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Abstract

We present a conformal prediction method for
time series using the Transformer architecture
to capture long-memory and long-range depen-
dencies. Specifically, we use the Transformer
decoder as a conditional quantile estimator to pre-
dict the quantiles of prediction residuals, which
are used to estimate the prediction interval. We
hypothesize that the Transformer decoder benefits
the estimation of the prediction interval by learn-
ing temporal dependencies across past prediction
residuals. Our comprehensive experiments using
simulated and real data empirically demonstrate
the superiority of the proposed method compared
to the existing state-of-the-art conformal predic-
tion methods.

1. Introduction

Uncertainty quantification has become crucial in many sci-
entific domains where black-box machine learning models
are often used (Angelopoulos & Bates, 2021). Conformal
prediction has emerged as a popular and modern technique
for uncertainty quantification by providing valid predictive
inference for those black-box models (Shafer & Vovk, 2008;
Barber et al., 2023).

Time series prediction aims to forecast future values based
on a sequence of observations that are sequentially ordered
in time (Box et al., 2015). With recent advances in machine
learning, numerous models have been proposed and adopted
for various time series prediction tasks. The increased use of
black-box machine learning models necessitates uncertainty
quantification, particularly in high-stakes time series predic-
tion tasks such as medical event prediction, stock prediction,
and weather forecasting.

While conformal prediction can provide valid predictive
inference for uncertainty quantification, applying conformal
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Figure 1. Visual description of our proposed method. Prediction
residuals (€;) and corresponding features (X+) are used as input to
a stack of Transformer decoder layers to predict the quantiles of
future residual(s), which are used to estimate prediction intervals.

prediction to time series is challenging since time series
data often violate the exchangeability assumption. Addi-
tionally, real-world time series data typically exhibit signifi-
cant stochastic variations and strong temporal correlations.
Many efforts have been made to develop valid and effective
conformal prediction methods for time series (Xu & Xie,
2023a). Sequential Predictive Conformal Inference (SPCI),
a recently proposed conformal prediction framework for
time series, has shown state-of-the-art performance by using
Quantile Random Forest (Meinshausen & Ridgeway, 2006)
as a conditional quantile estimator to predict the quantiles
of future prediction residuals, which are used to estimate
prediction interval (Xu & Xie, 2023b).

In this study, we employed Transformer decoder (Vaswani
et al., 2017; Radford et al., 2018) as a conditional quantile
estimator in the SPCI framework. Specifically, the Trans-
former decoder takes a sequence of past residuals and fea-
tures as input to predict the quantiles of future residuals.
Given that Transformer decoder-only architecture has al-
ready shown impressive performance in many sequential
modeling tasks, we hypothesize that utilizing it in the SPCI
framework benefits the estimation of prediction interval
by learning temporal dependencies between the residuals.
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Table 1. Empirical coverage and interval width of SPCI-T and
baselines on the simulated datasets. The target coverage is set to
0.9, and the past window is set to 100. We report the average value
with standard deviation calculated based on three independent
trials with different random seeds.

Non-stationary Heteroskedasticity
Coverage Width Coverage Width
SPCI-T  0.914.008 52.38+.584 0.88+.002  9.56+.082
SPCI 0.964.004 76.35+.527 0.89+.006 10.03+.001
EnbPI 0.86+.002 134.7+.743 0.90+.006 10.72+.00s
NexCP 0.91:{:,002 156.4:‘:2,73 0.92:&,004 11~73:l:.198
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Figure 2. Prediction intervals estimated by SPCI-T and baselines
on non-stationary simulated dataset.

We empirically demonstrate the superiority of the proposed
method through experiments with simulated and real data,
comparing it to state-of-the-art conformal prediction meth-
ods.

2. Problem setup

Consider a sequence of observations {(X:,Y;) : ¢t =
1,2,...}, where X; € R9 denotes d-dimensional feature
and Y; € R denotes continuous scalar outcome. Assume
that the first 7" samples {(X;, Y;)}7_; be the data for train-
ing and validation. We also assume that we have a point
prediction method f that provides a point prediction Y, for
Y asY; = f(X,).

Our goal is to sequentially construct a prediction interval
C 4 (X4), starting from time 7" + 1, that desirably contains
the true outcome Y; with the probability at least 1 — «.
C’t_l(Xt) is constructed using the past observations and
predictions up to ¢t — 1 time. The significance level « is pre-
defined and C;_; (X}) is a set includes Y; with probability
at least 1 — a.

We use prediction residual (i.e., prediction error) as a non-
conformity score, which is defined as:

E=Y, - Y. ey

There are two types of coverage guarantees that should
be satisfied with prediction intervals: marginal coverage
and conditional coverage. Marginal coverage is defined as
follows:

P(Yi€Cia(X)) 2 1-a,v @

Conditional coverage is a stronger guarantee that given each
X, the true observation Y; in included in C;_; (X;) with at

Table 2. Empirical coverage and interval width of multi-step pre-
diction using SPCI-T on the simulated datasets. The target cover-
age is set to 0.9, and the past window is set to 100.

Non-stationary Heteroskedasticity

Coverage Width Coverage Width
s=2 0881015 51.54+314 0.84+.003 9.67+.134
s=3 0.86+.00s 51.46+.183 0.80+£.003 9.721.151
S 4 0.84:‘:,010 5149:{:.256 0.80;{:_010 9.76i,140

least 1 — « probability, which can be defined as follows:

P(Yi € Ca(X)IX,) 21 - v 3)

If Cy_q (X}) satisfies eq (2) or eq (3), it is called marginally
valid or conditionally valid, respectively. The desired aim
is to construct C;_; (X;) that satisfies both marginally and
conditionally valid.

While infinite-width prediction intervals always satisfy both
coverage guarantees, such intervals are pointless since they
do not carry any information to quantify uncertainty. There-
fore, we aim to minimize the width of prediction intervals
while satisfying coverage.

3. Method

3.1. Sequential Predictive Conformal Inference

Sequential Predictive Conformal Inference (SPCI) is a
conformal prediction framework for time series proposed
by (Xu & Xie, 2023b). SPCI adopted Quantile Random
Forest (Meinshausen & Ridgeway, 2006) as a conditional
quantile estimator to estimate €; sequentially, leveraging
the dependencies of the past residuals. Specifically, SPCI
estimates prediction intervals as follows:

X0+ QB fx) + Qi —a+B)], @

where () denotes a conditional quantile estimator, Qq (p) is
the estimation for the true p-th quantile of €;. 8 denotes the
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Table 3. Empirical coverage and interval width of the proposed method and baselines. The target coverage is 0.9, and the past window
is set to 50 for all experiments. We report the average value with standard deviation calculated based on three independent trials with

different random seeds.

Wind Electricity Solar
Coverage Width Coverage Width Coverage Width
SPCI-T  0.93+.006 2.08+.072 0.92+.000 0.18+005 0.93+005 50.70+3.84
SPCI 0.96+.016 2.41+.016 0.924+.004 0.221001 0.91+006 88.76+.245
EnbPI 0.48+.006 4.10+.009 0.79+.002 0.224+ 001 0.88+.002 86.91+ 363
NexCP  0.924 016 6.274+.145 0.89+.001 0.464+.001 0.86+.002 114.98+ 201

Table 4. Empirical coverage and interval width of the proposed method and baselines. The target coverage is 0.9, and the past window is
set to 100 for all experiments. Note that the performance of NexCP is identical to the performance in Table 3 since it does not use the past

window.
Wind Electricity Solar
Coverage Width Coverage Width Coverage Width
SPCI-T 0.91iA011 1.96i,094 O.92i‘013 0-17i.014 0~90iA006 45-35i1467
SPCI 0.94+ 006 2.39+.030 0.93+.005 0.221002 0.93+.002 88.21+.434
EnbPI 0.744 038 4.65+.026 0.85+.001 0.264001 0.88+.002  86.64+ 138
NexCP  0.924 016 6.27+.145 0.89+001 0.46+001 0.86+£002 114.984 901

value that minimizes the prediction interval as:

B = argﬁrerhi{;] (Qt(l —a+f)— Qt(ﬁ)) ‘

3.2. Transformer Conformal Prediction for Time Series

In this study, we employ Transformer (Vaswani et al., 2017)
as a conditional quantile estimator Q to estimate the true
quantiles of €; within the SPCI framework. Specifically, we
use decoder-only architecture (Radford et al., 2018) since
it can generalize to variable lengths of sequences without
strictly partitioning the sequences for encoding and decod-
ing. Throughout the paper, we refer to the proposed method
as Sequential Predictive Conformal Inference with Trans-
former (SPCI-T).

The past w residuals and features are used as input for the
model to predict the quantiles of the future unobserved resid-
uals. Specifically, {Zt}i:zw 1) is used to predict Qt(p),
where Z; := [ X}, é;]. A fully connected layer without acti-
vation converts Z, to the input representation of the model
dimension. Note that Z; can include other features that are
useful for prediction besides X;. Figure 1 visually describes

the model architecture.

A fully connected layer without activation transforms out-
put representation into the prediction of the quantile of é;.
Training is done by sequentially minimizing the quantile
loss as follows:

[
E@“”‘{a—m@—a

ife—é >0,

5
ife! —¢é>0, ©)

where p is the target quantile and € is the predicted value of
€ corresponding to the target quantile.

We hypothesize that using the Transformer decoder as a
conditional quantile estimator can offer the following ad-
vantages:

 Transformer decoder can effectively learn temporal de-
pendencies, including long-term dependencies, across
residuals.

* We can incorporate additional features, such as X,
for conditional quantile estimation, allowing the Trans-
former to learn potential dependencies between these
additional features and the residuals.

* Transformer decoder can perform multi-step predic-
tions using known features through generative infer-
ence without needing explicit residuals as input for
prediction.

4. Experiments

We evaluate SPCI-T and baselines on simulated and
real data. The code for all experiments is available at
https://github.com/Jayaos/TCPTS. Hyperpa-
rameters and implementation details are available in Ap-
pendix A.

4.1. Setup

We first obtain point predictions for all Y; and corresponding
residuals € by using leave-one-out (LOO) point predictors in
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Table 5. Empirical coverage and interval width of multi-step pre-
diction using SPCI-T on real datasets. The target coverage is 0.9,
and the past window is set to 100.

Electricity Solar
Coverage Width Coverage Width
s=2 0871004 0.18+007 0.88+005 42.70+1.20
s=3 0821004 018+ 007 0.86+.010 44.56+1.82
s=4 0.78+007 0.18+007 0.84102 46.8312.08

all experiments. We use the ensemble of 25 random forests
as the LOO point predictor.

We use state-of-the-art conformal prediction methods
as baselines, which include SPCI (Xu & Xie, 2023b),
EnbPI (Xu & Xie, 2021), and NexCP (Barber et al., 2023).
We evaluate SPCI-T and the baselines regarding interval
coverage and width. We also evaluate the multi-step predic-
tion of SPCI-T. In a multi-step prediction setup, we aim
to estimate the prediction intervals at s-step ahead, assum-
ing that we only have known features (X;) for multi-step
prediction.

4.2. Simulation

Dataset We generate two simulated time series datasets.
The data generating process follows Y; = f(X;) + €. The
first dataset is a non-stationary time series, which contains
periodicity and autoregressive €;. The second dataset is time
series with heteroscedastic errors where the variance of ¢;
depends on X;. Details on simulated data are provided in
Appendix A.

Results Table 1 shows empirical coverage and interval
width of SPCI-T and baselines on the two simulated
datasets. We observe that SPCI-T achieves the narrowest
interval width without losing coverage. Figure 2 displays
the prediction interval estimated by SPCI-T and baselines
on the non-stationary dataset, confirming that SPCI-T ob-
tains significantly narrower interval width compared to the
baselines. Table 2 presents multi-step prediction results of
SPCI-T. While SPCI-T maintains its prediction interval
width, it loses coverage for multi-step prediction with larger
s.

4.3. Real data Experiments

Dataset We use three time-series datasets from the real
world: solar, wind, and electricity. The solar dataset (Zhang
et al., 2021) contains solar radiation information in Ata-
lanta downtown measured in terms of diffuse horizontal
irradiance, provided by the United States National Solar
Radiation Database. The wind dataset consists of wind
speed records measured by the Midcontinent Independent

Table 6. Empirical coverage and interval width of SPCI-T and
baselines on a solar dataset with additional features. The target
coverage is 0.9, and the past window is set to 50 or 100. Note that
NexCP showed the identical performance regardless of w since
NexCP does not use past windows.

Solar with additional features

w = 50 w = 100
Coverage Width Coverage Width
SPCI-T  0.93+.013 33.5141.99 0.914+ 006 28.1411 60
SPCI 0.924 002 89.63+ 651 0.92+ 005 87.284 782
EnbPI 0.88:{:,005 86.94:{:,181 0489:{:,000 85.73;{:,459
NexCP  0.90+.002 100.92146.64 0.90+.002 100.9216.64

System Operator every 15 minutes over a week period in
September 2020 (Zhu et al., 2021). The electricity dataset
contains electricity usage and pricing in the states of New
South Wales and Victoria in Australia, observed between
1996 and 1999 (Harries et al., 1999). All three datasets were
widely adopted benchmark datasets in conformal predic-
tion literature. Details of the three datasets are provided in
Appendix A.

Results Table 3 and Table 4 shows empirical coverage
and interval width of SPCI-T and baselines on three real
datasets with w = 50 and w = 100, respectively. We
observe that SPCI-T consistently outperforms all other
baselines. We also observe that the interval width of
SPCI-T was narrow with a longer window, which shows
that SPCI-T utilizes the long history of residuals by learn-
ing dependencies. Table 5 shows multi-step prediction re-
sults of SPCI-T on electricity and solar datasets. We ex-
clude the results on the wind dataset since the coverage
deteriorated significantly with s > 2. Similarly, in simula-
tion, we observed that SPCI-T lost the coverage with the
increasing s.

We add additional time features to each X; in the solar
dataset to see how these additional features can influence
the performance of SPCI-T. Table 6 presents empirical
coverage and interval width of SPCI-T and baselines on
a solar dataset with additional features. SPCI-T again
consistently outperforms baselines and shows significantly
improved performance compared to the experiment on the
solar dataset without the additional features. These results
empirically demonstrate the advantage of SPCI-T in uti-
lizing features with the residuals for conditional quantile
estimation.



Transformer Conformal Prediction for Time Series

5. Conclusion

In this study, we propose SPCI-T, which incorporates
a Transformer decoder into the recently developed SPCI
framework. SPCI-T uses a Transformer decoder to learn
temporal dependencies between the residuals and features
to predict the conditional quantile of future residuals, which
are then used to estimate the prediction interval. Our simu-
lated and real data experiments empirically demonstrate the
superiority of SPCI~-T. Future directions include tailoring
the model architecture for the time series conformal predic-
tion task and conducting more comprehensive evaluations
with state-of-the-art methods.

Software and Data

Datasets used in simulation and real data experiments are
available at https://github.com/Jayaos/TCPTS.
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A. Additional Details of Experiments
A.1. Details of Simulated Data

Non-stationary time series We set 7' = 2000, which means we have {(X;, Y;)}7%9°. We first generate each dimension of
X, € R0 from Unif(0, ¢-01mod(£,100)) for all ¢. Then, f(X;) is obtained as follows:

J(Xy) = g(Xp)h(Xy),

where
g(t) =log(t') sin(27t'/100), ¢’ = mod(t, 100),

and
hXy) = (187X + (BT X0)? + BT X, *)1/2.

We sample €; from AR(1) as €; = pe;—1 + e, where p = 0.6 and e; is i.i.d. generated from normal distribution with zero
mean and unit variance. 3 € R is a sparse vector having only 20% non-zero elements where non-zero elements are
generated from Unif(0, 1).

Time series with heteroskedastic error We set T = 2000, then generate X, € R!? similarly to non-stationary time series
for all ¢. Then, f(X;) is obtained as follows:

F(X) = (187X + (BT X0)2 + 18T X%/,

where [ is generated in a similar way as in the non-stationary time series. We also sample ¢; from AR(1) similar to
non-stationary time series, but with the variance of €¢; dependent on X, as follows:

Var(et) = U(Xt)2,

U(Xt) = ]_TXt.

A.2. Details of Real Data

Solar data The solar dataset contains solar radiation information recorded in every 30 minutes in 2018 in Atalanta
downtown (Zhang et al., 2021) provided by the United States National Solar Radiation Database (Sengupta et al., 2018).
We used seven covariates: Direct Normal Irradiance (DNI), dew point, surface albedo, wind speed, relative humidity,
temperature, and pressure. The outcome variable is Diffuse Horizontal Irradiance (DHI), which reflects radiation levels. For
additional time features, we converted the 24-hour period into 24 hourly one-hot encoded features, adding 24 additional
features.

Wind data The wind dataset contains wind speed data (measured in m/s) from wind farms operated by the Midcontinent
Independent System Operator (MISO) in the United States (Zhu et al., 2021). This 10-dimensional dataset recorded wind
speed every 15 minutes over a one-week period in September 2020.

Electricity data The electricity dataset recorded electricity usage and pricing in the states of New South Wales and
Victoria in Australia, every 30 minutes over a 2.5 year period between 1996 and 1999 (Harries et al., 1999). We used four
covariates: nswprice and vicprice, the price of electricity in each of the two states; and nswdemand and vicdemand, the
usage demand in each of the two states. The outcome variable is transfer, which is the quantity of electricity transferred
between the two states.

A.3. Hyperparameters and Implementation Details

Table 7 shows hyperparameters chosen for SPCI-T. We conducted a grid search using training and validation set to find the
optimal hyperparameters. The model dimension, number of heads, and number of layers were chosen when performance
plateaued. Since SPCI-T requires validation set to select the best model during training, we split the datasets into training,
validation, and test set with 8:1:1 ratio for SPCI—T. For all other baselines, the datasets were split into training and test set
with a 9:1 ratio. For a fair comparison in terms of data usage, we additionally trained SPCI-T on the validation set after it
was initially trained on the training set, which was conducted for 10% of the number of epochs used for the initial training.
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Table 7. Hyperparameters chosen for SPCI-T in experiments using simulated and real data.

Simulation Real data
Non-stationary ~ Heteroskedastic = Wind  Electricity =~ Solar  Solar w/ add. features
batch size 4 4 4 4 4 4
learning rate 0.0001 0.0001 0.0001 0.0001 0.0005 0.0005
model dimension 16 16 32 16 16 32
number of heads 4 4 4 4 4 4
number of layers 4 4 4 4 4 4
dropout 0.2 0.2 0.1 0.2 0.2 0.2
additional training N N Y Y Y Y




