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Abstract

We demonstrate that neural networks can be FLOP-efficient integrators of one-dimensional
oscillatory integrals. We train a feed-forward neural network to compute integrals of highly
oscillatory 1D functions. The training set is a parametric combination of functions with
varying characters and oscillatory behavior degrees. Numerical examples show that these
networks are FLOP-efficient for oscillatory with an average gain of 103 FLOPs. The network
calculates oscillatory integrals better than traditional quadrature methods under the same
computational budget or number of floating point operations. We find that feed-forward
networks of 5 hidden layers are satisfactory for an accuracy level of 10−3 in terms of normalized
mean squared error loss. The computational burden of inference of the neural network is
relatively small, even compared to inner-product pattern quadrature rules. We postulate
that this seemingly surprising result follows from learning latent patterns in the oscillatory
integrands otherwise opaque to traditional numerical integrators.

1 Introduction

Numerical integration of highly-oscillatory functions is required for problems in fluid dynamics, nonlinear optics,
Bose–Einstein condensates, celestial mechanics, computer tomography, plasma transport, and more (Connor
& Curtis, 1982; Iserles, 2005). Classical numerical integration schemes are based on quadrature rules,
like those of Newton–Cotes type: the trapezoidal and Simpson’s rules, Romberg integration, and Gauss
quadrature (Davis & Rabinowitz, 2007; Milne, 2015; Hildebrand, 1987). These are unsuited for highly
oscillatory integrands, requiring many quadrature points before reaching their asymptotic convergence rates.
This work uses feed-forward, fully connected neural networks as approximate integrators for highly oscillatory
integrands. Particular focus is paid to the floating point operation (FLOP)-efficiency of different integrators:
Can a feed-forward neural network outperform classical integration schemes for a given FLOP budget?

2 Background

Numerical integral methods crafted for highly oscillatory integrands have been developed. These are, for
example, based on the stationary phase approximations (Filon, 1930; Levin & Sidi, 1981; Levin, 1996; Iserles
& Nørsett, 2005; Evans & Chung, 2007; Hascelik, 2009). Each method is powerful when used appropriately
but operates under relatively strict conditions, including the type of oscillatory features (e.g., sine and
cosine). As a result, more general techniques for dealing with highly-oscillatory integrands is desirable. Neural
networks are a possible suitable technique. Indeed, Neural networks have been used to approximate integrals
before. Previous works used single hidden layer neural networks for PID controller applications (Zhe-Zhao
et al., 2006), and dual neural networks with application to material modeling (Li et al., 2019). These neural
networks were particularly useful in many-query settings but do not appear to generalize beyond their specific
applications.

Some works have taken a tailored approach to neural network design for integration. Ying Xu & Jun Li (2007)
used oscillatory basis functions for interpolation and integration, though the cosine activation function prevents
approximation to broader function classes (Wu, 2009). Lloyd et al. (2020) trained single-layer networks for
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Î

(a) (b)

Figure 1: (a) Newton–Cotes-like method of approximating an integral with a (b) feed-forward multi-layer perceptron
neural network (NN). The model uses inputs f(xi), where the pseudo-quadrature points xi are fixed in the spatial
domain, to compute the weights and biases of the neural networks, thus approximating Î.

multidimensional integrals, focusing on parameterized, many-query problems, and showed promising results.
The main limitation of Lloyd et al. (2020) is the restriction to high-dimensional many-query problems for
FLOP-efficiency. This work investigates the FLOP-efficiency, or integration accuracy per required floating
point operation, for integrating 1D functions via a feed-forward fully connected neural network. The aim is to
provide a computationally efficient solution for problems that require the repeated calculation of a function’s
integral.

2.1 Problem definition

The formulation is to compute the integral I of any function f(x) in a bounded domain [s1, s2] which is
expressed as follows,

I =
∫ s2

s1

f(x)dx. (1)

The method of fig. 1, where the inputs of the network are shown as f(xi) for a fixed set of xi ∈ [s1, s2], and
the outputs of the network are the integral values I of the input function.

We train the neural network model with parametrically varying samples. These neural network integrators
are compared with the classical numerical integration methods like Newton–Cotes quadrature rule, as shown
in eq. (2). We do not consider more complex integration schemes like those of Gauss quadrature nature as
they do not reach asymptotic convergence behaviors for realistic numbers of quadrature points and typically
become unstable before this.

The input domain [s1, s2] is divided into nq quadrature points. The integral is approximated as a weighted
sum of function values at those quadrature points (xi).∫ s2

s1

f(x)dx ≈
nq∑

i=1
wif(xi) (2)

Common Newton–Cotes formulations include the second-order accurate trapezoidal method

∫ s2

s1

f(x)dx ≈
nq∑

k=1

f(xk) + f(xk+1)
2 ∆x, (3)
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where xk are uniformly spaced points in the domain x ∈ [s1, s2] and ∆x = (s2 − s1)/nq, the first-order
accurate is the mid-point method∫ s2

s1

f(x)dx ≈
nq∑

k=1
f

(
s1 +

(
k − 1

2

)
∆x

)
∆x. (4)

and the third-order accurate Simpson’s method∫ s2

s1

f(x)dx ≈
nq/2∑
k=1

(f(x2k−2) + 4f(x2k−1) + f(x2k))
3 ∆x. (5)

2.2 Neural network method

The network’s learned weights reduce computational costs. With an optimized architecture, we can achieve
precise integral values using fewer input (quadrature) points. This is because a neural network model is an
approximation that relies on trainable weights. In contrast, classical numerical integration methods rely
on interpolating functions for approximation. For such methods, the more oscillatory a function, the more
quadrature points are required for integration of the same accuracy.

The network’s layers attempt to approximate an intrinsic structure in the highly oscillatory integrands. The
values yi of a function f(x) at points xi , (yi = f(xi) i ∈ 1, . . . , n) as shown in fig. 1, are fed as input to the
neural network.

aij = σ

(
n∑

i=1
wijxij + bi

)
(6)

Equation (6) expresses aij from each layer of fig. 1, xij represent the information from previous layers (i.e,
a(i−1)j) and bi is the bias term in each layer. In the final layer of fig. 1, we use the summation of each input to
a final node (Σ) and the output Î to train the network via back-propagation. ReLU is used as the activation
function. The number of hidden layers and the number of neurons are optimized during hyperparameter
optimization. Section 3.4 shows the results for the hyperparameter optimization for the model.

3 Experiments

We evaluate the proposed neural network method with several example cases. We present the employed
dataset, metric of evaluation, and other details on the hyperparameter study. Then, we discuss the experiment
results.

3.1 Experimental dataset

3.1.1 Training data

The model inputs the function values and the baseline integral value as output in the current work. The
training is done by varying the parameters of the function while keeping the nature of the function the same.
While training for one network configuration of the model, we keep the number of quadrature points fixed.
We trained separate models for numbers of inputs ranging from 20 to 213 and evaluated their performance
on separate test data. These inputs (with varying quadrature points) were tested on the specific network
configuration, yielding results with varying validation accuracy. For a fixed number of quadrature points, the
input values of the model are the function’s values f(xi) at those quadrature points xi.

3.1.2 Testing data

The testing of the model is performed by calculating the integral of a function that is of the same kind as the
training functions but parametrically different and unseen. The integral is calculated within the same input
space, i.e., within the same limits of the input domain [s1, s2]. The training data are divided into disjoint
subsets with an 80–10–10 train, test, and validation split.
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Figure 2: Neural network (NN) model’s performance on test and training dataset.

3.2 Evaluation

We evaluate the performance of the neural network model using the normalized mean squared error (Normalized
MSE) metrics on the test set. The error in the model’s result (Îk) is computed against a representative exact
solution to the integral (Ik), which is evaluated using the trapezoidal method with 213 quadrature points.
This strategy is sufficiently accurate for our purposes, which is checked against more and fewer such baseline
quadrature points. We use the surrogate truth integrand Ik for the k’th sample in the test set as

Ik =
nq=213∑

j=1

(
f(xj) + f(xj+1)

2

)
∆x, (7)

where nq = 213 for ∆x = (s2 − s1)/213 while calculating the integral of f(x) between [s1, s2] using the
trapezoidal rule in eq. (3).

The normalized mean–square error (MSE) for the test set is calculated using the m samples of functions is

Normalized MSE = 1
m

m∑
k=1

(Ik − Îk)2

I2
k

. (8)

These m samples are generated by parametric variations of the same function, as described in table 1. We
evaluate the performance of the neural network model by comparing it to standard numerical integration
methods, such as the trapezoidal and midpoint methods.

3.3 Hyperparameter optimization

The neural network’s architecture was optimized for the best possible configuration. This optimal configuration
was determined based on achieving a test-set error value below 10−3 while minimizing the number of FLOPs.
This configuration provided accurate predictions of the integral within the desired normalized MSE limits
while minimizing the number of FLOPs. The validation data are used for hyperparameter optimization.
table 1 shows the optimization results.

The architecture was optimized heuristically with an iterative increment of network hidden layers and neurons
in each layer. Each configuration was run on the model till we got convergence in the train Normalized MSE,
an example of which is shown in fig. 2 where we show the Normalized error plots for testing and training
performance on two separate configurations of the network. The performance of each network configuration
was evaluated on a validation dataset, which was separate from the training data. The iterative tests were
done with increasing samples as the parameters of the network increased (Bishop, 1995). The upper limit
complexity of the network is obtained via the performance of the classical integrators. With the increasing
complexity of the network, we observe diminishing returns against the FLOP burden. A deeper neural
network can still achieve smaller integration errors. We aim to achieve the highest accuracy for a given
computational expense while avoiding overfitting.
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Table 1: Result of the neural network model on various oscillatory functions. The normalized FLOP gain for
a given accuracy, which serves as measure of performance (higher is better for the neural network model) is
represented by α and calculated with respect to the classical quadrature-based model as shown in eq. (9). All
functions are in a single (1D) independent variable x.

Function Type Equation Parameter space α Result

Bessel(k, ν) f(cos(kx))Jv(ν, x) ν ∈ [125, 175], k ∈ [75, 125] 6.01 Figure 4 (a)

Evan–Webster-1(k1, k2) cos(k1x2) sin(k2x) k1 ∈ [5, 15], k2 ∈ [25, 75] 17.72 Figure 4 (b)

Rayleigh–Plesset(ρ) See appendix A.3 ρ ∈ [500, 1000) 23.46 Figure 4 (c)

Evan–Webster-2(k) exp(x) sin(k cosh(x)) k ∈ [25, 75] 19.60 Figure 4 (d)

Sine(k) sin(kx) k ∈ [5, 15] 0.91 Figure 6 (a)

Exponential(k) exp(kx) k ∈ [1, 5] 0.60 Figure 6 (b)
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Figure 3: Example canonical oscillatory test functions as labeled.

3.4 Results

The results of this study present the current model’s applicability for efficiently computing and predicting
the integrals of oscillating functions. The model is tested on oscillatory and non-oscillatory functions.

Table 1 compares results for various functions with different oscillatory features. The degree of oscillatoriness
is defined by the function’s parameters, which are denoted in parentheses in the “Function Type” column of
table 1. A larger coefficient corresponds to a more oscillatory function. The parameter space column is the
range in which the function’s parameters vary to generate the training data. The gain in the number of FLOPs,
shown in eq. (9), defines the computational advantage obtained for the number of required floating point
operations while implementing the current method over the other numerical-based methods of computing the
integral. The term FLOPsNN represents the number of FLOPs required by the neural network model, and
FLOPsQM represents the number of FLOPs required by a classical integration quadrature based model.

The number of FLOPs for the neural network method is calculated by enumerating the floating-point
operations involved in computing the output of each neuron in every layer. This computation follows the
formula given in eq. (6). For an H layer fully-connected feed-forward neural network with each layer having
N neurons, each activation aij comprises N multiplications and addition operations. Given that there are N
operations to be computed in each layer, and in total H layers, the total FLOP count is (4N +2)N2H(1+nq).
The number of FLOPs associated with the Trapezoidal, Mid-point and Simpson’s methods are 2nq +1, 3nq +1
and 4.5nq + 2, respectively, following eqs. (2), (4) and (5).

To study the influence of the oscillatory nature of the input function on the results, we performed integral
calculations for the function while gradually increasing its oscillatory behavior. We tested the model on
sinusoids with varying frequencies (increasingly oscillatory). The measure of neural network integration
efficiency is the normalized ratio of FLOP gain for a neural network model over traditional integration for
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Figure 4: Comparison of results of neural network (NN) model with Newton–Cotes methods for the oscillatory
functions of table 1. The integrands associated with panels (a) and (b) are as shown in fig. 3.

Table 2: Hyperparameter selection for the model used in this work. The optimum value for each hyperpa-
rameter is evaluated based on the normalized MSE values for these configurations. The number of samples,
learning rate, and test-train split were selected for one model and remained the same for all later runs.

Hyperparameter Search space Optimum value

Number of hidden layer {1, 2, 3, 4, 5} 3 Hidden layers

Neurons in each hidden layer {1, 2, 3, 4, 5, 6, 7} 5 Neurons

Number of samples {102, 103, 104} 104 Samples

Learning rate {10−5, 10−4, 10−3} 10−4

Test-train split {0.1, 0.15, 0.2} 0.15
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Figure 5: Example parameterized basis functions tested as labeled.
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Figure 6: Results of the NN model with traditional numerical integration methods for non-oscillatory (a) sine and (b)
exponential functions shown in fig. 5.
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Figure 7: Performance gain via the neural integrator for increasingly oscillatory integrands as labeled which is
parametrically increased according to their parameters shown in table 1.

the same MSE error, α:

α = |FLOPsNN − FLOPsQM|
FLOPsNN

. (9)

A larger α corresponds to a higher normalized gain by the neural network model.

fig. 3 shows the results of the model’s performance by providing examples of individual functions. fig. 4 shows
the test set’s normalized mean square error (NMSE) in integral computation from the model as a function of
the number of FLOPs required to compute the individual integral. Figure 4 shows the results of normalized
MSE loss values for different numbers of quadrature points as input training data points for the model.

Table 2 shows the results for the two best-performing network configurations (neurons × hidden layers)
achieved through parametric optimization. The number of FLOPs required for computing the integral
increases as the number of quadrature points increases. So, increasing quadrature points also increases
the accuracy of the integral computation for both methods. For a normalized MSE of 10−3, the neural
network strategy computes the integral using fewer FLOPs than traditional quadrature methods, making it
FLOP-efficient.

We observe the opposite result for integral computation of less oscillatory functions. For this, we consider the
functions of fig. 5. fig. 6 shows that the neural network model requires more FLOPs to compute the same
integral for a given normalized MSE. This result is expected, as these integrands can be computed accurately
with only few quadrature points using low-cost Newton–Cotes methods.
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Figure 7 shows that the performance gain increases rapidly with the increasing oscillation of the integrand
f(x). This indicates that the numerical integral methods require more quadrature points to evaluate the
same integral. After some level of oscillation has been reached, the performance gain curve starts to plateau.
Even if one adds more oscillations to the domain (by increasing the oscillatory parameters), the integral value
within the sub-domain is the same. Thus, no further gain in performance is expected. For less oscillatory
integrands, the values of α decay to unity. The neural network integral then requires more FLOPs than a
classical integrator.

The summary of the comparative study on various functions is presented in table 1. The number of FLOPs
for this comparison was calculated for a fixed Normalized MSE value of 10−3 for the loss function. This value
was chosen to remain within the application limits for downstream integration use. Overall, section 3.4 shows
a general trend of decreasing normalized MSE in the integral as the complexity of the network increases. The
neural network model predicts the integral result with the same accuracy but exhibits nearly two orders of
magnitude better efficiency.

4 Conclusion

An approach for computing the integrals of 1D functions of highly oscillatory and non-oscillatory behaviors.
We used a feed-forward neural network to estimate the integrals and evaluated their accuracy for a fixed
FLOP budget. In a comparative study, several cases of oscillatory functions were examined, where the
approach of calculating integrals with a neural network model was demonstrated to outperform existing
numerical methods in terms of the required number of FLOPs. The neural network model demonstrated
increasing efficiency in calculating the integrals for functions with a more oscillatory behavior compared to
less oscillatory functions.
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A Appendix

A.1 Neural network memory costs

For a fully connected neural network with L layers of N neurons, each with a 4-byte floats parameterization,
the memory footprint in bytes, ignoring input layer biases, is

4[N2(L − 1) + N(L − 2)], (10)

where there are N2(L − 1) weights, N(L − 2) biases (each neuron in the hidden and output layers, excluding
the input layer), and 4 bytes per float. For a 5-layer, 3-neuron network, the memory footprint is thus
180 bytes, which is negligible in almost any practical computing environment.

A.2 Training dataset generation

The general data generation process for training is

y(x) = f(k x), (11)

where y(x) is the function generated for a set of x values. The total number of x for a simulation defines the
total number of samples. Here, k is the randomly selected frequency for the oscillatory integrated for each x,
k ∈ [k1, k2).

Param. Value Description Units

∆p −7670 Ambient pressure difference Pa

p(t) 1.3 × 106 cos(53000πt) Driving pressure Pa

σ 0.0725 Surface tension coefficient N/m

µ 8.9 × 10−4 Dynamic viscosity coefficient Pa s

k 1.33 Polytropic exponent –

Table 3: Parameterization of the Rayleigh–Plesset equation.
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A.3 Rayleigh–Plesset equation

The Rayleigh–Plesset equation exhibits highly oscillatory and nonlinear behavior in many regimes. The
equation is a second-order ODE:

ρ

(
R

d2R

dt2 + 3
2

(
dR

dt

)2
)

= ∆p − p(t) − 2σ

R
− 4µ

R

dR

dt
+
(

2σ

R0
− ∆p

)(
R0

R

)3k

(12)

R(0) = R0,
dR

dt
(0) = 0,

The initial conditions follow from the initial bubble radius R0 = 2.6 × 10−6 m. We generate an arbitrarily
varying set of oscillatory data by varying the ambient density as ρ ∈ [500, 1000) kg/m3.
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