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ABSTRACT

Dynamic novel view synthesis remains challenging due to the complexity of di-
verse motion patterns. In 4D Gaussians, the temporal dimension further compli-
cates constraint formulation, making temporally consistent rendering difficult. To
address this, we introduce 4D Feature Gaussian Splatting (F4DGS), a dynamic
rendering algorithm that introduces feature consistency regularization to enable
realistic rendering. This regularization jointly synchronizes hierarchical seman-
tic features, velocity, and depth, ensuring coherent motion and appearance. We
further extend the regularization beyond static alignment to capture temporal as-
sociations over continuous unit time intervals. F4DGS is the first rendering al-
gorithm to explicitly couple velocity and depth for learning motion-consistent 4D
representations, enabling high-fidelity, physically plausible rendering of dynamic
content. Through comprehensive evaluations on monocular and multi-view dy-
namic datasets, F4DGS achieves real-time, high-resolution rendering and con-
sistently outperforms existing methods across both quantitative and qualitative
benchmarks. Notably, F4DGS achieves a 3.51 PSNR improvement on the Plenop-
tic dataset with comparable rendering speed and training time.

1 INTRODUCTION

3D reconstruction remains a core topic in computer vision, with novel view synthesis (NVS) play-
ing a key role in applications such as immersive gaming, the film industry, and VR. Most methods
target either static environments with time-invariant elements Mildenhall et al. (2020); Knapitsch
et al. (2017); Hedman et al. (2018); Barron et al. (2022) or dynamic scenes with time-varying con-
tent Pumarola et al. (2021); Park et al. (2021b); Li et al. (2022b); Wu et al. (2020); Cheng et al.
(2023). Dynamic scene rendering is fundamentally a high-dimensional optimization problem that
demands not just increased computational power, but also innovative representations. Key directions
include developing temporally-aware rendering algorithms that handle fine-grained appearance and
designing physically grounded, spatiotemporally continuous frameworks that preserve visual fidelity
despite motion discontinuities and occlusions.

To address dynamic novel view synthesis, many methods have been proposed to jointly model 3D
geometry and scene dynamicsKanade et al. (1997); Zitnick et al. (2004); Li et al. (2012); Collet et al.
(2015); Du et al. (2021); Gao et al. (2021). NeRF Mildenhall et al. (2020) achieves high-quality
view synthesis by representing scenes as implicit functions and using volume rendering to link 2D
images with 3D structures. However, its dense ray sampling results in high computational costs for
both training and rendering. 3D Gaussian Splatting (3DGS) Kerbl et al. (2023) overcomes this by
replacing volumetric rendering with efficient rasterization of explicit 3D Gaussians, enabling real-
time rendering. Yet, modeling realistic appearance with Gaussians remains challenging and becomes
even more pronounced in 4D Gaussian Splatting (4DGS) due to the added temporal dimension. The
increased representational complexity makes it harder to enforce consistency across time, leading to
temporal artifacts that degrade both appearance fidelity and semantic coherence in dynamic scene
rendering.

Because of their smooth nature, Gaussian representations struggle to capture fine details in dy-
namic scenes with sparse inputs, resulting in blurred surfaces. The absence of explicit constraints
linking Gaussians to photorealistic properties further leads to appearance inconsistencies, including
lighting. These challenges are most pronounced in scenes with hierarchical textures, where edge
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sharpness and texture alignment degrade noticeably. The transition from static 3D to dynamic 4D
representations is increasingly complex, as maintaining temporal coherence among Gaussians be-
comes increasingly difficult. Temporal updates introduce instability, especially in regions with fine-
grained textures, where appearance consistency is poorly constrained. While increasing Gaussian
density can improve visual quality, it substantially raises computational and memory costs, posing a
significant challenge for real-time and resource-limited applications.

To achieve consistent, realistic appearances in dynamic scenes, we propose feature consistency reg-
ularization, which combines 4D hierarchical OT-semantics regularization and 4D motion–depth reg-
ularization to explicitly model the temporal dimension in 4D space. We begin by extracting hierar-
chical semantic features that capture fine-grained textures and scene semantics. These features guide
F4DGS in maintaining accurate scene understanding over time. For precise spatial alignment, we
introduce 4D hierarchical OT-semantics regularization, which aligns the extracted semantic features
with the rendered outputs. Unlike methods that naively apply OT distance Villani et al. (2008), our
hierarchical OT regularization imposes multi-level constraints on the motion of Gaussian distribu-
tions corresponding to the same feature. This multi-scale semantic alignment ensures that Gaussians
remain consistent with the underlying static scene structure, effectively preserving spatial coherence
throughout motion.

However, only at individual time steps synchronizing multi-level semantic features, velocity, and
depth is insufficient for modeling coherent motion in dynamic scenes. To address this, we extend
feature consistency regularization to operate over unit time intervals, where temporal variations in
motion features provide richer information than isolated timesteps. Our unit-time interval extension
is especially crucial for 4D Gaussians, where maintaining consistency is inherently more challeng-
ing than in 3D due to the temporal dimension. By jointly constraining multi-level semantic features,
velocity, and depth over unit time intervals, feature consistency regularization addresses inconsis-
tencies in Gaussian representations of the same feature across time. F4DGS learns transferable,
invariant motion features, effectively improving both the fidelity of appearance and the realism of
motion over time. Moreover, temporal modeling drives pixel-level appearance changes that sim-
ulate complex light interactions, e.g., reflection, and refraction, across curved surfaces, enhancing
photorealism.

To enable physically realistic motion rendering, we further introduce 4D motion–depth regulariza-
tion, the first approach to jointly integrate the dynamic velocity with time-varying depth modeling
of Gaussian distributions. Velocity plays a critical role in maintaining temporal coherence, ensur-
ing that motion appears smooth and physically plausible. By constraining velocity, our approach
effectively suppresses unnatural behaviors, e.g., abrupt directional shifts. Furthermore, we incor-
porate depth features to align Gaussian trajectories with the true motion paths and the semantic
structure of the scene. This integration addresses occlusion artifacts and prevents visual inconsis-
tencies, e.g., unnatural jumps and distortions, especially during complex non-rigid interactions. 4D
motion–depth regularization ensures that the evolution of Gaussian distributions follows real-world
motion dynamics, enabling coherent, high-fidelity rendering in dynamic environments (shown in
Figure 1). By integrating 4D hierarchical OT-semantics and motion-depth regularization, F4DGS
addresses key challenges in dynamic scene rendering, excelling at rendering fine geometric details,
non-rigid motion, and dynamic lighting effects in real-time. In summary, our contributions are as
follows:

• The introduction of feature consistency regularization, effectively addressing the motion
inconsistency caused by complex motion patterns over time.

• 4D motion-depth regularization substantially improving the physical realism and tempo-
ral consistency of dynamic scene rendering. To the best of our knowledge, F4DGS is the
first rendering algorithm to precisely predict object motion by integrating 4D Gaussian
velocity with depth modeling over time.

• 4D hierarchical OT-semantics regularization efficiently integrating hierarchical seman-
tic features into 4D Gaussians, enabling accurate scene understanding for real-time
rendering.

• An optimization approach of 4D Gaussian properties that dynamically refines Gaussian
distributions by synchronizing hierarchical semantic features, velocity, and depth, ef-
fectively learning motion-consistent representations for dynamic scenes.
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Figure 1: A Simplified Illustration of the
Feature Consistency Regularization. Our ap-
proach jointly synchronizes hierarchical semantic
features, velocity, and depth, extending beyond
static alignment to model temporal associations
over continuous time intervals.

NVS for Static Scenes. To improve render-
ing quality, traditional methods rely on inter-
polation or geometric representations Levoy
& Hanrahan (1996); Gortler et al. (1996);
Buehler et al. (2001); Riegler & Koltun (2020),
such as meshes Debevec et al. (1996); Thies
et al. (2019); Waechter et al. (2014); Wood
et al. (2023), voxel grids Kutulakos & Seitz
(2000); Penner & Zhang (2017); Seitz & Dyer
(1999), and multi-plane projections Flynn et al.
(2019); Mildenhall et al. (2019); Srinivasan
et al. (2019); Zhou et al. (2018). Neural Ra-
diance Field (NeRF) Mildenhall et al. (2020)
models static scenes through differentiable vol-
ume rendering Verbin et al. (2022); Müller et al.
(2022); Fridovich-Keil et al. (2022), but real-
time performance is hindered by the need to
sample millions of rays Barron et al. (2021);
Chen et al. (2022). While 3DGS Kerbl et al.
(2023) enables real-time rendering, optimizing
Gaussian distributions for realistic appearance
remains a challenge. To address this, F4DGS
integrates 4D hierarchical OT-semantics regu-
larization, which aligns hierarchical semantic features to rendered features. This alignment effec-
tively optimizes the underlying scene representation, enabling precise and photorealistic rendering
of dynamic environments.

NVS for Dynamic Scenes. Generating novel views of dynamic scenes is challenging due to the
need to model temporal dependencies. Different from existing rendering methods, which rely on
geometric structures Li et al. (2012); Collet et al. (2015); Kanade et al. (1997); Zitnick et al.
(2004), NeRFs Mildenhall et al. (2021); Li et al. (2022a;b); Fridovich-Keil et al. (2023); Cao &
Johnson (2023) model motion either via canonical-space deformation fields Park et al. (2021a;b);
Tretschk et al. (2021); Pumarola et al. (2021); Fang et al. (2022), flow-based constraints Du et al.
(2021); Gao et al. (2021); Li et al. (2021); Guo et al. (2023); Tian et al. (2023), scene decom-
position Song et al. (2023); Lee et al. (2024); Shao et al. (2023), and keyframe-driven dynamic
representations Attal et al. (2023). However, NeRF-based methods suffer from high storage and
computational costs Zhang et al. (2020); Wang et al. (2023); Gan et al. (2023). In contrast, 3DGS
leverage GPU acceleration for real-time rendering Kerbl et al. (2023); Li et al. (2023); Yang et al.
(2023b); Huang et al. (2024); Wu et al. (2023). Despite this, mainstream 3DGS-based methods lack
effective temporal modeling, limiting their ability to render dynamic scenes consistently and real-
istically. To overcome this, we propose F4DGS, which integrates semantic understanding, motion
prediction, and spatiotemporal regularization for physically realistic dynamic scene rendering.

3 METHODOLOGY

To achieve a realistic, physically-aware rendering, 4D Feature Gaussian Splatting (F4DGS) is com-
posed of two key components: 4D hierarchical OT-semantics regularization and 4D motion-depth
regularization (shown in Figure 2). To address visual inconsistencies across time, we introduce 4D
hierarchical OT-semantics regularization to realize semantic understanding and temporal coherence
in dynamic scenes (Section 3.1). We construct multi-level semantic features by combining CLIP’s
multi-modal embeddings with SAM’s fine-grained visual representations, capturing both global con-
text and local detail. These features are then aligned via multi-level optimal transport regularization,
encouraging the rendered outputs to conform to the semantic structure of the real scene. To further
address inconsistencies in the Gaussian distributions’ trajectory that represent the same object or
region across time, we extend the hierarchical OT-semantics formulation across unit time intervals,
lifting it into the full 4D space–time domain. This temporal extension ensures that semantic features
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Figure 2: Framework Overview. F4DGS enables consistent, realistic rendering by jointly optimiz-
ing hierarchical semantic features, velocity δv, and depth δdepth over continuous unit time intervals
δt. The resulting 4D Gaussians are differentiably rasterized into images and depth maps, while gra-
dients from feature consistency regularization guide adaptive density control.

remain coherent across time, enforcing consistent object identity and spatial semantics throughout
motion (Section 3.2). Furthermore, we introduce 4D motion–depth regularization, which couples
velocity and depth to guide the motion of Gaussian distributions in a physically grounded manner.
By leveraging these two complementary features as spatiotemporal priors, F4DGS gains the ability
to predict motion trajectories accurately and address artifacts, especially in scenarios with sparse
inputs and rapid dynamics (Section 3.3). Integrated with feature consistency regularization, which
imposes both semantic and physical constraints, F4DGS learns transferable, high-fidelity 4D rep-
resentations (Section 3.4). Our approach enables Gaussian distributions to evolve along smooth,
physically plausible trajectories, including complex non-rigid motions, while maintaining real-time
performance without increasing the point cloud size.

3.1 HIERARCHICAL OT-SEMANTICS REGULARIZATION

Rather than relying solely on direct optimal transport (OT) distances Villani et al. (2008), we intro-
duce a hierarchical semantic regularization framework that leverages multi-scale semantic features
to guide the motion of Gaussians over time. These features impose multi-level constraints on Gaus-
sians representing the same object across time, enabling F4DGS to render the motion not just ge-
ometrically, but also semantically. Our semantic regularization steers F4DGS toward fine-grained,
structure-aware rendering, ensuring that Gaussian trajectories remain not only visually realistic but
also semantically and physically aligned with the underlying scene structure. As a result, F4DGS
achieves robust rendering with improved consistency in both appearance and motion, including com-
plex and occluded regions where direct photometric cues is unreliable.

We extract multimodal features at three semantic levels, i.e., coarse, middle, and fine, from both the
input and the rendered outputs. Denote the hierarchical semantic features as {z(ℓ)i }Mℓ

i=1 ⊂ Rd and
the corresponding rendered features as {h(ℓ)

j }Nℓ
j=1 ⊂ Rd, where ℓ ∈ {coarse,mid, fine}. For each

semantic level ℓ, we define uniform empirical measures over the feature distributions:

P (ℓ) =
1

Mℓ

Mℓ∑
i=1

δ
z
(ℓ)
i
, Q(ℓ) =

1

Nℓ

Nℓ∑
j=1

δ
h

(ℓ)
j
. (1)

We construct a cost matrix C(ℓ) ∈ RMℓ×Nℓ based on cosine distance:

C
(ℓ)
ij = 1− cos

(
z
(ℓ)
i ,h

(ℓ)
j

)
= 1−

z
(ℓ)
i · h(ℓ)

j

∥z(ℓ)i ∥ ∥h(ℓ)
j ∥

. (2)

To align the feature distributions, we solve the entropy-regularized optimal transport problem. The
feasible transport plan T(ℓ) ∈ RMℓ×Nℓ satisfies the marginal constraints: T(ℓ) 1Nℓ

= 1
Mℓ

1Mℓ
,
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(
T(ℓ)

)T
1Mℓ

= 1
Nℓ

1Nℓ
The Sinkhorn-regularized OT distance is defined as:

H(T(ℓ)) = −
∑
i,j

T
(ℓ)
ij log T

(ℓ)
ij , U

(
P (ℓ), Q(ℓ)

)
=

{
T (ℓ)≥ 0 | T (ℓ) 1 = 1

Mℓ
1, T(ℓ)

)T
1 = 1

Nℓ
1
}
,

dλOT

(
P (ℓ), Q(ℓ);C(ℓ)

)
= min

T (ℓ)∈U
(
P (ℓ),Q(ℓ)

)∑
i,j

T
(ℓ)
ij C

(ℓ)
ij − λH

(
T (ℓ)

)
. (3)

where λ is the regularization strength. The final hierarchical OT-semantics loss is:

LHierOT =
∑

ℓ∈{coarse,mid,fine}

αℓ d
λ
OT(P

(ℓ), Q(ℓ);C(ℓ)), with
∑
ℓ

αℓ = 1. (4)

where the weights αℓ are learnable and optimized end-to-end. Our hierarchical OT-semantics regu-
larization ensures spatiotemporal consistency and semantic coherence in dynamic scenes by guiding
the motion of Gaussian distributions over time. It leverages hierarchical semantic features to steer
the rendering process, ensuring that the motion of the Gaussian distributions aligns with both geo-
metric laws and physical structures.

3.2 4D TEMPORAL MODELING

Constraining hierarchical semantic features at separate time steps is insufficient for dynamic scene
modeling, as it neglects temporal coherence critical for realistic rendering. To address this, we
extend our hierarchical semantic constraints across unit time intervals, enabling F4DGS to capture
temporal variations and maintain appearance consistency over time. This is especially important in
dynamic rendering, where temporal transitions must be smooth for coherent motion synthesis.

A central challenge lies in preserving consistency for Gaussians representing the same feature
across time, particularly during motion and occlusion transitions. Our proposed 4D hierarchical
OT-semantics regularization imposes spatiotemporal constraints on semantic features, addressing
abrupt semantic shifts and promoting temporally smooth dynamics. This mechanism proves espe-
cially beneficial in motion-blurred and sparsely observed regions, where semantic continuity reduces
underfitting and preserves geometric stability without requiring denser point clouds. We quantify
temporal semantic drift via the OT distance at each semantic level ℓ over the unit time interval δt,
defined as:

δd
(ℓ)
t = dλOT

(
P (ℓ,t+δt), Q(ℓ,t+δt);C(ℓ,t+δt)

)
− dλOT

(
P (ℓ,t), Q(ℓ,t);C(ℓ,t)

)
. (5)

We penalize these temporal deviations to encourage stable semantic evolution:

LTemporalOT =
∑
δt

∑
ℓ∈D

∥∥αℓ δd
(ℓ)
t

∥∥2
2
, D = {coarse, mid, fine}. (6)

This temporal OT loss complements our spatial OT alignment, promoting semantic consistency
across time without increasing the number of Gaussians. The final 4D hierarchical OT-semantics
loss integrates both spatial and temporal components:

L4D hierarchical OT-semantics =
∑
δt

LHierOT(t) + λ1LTemporalOT. (7)

where the first term ensures semantic alignment at each time step, and the second term regularizes
semantic transitions over time. The weighting parameter λ1 balances static alignment and dynamic
smoothness, leading to temporally coherent and geometrically consistent dynamic scene rendering.

3.3 4D MOTION-DEPTH REGULARIZATION

To ensure physically consistent rendering in dynamic scenes, we introduce 4D motion-depth regu-
larization, which augments each Gaussian with velocity and depth attributes. These jointly enforce
structural and temporal coherence in F4DGS. Velocity encodes both inter-object dynamics and local
deformations, enabling F4DGS to model realistic motion trajectories and anticipate object posi-
tions across time. This predictive capability reduces redundant real-time computations and ensures
smooth temporal transitions.
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By applying motion constraints over unit time intervals, velocity acts as a temporal prior, discourag-
ing nonphysical artifacts, e.g., sudden direction reversals and trajectory discontinuities. Meanwhile,
depth provides complementary geometric cues for surface structure inference and temporal consis-
tency. Together, these features enable accurate motion prediction and effectively resolve spatiotem-
poral inconsistencies in fast and under-observed regions.

Recognizing the strong correlation between motion and geometry, we explicitly synchronize ve-
locity and depth at each Gaussian primitive over time to preserve motion consistency. Let di(t)
denote the depth of the i-th Gaussian primitive at time t, and vi(t) the 3D velocity vector. The
motion-induced depth change is expressed as:

ḋi(t) =
di(t+ δt)− di(t)

δt
. (8)

We penalize discrepancies between this depth change and the predicted velocity, both in the z-
direction and full 3D norm:

L4Dmotion-depth =
∑
δt

N∑
i=1

[
α
(
ḋi(t)− vz,i(t)

)2
+ (1− α)

(
ḋi(t)− ∥vi(t)∥

)2]
. (9)

where N is the total number of Gaussians and α ∈ [0, 1] balances the alignment. This regular-
ization enhances F4DGS’s ability to track complex motion patterns, including non-rigid and fluid,
while maintaining temporal coherence. By leveraging depth as an auxiliary supervisory feature, it
improves robustness in challenging conditions, not only in fast motion and sparse visibility, but also
in motion blur. Furthermore, temporal coupling of motion and depth contributes to accurate surface
rendering, enabling the synthesis of fine-grained textures and photorealistic light effects, including
specular reflections and refractions, on dynamic objects. Overall, our spatiotemporal regularization
effectively improves the fidelity, smoothness, and realism of dynamic scene rendering.

3.4 FEATURE CONSISTENCY

To ensure spatiotemporal semantic coherence in dynamic scene rendering, we define the total feature
consistency regularization that integrates both semantic and motion supervision:

L4DFeature = L4DhierarchicalOT-semantics + λ2 L4Dmotion-depth. (10)

where λ2 controls the trade-off between semantic alignment and motion consistency. Building on the
original 3D Gaussian Splatting (3DGS) framework Kerbl et al. (2023), we additionally incorporate
photometric losses, namely the L1 pixel-wise difference and the Structural Similarity Index (SSIM),
to compare rendered images against ground truth. The final objective for F4DGS is thus formulated
as:

LF4DGS = L4DFeature + λ3 LSSIM + λ4 Ltv + λ5 L1. (11)

where Ltv is the grid-based loss Wu et al. (2023) and λO is the learned hyperparameter. This com-
posite loss encourages F4DGS to synthesize high-fidelity renderings while maintaining semantic
coherence and physically plausible motion across time.

4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTATION DETAILS

We validate our approach on two established benchmarks that each introduce their own complexities
in dynamic scene rendering. The Plenoptic Video Dataset Li et al. (2022b) features six real-world
scenes, offering 20 viewpoints for training and a single, central view held out for evaluation; all
images measure 1352×1014 pixels Li et al. (2022b). The D-NeRF Dataset Pumarola et al. (2021)
comprises monocular video captures from eight separate scenes, with each scene providing 50–200
training frames, 10–20 validation frames, and 20 test frames, all uniformly resized to 800×800 pix-
els Pumarola et al. (2021). Our implementation leverages PyTorch Paszke (2019) running on a single
NVIDIA RTX 3090 GPU, and we adopt the same optimizer settings as those used in 3DGS Paszke
(2019).

6
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Figure 3: Qualitative Comparison on Plenoptic Video Dataset. From top to bottom, the visu-
alized dynamic scenes are Coffee Martini, Cook Spinach, Flame Salmon, Flame Steak, and Sear
Steak. F4DGS precisely renders fine-grained appearance of fast-moving objects and faithfully cap-
tures real-world physical behaviors, e.g., the rapid motion of hands.

4.2 RESULTS

As shown in Table 1, NeRF-based methods face significant challenges in modeling four-dimensional
dynamic scenes, largely due to the computational overhead of repeated neural network forward
passes. Despite their intensive training requirements, these methods often fall short of delivering
photorealistic renderings and are far from achieving real-time performance. Voxel-based approaches
offer improved visual quality but still suffer from substantial training costs. In contrast, our F4DGS
achieves notable improvements in both rendering speed and visual fidelity. It consistently outper-
forms existing methods in rendering high-resolution dynamic videos (1352×1014), delivering sharp
details and temporal coherence. Compared to Deformable4DGS, F4DGS achieves a 3.51 PSNR

7
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Figure 4: Qualitative Comparison on D-NeRF Dataset. From left to right, the visualized scenes
include T-Rex, Stand Up, Lego, and Jumpingjack. We zoom in on high-frequency detail regions of
fast-moving objects. F4DGS demonstrates precise rendering of multi-level surface textures under
rapid motion, e.g., the intricate facial expressions, and the complex shading distribution of the teeth.

gain, demonstrating a substantial leap in quality. While both methods utilize deformation–based ge-
ometric priors, the performance advantage of F4DGS stems from its feature consistency regulariza-
tion, which facilitates the learning of motion-consistent 4D representations, ensuring both structural
realism and efficient rendering.

Table 1: Quantitative Comparison on Plenop-
tic Video Dataset. We compare F4DGS with
both NeRF-based and Gaussian-based methods.
F4DGS substantially outperforms the baselines in
PSNR, achieving the shortest training time and
comparative rendering speeds. *: trained on 8
GPUs and tested only on the Flame Salmon scene.
The best , second best , and third best results
are highlighted.
ID Method PSNR↑ SSIM↑ LPIPS↓ Train↓ FPS↑
a DyNeRF Li et al. (2022b)* 29.58 - 0.08 1344 h 0.015
b StreamRF Li et al. (2022a) 28.16 0.85 0.31 79 min 8.50
c HyperReel Attal et al. (2023) 30.36 0.92 0.17 9 h 2.00
d NeRFPlayer Song et al. (2023) 30.69 - 0.11 6 h 0.05
e K-Planes Fridovich-Keil et al. (2023) 30.73 0.93 0.07 190 min 0.10
f MixVoxels Wang et al. (2023) 30.85 0.96 0.21 91 min 16.70
h RealTime4DGS Yang et al. (2023a) 29.95 0.92 0.16 8 h 72.80
g Deformable4DGS Wu et al. (2023) 28.42 0.92 0.17 72 min 39.93
i Ours 32.50 0.96 0.07 25 min 80.03

As illustrated in Figure 3, F4DGS substantially
improves visual fidelity over the baseline by
rendering hierarchical fine-grained textures in
dynamic scenes, e.g., crisp lettering on trans-
parent glass bottles (rows 3–4), salmon sur-
face patterns at multiple granularities (row 3),
and subtle color variations reflecting different
degrees of steak doneness (row 5). Notably,
F4DGS accurately renders complex reflections
in motion, e.g., the dynamic fluid-surface high-
lights within a glass (row 1). These improve-
ments are driven by our feature consistency reg-
ularization, which resolves motion inconsisten-
cies by the learning of motion-consistent, trans-
ferable representations that effectively capture
nuanced and complex motion dynamics in real-
world, reflective environments.

On the D-NeRF dataset, F4DGS achieves the
highest rendering quality, improving the PSNR from 32.99 to 34.37 (Table 2). Figure 4 further
highlights the advantages of F4DGS in capturing hierarchical semantic details, e.g., the densely
packed teeth (row 1) and the fine-grained textures (row 2). Under challenging reflective conditions,
F4DGS also demonstrates precise rendering, exemplified by the precise shading distribution on the
helmet (row 1). F4DGS effectively combines spatiotemporal consistency and semantic coherence,
enabling high-precision, physically consistent rendering in complex dynamic scenes while maintain-
ing efficient real-time performance. Through multi-level regularization strategies, it demonstrates
exceptional robustness and rendering quality, even in the face of fast motion and sparse visibility.
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4.3 ABLATION STUDIES

4D Hierarchical OT-Semantics Regularization.

Table 2: Quantitative Comparison on D-NeRF
Dataset.

Method PSNR↑ SSIM↑ LPIPS↓ Train↓ FPS↑
D-NeRF Pumarola et al. (2021) 29.17 0.95 0.07 24 h 0.13

TiNeuVox Fang et al. (2022) 32.87 0.97 0.04 28 min 1.60
K-Planes Fridovich-Keil et al. (2023) 31.07 0.97 0.02 54 min 1.20
Deformable3DGS Yang et al. (2023b) 39.31 0.99 0.01 26 min 85.45
RealTime4DGS Yang et al. (2023a) 29.95 0.92 0.16 8 h 72.80
Deformable4DGS Wu et al. (2023) 32.99 0.97 0.05 13 min 104.00

Ours 37.80 0.98 0.01 6 min 200.00

To ensure accurate rendering of dynamic
scenes, we introduce 4D hierarchical OT-
semantics regularization, which aligns Gaus-
sian distributions with the scene structure us-
ing OT distance. In isolation, this regulariza-
tion enables F4DGS to learn richer semantics,
e.g., distinguishing the dog next to the human in
Figure 5. This semantic guidance substantially
enhances overall rendering quality, as shown in
Table 3 and Figure 5. When combined with temporal modeling, F4DGS achieves its best perfor-
mance, demonstrating the effectiveness of our temporal modeling approach.

4D Motion-Depth Regularization.

Base setting w/ 4D Motion-Depth 
Regularization

w/  4D Hierarchical 
OT-Semantics Regularization 

Ground Truth FullFlame Steak  

Figure 5: Optical Flow Visualization.

To accurately capture the dynamic trajectory of
moving objects, we propose 4D motion–depth
regularization, the first approach to explicitly
couple the 4D Gaussian distributions velocity
with time-varying depth modeling. To assess its
impact, we compare the base configuration with
a variant that incorporates only this regulariza-
tion. As shown in Table 3 and Figure 5, intro-
ducing accurate motion–depth constraints ef-
fectively enhances rendering quality, especially
in tracking the full extent of object motion, e.g.,
the movement range of the dog.

5 CONCLUSION AND FUTURE
WORKS

Table 3: Ablation Study with Quantitative
Comparison on D-NeRF Dataset. We vali-
date feature consistency regularization on render-
ing quality PSNR: (a) Base setting, (b) OT (with
4D hierarchical OT-semantics regularization), (c)
Motion (with 4D motion-depth regularization),
and (Full) Time (with temporal consistency).

ID Ablation Items D-NeRF
OT Motion Time Hook Stand Up Trex

a 30.99 35.12 31.74
b ✓ 32.57 37.92 33.70
c ✓ 32.77 38.28 33.98

Full ✓ ✓ ✓ 33.12 38.31 34.53

We introduce 4D Feature Gaussian Splatting
(F4DGS) for realistic dynamic novel view syn-
thesis, addressing the challenges of temporal
complexity and motion inconsistency in 4D
Gaussian representations. Our feature consis-
tency regularization synchronizes hierarchical
semantic features, velocity, and depth, enabling
temporally coherent rendering. Through unit
time interval modeling, F4DGS improves mo-
tion consistency without increasing point cloud
density. As the first method to couple veloc-
ity and depth for motion modeling, F4DGS
enables physically-aware, high-fidelity render-
ing. It achieves the highest PSNR and consis-
tently delivers realistic appearance across dy-
namic scenes, while maintaining competitive training time. Experimental results demonstrate
F4DGS as a practical, scalable, and highly effective solution for photorealistic rendering in com-
plex, dynamic environments.

Limitations There are two limitations. First, F4DGS may exhibit latency in adapting to sudden ob-
ject or motion changes, primarily due to the absence of strong spatial priors. To address this, we plan
to incorporate auxiliary signals that detect unexpected physical motion to improve responsiveness.
Second, while F4DGS provides an efficient 4D representation, it still incurs high training costs on
very large-scale scenes. Accurate reconstruction in such cases may require a divide-and-conquer
training strategy.
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