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Abstract—This paper addresses the privacy-preserving event-
triggered predefined time containment control problem for net-
worked agent systems. A novel containment control scheme is
developed that integrates privacy protection with event-triggered
mechanisms, optimizing network efficiency by minimizing un-
necessary data transmission while ensuring robust containment
within a specified time frame. The proposed control scheme
ensures the confidentiality of agents’ information through output
masking, thereby maintaining both privacy and control accuracy.
Furthermore, it provides a distinct advantage over traditional
finite-time and fixed-time control methods by guaranteeing con-
vergence to the desired state within a predefined time, regardless
of initial conditions. Finally, some simulation results are given
to verify the effectiveness of the proposed containment control
scheme.

Index Terms—Containment Control; Privacy-preserving; Pre-
defined Time; Event-triggered Control; Networked Agent Sys-
tems.

I. INTRODUCTION

Networked agent systems have garnered significant attention
across various fields due to their broad range of applica-
tions, including robotics [1], autonomous vehicles [2], and
distributed sensor networks [3]. The cooperative control of
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networked agent systems involves designing strategies that
enable agents to work together effectively to achieve shared
objectives. A prominent approach within cooperative control
is containment control [4], [5], which aims to ensure that a
group of agents (followers) remains within a specified region
or adheres to a particular trajectory, while another group of
agents (leaders) directs their behavior. Containment control
is particularly crucial in scenarios requiring strict spatial or
operational constraint adherence. For instance, in a formation
flying scenario, containment control can ensure that a group
of drones maintains a specific formation while another set of
drones guides their collective movement [6].

Convergence speed is a critical performance metric in the
containment control of networked agent systems. Current re-
search explores several approaches to achieving convergence,
including asymptotic convergence [7], finite-time convergence
[8], and fixed-time convergence [9]. Asymptotic convergence
guarantees that the system will eventually converge to the
desired state over time, although the convergence rate may not
be specified. Finite-time convergence ensures that the system
reaches the desired state within a finite period, though the
exact time depends on system parameters and states. Fixed-
time convergence provides a guarantee of convergence within
a predetermined time, irrespective of initial conditions, thereby
offering more predictability in performance. However, the
convergence time in both finite-time and fixed-time approaches
is influenced by system parameters and states. To address this,
researchers have developed predefined time control schemes
that enable the specification of a desired convergence time
[10], [11]. The primary advantages of predefined-time control



include the ability to guarantee convergence within a specified
time frame, thereby providing more predictable and control-
lable system behavior, and enhancing system performance by
setting precise deadlines for achieving the desired state.

The existing literature [10]–[13] on predefined-time con-
vergence in networked agent systems generally overlooks the
issue of information privacy during transmission. However,
privacy protection is of paramount importance in containment
control, where safeguarding the confidentiality of agents’
information is critical. Several methods for privacy protection
have been proposed, including state decomposition [14], dif-
ferential privacy [15], additive noise [16], and output masking
[17]. Among these, output masking has received considerable
attention due to its simplicity and ease of implementation.
This method involves obscuring the output of agents to protect
sensitive information while still allowing effective control.
However, output masking relies on continuous information
exchange, which can impose constraints on communication
bandwidth. To address this limitation, it is necessary to develop
privacy protection schemes under event-triggered mechanisms
[18], [19], which can alleviate communication bandwidth
constraints. In [19], the authors integrated both privacy preser-
vation and event-triggered mechanisms into the consensus and
containment control but overlooked predefined performance.
Zhang et al. [20] incorporated prescribed-time theory and
privacy preservation into consensus control but neglected
bandwidth constraints. In conclusion, to the best of the author’s
knowledge, no existing solution simultaneously addresses the
challenges of communication bandwidth, convergence time,
and privacy protection in containment control, making this an
area of significant research opportunity.

According to the above discussion, this paper focuses on
the privacy-preserving event-triggered predefined time con-
tainment control problem of networked agent systems. The
main contributions of this paper are summarized as follows:

(1) A novel event-triggered predefined-time containment
control scheme is developed to optimize network efficiency
while ensuring robust containment performance within a spec-
ified time frame. By employing event-triggered control, the
scheme significantly reduces unnecessary data transmission,
ensuring that agents communicate only when necessary. This
approach effectively balances communication efficiency and
system performance.

(2) The proposed control scheme guarantees convergence
within a predefined time, offering a distinct advantage over
finite-time and fixed-time methods. Unlike these traditional
methods, where convergence time is often influenced by initial
conditions and system parameters, the predefined time control
ensures that the desired state is consistently reached within the
predetermined time frame, thereby enhancing the predictability
and reliability of the system.

(3) Furthermore, a privacy-preserving containment control
scheme is designed to safeguard the confidentiality of agents’
information by masking their outputs while maintaining ac-
curate control. Compared to alternative privacy protection
methods such as differential privacy or state decomposition,

this scheme provides a simpler and more efficient solution. It
ensures both privacy and communication efficiency without
compromising the overall system performance, making it
particularly suitable for applications with stringent privacy and
bandwidth requirements.

The remainder of the paper is listed below. Some preliminar-
ies are formulated in Section II and Section III formulates the
problem. Section IV designs a privacy-preserving containment
control input. Numerical simulation examples are provided in
Section V, and Section VI sums up the whole paper.

II. PRELIMINARY AND PROBLEM FORMULATION

A. Preliminaries

The communication structure among agents in this study is
represented by a graph topology denoted as G = ⟨V, E ,A⟩,
where V , E , and A correspond to the set of nodes, the set
of edges, and the adjacency matrix, respectively. The network
consists of a total of N = m + n agents, with n being the
number of follower agents and m being the number of leader
agents. The leader and follower agents are categorized into sets
VL = {1, 2, . . . ,m} and VF = {m + 1,m + 2, . . . ,m + n},
respectively. Consequently, the overall set of nodes is formed
by the union of these two sets, V = VF ∪ VL. Following the
definitions of the node sets, the adjacency matrix is represented
as A = [aij ] ∈ R(n+m)×(n+m), where the element aij is
positive if there exists an edge from node j to i within the set
E , and zero otherwise. Assuming leaders do not have adjacent
nodes, implying that leaders solely disseminate information to
followers, the Laplacian matrix L for the network of agents is
derived as L = D −A. The degree matrix, denoted by D, is
a diagonal matrix with elements di on the diagonal, where di
is the sum of the adjacency matrix elements in the i-th row,
calculated as di =

∑n+m
k=1 aik.

Based on the aforementioned definitions, the Laplacian
matrix is constructed as follows:

L =

[
0m×n 0m×m

LF LL

]
, (1)

where the sub-Laplacian matrix specific to the follower agents
is denoted as LF ∈ Rn×n, and the sub-Laplacian matrix that
captures the interactions between leader and follower agents
is represented by LL ∈ Rn×m. The elements of LF , denoted
as [lij ], are defined such that when indices match, lij equals
the sum of the adjacency matrix entries aip for all p in the
set of nodes V , and when indices differ, lij is the negation of
the corresponding adjacency entry aij . Mathematically, this is
expressed as:

lij =

{∑m+n
p=1 aip, if i = j,

−aij , otherwise.

The subsequent assumption about the communication
framework is established to guarantee the feasibility of con-
tainment control within the networked agent systems.

Assumption 1: This paper assumes that each follower is
associated with at least one leader, with whom there exists a
directed path leading to the follower.



Definition 1 ([21]): Let Zn be the collection of all n × n
square matrices with non-positive off-diagonal elements, de-
noted as Zn ⊂ Rn×n. A matrix Y is classified as a nonsingular
M-matrix if it belongs to Zn and all its eigenvalues possess
positive real parts.

Lemma 1 ([4]): Under Assumption 1, it is established that
the matrix LF qualifies as a nonsingular M-matrix. Further-
more, it holds that −L−1

F LL1m = 1n, and every component
of −L−1

F LL is nonnegative.
Definition 2 ([22]): Let Λ be a subset of Rn. If for any

z1, z2 ∈ Λ and a scalar 0 < γ < 1, the linear combination
(1−γ)z1+γz2 also belongs to Λ, then Λ is deemed a convex
set. Given a vector χ with elements χi, the convex hull of χ,
denoted as Co(χ), is the set of all vectors that can be expressed
as

∑n
i=1 γiχi, where each γi ≥ 0 and the sum

∑n
i=1 γi = 1.

B. Time-varying transformation

The objective of privacy-preserving containment control is
to guide the followers into the convex hull spanned by the
leaders, without revealing the initial states of the participating
agents. To address this, the paper integrates a dynamic, time-
variant transformation into the traditional containment control
paradigm. This transformation enables each agent to modify
its state according to the evolving function before sharing
information with its neighbors. The employed transformation
function is both standardized and perpetually updating, char-
acterized as

p : R+ ×Rh ×Rd → Rh

(t, x,m) 7→ y(t) = Λ(t, x(t),m),
(2)

where x = [x1, . . . , xh]
T ∈ Rh is the agent’s true states, the

hidden state output after the time-varying transformation is
y = [y1, . . . , yh]

T ∈ Rh, both states have equal dimensions,
the parameter set m ∈ Rd represents the key of time-
varying transformation. The state output after the time-varying
transformation is uniformly referred to as the hidden state in
this paper. It is postulated that there exists a common system
ẋ = f(x), and the dynamics following the application of
time-varying transformation can be expressed as ẋ = f(y)
and y = Λ(t, x,m). If |Λ(t, x,m)− x(t)| is approaching zero
under the given key m, it is referred to as a finite time-varying
transformation, and the following condition holds{

lim
t→Ω

Λ (t, x(t),m) = x(t),

Λ (t, x(t),m) = x(t), t ∈ [Ω,∞),

where Ω denotes a finite time constant indicates that the final
hidden state converges to the real state over time. The range
of Ω is primarily influenced by the values of each parameter
in the key m.

C. Containment control problem description

In this paper, we focus on a single-integrator networked
agent system. The dynamics of the follower agents are char-
acterized by the following equation:

ẋi(t) = ui(t), i ∈ VF , (3)

where xi(t) and ui(t) denote the position and control input of
ith follower agent, respectively.

Additionally, the dynamics of the leader agents are governed
by the following equation:

ẋi(t) = 0, i ∈ VL, (4)

where xi(t) denotes the position of ith leader agent. The above
dynamics mean that the leader agents’ position is stationary.

Definition 3: Consider a single-integrator networked agent
system comprising m leader agents and n follower agents,
the implementation of predefined time containment control
necessitates that the position states of the followers converge
to the convex hull defined by the leaders within specified time
T . Specifically, for any given initial condition, the convergence
is characterized by the satisfaction of the following set of
equations:

lim
t→T

|xi(t)−
m∑

k=1

εikxk(t)| = 0, (5)

where εik ∈ R, εik ≥ 0 and
∑m

k=1 εik = 1, i ∈ VF , k ∈ VL.

III. MAIN RESULTS

To safeguard the confidentiality of agents’ initial state infor-
mation, we introduce mutually independent functions into the
process of information exchange among agents. Furthermore,
the aforementioned time-varying function can be implemented
as {

lim
t→Ti

Λi (t, xi(t),mi) = xi(t),

Λi (t, xi(t),mi) = xi(t), t ∈ [Ti,∞).
(6)

According to the requirements of the finite-time varying
function, the received information of follower agent j from
agent i can be designed as Rm

i (t) = Λi (t, xi(t),mi)
Λi (t, xi(t),mi) = xi(t) + ait

2 + bit+ ci, t ∈ [0,Ωi)
Λi (t, xi(t),mi) = xi(t), t ∈ [Ωi,∞)

where Ωi satisfies Ωi =
−bi−

√
bi2−4aici
2ai

, bi ≥ 0, ci ≥ 0, if a ∈ [0,∞) ,

Ωi =
−bi+

√
bi2−4aici
2ai

, bi < 0, ci < 0, if a ∈ (−∞, 0) ,

and ai, bi, ci ∈ R, each agent has its distinctive encode key,
denoted as mi = {ai, bi, ci}, noting that individual encode
keys remain undisclosed to other agents.

Building upon the previously devised time-varying function
and the acquired hidden information from neighboring agents,
the predefined time containment control input for the ith agent
can be expressed as follows

ui(t) = −
(
ρ+ δ µ̇

µ

) ∑
j∈VL∪VF

aij
(
Rm

i (t)− Rm
j (t)

)
,

Λi (t, xi(t),mi) = xi(t) + ait
2 + bit+ ci, t ∈ [0,Ωi),

Λi (t, xi(t),mi) = xi(t), t ∈ [Ωi,∞),
(7)



where ρ > 0 represents the control gain, and µ denotes a
time-varying scaling function, which takes the form of

µ(t) =

{ (
T

T−t

)h

, t ∈ [0, T ),

0, t ∈ [T,∞),

where the real number h holds the condition h > 2.
Considering the practical challenges encountered in net-

worked agent systems, which frequently involve communi-
cation limitations, the incorporation of an event-triggered
mechanism can considerably reduce the utilization of com-
munication resources. In this paper, we integrate the event-
triggered mechanism into the aforementioned controller.

Assumption 2: When employing an event-triggered mech-
anism, it is presupposed that every agent has the capability to
actively monitor its state information in real time. Furthermore,
agents are designed to disseminate relevant state updates
contingent upon the fulfillment of designed event-triggering
condition.

To ensure synchronization among all agents, we establish
a triggering sequence denoted as {t1, t2, . . . , tk}. This se-
quential arrangement guarantees that all agents update their
controllers simultaneously at a unified triggering time. As a
result, the control input (7) can be reformulated as

ui(t) = −
(
ρ+ δ

µ̇

µ

) ∑
j∈VL∪VF

aij
(
Rm

i (tk)− Rm
j (tk)

)
. (8)

For each agent, the state measurement error between trig-
gering and true state is

emi (t) = Rm
i (tk)− Rm

i (t), t ∈ [tk, tk+1) . (9)

Substituting the state measurement error and the controller
into the agent’s dynamics, yields

ẋi(t) =−Kρ

∑
j∈VL∪VF

aij

(
Rm

i (tk)− Rm
j (tk)

)
=−Kρ

∑
j∈VL∪VF

aij

(
emi (t) + Rm

i (t)−
(
emj (t)+Rm

j (t)
))

=−Kρ

∑
j∈VL∪VF

aij

(
emi (t)− emj (t)

)
−Kρ

∑
j∈VL∪VF

aij

(
Rm

i (t)− Rm
j (t)

)
,

where Kρ = ρ+ δ µ̇
µ , and its corresponding compact form can

be represented as

ẋ(t) = −KρLRm(t)−KρLem(t)

= −Kρ (LF (R
m
F (t) + emF (t)) + LL(R

m
L (t) + emL (t))) .

where x(t) = coln+m
i [xi(t)], Rm

F (t) = colni [Rm
Fi(t)],

Rm
L (t) = colmi [Rm

Li(t)], e
m
L (t) = colmi [emLi(t)] and emF (t) =

colni [emFi(t)]. Besides, let A = coln+m
i [ai], B = coln+m

i [bi]
and C = coln+m

i [ci].
Accordingly, the whole closed-loop error system is{

ẋ(t) = −KρLRm(t)−KρLem(t)
Rm(t) = x(t) +m(t)

(10)

where

m(t) =



At2 +Bt+ C, t ∈
[
0, T 1

)
Am1t

2 +Bm1t+ C, t ∈
[
T 1, T 2

)
...
Am1...mN−1t

2 +Bm1...mN−1t+ C, t ∈
[
TN−1, TN

)
0, t ∈

[
TN ,∞

)
To address the predefined time privacy-preserving contain-

ment control under the event-triggered mechanism, we design
the event-triggering condition (ETC) for the networked agent
systems as

tk+1 = inf

{
t > tk : ∥em(t)∥ ≥ (1− ε)

Kλ
ρ

Kρ

∥ϖ(t)∥
∥L∥

}
.

(11)
where Kρ = ρ+ δ µ̇

µ and Kλ
ρ = ρλ2(LF ) + δ µ̇

µ , ε ∈ (0, 1) and
λ2(LF ) is the second smallest eigenvalue of the Laplacian
matrix LF . Upon the occurrence of a triggering event, all
agents discard their previous state and proceed to sample
their current state to update their controller. Subsequently, they
transmit the newly sampled state to their neighboring agents.
Throughout the inter-event period, their control inputs remain
constant until the next triggering instance, which forcibly
violates the event-triggering condition.

Theorem 1: Under the event-triggering condition (11) and
control input (8), the predefined time privacy-preserving con-
tainment control for networked agent system with graph G can
be achieved. While the parameter in ETC satisfies ε ∈ (0, 1).

Proof: The proof of Theorem 1 includes convergence
analysis and privacy analysis, respectively.

(I) Convergence analysis: The vector x(t) can be di-
vided into sub-vector xF (t) and xL(t). Based on Definition
3, we define the containment error as ϖ(t) = xF (t) −(
−L−1

F LLxL(t)
)
, and Lyapunov function is adopted as

V (t) = ϖ(t)Tϖ(t). (12)

Note that the leader agents’ dynamics model (4), it yields

ϖ̇(t) = ẋF (t)−
(
−L−1

F LLẋL(t)
)
= ẋF (t).

Taking the derivative of the Lyapunov function V (t), one
obtains the following expression

V̇ (t) =ϖ(t)T ϖ̇(t) = ϖ(t)T ẋF (t)

=ϖ(t)T (−Kρ (LF (R
m
F (t) + emF (t)) + LL(R

m
L (t) + emL (t))))

=− ρϖ(t)T (LF (R
m
F (t) + emF (t)) + LL(R

m
L (t) + emL (t)))

− δ
µ̇

µ
ϖ(t)T (LF (R

m
F (t) + emF (t)) + LL(R

m
L (t) + emL (t))) .

To satisfy the privacy-preserving requirement of designing a
time-varying transformation function, it is essential to ensure
that TN , the moment at which the final time-varying function
converges to its corresponding true state, is less than T , for all
t ∈ [0, T ). Notably, the value of m(t) decreases monotonically
as t increases in the interval t ∈ [0, TN ), and it attains
zero if t ∈ [TN , T ). The result further derives the condition



limt→TN
Rm

F (t) = xF (t), limt→TN
Rm

L (t) = xL(t). Based on
Lemma 1 in [11], it follows that

LF (xF (t) + emF (t)) + LL(xL(t) + emL (t))

= LF

(
(xF (t) + emF (t)) + L−1

F LL(xL(t) + emL (t))
)

= LF

(
xF (t) + L−1

F LLxL(t)
)
+ LF e

m
F (t) + LLe

m
L (t)

= LFϖ(t) + Lem(t).

It is noted that LF ∈ Rn×n denotes the sub-Laplacian
matrix among follower agents, we can obtain ϖ(t)TLFϖ(t) ≤
λ2(LF )ϖ(t)Tϖ(t), and it derives

V̇ (t) ≤ −Kλ
ρV (t)−Kρϖ(t)T (LF e

m
F (t) + LLe

m
L (t))

= −εKλ
ρV (t)− (1− ε)Kλ

ρV (t)−Kρϖ(t)TLem(t)

≤ −εKλ
ρV (t)− (1− ε)Kλ

ρ∥ϖ∥2 +Kρ ∥ϖ∥ ∥Lem∥ .

Considering the designed event-triggering condition (11)
and the condition ε ∈ (0, 1), it concludes

Kρ ∥Lem(t)∥ ≤ (1− ε)Kλ
ρ ∥ϖ(t)∥ .

Accordingly, since δ ≥ 1, it yields

V̇ (t) ≤ −
(
ρλ2(LF ) +

µ̇

µ

)
ϖ(t)Tϖ(t) = ρλ2(LF )V − µ̇

µ
V.

According to the Lemma 1 in [11], one has

V (t) ≤ µ(t)−2exp−ρλ2(LF )(t−TN)V
(
TN

)
. (13)

And then ∥ϖ(t)∥ ≤ µ(t)−1exp−ρλ2(LF )(t−TN) ∥∥ϖ (
TN

)∥∥.
Note that limt→T−µ(t)−1 = 0, it yields limt→T− ∥ϖ(t)∥ =
0. That is, when t → T−, the condition xF (t) −
(−L−1

F LLxL(t)) = 0 holds. Based on the equation (46) of
[19] and Definition (2)-(3), −L−1

F LLxL(t) is the convex hull
signal formed by the leaders, when ϖ(t) = 0, it implies that
all followers converge within the convex hull formed by the
leaders. Therefore, the containment control of the networked
agent system is achieved within the predefined time T . Since
the finite time-varying transformation is only applied to the
interval [0, T ), the problem of predefined-time containment
can be transformed into the general case discussed in [11] for
t ∈ [T,∞). For further information, interested readers can
refer to Theorem 1 in [11], which provides detailed proof.

(II) Privacy analysis: Consider a scene where the dynamics
f(·) of all agents are widely known and each agent has access
to the hidden output states Rm

i (t) of its neighboring agents.
While the true states xi(t) and the encode keys {ai, bi, ci}
are regarded as private information exclusive to each agent.
For an honest-but-curious agent, the information accessible
includes the unsigned graph G, the state of the honest-but-
curious agents and the set of neighboring agents, and the
hidden state of both the honest-but-curious agents and their
neighbors. Following the application of a finite time-varying
transformation to conceal agent i’s initial state, the resulting
hidden output Rm

i (t) bears no resemblance to the true initial
value xi(0). As a result, any information set acquired by an
honest but curious agent proves futile in determining agent i’s
true initial state. Additionally, the agent cannot reconstruct
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Fig. 1. The communication topology among twelve agents.
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Fig. 2. The true and masked states of all agents.

their true initial state by employing the findings presented
in [23]. Importantly, even external eavesdroppers are unable
to obtain the true initial state, as evidenced by the process
mentioned above. Thus, it becomes apparent that the integrity
of the initial state remains elusive to all parties involved,
substantiating the claim of its unattainability by external
eavesdroppers.

IV. SIMULATION

In this section, several numerical simulations are con-
ducted to verify the effectiveness of the theoretical analy-
sis. The simulation consists of the networked agent systems
comprising 12 agents, which include six followers and six
leaders. Fig. 1 displays the communication topology among
agents. The numerical simulations are performed in the 2-
D space. The initial position states of all agents are set
as x1(0) = [−10, 0, 10, 10, 0,−10,−30,−5, 20, 30, 5,−15]T

and x2(0) = [5, 5, 5,−5,−5,−5, 5, 20, 25,−10,−15,−20]T .
And the parameter ε is equal to 0.5, the predefined time is
T = 1.5s. The encode keys are selected as

A = [−5,−9,−5, 8,−3, 6,−4, 5, 6,−4, 5,−3]T ,

B = [2, 4, 3,−4, 1,−3, 2,−1,−3, 2,−1, 1]T ,

C = [3, 4, 1,−3, 2,−2, 1,−3,−2, 1,−3, 2]T .

The simulation results are depicted in Fig 2-4. The trajectory
of agents in the x1 direction is illustrated in Fig 2, with the
subfigure highlighting the masked trajectories of all agents.
This indicates that the proposed method effectively preserves
the privacy of the agents’ initial states and achieves the
predefined time convergence within 1.5s. Fig 3 demonstrates
the fulfillment of the event-triggering conditions, when the
designed boundary threshold is exceeded, the agents’ states
are sampled and updated. Fig 4 shows that all followers
successfully move from their initial positions into the convex
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Fig. 3. The trajectory of the state measurement error and boundary threshold.
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Fig. 4. The trajectory of all agents in the 2-D plane under designed
containment control input. (Square markers represent the followers, and
circular markers represent the leaders. Leaders form a rectangular convex
hull.)

hull formed by the fixed leaders, achieving privacy-preserving
event-triggered predefined time containment control for the
networked agent system.

V. CONCULSION

This paper has addressed the privacy-preserving event-
triggered predefined-time containment control problem for
networked agent systems. A novel containment control scheme
has been developed, effectively integrating privacy protection
with event-triggered mechanisms. This integration has opti-
mized network efficiency by minimizing unnecessary data
transmission while ensuring robust containment within a speci-
fied time frame. The proposed control scheme has successfully
ensured the confidentiality of agents’ information through
output masking, thereby maintaining both privacy and control
accuracy. The effectiveness of the proposed scheme has been
verified through simulation results. It is important to note that
this study has focused on static leaders, and future research
will extend the investigation to address containment control
problems under dynamic leaders.
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