
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COMPRESSED-LANGUAGE MODELS FOR
UNDERSTANDING COMPRESSED FILE FORMATS:
A JPEG EXPLORATION

Anonymous authors
Paper under double-blind review

ABSTRACT

This study investigates whether Compressed-Language Models (CLMs), i.e. lan-
guage models operating on raw byte streams from Compressed File Formats (CFFs),
can understand files compressed by CFFs. We focus on the JPEG format as a repre-
sentative CFF, given its commonality and its representativeness of key concepts in
compression, such as entropy coding and run-length encoding. We test if CLMs
understand the JPEG format by probing their capabilities to perform along three
axes: recognition of inherent file properties, handling of files with anomalies,
and generation of new files. Our findings demonstrate that CLMs can effectively
perform these tasks. These results suggest that CLMs can understand the semantics
of compressed data when directly operating on the byte streams of files produced
by CFFs. The possibility to directly operate on raw compressed files offers the
promise to leverage some of their remarkable characteristics, such as their ubiquity,
compactness, multi-modality and segment-nature.

1 INTRODUCTION

The digital world stores its information in files, and each file follows a format: a standard establishing
how information is encoded into a byte structure, such as doc msd (2018), or wav Stanford Uni-
versity & (CCRMA). These formats allow for consistent parsing and predictable encoding of data
into byte streams, independent of the specifics of the storage device. Both storage devices and
bandwidth are limited, and so modern standards have defined Compressed File Formats (CFFs), e.g.,
mp3 of Congress (2024b), or zip of Congress (2024a). Unlike traditional formats, CFFs are not
directly readable in their compressed state, and must undergo a decoding process to revert the data to
its usable form. As a result, CFFs are complex components of our digital infrastructure, and they
have become crucial for efficient storage and transmission of information.

We identify three characteristics of CFFs that are key to their widespread adoption: (i) Ubiquity:
CFFs are universally recognized and used across both public and private digital collections, making
them a standard in data storage. (ii) Compactness: CFFs reduce file size while preserving relevant
information by exploiting statistical properties and local repetitive patterns, such as Huffman cod-
ing Huffman (1952) in JPEG Pennebaker & Mitchell (1992) and motion vectors in MPEG Puri &
Eleftheriadis (1998)—for instance, one GB of compressed video expands to 50-200 GB when decom-
pressed. (iii) Generality: despite the variety in compression techniques, each CFF method is capable
of transforming any type of data, within a specific modality, into a streamlined one-dimensional
array of bytes. These virtues of CFFs suggest the potential usefulness of models capable of directly
manipulating information encoded with these formats.

A model capable of directly processing the byte arrays in CFFs could manipulate the files’ semantics
without needing to decompress them. Such a model, referred to as a “Compressed Model” (CM),
offers significant advantages over traditional models that process uncompressed data. In particular, we
note two virtues of CMs (1) Compressed Input: CMs would interact with compressed data, which
is inherently compact and less redundant than uncompressed data. This characteristic eliminates
the need for common techniques for reducing redundancy, such as pooling or attention windowing.
(2) Raw Input: CMs could exploit vast archives of compressed data exactly as they are stored, thus

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Byte World Perceptual World

G
en

er
at

io
n

JPEG
decoder

R
ec

og
ni

tio
n

JPEG
encoder

“class 2”

Compressed-Language Model

<class9>

…

<s>

<0xFF> <0x68> <0x6F> <0x61><0x6C> </s><0xD9>

Compressed-Language Model

…

<class2>

<s> <0xFF> <0x63> <0x68> <0x6F><0x61> <0xD9><unk>

Figure 1: Testing the understanding capacity of “Compressed-Language Models” (CLMs), i.e.
language models trained for next-token prediction on byte streams produced by Compressed File
Formats (CFFs). We use the JPEG format as a case study for CFFs. We test the CLMs’ understanding
of JPEG files by probing their capacity to generate new files, recognize real files, and handle files
with anomalies (not displayed in the figure). Our evidence suggests that CLMs can understand JPEG.

bypassing the need for domain-specific pre-processing and enabling efficient data handling. While
these advantages highlight the desirability of CMs, their implementation remains under-specified.

We recognize that the sequence-like property of the byte streams produced by CFFs can inform
the implementation of CMs. Notably, these byte streams exhibit three language-like properties:
syntax, established by the CFFs that produced the streams; semantics, inherited from the encoded
information; and a finite lexicon, corresponding to their byte alphabet. Given these attributes, we
hypothesize that an effective approach to implementing CMs is through language models Bengio et al.
(2000); Bahdanau et al. (2014). We term such models “Compressed-Language Models” (CLMs),
and argue that this implementation would achieve a third property of (3) Universality, standardizing
the training pipeline: sequence-to-sequence models as the architecture, next-token prediction as the
optimization objective, and CFFs as the universal language for encoding and pre-processing diverse
types of information, such as images, text, video, etc. These facts suggest that building a CLM by
applying the paradigm of language models on byte streams produced by CFFs is promising.

Yet, the feasibility of a CLM understanding the byte streams produced by CFFs remains largely
unexplored Lester et al. (2024). Notably, various properties of CFFs could hinder the understanding
of these streams. In particular, CFFs introduce unique complexities with their layered compres-
sion schemes, which transform the original data through multiple stages to produce the final byte
stream Pennebaker & Mitchell (1992). The compact nature of compressed files also implies that even
minor alterations in the byte stream or its interpretation could drastically affect the decoded informa-
tion. Moreover, since existing language models were not designed considering these challenges, it
remains uncertain whether they are capable of effectively understanding the “language” of CFFs.

In this study, we test the understanding capability of Compressed-Language Models, i.e. language
models trained for next-token prediction on byte streams produced by Compressed File Formats.
There is a wide variety of CFFs, and so, aiming at practicality, we focus our study on the JPEG
format Wallace (1992) for encoding image data. We choose JPEG due to its widespread use and
because it directly exemplifies key concepts of CFFs, such as compact representation, byte level
encoding, multilayered compression, and versatility. Furthermore, JPEG files are easy to evaluate
by employing the JPEG decoder and directly inspecting the resulting image raster. We test if CLMs
understand JPEG files, in three standard image datasets, by probing their capabilities across three axes:
recognizing file properties, handling files with anomalies, and generating new files. Please see Fig. 1
for an overview of our methodology for testing understanding. To the authors’ best knowledge, this
is the first study testing the understanding of language models that operate directly on CFF-encoded
data. Our evidence supports the hypothesis that CLMs can understand compressed files.

2 PRELIMINARIES

We select the JPEG format as a case study for Compressed File Formats (CFFs) for three key reasons:
commonality, representativeness and ease of evaluation. Regarding its commonality, JPEG is widely

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

used due to its efficient encoding and decoding algorithms, as well as its high perceptual quality, mak-
ing it one of the most prevalent image formats on the internet. Regarding its representativeness, JPEG
exemplifies key concepts in CFFs, including lossy compression, quantization, domain-knowledge
operations (e.g., discrete cosine transforms), and entropy coding, which are foundational in many
compressed formats Pennebaker & Mitchell (1992); Boutell (1997); Deutsch (1996); Puri & Elefthe-
riadis (1998). Finally, judging the quality of generated JPEG files is straightforward by decoding the
compressed data and conducting visual inspection.

Despite these virtues, JPEG may present challenges from the perspective of language modeling, as
the encoding is a multi-layered procedure that produces byte streams with complex patterns and
long-term dependencies. Next, we provide a brief overview of the JPEG encoding, transforming an
image into a byte stream, and refer the interested reader to JPEG Committee (2024) for specifics.

JPEG Encoding Overview. Initially, JPEG converts the image from the RGB color space to YCbCr,
separating its information into luminance and chrominance. The chrominance channels are then often
down-sampled, leveraging the human eye’s lower sensitivity to color differences. The image is then
divided into 8×8 pixel blocks, where each block then undergoes a discrete cosine transform (DCT)
to obtain a frequency-domain representation. The DCT coefficients are then scaled with a set of
pre-defined quantization tables that control the level of lossy compression. The resulting coefficients
are then subjected to run-length encoding to represent consecutive repeated values as a single value
and a count. Finally, the symbols in the sequence are compressed with Huffman or arithmetic coding,
resulting in the final byte stream. The “lossy-ness” of JPEG is tuned via a JPEG quality parameter,
which balances between compression and perceptual quality by controlling the quantization tables.

Potential challenges offered by JPEG. Considering the complex encoding procedure presented
above, we enlist possible challenges that JPEG poses to language models. Firstly, the compressed
byte sequences produced by JPEG are highly sensitive to modifications, since a single change in the
byte stream can drastically alter the resultant image. This sensitivity contrasts sharply with natural
language, where redundancy is common and often less crucial to the meaning of text. Furthermore,
the run-length and Huffman coding processes used in JPEG compression operate at the bit level
rather than the byte level. This fact means that the boundaries between encoded symbols may not
align neatly with byte boundaries, potentially resulting in encoded symbols starting or ending in
the middle of a byte. This misalignment complicates the model’s ability to learn from byte-level
data, as it introduces difficulties in interpreting the encoded information with precision. Lastly, the
interactions between the DCT, quantization, and the corresponding quantization tables introduce
complex inter-dependencies among the bytes. These relationships are non-trivial and pose significant
challenges for language models, which typically excel when dependencies are more reflective of
patterns found in natural language.

3 METHODOLOGY

This section outlines our methodology for testing the hypothesis that a language model can be directly
trained on data resulting from Compressed File Formats and effectively capture the underlying
semantics. We propose to test the model’s understanding of JPEG data by assessing its performance
along three main axes: (i) Recognition of inherent properties of compressed files, (ii) Discovery and
correction of anomalies in compressed files and (iii) Generation of compressed files. These tasks rely
on the model’s ability to interpret and manipulate the JPEG’s lexicon (the byte values), syntax (the
structure of the byte sequences), and semantics (the meaningful interpretation of file content), and
thus reflect diverse aspects of understanding the encoded byte sequence.

We minimize the impact of training schemes and network-design choices by following the current stan-
dard practices for decoder-only language architectures and optimize for next-token prediction Brown
et al. (2020). The only factor on which we diverge from these defaults is how we construct the inputs
to the model, i.e. the tokenized “sentence” on which the model operates.

Vocabulary and Tokenization. The model’s vocabulary consists of the 256 possible byte values, from
0x00 to 0xFF, with additional start (<s>) and end (</s>) of sequence tokens. Such vocabulary
enables the model to process a file’s raw byte stream directly. That is, analogous to character-level
tokenization in natural language, we represent each byte with a separate token.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Input Sequence Construction. To enable both class-conditional generation and recognition imme-
diately after training, we extend the input sequences to include token indicators of both (1) JPEG
quality and (2) semantic class. Specifically, each sequence or “sentence” fed to the model has both a
JPEG quality and a semantic class token that surround the file’s byte sequence. For instance, a JPEG
file of quality 75 and class 3 is represented as:

<q75> <class3> <bytes> 0xFF . . . 0xD9 </bytes> <q75> <class3>

This template guides the model both for conditional generation (conditioned on JPEG quality and
class) and for regression of those attributes after scanning the byte sequence. Please refer to the
appendix for an explanation of how we avoid the degenerate solution of copy-pasting these attributes.

We next describe in detail the three main axes on which we evaluate the model’s understanding
of CFFs, recognizing files (Sect. 3.1), handling anomalous files (Sect. 3.2), and generating new
files (Sect. 3.3), and report the corresponding results in Sect. 4.

3.1 FILE RECOGNITION

Can the model recognize properties of a given file? A language model should be able to understand
the attributes of sentences Collobert et al. (2011); Devlin et al. (2018); Lagler et al. (2013). Similarly,
a model tuned for JPEG byte sequences should be capable of recognizing the properties of a given
file. Thus, we test the model’s capacity to recognize the JPEG quality and semantic class of real files.

Here, we leverage our input-sequence template for probing the model for this task. Specifically, we
previously outlined how the JPEG quality and class token are (optionally, see appendix) provided
at the start and end of the byte sequence (B). To evaluate the model’s capability to recognize these
properties from the byte sequence only, we replace the first two tokens of the sequence with the
unknown “<unk>” token. That is, we represent a validation sample as: “<unk> <unk> <bytes>
*B </bytes>” (see Fig. 1). We then use the model to auto-regressively predict the next two tokens
in the sequence, corresponding to the model’s predictions for B’s JPEG quality and semantic class.
With then use these predictions to compute the model’s accuracy for predicting each property.

The model’s recognition capacities are a direct consequence of the model’s next-token prediction
pre-training. That is, the next-token prediction objective simultaneously tasked the model with
learning to generate byte sequences and recognizing them. However, in a sentence, the number
of tokens contributing to the generation objective (hundreds of tokens) is disproportionately large
w.r.t. the number of tokens contributing to the recognition objective (only two tokens). This lack of
proportion suggests that the model’s recognition capacities after pre-training is likely a lower bound
to the model’s actual potential. We thus study the possibility of leveraging the model’s generative
pre-training Brown et al. (2020), and fine-tune the model to improve its recognition capabilities. To
this aim, we fine-tune the model on these same sentences, but only supervise the token on which
we are interested for recognition (either the JPEG quality or the semantic class token). After this
fine-tuning, we again measure the model’s classification performance via accuracy.

3.2 FILE ANOMALY HANDLING

Can the model handle files that contain anomalies? A language model should be able to handle
sentences with grammar errors or typos Santos et al. (2018); Al-Jefri & Mahmoud (2013); Cheng
et al. (2020); Etoori et al. (2018); Ji et al. (2021). Analogously, a model that understands JPEG files
should be capable of handling anomalies in these compressed files.

To test such capabilities, we consider three anomaly-related tasks: (i) tagging a file as anomalous,
(ii) detecting the precise location of an anomaly in a file, and (iii) correcting a given anomaly. To
study these tasks, we require a dataset of anomalous files. We choose to generate such a dataset,
based on real files, via the procedure we describe next.

Simulating Anomalous Files. To generate a dataset of anomalous encoded files, we start by
considering a collection of M regular files X = {xi}Mi=1, where each file xi is a list of Ni bytes,
i.e. xi = [b1, . . . , bNi

], and xi[k] = bk ∈ {0, . . . , 255}. Our dataset considers files with one-
byte-substitution anomalies. For each file xi, we thus generate all one-token perturbed variants by
modifying each byte in xi with all possible 255 values different from its original value. Formally, we

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

define the perturbation function Ψ:

Ψ(x, v, j) = x⊕ (x[k] → v),

where ⊕ denotes replacing the kth token in x. By applying this function to each token, we construct
the set of all possible perturbed sequences for file xi as:

X̂i = {Ψ(xi, v, k) | v ∈ {0, . . . , 255} \ {xi[k]}, k = 1, . . . , Ni} , (1)

where v thus considers every byte value except the original one. This operation yields 255 × Ni

anomalous variants of each file xi. We aggregate this set across all files and obtain a comprehensive
dataset of anomalous files X̂ =

⋃M
i=1 X̂i. This dataset provides a testbed for a thorough evaluation

of the model’s sensitivity to one-byte-substitution anomalies. Next, we detail the three tasks on which
we evaluate the model’s capacity to handle anomalies.

Task #1: Tagging. Can the model tag files as anomalous? The ability of the model to distinguish
between normal and anomalous files can be assessed by examining its likelihood estimates. Specifi-
cally, the model should assign higher likelihoods to “correct” or “natural” files and lower likelihoods
to those that are anomalous.

We formalize our testing approach. For each original file represented by the byte sequence xi in our
dataset, we consider all its perturbed variants. In particular, we hypothesize that the model assigns a
higher likelihood to the original file xi than to any of its perturbed variants, denoted by x̂i,j ∈ X̂i.
Formally, we denote the log-likelihood of a file xi by L(xi), as computed by the model, and define
the difference in log-likelihoods between the original sequence xi and one of its perturbed variants as
∆Li,j = L(xi)− L(x̂i,j). Our hypothesis thus poses that ∆Li,j should be positive, indicating that,
according to the model, original files are more likely than their corresponding anomalous variants.
We statistically test this hypothesis by applying the Wilcoxon Signed-Rank Test Woolson (2007) to
the set of log-likelihood differences between all files xi and their corresponding 255×Ni anomalous
versions, which we denote as L = {∆Li,j | xi ∈ X, x̂i,j ∈ X̂i}.

In this test, the null hypothesis H0 poses that the median of these differences is less than or equal
to zero, suggesting no significant difference in likelihoods between natural and perturbed files.
Conversely, the alternative hypothesis H1 argues that the median is greater than zero, supporting the
model’s capability to identify anomalies. Formally,

H0 : median(L) ≤ 0 versus H1 : median(L) > 0.

We evaluate this hypothesis using a significance level of α = 0.05. That is, we reject the null
hypothesis if the resulting p-value from the Wilcoxon Signed-Rank Test is less than α, supporting
our conjecture that the model effectively discriminates between natural and anomalous files.

Task #2: Detection. Can the model identify the location of an anomaly? We study if, given an
anomalous file, the model is capable of identifying the exact location of the byte causing the anomaly
in the file. This task is analogous to how a language model should be able to identify the exact
location of a typo in a sentence.

For this purpose we consider the model’s capacity for estimating the likelihood of individual tokens
in the sequence. Let x̂k denote an anomalous sequence whose kth token was perturbed. Then,
we hypothesize that the model assigns a particularly low likelihood (i.e. a high perplexity) to the
anomalous token. Formally, we suggest the model can predict the location k of the anomaly by
simply sorting the estimated likelihoods of the individual tokens, that is:

k̂ = argmin
l

L
(
x̂k[l] | x̂k[: l − 1]

)
(2)

Thus, we use the model’s per-token likelihood estimates to identify the anomaly in each sequence
in the dataset X̂ . We then interpret the task as a simple classification problem and compare each
prediction k̂ with the ground truth k to compute classification accuracy.

Task #3: Correction. Can the model correct an anomalous file? We study if, given the exact location
of an anomalous byte in a file, the model is able to replace such byte with the correct one. This task is
analogous to how a language model should be able to fix a typo in a sentence by replacing the wrong
character with the right one.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

We propose a correction process that uses the model’s likelihood estimates to replace the anomalous
token with the most likely one. Specifically, assume the kth token in a file sequence x̂k is anomalous.
We thus propose to correct the sequence by simply substituting the anomalous token with the one that
maximizes that token’s likelihood, conditioned on the preceding tokens. This approach hypothesizes
that the model, trained for next-token prediction in files, naturally suggests the correct token when
given the preceding context. Formally, we define the correction operation as follows:

x̂corrected = x̂k ⊕
(
x̂k[k] → argmax

b
L
(
b | x̂k[: k − 1]

))
,

where x̂k[k] refers to the anomalous byte value, and argmaxb L
(
b | x̂k[: k − 1]

)
denotes the byte

that the model considers to be most likely at position k, given the tokens at all previous positions.

We apply this correction method to each anomalous file in our dataset of perturbed files X̂ . Following
our evaluation of Task #2: Detection, we interpret the output of the correction task as a classification
problem, and compare each x̂corrected with the ground-truth x to compute classification accuracy.

3.3 FILE GENERATION

Can the model generate new files? A language model should be able to generate new sentences Lagler
et al. (2013); Floridi & Chiriatti (2020); Team et al. (2024); Touvron et al. (2023). Analogously, a
model that understands JPEG files should be capable of generating novel files that adhere to the JPEG
standard. We thus test the model’s capacity to generate new JPEG files.

We perform class-conditional generation by feeding the model a prompt stating the quality and
semantic class of the target file (e.g., “<q30> <class0> <bytes>”) and then auto-regressively
generate the file content. We continue the generation process until the model generates the </bytes>
delimiter, after which we write the generated bytes to a file with the .jpeg extension.

Checks. File validity: The generated file may not represent a valid JPEG file: it may include
malformed headers, incorrect byte sequences, or inconsistencies in the compression structure. To
check the file’s validity, we use the standard OpenCV library to attempt opening the file, and consider
the generation invalid if the library either throws an error or a warning when attempting to open the
file. We measure the model’s performance as the percentage of generated sequences that correspond
to valid JPEG files. JPEG quality: For files that pass the validity check, we assess the JPEG quality
presented by the byte stream. To check the file’s JPEG quality, we use the ImageMagick library,
which determines the compression quality based on the quantization tables in the file’s header. We
measure the model’s performance as the percentage of the valid files for which the file’s exhibited
JPEG quality matches the quality token specified in the prompt.

4 EXPERIMENTAL RESULTS

Our methodology aims at testing if a model trained for next-token prediction on JPEG data understands
the information underlying the encoded data. In this section, we first describe implementation details
of our experiments, and then report results on each of the three axes we consider for testing the
model’s understanding of JPEG, as described in our Methodology (Sect. 3).

4.1 IMPLEMENTATION DETAILS

Data. Our study tests if the standard practices for training a sequence model, when applied directly
on JPEG-encoded data, result in a model that understands the information underlying the compressed
data. We thus focus on the encoding rather than on the data, and so minimize confounding factors
stemming from complex data by experimenting on two simple image datasets: MNIST LeCun (1998)
and CIFAR-10 Krizhevsky et al. (2009). On the one hand, MNIST consists of 60K training and
10K test grayscale images of 10 handwritten digits, providing a simple and well-defined testbed. Its
straightforward nature is ideal for isolating challenges related to the JPEG encoding process without
the interference of complex image characteristics. On the other hand, CIFAR contains 50K training
images and 10K test color images across 10 classes, offering a richer diversity in textures and subjects.
This variability introduces more complexity, which allows us to assess how the model processes
more intricate content when encoded in JPEG format. To enhance the model’s generalization, we

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Anomaly Detection: accuracies for
locating anomalies in JPEG files. The model
displays a notable capacity for identifying the
precise location of anomalies.

Top-k MNIST CIFAR
Broken Valid Overall Broken Valid Overall

1 97.3 82.0 84.4 91.8 77.7 80.2
3 99.8 92.7 93.7 99.7 85.2 87.9
5 99.9 94.6 95.4 99.8 87.5 89.8

Table 2: Anomaly Correction: accuracies for
correcting bytes in anomalous JPEG files. The
model achieves remarkable capacity for correct-
ing files, especially when they are broken.

Top-k MNIST CIFAR
Broken Valid Overall Broken Valid Overall

1 100 72.9 76.1 100 74.2 77.7
3 100 84.5 86.4 100 78.3 81.2
5 100 88.9 90.3 100 81.0 83.6

perform data augmentations in the image space and then save the augmented images in JPEG format.
In particular, for MNIST, we apply small rotations. For CIFAR, we perform crops and horizontal
flips. We also experiment with TinyImagenet Le & Yang (2015) to explore the ability of CLMs to
deal with larger datasets and file sizes, we present these results in the appendix.

JPEG quality parameters. We resize the images to 32 × 32 pixels and save them as JPEGs
with various quality parameters q. In particular we experiment with nine values, q ∈ Q =
{30, 50, 60, 70, 75, 80, 85, 90, 92}, which are common in GIMP, Photoshop, libjpeg, etc.

Model. We use a small LLaMA-like model Touvron et al. (2023); parameters are in the appendix.

4.2 FILE RECOGNITION

Performance before and after fine-tuning. Before: We find that the next-token prediction training
yields a model that naturally exhibits high recognition capacity. In particular, on MNIST’s validation
set, we find that the model’s accuracy for recognizing a file’s semantic class is 97.1± 0.05% (average
and standard deviation computed across three runs), while its accuracy for recognizing the file’s JPEG
quality is 100± 0%. On CIFAR, the model reaches a more conservative accuracy of 56.9± 0.4% for
the semantic class; however, the model still reaches an accuracy of 100% for recognizing JPEG quality.
After: The models’ performance at recognizing JPEG quality is outstanding, while recognizing the
semantic class has room for improvement. We thus fine-tune the models for recognizing the semantic
class. After fine-tuning, accuracy on MNIST grows from 97% to above 99%, while the accuracy on
CIFAR improves more dramatically, from 57% to over 74%.

Conclusion: We find that generative pre-training results in perfect recognition of JPEG quality on
both datasets; recognition of the semantic class is high on MNIST, though lower on CIFAR. We also
find that performance at semantic classification can easily be boosted via simple fine-tuning.

4.3 FILE ANOMALY HANDLING

Anomalous Files Dataset. We simulate anomalous files for both MNIST and CIFAR following
the procedure described in Sect. 3.2. For this procedure, we only consider 10 files (one per class)
for each dataset, given the computational and storage costs of the combinatorial space of even
one-byte-substitution anomalies. We find that this procedure yields both “broken” and “valid” files.

0 200 400 600
Log-likelihood Difference

10−6

10−4

10−2
Negative samples: 1.41

MNIST

0 100 200 300
Log-likelihood Difference

Negative samples: 1.55

CIFAR

D
en

si
ty

Figure 2: Histograms of log-likelihood differ-
ences, L, for MNIST and CIFAR. Positive values
dominate, indicating that the model consistently as-
signs higher likelihoods to natural files compared
to their perturbed counterparts. This fact allows
the model to correctly tag anomalous files.

That is, OpenCV recognizes some of these files
to be valid JPEG files, while recognizing others
as invalid. For MNIST, 15% of the anomalous
files are broken, while the remaining 85% are
valid. On CIFAR, these percentages are, cor-
respondingly, 18% and 82%. We next report
the results for each of the three anomaly-related
tasks we described in Sect. 3.2.

Task #1: Tagging.We report the histogram of
log-likelihood differences in Fig. 2. For both
datasets, we observe that the vast majority of dif-
ferences are positive, indicating that the model
assigns significantly higher likelihoods to the
original sequences than to their perturbed coun-
terparts. Running the Wilcoxon Signed-Rank
Test further supports the intuition from the his-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

togram. In particular, the test yields a W statistic of > 1011 for MNIST and of > 1012 for CIFAR,
with their associated p-values being numerically zero, and thus rejecting H0 as described in Sect. 3.2.

Conclusion: our findings suggest that the model’s file-level likelihood estimates are extremely sensi-
tive to the presence of single-token anomalies in JPEG files. That is, we find that the model is capable
of tagging files as anomalous even with anomalies in a single byte.

Task #2: Detection. Our findings from Task #1: suggest that the model’s likelihood can distinguish
when files have even single-token anomalies. Such finding suggests the model may be sensitive not
just at the file level but also at the finer token level. We thus measure the performance of the anomaly
detector from Eq. equation 2 at various prediction chances k ∈ {1, 3, 5}, and report results in Tab. 1.

For MNIST, we note that the overall accuracy at top-1 is about 85%, surpasses 90% at top-3, and
reaches over 95% at top-5. The case of anomalous but valid files follows a similar trend. Notably, for
the case of broken files, the detector’s performance is remarkably high: the top-1 prediction is correct
over 95% of times, and this number reaches almost 100% when considering the top-3 predictions.
This high performance in broken JPEG files is largely expected: a file breaks when its strict format
is perturbed, and deviations from that strict format are most likely easily detected by the model.
For CIFAR, we mostly observe a similar trend to that of MNIST, but with reduced values: overall
performance at top-1 is 80% and reaches 90% at top-5. Performance in broken files starts at above
90% and reaches essentially 100% when considering more prediction chances. Finally, on CIFAR’s
valid files, performance starts at 78% at top-1, and reaches 87% at top-5.

Conclusion: the model’s token-level likelihood estimates are useful for identifying the precise location
of anomalous bytes in JPEGs. This finding is particularly sound for broken files, i.e. for files in which
the perturbation broke the file’s strict format.

Task #3: Correction. Our findings from Task #2: Detection suggest that the model has the capacity
to locate an anomaly in a file’s byte sequence, and so we next explore whether it can also correct
these anomalies. We report the performance on the correction task in Tab. 2.

For MNIST, we observe that the model performs the correction task exceptionally well, with top-1
correction accuracy achieving 100% for broken files and 76% overall. The performance increases
notably with more prediction chances, reaching over 90% at top-5. CIFAR exhibits a similar pattern,
albeit with slightly lower accuracy: starting at 78% for top-1 and climbing to almost 84% for top-5.
This evidence demonstrates the model’s capability to rectify anomalies, even more effectively in
broken files where the format deviations are clear-cut.

Conclusion: The model performs remarkably well in the correction task, particularly when dealing
with severely corrupted, i.e. broken, JPEG files.

4.4 FILE GENERATION

We generate files by sampling from the model with greedy decoding. We thus generate 90 = 10× 9
files for each dataset, i.e. for the 10 semantic classes of MNIST/CIFAR and the 9 JPEG quality values
we considered. For MNIST, we find that 99% of the files we generate, i.e. all except one file, (i) are
valid JPEG files, and (ii) have JPEG quality matching the one in the corresponding prompt. In CIFAR,
the percentage of valid JPEG files lowers slightly to 97%, i.e. all except three files, while all the valid
JPEGs have a quality matching the corresponding prompt. Thus, in both datasets, essentially all
sampled files are valid JPEGs, except for only four samples (one in MNIST and three in CIFAR).
The warnings raised by OpenCV when trying to open these files mention issues such as the presence
of extraneous bytes, premature ends of data segments, and wrong Huffman tables. In general, we find
that sampling from the model with greedy decoding, in general, yields files that adhere to the JPEG
format and also exhibit the correct JPEG quality parameter that was stated in the prompt.

We check the visual properties of the generated samples by decoding the JPEG files into image arrays.
We report a subset of these samples, including both positive and negative (i.e. corrupt) results, in Fig. 3.
We make three observations from these qualitative results: (1) Corrupt files in both MNIST (quality
85 and class “2”) and CIFAR (quality 75 and class “1”) are still decodable by OpenCV, and exhibit
strongly-structured errors that mirror JPEG’s 8× 8-block standard. For the broken MNIST image,
for example, sampling is successful in generating over half of the blocks but, after a certain block (in
raster order), the sample displays checkerboard patterns and color shifts. (2) All samples lack strong

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Class
0 1 2 3 4 5 6 7 8 9

JP
E

G
qu

al
ity

pa
ra

m
et

er 30

85

70

75

Figure 3: Qualitative results of file generation. We sample files from the model, via greedy decoding,
and use the JPEG decoder to obtain an image raster. Here we report images of various JPEG qualities
(30, 70, 75, and 85) and all semantic classes from both MNIST (first two rows) and CIFAR (bottom
two rows). The bottom row of each dataset displays one sample that was recognized by OpenCV
to be a corrupt JPEG. The offending samples are noticeable by their block-like artifacts (MNIST:
quality 85, class “2”; CIFAR: quality 75, class “1”).

artifacts except the corrupt files. That is, all samples are positive results w.r.t. visual quality except for
a single one. (3) On the one hand, essentially all MNIST samples display the right semantic class as
provided in the prompt; on the other hand, on CIFAR, the model seems to suffer from mode collapse
in various classes. We report samples from beam search in the appendix.

5 RELATED WORK

Models trained on partially-decoded JPEGs. Instead of operating on RGB pixel values of images,
a few works have devised Convolutional Neural Network (CNN) Gueguen et al. (2018); Verma et al.
(2018) or Vision Transformer (ViT) Park & Johnson (2023) architectures that operate on partially
decoded JPEG images. For instance, Gueguen et al. (2018) introduced a CNN LeCun et al. (1995)
that processes these images, allowing for faster image handling by omitting some decoding stages.
Similarly, Park & Johnson (2023) applied a ViT Dosovitskiy et al. (2020) to partially decoded JPEGs,
enhancing the ability of models to interact with data in a more compressed state. These approaches
mark a significant shift towards using the structural properties inherent in compressed formats, albeit
still involving some level of decoding.

Byte Sequence Modeling for Uncompressed Data. Transitioning to the modeling of byte sequences,
significant innovations have been introduced to manage the complexities associated with raw data
streams. The MegaByte framework Yu et al. (2024), for instance, features a multi-scale decoder
transformer architecture that addresses the challenges posed by long byte sequences through a novel
“byte patchification” technique. Concurrently, bGPT Wu et al. (2024) leverages a decoder-only
Transformer model for autoregressive generation of byte sequences. These methods underscore
developments in processing byte sequences, yet they focus on uncompressed data, neglecting the
more common and practical compressed file formats. In contrast, our work tackles the challenge of
processing compressed formats, specifically using JPEG as a case study.

Direct Operations on Compressed JPEG Byte Sequences. ByteFormer Horton et al. (2023)
ventured into processing compressed file formats at the byte level, and revealed that JPEG byte
sequences introduce significant challenges due to their nonlinear encoding and variable length. This
work showed that traditional byte patching methods could degrade performance, owing to the high
density of information in compressed formats. Unlike ByteFormer, which employs a tailored encoder
architecture for byte sequences, our work uses a straightforward decoder-only Transformer language
model trained with the vanilla next-token prediction objective. We find that, despite the simplicity of
this design choices, this vanilla Transformer effectively works on JPEG sequences for multiple tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6 CONCLUSIONS

In this study, we found evidence suggesting that Compressed-Language Models (CLMs) can effec-
tively understand JPEG-encoded byte streams. In particular, we found CLMs exhibit abilities in file
recognition, anomaly handling, and file generation, without requiring decompression. Our findings
pave the way for future developments in efficient data processing techniques that directly operate on
files encoded by Compressed File Formats, or even segments of these files.

REFERENCES

MS-DOC: Word (.doc) binary file format. Microsoft, 2018. URL https://learn.
microsoft.com/en-us/openspecs/office_file_formats/ms-doc/
ccd7b486-7881-484c-a137-51170af7cc22. Accessed: 2024-05-27. 1

Majed M Al-Jefri and Sabri A Mahmoud. Context-sensitive arabic spell checker using context words
and n-gram language models. In 2013 Taibah University International Conference on Advances in
Information Technology for the Holy Quran and Its Sciences, pp. 258–263. IEEE, 2013. 4

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014. 2

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic language model. In
T. Leen, T. Dietterich, and V. Tresp (eds.), Advances in Neural Information Processing Systems, vol-
ume 13. MIT Press, 2000. URL https://proceedings.neurips.cc/paper_files/
paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf. 2

Thomas Boutell. Png (portable network graphics) specification version 1.0. Technical report, 1997. 3

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020. 3, 4

Xingyi Cheng, Weidi Xu, Kunlong Chen, Shaohua Jiang, Feng Wang, Taifeng Wang, Wei Chu, and
Yuan Qi. Spellgcn: Incorporating phonological and visual similarities into language models for
chinese spelling check. arXiv preprint arXiv:2004.14166, 2020. 4

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
Natural language processing (almost) from scratch. Journal of machine learning research, 12:
2493–2537, 2011. 4

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009. 13

Peter Deutsch. Deflate compressed data format specification version 1.3. Technical report, 1996. 3

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018. 4

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 9

Pravallika Etoori, Manoj Chinnakotla, and Radhika Mamidi. Automatic spelling correction for
resource-scarce languages using deep learning. In Proceedings of ACL 2018, Student Research
Workshop, pp. 146–152, 2018. 4

Luciano Floridi and Massimo Chiriatti. Gpt-3: Its nature, scope, limits, and consequences. Minds
and Machines, 30:681–694, 2020. 6

Lionel Gueguen, Alex Sergeev, Ben Kadlec, Rosanne Liu, and Jason Yosinski. Faster neural networks
straight from jpeg. Advances in Neural Information Processing Systems, 31, 2018. 9

10

https://learn.microsoft.com/en-us/openspecs/office_file_formats/ms-doc/ccd7b486-7881-484c-a137-51170af7cc22
https://learn.microsoft.com/en-us/openspecs/office_file_formats/ms-doc/ccd7b486-7881-484c-a137-51170af7cc22
https://learn.microsoft.com/en-us/openspecs/office_file_formats/ms-doc/ccd7b486-7881-484c-a137-51170af7cc22
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Maxwell Horton, Sachin Mehta, Ali Farhadi, and Mohammad Rastegari. Bytes are all you need:
Transformers operating directly on file bytes. arXiv preprint arXiv:2306.00238, 2023. 9

David A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings of
the IRE, 40(9):1098–1101, 1952. doi: 10.1109/JRPROC.1952.273898. 1

Tuo Ji, Hang Yan, and Xipeng Qiu. Spellbert: A lightweight pretrained model for chinese spelling
check. In Proceedings of the 2021 conference on empirical methods in natural language processing,
pp. 3544–3551, 2021. 4

JPEG Committee. Jpeg homepage, 2024. URL https://jpeg.org/jpeg/. Accessed: 2024-
05-22. 3

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
6

Klemens Lagler, Michael Schindelegger, Johannes Böhm, Hana Krásná, and Tobias Nilsson. Gpt2:
Empirical slant delay model for radio space geodetic techniques. Geophysical research letters, 40
(6):1069–1073, 2013. 4, 6

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015. 7, 13

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998. 6

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time series. The
handbook of brain theory and neural networks, 3361(10):1995, 1995. 9

Brian Lester, Jaehoon Lee, Alex Alemi, Jeffrey Pennington, Adam Roberts, Jascha Sohl-Dickstein,
and Noah Constant. Training llms over neurally compressed text. arXiv preprint arXiv:2404.03626,
2024. 2

Meta LLaMA. Llama recipes. https://github.com/meta-llama/llama-recipes,
2024. 13

Library of Congress. Zip file format (pkware). Library of Congress Digital Preserva-
tion, 2024a. URL https://www.loc.gov/preservation/digital/formats/fdd/
fdd000354.shtml. Accessed: 2024-05-27. 1

Library of Congress. Mp3 file format. Library of Congress Digital Preservation,
2024b. URL https://www.loc.gov/preservation/digital/formats/fdd/
fdd000105.shtml. Accessed: 2024-05-27. 1

Jeongsoo Park and Justin Johnson. Rgb no more: Minimally-decoded jpeg vision transformers.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
22334–22346, 2023. 9

William B Pennebaker and Joan L Mitchell. JPEG: Still image data compression standard. Springer
Science & Business Media, 1992. 1, 2, 3

Atul Puri and Alexandros Eleftheriadis. Mpeg-4: An object-based multimedia coding standard
supporting mobile applications. Mobile Networks and Applications, 3:5–32, 1998. 1, 3

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115:211–252, 2015. 13

Eddie Antonio Santos, Joshua Charles Campbell, Dhvani Patel, Abram Hindle, and José Nelson
Amaral. Syntax and sensibility: Using language models to detect and correct syntax errors. In
2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 311–322. IEEE, 2018. 4

Center for Computer Research in Music Stanford University and Acoustics (CCRMA).
Wave pcm soundfile format, 2014. URL https://ccrma.stanford.edu/courses/
422-winter-2014/projects/WaveFormat/. Accessed: 2024-05-27. 1

11

https://jpeg.org/jpeg/
https://github.com/meta-llama/llama-recipes
https://www.loc.gov/preservation/digital/formats/fdd/fdd000354.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000354.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000105.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000105.shtml
https://ccrma.stanford.edu/courses/422-winter-2014/projects/WaveFormat/
https://ccrma.stanford.edu/courses/422-winter-2014/projects/WaveFormat/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024. 6

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023. 6, 7

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017. 13

Vinay Verma, Nikita Agarwal, and Nitin Khanna. Dct-domain deep convolutional neural networks
for multiple jpeg compression classification. Signal Processing: Image Communication, 67:22–33,
2018. 9

Gregory K Wallace. The jpeg still picture compression standard. IEEE transactions on consumer
electronics, 38(1):xviii–xxxiv, 1992. 2

Robert F Woolson. Wilcoxon signed-rank test. Wiley encyclopedia of clinical trials, pp. 1–3, 2007. 5

Shangda Wu, Xu Tan, Zili Wang, Rui Wang, Xiaobing Li, and Maosong Sun. Beyond language
models: Byte models are digital world simulators. arXiv preprint arXiv:2402.19155, 2024. 9

Lili Yu, Dániel Simig, Colin Flaherty, Armen Aghajanyan, Luke Zettlemoyer, and Mike Lewis.
Megabyte: Predicting million-byte sequences with multiscale transformers. Advances in Neural
Information Processing Systems, 36, 2024. 9

SUPPLEMENTARY MATERIAL

A LIMITATIONS

Our study is limited by its focus on JPEG-encoded MNIST and CIFAR datasets, which may not
represent the complexity of more varied real-world images. This restriction could impact the
generalizability of our findings, as the characteristics and challenges of JPEG compression in more
varied and natural images are not fully explored.

B TRAINING SENTENCES

In Sect 3, we described the general template for our sentences as

<q75> <class3> <bytes> 0xFF . . . 0xD9 </bytes> <q75> <class3>

In practice, we introduce additional delimiters for the condition, but omit them here for clarity.
Furthermore, notice that we introduced condition tokens (JPEG quality and semantic class) both
before and after the segment corresponding to the file’s bytes. On the one hand, the condition
tokens before the file allow the model to condition its output on a specific condition, i.e. conditional
generation. On the other hand, the condition token after the file instruct the model to scan the entire
file and then predict the file properties corresponding to the condition. Unfortunately, the model may
learn to solve the recognition task by copying the condition token provided before the file and pasting
it after the file. To prevent this degenerate solution, we stochastically feed the model with either a
“generation” or a “recognition” version of the sample during training. In the generation version, we
remove supervision for the condition tokens after the file, so the model lacks incentives to copy-paste.
In the recognition version, we restore that supervision, but replace the condition tokens before the
file with an <unk> token, preventing copy-pasting and thus forcing the model to rely on the file to
predict the class.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

C CLMS ON IMAGENETTINY

To test the CLMs ability to deal with larger datasets and larger file sizes. We conducted experiments
using Tiny Imagenet Le & Yang (2015). This dataset is a subset of ImageNet Deng et al. (2009);
Russakovsky et al. (2015) that contains 100k images from 200 classes (500 for each class) downsized
to 64×64. We follow use the same setup we used in our original methodology. It’s worth noting that
this images are double the size of CIFAR and MNIST, thus the computation required to pre-train and
fine-tune on this dataset is substantially increased. Initially we trained with the original TinyImagenet
split without any data augmentations, the pre-trained model achieved a 19.7% accuracy on the
validation split. Then, we decided to augment the training set of TinyImagenet with images from the
original Imagenet dataset that belong to the same class, this augmented training set highly benefited
the pre-training, helping it achieve a 29.8% on the TinyImagenet validation set. This result shows
that CLMs follow the usual properties of next-token prediction objective and scale well when more
data is available. Furthermore, we fine-tuned the pre-trained CLM on classification only, this model
achieved a competitive 34.9% accuracy.

We pre-trained during 48 hours using 1 A100 GPU, and fine-tune for an extra 24 hours on the same
machine. It’s also worth noting that we did not see a loss saturation during pre-training indicating
that the results can be further improved if more computation is available. However, we leave this
scaling up to future works with larger computational resources.

D MODEL TRAINING

Architecture and training objective. We use a decoder-only Transformer architecture Vaswani
et al. (2017). The training objective is to predict the next token in a sequence, which aligns with
the typical setup for auto-regressive language models The next-token prediction objective involves
training the model to predict the probability distribution of the next token given the preceding
sequence:

max
θ

Ex∼D

[
n∑

t=1

log pθ (x[t] | x[: t− 1])

]
. (3)

E GENERATION: SAMPLING WITH BEAM SEARCH

In Sect. 4.4 we found that sampling from the model with greedy decoding generated valid and
reasonable JPEG files. We thus also experiment with beam search sampling. For sampling sensibly-
looking JPEGs with beam search, we find important to constrain sampling to consider only the
smallest set of tokens whose accumulated probabilities surpass a given hyper-parameter.1 We report
samples from beam search in Fig. 4.

F IMPLEMENTATION DETAILS

Learning hyper-parameters We base our implementation on the llama-recipes code-
base Meta LLaMA (2024), and so follow their defaults when unspecified. We report training
hyper-parameters in Tab. 3.

Computer Resources. We conduct all our trainings in an A100 GPU of 80 GB. We run training on
MNIST for 24 hours, and on CIFAR for 72. The experiment on MNIST shows signs of convergence,
while the one on CIFAR does not.

Testing a trained model for recognition requires less than 10 minutes on either dataset. Sampling an
MNIST file requires around 5 seconds, while sampling a CIFAR files requires almost 9, due to the
difference in sequence length.

1This constraint is enforced via beam search’s top_p hyper-parameter in the HuggingFace library.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Configuration Value

Precision bfloat16
Optimizer AdamW
Optimizer momentum β1, β2 = 0.9, 0.999
Weight decay 0.0
Learning rate 7× 10−4 | 6× 10−4

Learning rate schedule cosine decay
Warm-up iterations 10 | 11
Total epochs 6 | 5
Batch size 32 | 16

Table 3: Training hyper-parameters. The parameters follow the template “(MNIST) | (CIFAR)”

Class
0 1 2 3 4 5 6 7 8 9

Sa
m

pl
e 1

3

4

Figure 4: Qualitative results of file generation via beam search. We sample files from the model
via beam search and use the JPEG decoder to obtain an image raster.

14

