, while all the competing
methods cannot do it. More visual comparison results can be found in the sup-
plementary materials.

Face Toonification. We first build a face toonification dataset by using the
method of layer swapping [46]. Specifically, we finetune a pretrained StyleGAN
on a cartoon face dataset to obtain a new GAN, then swap different scales of
layers of the two GANs (i.e., the pretrained and the finetuned ones) to create a
series of blended GANs, which can generate various levels of face toonification
effects. Similar to face aging, we generate 50, 000 training samples, each con-
taining 6 images of resolution 1024× 1024. During training, we take the source
images (i.e., I0) as input and randomly choose a target image Ia, a ∈ {1, 2, ..., 5},
as the ground-truth output. The corresponding value of t is a/5.

We compare SDL with Pinkney et al. [46] and SAVI2I [36], whose source
codes are available. As shown in Fig. 7, SDL outperforms the competitors in
producing visually more favourable results. Pinkney et al. [46] generates qual-
ified toonification effects but it fails to retain the face identity and the image
background. The generated face images of SAVI2I [36] have low quality. Fur-
thermore, SAVI2I [36] merely synthesizes images with a resolution of 256× 256,
while SDL can yield results at any resolution. More visual comparison results
can be found in the supplementary materials.

Dog-to-Dog Morphing. Similar to I2I translation, we synthesize training
data for dog-to-dog morphing using StyleGAN2 [29] and BigGAN [7]. We ran-
domly sample two latent codes as the source and target images. The intermediate
images are obtained by interpolating the two codes in the latent space. We gen-
erate 50, 000 training samples, each containing 11 images of resolution 512×512.
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Fig. 8. Comparison of SDL with competing methods on dog-to-dog morphing. From
top to bottom: SDL, StyleGAN2 backpropagation [61], CrossBreed [45], SAVI2I [36],
and FUNIT [34].

During training, we take the source and target images (i.e., I0, I10) as inputs
and randomly choose an image Ia, a ∈ {1, 2, ..., 9}, as the ground-truth output.

Since few methods have been proposed for continuous image morphing, we
compare SDL with I2I translation models, including CrossBreed [45], SAVI2I
[36] and FUNIT [34]. (We re-train their models using our datasets and the
same supervised L1 loss for fair comparison.) As shown in Fig. 8, SDL achieves
smooth morphing from one dog to another with vivid details. StyleGAN2 back-
propagation [61] yields comparable results but it loses the background details.
CrossBreed [45] and SAVI2I [36] fail to generate qualified intermediate results.
FUNIT [34] produces smooth morphing; however, the generated dog images have
low quality and it fails to retain the image content when t = 0, 1. Please refer to
the supplementary materials for more visual comparisons.

5 Conclusion

We proposed a simple yet effective approach, namely space decoupled learning
(SDL), for VFI problem. We implicitly decoupled the images into a translatable
flow space and a non-translatable feature space, and performed image interpola-
tion in the flow space and intermediate image synthesis in the feature space. The
proposed SDL can serve as a general-purpose solution to a variety of continu-
ous image transition (CIT) problems. As demonstrated by our extensive exper-
iments, SDL showed highly competitive performance with the state-of-the-arts,
which were however specifically designed for their given tasks. Particularly, in the
application of video frame interpolation, SDL was the first flow-free algorithm
that can synthesize consecutive interpolations with leading performance. In other
CIT tasks such as face aging, face toonification and dog-to-dog morphing, SDL
exhibited much better visual quality and efficiency with more foreground and
background details.
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