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Abstract

Biomedical image segmentation is crucial for accurately diagnosing and analyzing various
diseases. However, Convolutional Neural Networks (CNNs) and Transformers, the most
commonly used architectures for this task, struggle to effectively capture long-range de-
pendencies due to the inherent locality of CNNs and the computational complexity of
Transformers. To address this limitation, we introduce TTT-UNet, a novel framework that
integrates Test-Time Training (TTT) layers into the traditional U-Net architecture for
biomedical image segmentation. TTT-UNet dynamically adjusts model parameters during
the test time, enhancing the model’s ability to capture both local and long-range features.
We evaluate TTT-UNet on multiple medical imaging datasets, including 3D abdominal organ
segmentation in CT and MR images, instrument segmentation in endoscopy images, and cell
segmentation in microscopy images. The results demonstrate that TTT-UNet consistently
outperforms state-of-the-art CNN-based and Transformer-based segmentation models across
all tasks. The code is available at https://github.com/rongzhou7/TTT-UNet
Keywords: Biomedical Image Segmentation, U-Net, Test-Time Training

1. Introduction

Accurate and reliable biomedical image segmentation is crucial for disease diagnosis, treatment
planning, and clinical research, as it allows medical professionals to identify biological
structures and measure their morphology (Qureshi et al., 2023; Cao et al., 2023). In
recent years, convolutional neural networks (CNNs) (LeCun et al., 1995) have emerged
as a promising approach in the field of biomedical image segmentation. Among various
CNN-based techniques, U-Net (Ronneberger et al., 2015) stands out for its straightforward
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structure and significant adaptability. Many enhancements and iterations (Huang et al., 2020;
Cao et al., 2022; Zhou et al., 2018, 2019; Hatamizadeh et al., 2022, 2021) have been developed
based on this U-shaped architecture, typically featuring a symmetric encoder-decoder design
to capture multi-scale image features through convolutional operations. Leveraging this
foundation, significant advancements have been achieved across a wide range of medical
imaging applications (Yan et al., 2024; Zhang et al., 2024; Chen et al., 2024; Sun et al.,
2024a; Zhou et al., 2023). These include cardiac segmentation in magnetic resonance (MR)
imaging (Wang et al., 2021), multi-organ delineation in computed tomography (CT) scans (Li
et al., 2018), and others (Safarov and Whangbo, 2021; Su et al., 2023).

Despite the remarkable representational capabilities of CNN-based models, their archi-
tectural design exhibits an inherent limitation in modeling long-range dependencies within
images, because convolutional kernels are inherently local (Chen et al., 2023). While skip
connections in the U-Net architecture facilitate the merging of low-level details with high-level
features, they mainly serve to directly merge local features, which does not substantially
boost the network’s ability to model long-range dependencies. This limitation becomes
particularly evident in biomedical imaging, where large variations in organ shapes, sizes,
and textures are prevalent across different patients (Chen et al., 2023). Such variability
poses challenges to the ability of CNN framework to consistently and accurately capture
information across extended spatial contexts, highlighting the need for innovative approaches
to address this fundamental constraint.

Recognizing the limitations of CNNs in capturing long-range dependencies, the research
community has shifted interest towards Transformer models for their ability to naturally
understand global contexts (Ji et al., 2021). This transition is evidenced in biomedical image
segmentation, where approaches like TransUNet (Chen et al., 2021), UNETR (Hatamizadeh
et al., 2022), SwinUNETR (Hatamizadeh et al., 2021) demonstrate the potential of integrating
Transformers. These hybrid models that blend CNNs for high-resolution spatial detail and
Transformers for global context emerge as an effective strategy.

Nevertheless, despite their ability to capture global dependencies, Transformers are
computationally intensive (Vaswani et al., 2017), especially in dense biomedical image
segmentation tasks. Mamba (Gu and Dao, 2023), a state-space model designed for efficient
sequence modeling, offers a more computationally efficient approach to long-range dependency
modeling. Building on this, U-Mamba (Ma et al., 2024a) integrates Mamba within U-Net,
effectively combining high-resolution spatial detail with long-range dependency modeling to
enhance biomedical image segmentation. Despite these advancements, U-Mamba and similar
models, still face challenges in expressiveness, particularly over extended contexts, where their
fixed-size hidden states limit their ability to capture complex and nuanced dependencies.

Recently, TTT (Test-Time Training) (Sun et al., 2024b) has emerged as a new class of
sequence modeling layers with linear complexity and an expressive hidden state. TTT treats
the traditional fixed hidden state as a machine learning model itself, which can be dynamically
updated through self-supervised learning. This dynamic adjustment allows the model to
refine its parameters based on test data, providing greater flexibility and expressiveness in
capturing intricate long-range dependencies. Compared to Transformers and Mamba, TTT
layers maintain efficiency and offer superior performance in handling long-context sequences.

In this paper, we introduce TTT-UNet, a novel hybrid architecture that incorporates
TTT layers within the traditional U-Net framework to address the inherent limitations in
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modeling long-range dependencies in biomedical image segmentation tasks. The TTT layers
dynamically adapt its parameters during test time, allowing it to more effectively capture
both localized details and long-range dependencies. Our extensive experiments across various
medical imaging datasets demonstrate that TTT-UNet consistently outperforms existing
state-of-the-art models. The results highlight the model’s effectiveness in handling complex
anatomical structures and its robustness in diverse clinical scenarios. Particularly, TTT-UNet
has shown significant improvements in biomedical image segmentation tasks, making it a
versatile solution for medical image analysis. Our contributions are summarized as follows:

e We introduce TTT-UNet, the first exploration of integrating Test-Time Training layers
into U-Net architecture for medical image segmentation, which allows the model to
perform self-supervised adaptation during test time. This hybrid design effectively
explores the potential of TTT layers for modeling long-range dependencies and improves
the model’s generalization capability across diverse data distributions.

e We conduct comprehensive evaluations across diverse medical imaging datasets, includ-
ing 3D abdominal organ segmentation in CT and MRI, instrument segmentation in
endoscopy, and cell segmentation in microscopy images. TTT-UNet achieves consistent
improvements over state-of-the-art models in 3D and 2D segmentation, demonstrating
the feasibility of TTT mechanisms for biomedical image segmentation.

In summary, TTT-UNet represents a significant advancement in biomedical image seg-
mentation, offering a robust and adaptable approach that leverages the strengths of CNNs
and T'TT layers. This work lays the foundation for future developments in adaptive and
context-aware medical image analysis technologies.

2. Related work

2.1. U-Net and variants

CNN-based and Transformer-based models have significantly advanced the field of biomedical
image segmentation. U-Net (Ronneberger et al., 2015), a representative among CNN-
based approaches, features a symmetrical encoder-decoder architecture enhanced with skip
connections to better preserve details. Various enhancements (Myronenko, 2019), such as the
self-configuring nnU-Net (Isensee et al., 2021) framework, have been built on this U-shaped
design, demonstrating robust performance across a variety of biomedical image segmentation
challenges. For Transformer, TransUnet (Chen et al., 2021) stands out by integrating the
Vision Transformer (ViT) (Dosovitskiy et al., 2020) for feature extraction in the encoding
phase and coupling it with CNN for decoding, demonstrating its capability for processing
global information. Swin-UNETR (Hatamizadeh et al., 2021) and UNETR (Hatamizadeh
et al., 2022) blend Transformer architectures with traditional U-Net to enhance 3D imaging
analysis. Additionally, Swin-UNet (Cao et al., 2022) delves into the use of Swin Vision
Transformer blocks (Liu et al., 2021) within a U-Net framework, further expanding the
exploration of Transformer technology in medical imaging.
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2.2. Hybrid models

SSMs, such as Mamba, have recently gained prominence as a powerful component for
developing deep networks, achieving cutting-edge performance in analyzing long-sequence
data (Goel et al., 2022; Fu et al., 2022). In the realm of biomedical image segmentation,
U-Mamba (Ma et al., 2024a) presents a novel SSM-CNN hybrid approach, signifying the
first application of SSMs in the medical image domain. Further developments include
SegMamba (Xing et al., 2024) and nnMamba (Gong et al., 2024), which combine SSMs in
the encoder with CNNs in the decoder, illustrating the versatility and effectiveness of SSMs
in enhancing medical imaging analysis.

3. Method

TTT-UNet follows the conventional U-Net structure, designed to effectively capture both
local features and long-range dependencies. The network inherits the encoder-decoder design
commonly used for segmentation tasks, with each stage contributing to effective multi-scale
feature representation across layers. As shown in Figure 1, TTT-UNet integrates Test-Time
Training (TTT) layers into the TTT building blocks within the U-Net network.
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Figure 1: (a) Overview of TTT-UNet with test-time training layers integrated into the
encoder and decoder. (b) TTT building block incorporating hidden-state adap-
tation. (c) Internal structure of the TTT layer with projection modules and the
self-supervised update mechanism.

This integration enables the model to continuously update its parameters based on test
data, enhancing its feature extraction capabilities in the encoder and allowing it to adaptively
learn long-range dependencies. Subsequently, we introduce the TTT layer and then describe
how it is integrated into the T'T'T building blocks within the U-Net architecture.
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3.1. TTT layers

Traditional sequence modeling layers, such as RNNs, compress the context of a sequence
T1,...,2; into a fixed-size hidden state h;. For RNNs, the hidden state h; at time step ¢ is
updated based on the current input x; and the previous hidden state h;—; through linear
transformation matrices 6, and 6, and a non-linear activation function o:

hi = o(Ophi—1 + Op24),

where 60, and 60, are learned parameters. The output z; is then generated from the hidden
state: zy = ¢(hy), where ¢ represents a linear or non-linear transformation.

However, the fixed size of the hidden state limits performance when dealing with long
contexts due to its finite capacity to represent contextual information.

To address this limitation, a new class of sequence modeling layers, referred to as TTT
layers (Sun et al., 2024b) is introduced, where the hidden state is treated as a trainable
model and is updated through self-supervised learning.

Specifically, in a TTT layer (Figure 1c) , the hidden state h; at time step ¢ is treated as
a trainable model f with weights W}, which is updated based on the current input x;:

Wi = W1 — TZVK(Wt—l;ﬂUt)
The output token z; is then generated using trainable model f with weights W;:
ze = f(x; Wh)

In the basic naive version, the self-supervised loss £ aims to reconstruct the corrupted input
Z;. This approach is straightforward and focuses on learning to recover the original input
from its corrupted version:

(Wiae) = || f (@ W) — 24|
While this naive reconstruction method is effective in certain scenarios, it has inherent
limitations in capturing the complex dependencies within the input data, especially in tasks
requiring a more nuanced understanding of the input context.

To address these limitations, we follow a more sophisticated self-supervised task that
leverages multiple views of the input data. Instead of directly reconstructing the corrupted
input, we introduce learnable matrices 0 and 6y to project the input into different views.
The training view K = O x; captures the essential information needed for learning, while
the label view V = Oy x; provides a target for reconstruction:

UWizy) = ||[f(Oxze W) — Oya|?

This approach allows the model to selectively focus on the most relevant features of the input,
improving its ability to capture long-range dependencies and subtle relationships within the
data. The output token z; is then generated as follow:

2 = f(etha Wt)a

where f is a function parameterized by W;, which can be a linear model or a MLP. Here,
the projection ¢ is used to obtain the test view ) = 0gz;, which introduces additional
flexibility by allowing the model to emphasize different aspects of the input data during
inference. This approach enables the model to focus on the most informative features in the
context of the current test case, thereby enhancing its ability to adapt to new, unseen data.
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3.2. TTT-UNet architecture

As shown in Figure 1, the TTT-UNet architecture integrates the traditional U-Net structure
with TTT layers, allowing the network to adapt during testing through self-supervised
learning dynamically. The architecture is composed of an encoder-decoder structure, where
the encoder is enhanced with TTT building blocks to improve adaptability, while the decoder
follows the standard U-Net design focused on reconstructing the segmentation map.

Encoder. The encoder in TTT-UNet follows the traditional U-Net design, comprising
multiple convolutional layers. These layers are interspersed with TT'T building blocks,
which are critical components that enable the model to adjust its parameters dynamically
during test time. Each layer in the encoder progressively downscales the input image while
capturing both local and long-range features essential for segmentation tasks. Including TTT
building blocks within the encoder ensures the model can adapt to varying data distributions
encountered during testing.

TTT building blocks. As illustrated in Figure 1b, the TTT building blocks are the
core components that allow for the test-time adaptability of the model. Initially, the input
features pass through two successive Residual blocks (He et al., 2016), each comprising a
standard convolutional layer, followed by Instance Normalization (IN) (Ulyanov et al., 2016)
and Leaky ReLU activation (Maas et al., 2013). Subsequently, the features are normalized
using Layer Normalization (Ba et al., 2016), and flattened, making them suitable for linear
transformations. Then the flattened features undergo three separate linear transformation
branches, obtaining the different features denoted as V', K, and @) respectively. Additional
convolutional operations (Conv K and Conv Q) are applied to the K and @ vectors, allowing
the model to focus on specific aspects of the features during test-time training. Meanwhile,
the fourth branch performs a linear transformation followed by a SiLLU activation function
(Hendrycks and Gimpel, 2016), further enriching the feature representations. Then the
processed V', K, and @ are fed into the TTT Layer, where self-supervised learning occurs.
In this layer, the model dynamically updates its weights based on the self-supervised task
applied to the processed V', K, and @ vectors, as detailed in 3.1. The output from the TTT
Layer is further normalized using Layer Normalization (Ba et al., 2016) before being passed
on. Finally, this output and the fourth branch output mentioned before are combined via
the Hadamard product, followed by a linear transformation and reshaping to fit the required
dimensions for subsequent layers in Decoder.

Decoder The decoder in our model maintains the classic U-Net structure, integrating
Residual blocks and transposed convolutions to enhance the capture of detailed local features
and support resolution recovery. We also incorporate the skip connections in U-Net, ensuring
the effective transfer of hierarchical features from the encoder to the decoder. The final
output of the decoder is refined through a 1 x 1 x 1 convolutional layer and a Softmax
activation, which generates the final segmentation probability map.

We implement two TTT-UNet variants: TTT-UNet Bot, which applies TTT layers only
in the bottleneck while retaining standard Residual blocks elsewhere, and TTT-UNet Enc,
which integrates TTT layers throughout the encoder for broader self-supervised adaptation.
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4. Experiments

4.1. Datasets

To evaluate the performance and scalability of TTT-UNet, we utilize four biomedical image
datasets across a variety of segmentation tasks and imaging modalities, including Abdomen CT
dataset (Ma et al., 2024c), Abdomen MRI dataset (Ji et al., 2022), Endoscopy dataset (Allan
et al., 2019) and Microscopy dataset (Ma et al., 2024b).

Abdomen CT. The Abdomen CT (Ma et al., 2023b) dataset, from the MICCAI 2022
FLARE challenge, includes the segmentation of 13 abdominal organs from 50 CT scans in
both the training and testing sets. The organs segmented include the liver, spleen, pancreas,
kidneys, stomach, gallbladder, esophagus, aorta, inferior vena cava, adrenal glands, and
duodenum.

Abdomen MRI. The Abdomen MRI (Ji et al., 2022) dataset, from the MICCAI 2022
AMOS Challenge, focuses on the segmentation of the same 13 abdominal organs, using MRI
scans. It consists of 60 MRI scans for training and 50 for testing. Additionally, we generate
a 2D version of this dataset by converting the 3D abdominal MRI scans into 2D slices. This
conversion enables us to evaluate TTT-UNet under the common 2D segmentation setting,
which is widely used in practice due to its lower computational requirements. The conversion
retains the same 13 organs, ensuring consistent evaluation across both 2D and 3D modalities.

Endoscopy images. From the MICCAI 2017 EndoVis Challenge (Allan et al., 2019),
this dataset focuses on instrument segmentation within endoscopy images, featuring seven
distinct instruments, including the large needle driver, prograsp forceps, monopolar curved
scissors, cadiere forceps, bipolar forceps, vessel sealer, and a drop-in ultrasound probe. The
dataset is split into 1800 training frames and 1200 testing frames.

Microscopy images. This dataset, from the NeurIPS 2022 Cell Segmentation Chal-
lenge (Ma et al., 2023a), is used for cell segmentation in microscopy images, consisting of
1000 training images and 101 testing images. Following U-Mamba (Ma et al., 2024a), we
address this as a semantic segmentation task, focusing on cell boundaries and interiors rather
than instance segmentation.

4.2. Experimental setup

The setting of our experiments is the same as that in U-Mamba (Ma et al., 2024a) and
nnU-Net (Isensee et al., 2021) to ensure a fair comparison, as shown in Table 4 We adopt
an unweighted combination of Dice loss and cross-entropy loss for all datasets and utilize the
SGD optimizer with an initial learning rate of le-2. The training duration for each dataset is
set to 1000 epochs, conducted on a single NVIDIA A100 GPU. Leveraging the self-configuring
capabilities from nnU-Net, the number of network blocks adjusts automatically according
to the dataset. For evaluation metrics, we employ the Dice Similarity Coefficient (DSC)
and Normalized Surface Distance (NSD) to assess performance in abdominal multi-organ
segmentation for MR scans, as well as instrument segmentation in Endoscopy images. For
the cell segmentation task, we utilize the F1 score to evaluate method performance.
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4.3. Baselines and metrics

In our evaluation of TTT-UNet, we compare against two prominent CNN-based segmen-
tation methods: nnU-Net (Isensee et al., 2021) and SegResNet (Myronenko, 2019). Ad-
ditionally, we include a comparison with UNETR (Hatamizadeh et al., 2022) and Swin-
UNETR (Hatamizadeh et al., 2021), a Transformer-based network that has gained popularity
in biomedical image segmentation tasks. U-Mamba (Ma et al., 2024a), a recent Mamba-
based method, is also included in our comparison to provide a comprehensive overview of
its performance. For each model, we implement their recommended optimizers to ensure
consistency in training conditions. To maintain fairness across all comparisons, we apply the
default image preprocessing in nnU-Net (Isensee et al., 2021).

4.4. Quantitative segmentation results

Table 1: Results summary of 2D segmentation tasks: organ segmentation in abdomen MRI
scans, instruments segmentation in endoscopy images, and cell segmentation in
microscopy images.

Organs in Abdomen MRI Instruments in Endoscopy Cells in Microscopy

Methods DSC NSD DSC NSD Fi

nU-Net 07450401117 0.815350.1145 | 0.626400.3024  0.641240.3074 0.538320.2657
SegResNet 0.731740.1379  0.80340.1386 | 0.582040.3268  0.5968--0.3303 0.541140.2633
UNETR 0.5747+0.1672  0.6309+0.1858 | 0.5017+£0.3201  0.51680.3235 0.4357+0.2572
SwinUNETR 0.702840.1348  0.7669+0.1442 | 0.55280.3080  0.56830.3123 0.3967+0.2621

U-Mamba_ Bot
U-Mamba_Enc

0.7588+0.1051
0.762540.1082

0.8285+0.1074
0.8327+0.1087

0.6540+0.3008
0.630310.3067

0.6692+0.3050
0.6451+0.3104

0.5389+0.2817
0.5607+0.2784

TTT-UNet Bot
TTT-UNet_ Enc

0.7750£0.1022 0.84524+0.1080
0.7725+0.1044 0.8540+0.1032

0.6643+0.3018 0.6799+0.3056
0.6696+0.3018 0.6820+0.3080

0.5818+0.2410
0.5773+0.2435

Table 1 presents the 2D segmentation results across three datasets. TTT-UNet variants
consistently achieve the best performance on all tasks. For organ segmentation in Abdomen
MRI, TTT-UNet_ Bot obtains the highest DSC (0.7750) while TTT-UNet Enc achieves the
best NSD (0.8540), both outperforming U-Mamba variants and other baselines by a notable
margin. In the Endoscopy dataset, TTT-UNet Enc achieves the highest DSC (0.6696) and
NSD (0.6820), demonstrating its effectiveness in capturing fine-grained details of surgical
instruments despite their small size and variable appearances. For cell segmentation in
Microscopy images, TTT-UNet Bot obtains the best F1 score (0.5818), showing robustness
to the high variability and noise inherent in microscopy data.

Table 2 presents the 3D segmentation results on Abdomen CT and MRI datasets. TTT-
UNet_ Bot achieves the highest DSC on both CT (0.8709) and MRI (0.8677), consistently
outperforming U-Mamba_Bot and U-Mamba Enc. On the MRI dataset, TTT-UNet Bot
also achieves the best NSD (0.9247), indicating superior boundary preservation. Notably,
TTT-UNet exhibits lower variance across all tasks compared to other methods, suggesting
more stable and reliable predictions across diverse test samples.

These consistent improvements across different modalities (CT, MRI, endoscopy, mi-
croscopy) and dimensions (2D, 3D) demonstrate the effectiveness of TTT layers. The
learnable hidden state in TTT, which updates dynamically via self-supervised learning while
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Table 2: Results summary of 3D organ segmentation on abdomen CT and MRI datasets.

Methods

Organs in Abdomen CT

Organs in Abdomen MRI

DSC

NSD

DSC

NSD

nnU-Net
SegResNet
UNETR
SwinUNETR
U-Mamba_Bot

0.861540.0790
0.79274+0.1162
0.682440.1506
0.759440.1095
0.868310.0808
0.86384-0.0908

0.897240.0824
0.82574+0.1194
0.700440.1577
0.766340.1190

0.9049+0.0821

0.898040.0921

0.8309+0.0769
0.814640.0959
0.6867+0.1488
0.756540.1394
0.8453+0.0673
0.8501+0.0732

0.8996+0.0729
0.8841+0.0917
0.7440+0.1627
0.8218+0.1409
0.91214+0.0634
0.91714+0.0689

U-Mamba_ Enc
TTT-UNet_ Bot

0.8709+0.1011  0.8995+0.0721 | 0.8677+0.0482 0.9247+0.0631

processing the input sequence, provides richer representational capacity, enabling better
modeling of complex anatomical structures and varying imaging conditions.

4.5. Qualitative segmentation results

As shown in Figure 2, the segmentation results on the Abdomen MRI dataset demonstrate
TTT-UNet’s effectiveness in handling complex anatomical structures. The predictions show
strong alignment with ground truth, particularly in regions with significant anatomical
variability, highlighting robust performance in segmenting intricate abdominal organs.

Figure 2: The visualization results of TTT-UNet on Abdomen MRI datasets.
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Figure 3 provides further insights through the segmentation results on the Endoscopy
and Microscopy datasets. In the Endoscopy dataset, TTT-UNet successfully delineates the
surgical instruments, which are challenging due to their small size and diverse appearances.
This capability underlines the model’s strength in capturing fine details and its adaptability to
various shapes and textures. Similarly, in the Microscopy dataset, TTT-UNet demonstrates
its robustness by accurately segmenting cell boundaries and interiors, even amidst high
variability and noise levels. The model’s performance in these diverse settings highlights its
versatility and reliability across different medical imaging modalities.

The visual evidence presented in Figures 2 and 3 aligns with the quantitative improve-
ments reported in Table 1. These results underscore the consistent ability of TTT-UNet to
deliver high-quality segmentations across diverse biomedical imaging modalities.
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Figure 3: Visualization results of TTT-UNet on Microscopy and Endoscopy datasets.

5. Discussion and conclusion

The experimental results from multiple biomedical image segmentation tasks consistently
demonstrate that TTT-UNet achieves notable improvements over a range of state-of-the-art
methods. A key factor contributing to this improvement is the integration of TTT layers,
which enable the model to dynamically adapt to the distinct characteristics and underlying
data distribution of each test image. This capability leads to enhanced generalization,
especially in tasks involving diverse and complex imaging modalities, such as 3D abdomen
CT, abdomen MRI, endoscopy, and microscopy datasets.

Furthermore, TTT-UNet’s superior performance in handling high anatomical variability
and complex spatial structures positions it as a robust tool for clinical applications. For both
large-scale anatomical structures and smaller, intricate features, TTT-UNet has demonstrated
the ability to deliver accurate segmentation results. This versatility is crucial in clinical
scenarios where precision and adaptability are essential for effective diagnosis and treatment.

One of the primary advantages of TTT-UNet lies in its capacity to dynamically adjust
model parameters during the test phase, which significantly enhances segmentation accuracy.
Additionally, the lower variance in performance across different datasets emphasizes the
model’s robustness and consistency. However, it is important to acknowledge that the compu-
tational cost associated with test-time training could be a limitation for real-time applications.
Future work should focus on optimizing the TTT layers to minimize computational overhead
without compromising performance.

In conclusion, TTT-UNet represents an important step forward in biomedical image
segmentation by offering a flexible and adaptive solution. Its ability to consistently outperform
other models in both 2D and 3D segmentation tasks reinforces its potential as a reliable
model for medical image analysis. As the model evolves, further optimization of test-time
adaptation strategies, along with integration with large-scale, diverse clinical and specialized
datasets, will pave the way for broader clinical adoption and deployment.

10
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Appendix
A. Dataset information

To comprehensively evaluate the performance and generalization ability of TTT-UNet across
diverse biomedical imaging scenarios, we conduct experiments on four widely used datasets
spanning both 2D and 3D segmentation tasks. These datasets cover abdominal CT and MRI
scans, endoscopic surgical scenes, and microscopy cell images, providing a broad range of
anatomical structures, imaging modalities, and domain shifts.

Table 3 summarizes the key characteristics of each dataset, including their dimensionality,
number of training and testing samples, and segmentation targets. The abdominal multi-
organ datasets (CT and MRI) contain volumetric scans with substantial anatomical variability,
while the Endoscopy dataset features challenging surgical scenes with small, deformable
instruments. The Microscopy dataset consists of fine-grained cellular structures with high
appearance variability.

Table 3: Dataset information for segmentation tasks in biomedical imaging.

Dataset Dimension #Training #Testing #Targets
Abdomen CT 3D 50 (4794 slices) 50 (10894 slices) 13
Abdomen MRI 3D 60 (5615 slices) 50 (3357 slices) 13
Endoscopy images 2D 1800 1200 7
Microscopy images 2D 1000 101 2

To ensure fair and task-appropriate evaluation, TTT-UNet is configured with dataset-
specific architectural and training settings. These include the patch size, batch size, number
of stages, and pooling depth along each spatial axis. As shown in Table 4, 3D datasets use
volumetric patches and smaller batch sizes due to memory constraints, while 2D datasets
allow larger patch sizes and batches. The number of stages and pooling operations is chosen
to balance receptive field size with model capacity.

Table 4: TTT-UNet configurations for each dataset.

Dataset Patch Size Batch Size F#Stages #Pooling per Axis
Abdomen CT (40, 224, 192) 2 6 (3,3, 5)

3D Abdomen MR (48, 160, 224) 2 6 (3,5, 5)

2D Abdomen MR (320, 320) 30 7 (6, 6)
Endoscopy (384, 640) 13 7 (6, 6)
Microscopy (512, 512) 12 8 (7,7)

These dataset characteristics and configuration settings establish a comprehensive and
diverse evaluation environment, enabling a rigorous assessment of TTT-UNet across varying
imaging modalities, spatial resolutions, and task complexities.
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B. Training configuration
B.1 LEARNING RATE AND OPTIMIZER

The training process adopts a poly learning rate schedule with an initial learning rate set to
0.01, which gradually decays following the equation:

epoch > 0.9

Learning rate = initial Ir x (1 -
- max__epochs

This decay schedule stabilizes the training by reducing the learning rate as training progresses.
The optimizer used is Stochastic Gradient Descent (SGD) with Nesterov momentum set to
0.99, which aids in faster convergence and better optimization stability.

B.2 LOSS FUNCTION

A combined loss function is employed to balance region overlap accuracy and pixel-wise
classification accuracy. The total loss £ is defined as:

L = Dice Loss 4 Cross-Entropy Loss

where both components are weighted equally (weight=1). Deep supervision is applied by
incorporating intermediate outputs from the decoder during training, with weights decreasing
exponentially as w; = 1/2¢ for shallower outputs, where the final (lowest resolution) output
has weight 0.

B.3 DATA AUGMENTATION

We adopt nnU-Net’s data augmentation pipeline, which applies the following transformations
stochastically during training:

e Geometric transformations: Random rotations (£15), axis mirroring, scaling
(0.7-1.4), and elastic deformations.

e Intensity transformations: Brightness and contrast adjustments, gamma correction
(v €[0.7,1.5]), and Gaussian noise (o ~ U(0,0.1)).

e Simulation of acquisition artifacts: Gaussian blur and low-resolution downsampling
simulation.

These augmentations are applied on-the-fly during training to enhance model robustness
without requiring additional storage.

B.4 TEST-TIME TRAINING CONFIGURATION

During inference, TTT layers update their parameters through self-supervised learning on
each test sample. The key hyperparameters are:

e Mini-batch size: 64 tokens per mini-batch for sequential parameter updates.
e TTT learning rate: Base learning rate npase = 1.0, scaled by head dimension as

n= 77base/dhead-
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e Update iterations: One gradient step per mini-batch (no multiple iterations).

e Weight initialization: TTT layer weights are reset to their trained values for each
new test sample, ensuring independence across samples.

For baseline methods (nnU-Net, U-Mamba, etc.), standard inference without test-time
adaptation is used.

C. Evaluation metrics

To assess the performance of TTT-UNet and its baseline models, we use several widely
adopted evaluation metrics in biomedical image segmentation, ensuring a comprehensive
analysis of segmentation accuracy and boundary preservation.

C.1 DICE SIMILARITY COEFFICIENT (DSC)

The Dice Similarity Coefficient (DSC) is a widely used metric for evaluating the overlap
between the predicted segmentation and the ground truth. It is defined as:

21X NY|

X[+ Y|

where X is the set of predicted pixels and Y is the set of ground truth pixels. The DSC
ranges from 0 to 1, with higher values indicating better segmentation performance. This
metric is particularly useful for tasks where the accurate localization of organs or regions is
important.

DSC =

C.2 NORMALIZED SURFACE DISTANCE (NSD)

The Normalized Surface Distance (NSD) measures the distance between the surfaces of the
predicted and ground truth segmentations, normalized by the object’s size. It is defined as:

NSD = ’;’ eréiéld(p, q) <T

peES
where S and G are the surfaces of the predicted segmentation and ground truth, and d(p, q)
is the Euclidean distance between points p and q. The threshold 7 defines the acceptable
tolerance for boundary differences. NSD is important for ensuring the preservation of organ
shapes and boundaries, especially in tasks involving complex anatomical structures.

C.3 F1-SCORE
For binary classification problems (e.g., cell segmentation in microscopy images), we evaluate
the performance using the F1-Score, which is defined as:

Fl—9x Precision x Recall

Precision + Recall

This metric provides a balance between precision (avoiding false positives) and recall (cap-
turing true positives) and is particularly useful in scenarios where class imbalance exists.

These metrics collectively provide a comprehensive evaluation of the model’s performance
across various biomedical imaging tasks, ensuring both regional overlap and boundary
accuracy are properly assessed.
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D. Theoretical analysis and proofs
D.1 CONVERGENCE ANALYSIS OF TTT LAYER PARAMETER UPDATES

In TTT-UNet, the parameter updates of the TTT layer follow the online gradient descent
rule:

Wi =W;_1— ﬂvg(Wt—hl’t)a

where ((W;z;) = ||f(0kxxi; W) — Oy ae]|? is the self-supervised loss function, 7 is the
learning rate. We assume that f is a linear model (i.e., f(x; W) = Wx) and analyze the
convergence of the parameter updates.

Theorem 1 Convergence of Online Gradient Descent:

Assume the loss function ¢(W;z) is strongly convex with respect to W, L-smooth,
and the gradient of the input sequence {x;} satisfies |V4(W; )| < G.

If the learning rate n < i, the cumulative regret (as defined in online convex opti-
mization) satisfies:

T T
ZE(Wt;xt) — le/nZE(W;a:t)
t=1 t=1

_ * (|2 2
W G
- 2n 2

where W* is the optimal parameter. When n = O(1/ VT), the average regret converges
at a rate of n = O(1/V/T).

Proof:

1. Assumptions of Strong Convexity and Smoothness:
For the linear model f(x; W) = Wz, the loss function can be written as:

W) = |[Wokm: — Oyae|* = WK, - Vi)%,

where K; = 0y and V; = Oy,

The gradient is given by:

VIW ;) = 2WEK; — VK, .

If the input data satisfies K;K,' < LI, then {(W;x;) is L-smooth. If K;K,” = ul,
then ¢(W;z;) is p-strongly convex.

2. Regret Bound:
Based on the regret bound of online gradient descent (Zinkevich, 2003), for any W*,
we have:

T
Wy = W*||>  nG°T
4 : - (W™, < )
; (W ) tz:; (W ay) < 2 + 5
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By choosing n = ﬁ, the average regret rate is O(1/+/T), which shows that the

sequence {W;} converges to the optimal parameter W*.

D.2 MULTI-HEAD PROJECTION MECHANISM

In TTT-UNet, the projection layers parameterized by 0y, 6,, and 6, map the input features
to a latent space. The self-supervised loss is defined as:

LW;20) = || fo, (6 W) — Buz|3

The projection mechanism is designed to dynamically adapt the model to test samples
by capturing essential feature representations while minimizing the discrepancy between the
predicted and target projections:

e The projection K; = Opx; extracts task-relevant feature representations, which are
optimized during test time through TTT updates.

e The target projection V; = 0,x; serves as a reference for minimizing the self-supervised
loss.

e This mechanism ensures that the dynamically updated parameters W; learn to adapt the
feature extraction process to unseen data distributions, effectively mitigating domain
shifts.

This mechanism enables the TTT layer to handle domain shifts effectively, providing
robust segmentation performance across diverse test samples.

E. Visualizations of additional segmentation results

We present additional visualizations of segmentation results to demonstrate further the
effectiveness of TTT-UNet across diverse medical imaging tasks and modalities. As shown in
Figures 4, 5, 6, the model consistently performs well in capturing complex anatomical
structures, fine-grained details, and variable features. Figure 4 highlights the segmentation
results on the Abdomen MRI dataset, where the model accurately delineates organ boundaries
even in cases with significant anatomical variations. Figure 5 showcases the model’s
robustness in segmenting cells within microscopy images, effectively handling ambiguous
and highly variable cell boundaries. In Figure 6, we visualize the segmentation of surgical
instruments in endoscopy images, demonstrating the model’s ability to adapt to small, diverse
instrument shapes and challenging environments. These visualizations further validate the
model’s capacity to generalize and maintain high performance in various clinical scenarios.
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Figure 4: The visualization results of TTT-UNet on Abdomen MRI datasets.
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Figure 6: Visualization results of TTT-UNet on Endoscopy dataset.
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