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ABSTRACT

There has been an growing demand for deep neural network (DNN) powered
automatic speech recognition (ASR) on mobile platforms for real-time speech
recognition. However, ubiquitous on-device ASR systems are still hindered by
two bottlenecks: (1) the lack of large-scale transcribed speech data especially for
low-resource spoken languages and (2) the large gap between DNNs’ prohibitive
complexity and mobiles’ limited resources. In parallel, speech models pretrained
via self-supervised learning (SSL) have emerged to reduce the reliance on the avail-
ability of transcribed speech data, which however further enlarges the efficiency
gap because they often adopt large transformers to ensure expressive speech repre-
sentations. Thus, it is highly desired to trim down the complexity of speech SSL
models to enable real-time on-device ASR. This is particularly challenging since
only structured sparsity can favor hardware efficiency in commercial devices, under
which the speech representation learned by SSL could easily be demolished. To this
end, we develop a framework dubbed S6-DAMON to pursue structured sparsity in
speech SSL models via data-model co-compression. On the data side, leveraging
both the duration of each phoneme and the pauses between the words/phonemes of
human utterances, we propose a salient audio token detector, dubbed SALAD, to
remove input audio tokens that are redundant; On the model side, we identify that
the failure of the SOTA ASR pruning method under structured sparsity is caused
by the sparsity discrepancy between finetuning/deployment and their limited learn-
ability of sparsity distributions, and then tackle it via a new ASR pruning pipeline
dubbed SAFARI, which adopts a three-step pipeline - sparsify, finetune, and adjust
sparsity. Extensive experiments validate that S6-DAMON can enable real-time
ASR with limited transcribed speech data requirements while maintaining decent
recognition performance. All source codes will be released upon acceptance.

1 INTRODUCTION

Recent breakthroughs in deep neural networks (DNNs) have tremendously advanced the field of
Automatic Speech Recognition (ASR), enabling record-breaking end-to-end ASR systems (Hannun
et al., 2014; Chan et al., 2016; Zhang et al., 2020; Gulati et al., 2020). Considering that speech is one
of the basic input modalities from users of intelligent mobile devices, there has been an increasing
interest in the development and deployment of on-device ASR systems. For example, intelligent
assistants (Meta-AI, 2022; Vox, 2022) are highly desired in next-generation augmented reality and
virtual reality (AR/VR) devices for enabling immersive AR/VR experiences. This has called for
advanced speech technologies in order to deliver accurate and real-time ASR systems.

There still remain two critical efficiency bottlenecks for ubiquitous on-device ASR systems, including
(1) data efficiency: big data is often not practical for ASR since collecting transcription on a large
scale is costly or not even possible, especially for low-resource spoken languages and (2) model
efficiency: the often limited on-device resources stand at odds with the complexity of deep ASR
models, making it particularly challenging to satisfy real-time ASR requirements. To promote
the aforementioned data efficiency, recent advances in self-supervised learning (SSL) for speech
representation (Chi et al., 2020; Baevski et al., 2020; 2022) have demonstrated empirical success and
become the de-facto paradigm for low-resource ASR, where SSL models pretrained on unlabeled
audio data can be generalized to handle low-resource transcribed speech after being finetuned.
However, this could further aggravate the model efficiency bottleneck as giant transformers (Vaswani
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Figure 1: (a) An example from LibriSpeech for illustrating two types of non-salient audio tokens; (b)
The trade-offs between WER on LibriSpeech test-clean and FLOPs savings achieved by different
ASR compression schemes on top of wav2vec2-base finetuned on LibriSpeech-100h.

et al., 2017) (e.g., > 90M parameters) are often adopted in state-of-the-art (SOTA) speech SSL models
to ensure effective representation learning during SSL, making it increasingly more challenging for
on-device deployment. Therefore, it is imperative to compress speech SSL models while maintaining
their generalizable speech representation for delivering efficient ASR systems.

Despite the demanding need, it is non-trivial to narrow the gap between large speech SSL models
and constrained resources in mobile devices. First, under the SOTA pretrain-then-finetune paradigm,
most useful features are learned during the SSL stage and then pretrained speech SSL models only
slightly adapt their weights to encode task-specific information during finetuning, whereas it is
difficult to learn a sparsity distribution during finetuning while maintaining the fidelity of the speech
representation given the low-resource downstream speech. Note that this is particularly challenging
for ASR due to the more stringent low-resource settings, e.g., LibriSpeech-10m (Panayotov et al.,
2015) for ASR only contains 48 sentences for training and development, whereas the CoLA dataset
(Wang et al., 2018) for natural language processing (NLP) contains 9594 sentences. Second, only
structured sparsity can favor hardware efficiency in commercial mobile devices, which however will
pose a more severe destruction during finetuning on the SSL speech representation learned during
pretraining than unstructured sparsity, e.g., enforcing structured sparsity in the SOTA unstructured
ASR pruning framework called PARP (Lai et al., 2021) will cause a >8% increase in word-error-
rate (WER) under only a 20% sparsity on wav2vec2-base/LibriSpeech-1h. Third, considering that
ASR corresponds to a sequence-to-sequence task where the alignment between inputs and outputs
is monotonic, the compression process is thus required to be more meticulous in preserving the
information of useful audio frames than compressing classification-task models.

Our Contributions. We develop a framework dubbed S6-DAMON which is the first to pursue
structured sparsity in speech SSL models under low-resource settings via data-model co-compression
for enabling real-time on-device speech recognition.

On the data side, S6-DAMON leverages the intrinsic redundancy in human speech. As the duration
of each phoneme and the pauses between the words/phonemes of human utterances, the sampled audio
frames and the corresponding extracted audio tokens, i.e., inputs for the transformers, may (1) repeat
the previous tokens, or (2) stand as blank, contributing little to the final recognition (see an example
in Fig. 1 (a)). We call both as non-salient audio tokens (NATs) and the first-appearing tokens that are
indispensable for ensuring monotonic recognition as salient audio tokens (SATs). Properly removing
NATs can lead to non-trivial savings in model efficiency while better maintaining the accuracy than
removing SATs, e.g., NATs account for 50.6% of the total tokens on LibriSpeech test-clean based
on token-wise annotations from finetuned wav2vec2-base. As only sentence-level transcriptions are
annotated in ASR datasets and token-wise labels are not available to classify SATs/NATs, we design
a salient audio token detector called SALAD and train it in a semi-supervised manner based on the
pseudo token-wise labels annotated by finetuned speech SSL models on untranscribed speech. A high
recall is enforced to ensure the coverage of SATs, thus properly removing NATs detected by SALAD
in inference can better maintain the speech representation fidelity. On the model side, we discover
that the failures of SOTA ASR pruning method PARP (Lai et al., 2021) under structured sparsity
are caused by (1) the sparsity discrepancy between finetuning/deployment, i.e., PARP finds the

2



Under review as a conference paper at ICLR 2023

necessity of maintaining the flexibility of sparsity distributions and thus keeps all weights updatable,
including pruned ones, during finetuning, resulting in a discrepancy against the hard-pruned weights
during deployment. The mismatched finetuning/deployment process could demolish the learned
speech representations especially under structured sparsity; (2) the limited learnability of sparsity
distributions in the PARP pipeline due to the intrinsically low learning rates during finetuning, leaving
the space of sparsity masks significantly under-explored. We thus propose a new ASP pruning
pipeline dubbed SAFARI (i.e., sparsify, finetune, and adjust sparsity) to strictly zero-out the pruned
neurons during finetuning for minimizing the finetuning/deployment discrepancy, followed by a
sparsity adjustment step to adaptively evolve the sparsity masks and thus ensure the learnability of
sparsity distributions. We summarize our contributions as follows:

• We propose a data-model co-compression framework, dubbed S6-DAMON, which for the
first time chases structured sparsity in both input audio tokens and model structures of
speech SSL models to empower real-time on-device ASR under a low-resource setting;

• We develop a semi-supervised method for training a lightweight module dubbed SALAD to
distinguish SATs/NATs for the purpose of structurally removing redundant audio tokens;

• We identify the underlying causes for the failures of the SOTA ASR pruning method and
then develop an ASR pruning pipeline dubbed SAFARI to enable high structured sparsity in
speech SSL models while maximally maintaining the ASR accuracy;

• Experiments show that as compared to the SOTA ASR pruning method PARP, our S6-
DAMON can (1) achieve a 1.96× speed-up on Pixel 3 mobile phone with an absolute 2.49%
WER reduction, and (2) win an absolute 10.96% lower WER for reducing >64% FLOPs of
wav2vec2-base as shown in Fig. 1 (b), indicating that our method has taken an important
step towards bridging speech SSL models and real-time speech recognition.

2 RELATED WORK

Automatic speech recognition. Early ASR systems (Bridle, 1990; Sha & Saul, 2006; Tang, 2009;
Jaitly et al., 2012; Mao et al., 2019; Adams & Beling, 2019) mainly build on top of the combinations
of hidden Markov models with Gaussian mixture models or DNNs, and often integrate multiple
modules, e.g., an acoustic model, a language model, and a lexicon model, that are separately trained.
Driven by recent advances in DNN structures, diverse end-to-end ASR systems have been proposed,
which process raw audio inputs in an end-to-end manner, including CTC (Graves et al., 2006)-
based models (Hannun et al., 2014; Amodei et al., 2016; Graves & Jaitly, 2014; Miao et al., 2015;
Eyben et al., 2009), recurrent neural network(RNN)-transducers (Graves, 2012; Graves et al., 2013;
Rao et al., 2017; Dong et al., 2018b), and sequence-to-sequence models (Chorowski et al., 2015;
Bahdanau et al., 2016; Chan et al., 2016; Zhang et al., 2017; Chiu et al., 2018; Prabhavalkar et al.,
2018). Specifically, from the model structure perspective, transformer-based models (Zhang et al.,
2020; Gulati et al., 2020; Dong et al., 2018a; Wang et al., 2020) have been widely adopted thanks to
their superior expressiveness and capabilities for modeling long-range dependencies.

Self-supervised learning for speech representation. Due to the high cost and/or impracticality
of collecting large-scale speech data, the pretrain-then-finetune paradigm has become increasingly
popular for empowering low-resource ASR. To learn rich speech representation via SSL, early works
design generative models for inferring the latent variables of speech units (Hsu et al., 2017a; van den
Oord et al., 2017; Hsu et al., 2017b; Ebbers et al., 2017; Khurana et al., 2020). Recently, prediction-
based SSL methods have gained more attention, where the models are trained to reconstruct the
contents of unseen frames (Chung et al., 2019; Liu et al., 2020; Chi et al., 2020; Ling & Liu, 2020;
Baevski et al., 2022) or contrast the features of masked frames with those of randomly sampled
ones (Oord et al., 2018; Baevski et al., 2020; Conneau et al., 2020; Baevski et al., 2019a; Hsu et al.,
2021). In parallel, some works combine both predictive and contrastive objectives (Baevski et al.,
2019b;a) or integrate contrastive learning and masked language modeling (Chung et al., 2021; Bapna
et al., 2022). We refer the readers to the survey (Liu et al., 2022) for more details. However, SOTA
speech SSL models (Baevski et al., 2020; Hsu et al., 2021; Baevski et al., 2022; Conneau et al., 2020;
Chiu et al., 2022) often adopt large transformers for ensuring effective representation learning during
SSL and require prohibitive model sizes, making it difficult to achieve real-time speech recognition
on mobile devices.

ASR pruning. To compress large-scale ASR models while maintaining their generalizable rep-
resentation, ASR pruning has gained a growing attention. Early works prune either the decoding
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Figure 2: An overview of our proposed S6-DAMON, integrating two enabling components called
(a) SALAD and (b) SAFARI for chasing structured sparsity in input data and model structures,
respectively (zoom-in for better view).

search space (Abdou & Scordilis, 2004; Pylkkönen, 2005; Xu et al., 2018; Zhang et al., 2021) or the
HMM state space (Van Hamme & Van Aelten, 1996). Recent works have shifted its focus to pruning
end-to-end ASR models (Venkatesh et al., 2021; Shi et al., 2021; Li et al., 2021b; Braun & Liu, 2019;
Gao et al., 2020; Shangguan et al., 2019; Wu et al., 2021; Ding et al., 2021). Recently, (Lai et al.,
2021; Prasad et al., 2022; Zhao et al., 2021) prune speech SSL models towards more efficient low-
resource ASR, however, they all adopt unstructured pruning which barely favors hardware efficiency
in commercial devices. (Lee et al., 2022; Chang et al., 2022) distill the knowledge of pretrained
speech SSL models to lightweight student models, but require human expertise to manually design
the student model, which can be impractical without utilizing the properties of speech signals, causing
inferior ASR accuracy. In contrast, S6-DAMON learns to automatically and structurally prunes the
redundancy of speech SSL models, achieving a triple-win in data, model, and labor efficiency.

3 THE PROPOSED S6-DAMON FRAMEWORK

3.1 S6-DAMON: FRAMEWORK OVERVIEW

Rationale. Current commercial mobile devices can only benefit from structured sparsity, whereas
most useful features of speech SSL models are learned during the SSL stage, which could be easily
demolished when enforcing structured sparsity, especially when being finetuned under a low-resource
setting. To this end, our S6-DAMON tackles this challenge based on a twofold rational: (1) instead
of compressing only one dimension, S6-DAMON exploits the redundancy in both the input audio
tokens and model structure; and (2) to preserve the monotonic alignment between the input audio and
output transcriptions,S6-DAMON identifies and then tackles the key bottlenecks for reducing the
complexity of both the input and model while maintaining the fidelity of speech representation.

Overview. As shown in Fig. 2, S6-DAMON performs data-model co-compression via (1) a SALAD
module which detects and skips redundant tokens, i.e., NATs as introduced in Sec. 1, and (2) a
SAFARI pipeline which pursues structured model sparsity. For compressing a given speech SSL
model, S6-DAMON features a three-stage pipeline: ❶ finetune the speech SSL model that serves as a
teacher model on the low-resource transcribed speech; ❷ train SALAD in a semi-supervised manner
based on the annotations of the teacher model (see Sec. 3.2); and ❸ perform a joint optimization of
input data sparsity and model sparsity on top of speech SSL models based on the SAFARI pipeline
with a portion of detected NATs removed (see Sec. 3.3 and Sec. 3.4).

3.2 S6-DAMON: CHASE STRUCTURED SPARSITY IN INPUT DATA

Here we introduce the deign and training of our proposed SALAD module, which is to detect and
skip redundant audio tokens, i.e., NATs. Note that although (Kim et al., 2021; Wang et al., 2021)
have attempted to prune transformers’ tokens in a layer-wise manner in the NLP domain, they do not
consider the intrinsic properties of human speech and such a layer-wise dynamic skipping workload
can barely favor hardware efficiency in commercial devices. In contrast, SALAD explicitly exploits
the redundancy in repeated/blank regions of human utterances, favoring efficiency in commercial
devices, while maintaining the monotonic alignment between input speech and output transcriptions,
a unique property in the speech domain, by enforcing a high recall on SATs as elaborated below.
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SALAD’s input and structure. SOTA speech SSL models (Baevski et al., 2020; Hsu et al., 2021;
Baevski et al., 2022) sample and convert raw audio frames into audio tokens via convolutional
feature extractors, which are then processed by a transformer backbone to generate corresponding
contextualized representation. As the convolutional feature extractors are often fixed after SSL
pretraining to ensure effective audio feature extraction (Baevski et al., 2020), SALAD is applied on
the extracted audio tokens after the convolutional feature extractor, and classifies each audio token
as a SAT/NAT. This ensures that all transformer layers can benefit from reducing the same number
of audio tokens, favoring efficiency in commercial devices. Specifically, SALAD consists of four
lightweight convolutional layers and outputs a binary classification between SAT and NATs. Its
structure is provided in the appendix, which only contains 0.35M parameters and accounts for <0.4%
floating-point-operations (FLOPs) of the original transformer.

SALAD’s semi-supervised learning pipeline. Considering the lack of token-wise ground truth,
we train SALAD(·; θS) in a semi-supervised manner, i.e., using a finetuned ASR model to provide
pseudo labels for each token on untranscribed speech (see Fig. 2 (a)). Specifically, given a speech
SSL model, we first finetune it on the available transcribed speech (e.g., LibriSpeech-1h) to create a
teacher model MT (·; θT ), which is then used to annotate a larger amount of untranscribed speech
(e.g., LibriSpeech-10h) to acquire the pseudo character/phoneme labels for each audio token. Corre-
spondingly, the pseudo binary labels of SATs/NATs can be derived for each audio token based on
whether it repeats the previous token or is a blank token, serving as the training signals for SALAD.

Enforce a high recall on SATs. One issue is that the consequence of classifying a SAT to a NAT
is severe, under which SATs are more likely to be mistakenly skipped in inference, harming the
monotonic input/output alignment. It is thus highly desired to maximize the coverage of SATs (i.e., a
high recall on SATs) during training SALAD. We exert a larger penalty when a SAT is misclassified
as a NAT to simply achieve this. The training process of SALAD can be formulated as:

argmax
θS

t∑
i=1

αiL(SALAD(xi; θS), Bin(MT (xi; θT ))) (1)

where L is a binary cross entropy loss, xi is the i-th audio token extracted by the convolutional feature
extractor, Bin denotes a transformation from pseudo character/phoneme labels to binary labels of
SATs/NATs, and αi is a penalty coefficient for enforcing high recalls on SATs.

Speech SSL model finetuning with SALAD. Since skipping audio tokens would change the speed
and rhythm of an input speech, a finetuning process is required to fill in the domain gap. Specifically,
we finetune the target speech SSL model integrated with SALAD, where a certain ratio of NATs
detected by SALAD is removed before being fed into the transformer. Intuitively, although NATs are
less likely to impact the monotonic input/output alignment as compared to SATs, removing NATs
still results in domain gaps in terms of speech speed and rhythm between pretraining and finetuning.

Implementation. To balance ASR accuracy and efficiency, we set a skip ratio sr for NATs in all
the input audio when finetuning with SALAD, i.e., for the NATs detected by SALAD in an input
audio clip, we remove the top sr sorted in terms of confidence score predicted by SALAD, and the
remaining NATs and all detected SATs are then fed into the transformer. Since different audio clips
contain different percentages of NATs, which can cause different audio token lengths for samples in a
batch, we pad each sample to the largest token length of each batch during finetuning.

3.3 S6-DAMON: CHASE STRUCTURED SPARSITY IN MODEL STRUCTURES

Rethink the SOTA ASR pruning method. The key spirit of PARP (Lai et al., 2021) is to adjust the
sparsity mask so that the pruned weights are learnable via gradients and thus the sparsity distributions
can be updated during finetuning, which is crucial for pruning speech SSL models as the weight
magnitudes inherited from SSL pretraining may not accurately indicate the importance of neurons for
downstream tasks. The importance of such learnable sparsity distributions is validated in PARP with
unstructured pruning against one-shot/iterative magnitude pruning (OMP/IMP) (Lai et al., 2021).

Identified issues of the SOTA ASR pruning method. Directly extending PARP to a structured
pruning setting will cause a failure. We extend PARP’s setting to structured sparsity, i.e., remove all
connections from the pruned input neurons, for pruning wav2vec2-base on LibriSpeech-1h under a
20% sparsity ratio and vary the pruning intervals in terms of iterations between prune/re-prune. From
Tab. 1, we can see that (1) the original pruning interval adopted by PARP (i.e., 50 iterations) leads to

5



Under review as a conference paper at ICLR 2023

an absolute 23.93% WER increase over standard wav2vec2-base (18.96% WER); (2) setting a small
pruning interval could lead to reduced WER over OMP; and (3) larger pruning intervals consistently
cause more notable performance degradation, where the softly pruned weights diverge more from
zero as they can be updated in PARP’s adjustment step.

Table 1: Apply OMP and PARP with different
pruning intervals for compressing wav2vec2-base
on LibriSpeech-1h under 20% sparsity.

Method Pruning Interval Learn
-ability

No Dis
-crepancy1 2 5 10 50

PARP 26.90 27.30 31.18 32.77 42.89 ✔ ✘

OMP 29.01 ✘ ✔

Analysis. This set of experiments indicates that
although enhancing the sparsity masks’ learn-
ability in PARP is beneficial, the resulting spar-
sity discrepancy between finetuning (i.e., not
exactly zero) and final deployment (i.e., hard
pruning) can demolish the delicated speech rep-
resentation inherited from SSL pretraining, es-
pecially under structured sparsity. Additionally, the flexibility of adjusting the sparsity masks in PARP
is still limited, e.g., only <3% elements in the sparsity masks is updated throughout the finetuning
process, which aligns with PARP’s observed >99% IOU between the initial/final subnetworks. This is
caused by the intrinsically low learning rates during finetuning, thus updating the sparsity distributions
via gradients in PARP leaves the potential of sparsity distributions largely under-explored.

The SAFARI pipeline. The above analysis indicates that the key to pursue structured sparsity in
speech SSL models is to ensure the learnability of sparsity distributions while minimizing the sparsity
discrepancy between finetuning and deployment. Thus, we propose a new pruning pipeline SAFARI:
❶ sparsify: sparsifies a given speech SSL model to the target sparsity ratio sp based on the weight
magnitudes; ❷ finetune: finetune the model weights with the sparsity mask applied, i.e., the pruned
weights are zero-outed without receiving gradients to avoid the sparsity discrepancy; and ❸ adjust
sparsity: the sparsity mask is adaptively adjusted for boosting the learnability of sparsity distributions.
Steps ❷ and ❸ are iterated towards convergence. SAFARI can be viewed as an intermediate choice
between OMP and PARP, marrying the former’s stability and the latter’s learnability.

Implementation of SAFARI. There can be different ways to implement the above spirit, i.e., SAFARI.
Inspired by (Evci et al., 2020), we adopt gradient magnitudes as a criterion to adjust the sparsity
masks in a prune-and-grow manner (see Fig. 2 (c)). Specifically, in each sparsity adjustment step,
for a set of neurons |N l| and a set of pruned neurons P l (|P l|/|N l| = sp) in the l-th layer, SAFARI
① selects ar neurons from N l \ P l as the pruning candidate set Cl (|Cl|/|N l| = ar) based on a
pruning criterion, where ar is a predefined adjustment ratio, and ② chooses ar neurons from the joint
set of pruning candidates and pruned neurons P l ∪ Cl (= P l + Cl) to form a grow set Gl based
on a grow criterion, which are allowed to be updated by the gradients of the next finetuning step.
Therefore, the new sparsity mask applied in the next finetuning step is built by P l + Cl −Gl, which
has a constant sparsity ratio sp. More specifically, we adopt the ℓ1-norm of the weight vectors from a
neuron, i.e., ||W l

i,·||ℓ1 for the i-th neuron, as the pruning criterion (i.e., prune the smallest ones), and
the corresponding gradients || ∂L

W l
i,·
||ℓ1 as the grow criterion (i.e., grow the largest ones).

3.4 S6-DAMON: JOINT DATA-MODEL CO-COMPRESSION

To perform joint optimization of input data sparsity and model sparsity, we integrate the target speech
SSL model with SALAD and finetune it via the SAFARI pipeline with a portion of detected NATs
removed. To push forward the achievable accuracy-efficiency trade-off, S6-DAMON can optionally
enable a semi-supervised distillation mechanism to boost the ASR accuracy, especially under a large
compression ratio. Specifically, we distill the knowledge of the teacher model mentioned in Sec. 3.2 to
the compressed model in a layer-wise manner during finetuning on top of a mixed dataset composed
of both transcribed speech and untranscribed speech, where the pseudo labels on untranscribed speech
are annotated by the teacher model. Note that the teacher model is only finetuned on the limited
transcribed speech. The semi-supervised distillation process can be formulated as:

argmax
θ

∑
x∈DT∪DU

L∑
l=1

MSE(hl
θ(x), h

l
θT (x)) +

∑
x∈DT

CTC(hL
θ (x), y) (2)

where DT and DU are the transcribed/untranscribed speech, respectively, MSE and CTC are the
loss functions, hl

θ(x) = M l(SALAD(x; θS); θ) is the hidden representation for the remained tokens
in the l-th layer of the compressed model M , hl

θT
(x) = S ◦M l

T (x; θT ) is the corresponding hidden
representation of the teacher model and S is a selection operator for only calculating the MSE loss on
the remained tokens determined by SALAD.
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(a) (b) (c)
Figure 3: Benchmark our S6-DAMON and SAFARI with SOTA ASR pruning methods PARP and
OMP on wav2vec2-base with transcribed LibriSpeech-1h and different untranscribed resources. “w/
sd" denotes applying the semi-supervised distillation for finetuning the original model, which could
notably reduce the WER when the untranscribed LibriSpeech-100h is available.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENT SETUP

Models and datasets. We evaluate our S6-DAMON on four SOTA speech SSL models, including
wav2vec2-base/large (Baevski et al., 2020), data2vec (Baevski et al., 2022), and hubert (Hsu et al.,
2021) pretrained on LibriSpeech-960h (Panayotov et al., 2015). We evaluate the compression
effectiveness under different resource settings, including ASR on LibriSpeech-1h/10h/100h following
the split in (Baevski et al., 2020), and phoneme recognition (PR) on different spoken languages from
CommonVoice (Ardila et al., 2019) with 1h transcribed speech per language, following the split
in (Conneau et al., 2020). In addition to ASR, we also consider six speech processing tasks from
SUPERB (Yang et al., 2021). For results on LibriSpeech, we report the WER on test-clean by default.

Finetuning settings: We implement S6-DAMON on top of fairseq (Ott et al., 2019) and we follow
the default finetuning settings for each task as elaborated in Appendix. B.

S6-DAMON settings: For SALAD training, we adopt the same training schedule as finetuning the
speech SSL model weights and the αi in Eq. 1 is 10 for penalizing mistakes on SATs otherwise 1.
For SAFARI, we adjust the sparsity every 50 iterations and fix the sparsity mask after 10k iterations
for all experiments. By default, the adjustment ratio ar is set the same as the target sparsity sp if not
specifically stated, which is justified by the ablation study in Appendix. A.2. We adopt a NAT skip
ratio sr of 0.4/0.6/0.8 (i.e., sr of NATs are removed) and note that the final ratio of skipped tokens to
the total tokens would depend on the amount of NATs detected in the given speech.

4.2 BENCHMARK WITH SOTA ASR PRUNING METHODS

Considering feed forward networks (FFNs) are more sensitive to structured pruning than self-attention
(SA) as observed in Appendix. A.1 thus for both our method and baselines, given a target sparsity
sp, we by default set their sparsity to satisfy (spSA + spFFN )/2 = sp and spSA − spFFN = 0.2,
which achieves better ASR accurary with a comparable FLOPs as compared to uniformly setting a
sparsity of sp. For PARP, we adopt its best-performed setting for structured pruning, i.e., update the
sparsity every one iteration for maximally avoiding the sparsity discrepancy issue.

Benchmark on English ASR under different low-resource settings. We benchmark our S6-
DAMON with OMP and PARP under different combinations of transcribed data DT and untranscribed
data DU for finetuning with semi-supervised distillation as described in Eq. 2. We fix the DT as
LibriSpeech-1h and vary the resources in DU . We adopt a NAT skip ratio of 0.4∼0.8 and a sparsity
ratio of 0.2∼0.4 for our S6-DAMON and a sparsity ratio of 0.1∼0.5 for other ASR pruning baselines.

Observation and analysis. As shown in Fig. 3, we can observe that (1) our S6-DAMON consistently
outperforms PARP and OMP by a notable margin, e.g., an absolute >7% WER reduction as compared
to PARP for achieving >64% FLOPs savings on wav2vec2-base with LibriSpeech-1h/100h as DT /DU ;
(2) our S6-DAMON shows decent scalability under more stringent low-resource settings where
PARP/OMP fail to achieve acceptable recognition effectiveness, e.g., an absolute up-to-34% lower
WER over PARP when only LibriSpeech-1h is available; (3) our method can achieve a comparable
WER (+0.5%) with a 40.8% reduction in FLOPs as compared to the original wav2vec2-base with
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only 1h transcribed speech plus 100h untranscribed speech available; (4) enabling both SALAD
and SAFARI can consistently win a better WER-FLOPs trade-off over SAFARI, especially under
more stringent low-resource settings, e.g., S6-DAMON achieves an absolute 4.51% lower WER over
SAFARI for reducing >64% FLOPs on LibriSpeech-1h. This indicates that input data sparsity is a
critical dimension for structurally trimming down the complexity of speech SSL models.

Benchmark under more resources. As shown in Fig. 1 (b), given more downstream resources, e.g.,
the transcribed LibriSpeech-100h, our S6-DAMON (1) still outperforms PARP and OMP, e.g., an
absolute 10.96% lower WER for reducing >64% FLOPs on wav2vec2-base as compared to PARP,
and (2) reduces 46% FLOPs of the original wav2vec2-base with a comparable WER (+0.57%).
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Figure 4: Benchmark our SAFARI with
PARP, OMP, IMP, and MPI for unstructured
pruning on wav2vec2-base/LibriSpeech-1h.

Benchmark under unstructured sparsity. We fur-
ther validate the scalability of our SAFARI to unstruc-
tured sparsity via benchmarking with the reported
results of PARP, OMP, IMP, and MPI (i.e., magnitude
pruning at pretrained initializations) in (Lai et al.,
2021) on LibriSpeech-1h without any distillation. As
shown in Fig. 4, we can observe that our SAFARI
can still outperform all baseline methods, especially
under large sparsity ratios, e.g., an absolute 8.61%
lower WER under 80% sparsity over PARP. This indi-
cates that (1) the sparsity discrepancy issue still exists
in unstructured pruning under a larger sparsity ratio,
and (2) our SAFARI pipeline consistently shows its
superiority as an ASR pruning paradigm over PARP
under both structured/unstructured sparsity patterns.

Table 2: Benchmark our S6-DAMON with
two distillation-based efficient ASR models.

Method Model Params (M) WER (%)
DistilHuBERT hubert 23.49 13.37

FitHuBERT wav2vec2 22.49 14.77
hubert 22.49 12.66

S6-DAMON
(Ours)

wav2vec2 20.53 7.73
hubert 20.53 7.94

Benchmark with distillation-based models. We
benchmark with the reported ASR results in Distil-
HuBERT (Chang et al., 2022) and FitHuBERT (Lee
et al., 2022) for compressing hubert and wav2vec2-
base on LibriSpeech-100h. As shown in Tab. 2, S6-
DAMON achieves an absolute 7.04% lower WER
with 8.7% fewer parameters as compared to the
strongest baseline FitHuBERT, indicating that given
a speech SSL model, trimming down its complexity
in a top-down manner may achieve better compression effectiveness than manually designing an
efficient model from scratch without exploiting the intrinsic properties of human speech.
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Figure 5: Apply S6-DAMON on
wav2vec2-base/large and data2vec.

Benchmark on more speech SSL models. We further extend
our S6-DAMON to more models, i.e., data2vec (Baevski et al.,
2022) and wav2vec2-large on LibriSpeech-1h (i.e., no DU ). As
shown in Fig. 5, we can observe that (1) our method shows
consistent effectiveness across models and starting from better
speech SSL models like data2vec could lead to better WER-
FLOPs trade-offs, and (2) according to the comparison between
wav2vec2-base/large, structurally compressing a larger speech
SSL model may not result in better WER-FLOPs trade-offs
than compressing a smaller one as aggressively compressing
a pretrained model could demolish the speech representation
learned by the delicate SSL pretraining process. Therefore, a
smaller model plus mild structured sparsity is favored.

4.3 EXTENSION TO OTHER SPEECH PROCESSING TASKS

Benchmark on SUPERB. Although efficient ASR is our main focus, we also evaluate our method on
more speech processing tasks from SUPERB. In particular, we transfer the compressed models with
LibriSpeech-1h/100h as DT /DU of our S6-DAMON and PARP to perform six speech processing
tasks on SUPERB (Yang et al., 2021). As shown in Tab. 3, we observe that (1) our method wins
four out of six tasks over the original wav2vec2-base with >=55.07%/44.39% FLOPs/parameter
reductions, and (2) our method consistently outperforms PARP across all the tasks. This indicates
that our S6-DAMON can potentially serve as a general compression technique for speech processing.
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Table 3: Benchmark our S6-DAMON with PARP on six speech processing tasks from SUPERB.

Method FLOPs
Saving (%)

Params
Saving (%)

ER
(Acc ↑)

KS
(Acc ↑)

QbE
(MaxTWV ↑)

IC
(Acc ↑)

SF
(F1 ↑)

ASV
(EER ↓)

Original 0.00 0.00 0.626 0.962 0.053 0.966 0.874 0.061
PARP 53.52 57.14 0.622 0.957 0.075 0.967 0.851 0.065

S6-DAMON
(Ours)

57.07 44.39 0.654 0.964 0.118 0.982 0.867 0.063
69.98 57.14 0.641 0.957 0.122 0.983 0.855 0.063

Table 4: Measure the latency of delivered models by our method and PARP on a Google Pixel 3 mobile
phone. “FE" denotes the feature extractor and “Trans." denotes the transformer backbone. All models
are finetuned on transcribed LibriSpeech-100h and “sr"/“sp" are the adopted skip ratio/sparsity.

Method sr / sp Params
(M)

WER
(%)

Lat. (ms)
Conv FE

Lat. (ms)
Trans.

Speed-up
on Trans.

Speed-up
Overall RTF ↓

Original - / - 94.74 5.50 2270.1 6678.5 1.00× 1.00× 0.895

PARP - / 0.3 56.77 7.82 2270.1 4809.4 1.39× 1.26× 0.708
- / 0.4 45.80 11.69 2270.1 3756.6 1.77× 1.48× 0.603

S6-DAMON
(Ours)

0.6/0.2 69.01 6.07 2270.1 3834.5 1.74× 1.47× 0.610
0.6/0.3 56.77 6.53 2270.1 3318.7 2.01× 1.60× 0.559
0.8/0.3 56.77 6.98 2270.1 3061.1 2.18× 1.68× 0.533
0.8/0.4 45.80 7.98 2270.1 2377.9 2.81× 1.93× 0.465
0.8/0.7 20.53 9.20 2270.1 819.1 8.15× 2.90× 0.309

4.4 REAL-DEVICE MEASUREMENT OF S6-DAMON

To validate the real-device efficiency of S6-DAMON’s delivered models, we measure their latency on
a Google Pixel3 mobile phone for processing a 10s audio segment with a 16k sampling rate. We also
report a real-time-factor (RTF) defined as the inference time divided by utterance duration (Gondi,
2022). As shown in Tab. 4, our S6-DAMON can achieve (1) a 1.96× speed-up over PARP with
an absolute 2.49% lower WER, and (2) a 1.60× speed-up over the original wav2vec2-base with a
comparable WER (+1.03%) or a 2.90× speed-up while maintaining the absolute WER within 10%.
This indicates that our method can outperform SOTA ASR pruning methods in real-device efficiency
and significantly bridge the gap between speech SSL models and real-time speech recognition.

4.5 ABLATION STUDIES

Table 5: Benchmark with differ-
ent token skipping strategies.

Method FLOPs
Saving (%)

WER
(%)

SALAD 24.3 19.17
32.0 20.21

Uniform
Skip

20.0 19.89
30.0 24.63

Random
Skip

20.0 43.98
30.0 79.87

Adaptive
Skip

15.0 25.658
22.5 36.193

Benchmark with random, uniform, and other adaptive token
skipping methods. To validate the skipping strategies made by
SALAD, we benchmark with three token skipping methods: (1)
random skip, (2) uniform skip with a similar effect as reducing
the sampling rate, and (3) layer-wise adaptive skip (Wang et al.,
2021) based on attention scores, which is originally designed
for NLP. We finetune wav2vec2-base with each of the skipping
methods on LibriSpeech-1h. We control their skip ratios to ensure
a comparable FLOPs saving. As shown in Tab. 5, our SALAD
consistently wins the lowest WER under comparable FLOPs and
the adaptive skip method can hardly surpass the simple uniform
skip strategy, indicating that without considering the intrinsic
properties of human speech, the monotonic alignment between
input speech and output transcriptions can be easily demolished.

5 CONCLUSION

Both the lack of large-scale transcribed speech data for low-resource spoken languages and the
prohibitive model complexity hinder ubiquitous DNN-powered ASR systems on mobile platforms.
This work proposes S6-DAMON to tackle both challenges via effectively pruning speech SSL models
to enable real-time on-device ASR. Specifically, S6-DAMON integrates SALAD and SAFARI to
pursue structured sparsity in both input data and model structures, respectively, where the former
exploits and intrinsic properties of human speech and the latter reduces the sparsity discrepancy
between finetuning/deployment and enhances the learnability of sparsity distributions. S6-DAMON
has enabled the deployment of speech SSL models on mobile devices based on our extensive
experiments and can shed light on future innovations on efficiency-oriented speech SSL paradigms.
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A MORE ABLATION STUDIES OF S6-DAMON

A.1 MODULE-WISE SENSITIVITY TO STRUCTURED PRUNING

We apply SAFARI on wav2vec2-base on top of LibriSpeech-1h and vary the sparsity in FFN and SA
under a comparable FLOPs . As shown in Tab. 6, we consistently find that FFNs are more sensitive
to structured pruning especially under large sparsity, which may be because task-specific information
is mostly learned by FFNs during finetuning thus their sufficient complexity is crucial. Therefore,
we by default set their sparsity to satisfy (spSA + spFFN )/2 = sp and spSA − spFFN = 0.2 for a
given sparsity sp in Sec. 4.

Table 6: Benchmark the WERs with varied FFN/SA sparsity on wav2vec2-base/LibriSpeech-1h.
FFN/SA
sparsity GFLOPs WER

(%)
FFN/SA
sparsity GFLOPs WER

(%)
FFN/SA
sparsity GFLOPs WER

(%)
0.2/0.2 33.024 23.19 0.3/0.3 26.96 23.19 0.4/0.4 21.52 31.97
0.1/0.3 33.96 22.13 0.2/0.4 27.61 24.52 0.3/0.5 21.89 29.72
0.3/0.1 32.016 25.19 0.4/0.2 26.23 31.05 0.5/0.3 21.08 47.77

A.2 THE CHOICE OF ADJUSTMENT RATIOS Table 7: Benchmark the WERs with varied ad-
justment ratios ar under different sparsity sp.

ar / sp 0.2 0.3 0.4

0.1 23.75 26.53 33.14
0.2 22.86 28.65 31.97
0.3 22.96 23.19 30.76
0.4 23.18 26.79 30.74

We vary the adjustment ratio ar under differ-
ent sparsity sp on top of wav2vec2-base and
LibriSpeech-1h. As shown in Tab. 7, we observe
that the optimal ar varies for different sp and in
general larger sparsity calls for higher learnabil-
ity of sparsity distributions. Therefore, we set
ar = sp by default in Sec. 4.

A.3 THE NECESSITY OF ENFORCING HIGH RECALL ON SATS

Table 8: Validate the necessity of RAT.
Setting w/o RAT w/ RAT
Acc (%) 79.38 75.69

Recall (%) 64.38 89.08
NAT sr=0.4 19.56 18.42
NAT sr=0.6 21.63 19.17
NAT sr=0.8 23.89 20.21

To validate this, we train two SALADs w/ and
w/o recall-aware training (RAT), which are next ap-
plied on wav2vec2-base with different NAT sr on
LibriSpeech-1h. As shown in Tab. 8, explicitly en-
forcing a high recall on SATs results in consistent
lower WER especially under larger sr, validating the
necessity of maximally covering all SATs.

A.4 CROSS-LINGUAL TRANSFER OF SALAD

Table 9: Evaluate the phoneme recognition rate
(PER) when applying SALAD trained on English
to other languages under different sr.

sr Dutch Spanish Mandarin

- 19.82 13.86 26.67

0.2 18.89 13.76 26.61
0.4 19.16 13.85 26.89
0.6 19.55 13.99 26.84
0.8 20.09 14.32 28.46

Considering the semi-supervised training scheme
of SALAD requires a large set of untranscribed
speech, which may not be available for some spo-
ken languages, we evaluate whether the SALAD
trained on English can be directly transferred to
detect SATs/NATs for other languages. In par-
ticular, we transfer SALAD trained on untran-
scribed LibriSpeech-100h to pursue the input spar-
sity for finetuning wav2vec2-base on Dutch, Span-
ish, and Mandarin from CommonVoice (Ardila
et al., 2019). As shown in Tab. 9, we can see
that SALAD trained on English can transfer well
to other languages, e.g., achieve a comparable or
lower PER under 0.6 sr, indicating that SALAD can extract general phonetic features that can be
shared across spoken languages.
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B MORE DETAILS ABOUT EXPERIMENT SETUP

Finetuning settings. We implement S6-DAMON on top of fairseq (Ott et al., 2019) and we follow
the default finetuning settings for each task, i.e., the default configurations in fairseq for ASR/PR and
those in SUPERB (Yang et al., 2021) for other speech processing tasks. In particular, all experiments
on ASR/PR are trained for 12k/15k/20k/80k steps on the 10m/1h/10h/100h splits using an Adam
optimizer with an initial learning rate of 5e-5 plus a tri-stage schedule (Baevski et al., 2020). We
do not freeze all the transformer layers for the first 10k steps (Baevski et al., 2020), following (Lai
et al., 2021). In addition, considering the transformer backbone accounts for >90% parameters in
the speech SSL models, all the reported FLOPs/Params savings and sparsity ratios are relative to the
transformer, following PARP (Lai et al., 2021).

Measurement settings. For the measurement on the Google Pixel 3 mobile phone, all Pytorch
models are converted to ONNX and then compiled to the TFLite format, following (Li et al., 2021a).
We separately compile (a) the convolutional feature extractor + SALAD, and (b) the transformer
backbone, where the output of (a) is fed into (b) as its input. The latency on both (a) and (b) as well
as the overall speed-up are reported in Sec. 4.4.
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