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ABSTRACT

Retrieval-augmented generation has emerged as one of the most effective ap-
proaches for code completion, especially when context from the surrounding
repository is important. However, adding this context substantially increases se-
quence length, which slows inference—an important limitation for interactive set-
tings such as IDEs. In this work, we introduce LlavaCode, a framework that com-
presses context into compact, semantically rich representations that remain inter-
pretable to code LLMs. This improves generation quality while reducing prompt
augmentation to only a few compressed single-token vectors. Our approach re-
quires training only a small projector module and introduces negligible additional
latency, yet it significantly improves the prediction quality of code LLMs. Our
experiments show that LlavaCode enables a 20–38% reduction in Time-to-First-
Token (TTFT) on line-completion tasks compared with uncompressed RAG.

1 INTRODUCTION

Recently, more and more IDEs started to feature code completion as one of the central tools. Code
editors such as Windsurf1 and Cursor2 started integrating large language models (LLMs) to pro-
vide single- and multiline prediction, which substantially improve developer productivity, but they
also impose strict latency requirements: even small delays in time-to-first-token (TTFT) break the
interactive coding experience and using this feature becomes frustrating.

Additionally, RAG, a retrieval-augmented generation method (Lewis et al., 2021), has been widely
adopted to improve both QA and completion quality, since it allows models to incorporate external
context such as documentation, relevant snippets of code or function declarations into the prompt
(Figure 1a). However, the additional tokens from retrieval significantly increase prompt processing
time and, consequently, TTFT, making vanilla RAG less practical for latency-critical settings like
code completion.

A promising solution is context compression via embedding projection. Originally introduced in
multimodal models such as Flamingo (Alayrac et al., 2022) and LLaVA (Liu et al., 2023), these
methods use a separate visual encoder and a lightweight projection module to map input image em-
beddings into a small set of tokens for the language model. Subsequent works, such as xRAG (Cheng
et al., 2024), extended this idea to textual retrieval, showing that compressed representations can
match vanilla RAG performance while reducing inference cost.

Despite this progress, no prior work has applied embedding projection to the code completion task,
where the latency–quality trade-off is especially severe. Furthermore, existing training objectives
(e.g., cross-entropy) are poorly aligned with developer-relevant code generation quality metrics such
as Exact Match (EM) and Edit Similarity (ES), limiting the effectiveness of current approaches.
Additionally, we can incorporate other code modalities, such as Abstract Syntax Trees (AST), into
the retrieved embeddings to enrich the representations with syntactic information.

In this work, we address both challenges. We introduce LlavaCode—a LLaVA-style projection
mechanism that incorporates retrieved context into the model’s input while adding only about 10
tokens to the prompt length. The projector is trained using our three-component composite loss:

1Windsurf homepage
2Cursor homepage
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cross-entropy, an RL-based term that directly optimizes EM and ES, and a novel cosine-alignment
loss that preserves distinctions in the compressed representations.

Our contributions are the following:

• To the best of our knowledge, our approach is the first to apply LLaVA-like embedding pro-
jection to code completion tasks without embedder or LLM finetuning, resulting in higher
quality scores with negligible latency increase compared to base model, while maintaining
20-38% better latency compared to full RAG.

• Prior projection-training methods—whether based solely on cross-entropy or on cross-
entropy combined with auxiliary losses—proved insufficient for code completion. To ad-
dress this, we designed a composite loss that integrates cross-entropy, an RL-inspired com-
ponent, and a novel cosine-alignment term that preserves distinctions in the compressed
representations.

• We’ve experimented with incorporating additional code modalities such as ASTs to inves-
tigate whether alternative representations of code can improve representation quality.

All the code and weights for projector modules will be available under permissive license.

2 RELATED WORK

2.1 CODING LLMS

StarCoder (Li et al., 2023) introduced a family of code generation models, including larger LLMs
optimized for code-centric dialogue and smaller ones tailored for code completion. Trained on
the permissively licensed The Stack dataset (Kocetkov et al., 2022), these models achieved strong
performance, surpassing most prior approaches on both code completion and instruction-following
benchmarks. The Qwen-2.5-Coder series (Hui et al., 2024) represented another significant advance-
ment in code-focused LLMs. Trained on a proprietary mixture of data, the models were released
in sizes ranging from 0.5B to 32B parameters and were designed to support text completion, code
chat, and fill-in-the-middle tasks.

2.2 CONTEXT COMPRESSION METHODS

Despite decoder-only transformer optimizations such as KV-Caching (Pope et al., 2022) and more
efficient attention implementations like GQA (Ainslie et al., 2023), time per-token inference latency
still scales linearly with context size. Since Retrieval Augmented Generation (Lewis et al., 2021)
retrieves information from the knowledge base and puts it into the context of language models, this
increases the context size that needs to be processed and subsequently increases end-to-end latency.

In the paper xRAG (Cheng et al., 2024) the authors propose an approach, which is similar to multi-
modal language models training: they push the embedding vector of the retrieved text from textual
encoder through a lightweight projector layer to align it with the reader model. The resulting archi-
tecture is trained in a two-stage manner. In the first stage, both the encoder and LLM are frozen,
while the projection layer is trained with cross-entropy loss on paraphrases of the same document.
During the second stage, the projector is trained on a mix of tasks such as reading comprehension,
open-domain QA and summarization, adding self-distillation from RAG teacher via KL term along-
side with usual negative log-likelihood loss. Models trained in such way perform competitively with
vanilla RAG systems, while being much more efficient and having lower TTFT due to the reduction
in prompt length.

Our approach is conceptually similar to xRAG method. By using a LLaVA-like projection from the
encoder to the code completion model, we compress the retrieved context and maintain good gener-
ation quality, while lowering the TTFT. However, due to the specificity of our domain, we applied
additional techniques to increase code-specific metrics and quality of predictions. Furthermore, we
train only the projector with both the encoder and reader LLM frozen in a single stage manner.
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2.3 EMBEDDING MODELS FOR CODE

Code-search embeddings are commonly obtained by converting a decoder-only language model into
embedding model by training them to produce last token embeddings for code search via contrastive
learning. One such model is Qwen3-Embedding-0.6B (Zhang et al., 2025), which was converted
from Qwen3-0.6B (Yang et al., 2025) model. Initialized from a powerful pretrained decoder-only
model, Qwen3-Embedding-0.6B shows competitive scores on MTEB (Muennighoff et al., 2023)
benchmarks among similarly sized embedding models.

Additionally, some of the encoder models were trained not only on pure text and code data, but
also on structured graphs, retrieved from code, such as Data Flow Graphs (DFG) and Abstract
Syntax Trees (AST). Examples of such models are GraphCodeBERT (Guo et al., 2021) and UniX-
coder (Guo et al., 2022) models, which joined both code, text and graph data to improve representa-
tion quality for code-understanding and retrieval tasks.

We have evaluated representative models as encoders in our architecture to investigate how different
modalities of code effect the projection quality.

2.4 REINFORCEMENT LEARNING IN LANGUAGE MODELING

Training language models solely for next-token prediction optimizes perplexity but not other objec-
tives such as lack of toxicity, aligning with human preferences, or – specifically for our task – Exact
Match (EM) and Edit Similarity (ES) scores.

In the Self-Critical Sequence Training (SCST) paper (Rennie et al., 2017), a variation of REIN-
FORCE (Williams, 1992) with a baseline is applied to train an image captioning model. SCST uses
the reward of the sequence produced by the current model under the test-time inference algorithm
as the baseline, yielding an unbiased, lower-variance REINFORCE estimator.

In our work, we utilize the same REINFORCE-like approach as in SCST, but without baseline term.
We directly optimize ES + EM metric, which leads to performance increase.

3 METHODOLOGY

3.1 MODEL ARCHITECTURE

To decrease the amount of tokens in the context of RAG reader model, we need to somehow com-
press the retrieved information. In case of LlavaCode, we compress retrieved chunks of code using
an off-the-shelf embedding models and then use a small LLaVA-like projector to make it align better
with the embeddings of the reader model.

To compress the retrieved context, we use embedding model, which transforms a chunk of code
into a single embedding vector. This single vector is being passed through a projection layer, which
converts this embedding into a shape that is compatible with LLM embeddings. In our experiments,
we take top-10 retrieved chunks per completion and compress them into 10 embeddings, which are
concatenated with the LLM embedding of the prompt (Figure 1b). This leads to negligible latency
increase (see Section 5 for more latency measurements), since we directly retrieve precomputed pro-
jections from the RAG database, without the need to inference the encoder model and the projector
module at the time of code completion.

For our experiments, we use Qwen-2.5-Coder family of models as code-completion LLMs and
Qwen-3-Embedding-0.6B (Zhang et al., 2025) or UnixCoder (Guo et al., 2022) as encoders. The
projector follows the same architecture as projector of LLaVA (Liu et al., 2023): an MLP, with
GeLU (Hendrycks & Gimpel, 2023) activation function and a LayerNorm (Ba et al., 2016). We
selected two MLP architectures: a 2-layer and a 3-layer MLP. For more details on projector archi-
tecture see Table 3 and Appendix C.

3.2 CROSS-ENTROPY ISSUE

In previous works, both in textual and multimodal compression, training was carried out in two
stages. On the first stage, the projection layer is pretrained on a simple task to enable better alignment

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

RAG 
(cosine/jaccard/bm25)

LLM

CFC TOKEN

PROMPT TOKEN

(a) Vanilla RAG

LLM
 ENCODER 

(AST, CFG, DFG, NCS)

PROJECTORRAG 
(cosine/jaccard/bm25)

CFC EMBEDDING

PROMPT EMBEDDING

(b) LlavaCode

Figure 1: Comparison between Vanilla RAG 1a and LlavaCode 1b architectures. Instead of retriev-
ing text passages and putting them into the context of the reader language model, LlavaCode uses
a pretrained encoder to compress the text representations and projects them into continuous tokens,
thus, reducing the prompt processing time.

of the compressed embeddings with a large language model. On this stage the model is frozen and
only projection layer is trained. On the second stage, either the model and the projector or only the
projector are trained on downstream tasks. In contrast, our approach uses a single-stage training,
omitting the pretraining stage. We’ve experimented with pretraining the projector, but this did not
yield any improvements. More information on pretraining is available in Appendix E.

Most prior work on the related task—training a projection from encoder outputs into the embedding
space of an LLM — has relied on instruction-tuned models and QA datasets, and trained primarily
with cross-entropy loss (Jaegle et al., 2021; Liu et al., 2023; Zemskova & Yudin, 2025). There are,
however, notable exceptions. For example, xRAG incorporated KL divergence loss (Cheng et al.,
2024), reporting that it had a greater impact on downstream performance than NLL loss. Another
deviation from pure cross-entropy training is Flamingo (Alayrac et al., 2022), which employed the
two-term contrastive loss introduced in Radford et al. (2021).

Cross-entropy (negative log-likelihood) is the standard objective for training autoregressive LLMs:
it measures how well the model’s predicted next-token distribution matches the target distribution.
The formula for cross-entropy loss is the following:

LCE(θ) = − 1

T

T∑
t=1

log pθ(yt|y1, . . . , yt−1).

In our experiments, we have found that relying solely on cross-entropy loss was insufficient, since
it does not directly correlate with EM and ES metrics. Exact Match measures the percentage of
predictions that match the reference output exactly, character for character. It is a strict metric that
gives credit only for completely correct generations. Edit Similarity measures the similarity be-
tween the prediction and the reference based on the minimum number of edits (insertions, deletions,
substitutions) needed to transform one into the other. It provides a softer evaluation by rewarding
partial correctness. These are sequence-length metrics, whereas cross-entropy is token-level, maxi-
mizing the likelihood of the next token prediction given ground truth. Therefore, it is to be expected
that optimizing only for cross-entropy led to suboptimal results on key target metrics — EM and
ES — even though it produced lower cross-entropy loss value compared to the baseline model (see
ablation study in Table 1). These results motivated us to explore methods for directly optimizing
sequence-based metrics, including approaches from reinforcement learning.

3.3 REINFORCE

As noted in Rennie et al. (2017), deep generative models for text are typically trained to maxi-
mize the likelihood of the next ground-truth word conditioned on the previous ground-truth word
via backpropagation. This training paradigm is commonly referred to as Teacher Forcing (Bengio

4
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(a) Encoder output (b) Collapsed projector output (c) Projector output

Figure 2: Pairwise cosine distances between vector outputs. While the encoder representations
remain well-separated (a), the projected vectors may collapse, becoming nearly indistinguishable
(b). Introducing the Cosine Alignment Loss 3 helps preserve the distinctions among the projections,
preventing excessive overlap.

et al., 2015). However, it introduces a discrepancy between training and inference: at test time, the
model generates each word conditioned on its own previous predictions rather than the ground-truth
sequence. This exposure bias (Ranzato et al., 2015) can lead to the accumulation of errors during
generation, as the model has never been exposed to its own predictions during training.

Our target metrics — Exact Match (EM) and Edit Similarity (ES) — are inherently affected by
teacher-forcing bias, as they evaluate predictions at the sequence level. Previous studies have shown
that both exposure bias and the non-differentiability of sequence-based evaluation metrics can be
mitigated using techniques from Reinforcement Learning (RL) (Sutton & Barto, 1998). In partic-
ular, Ranzato et al. (2015) and Rennie et al. (2017) apply the REINFORCE algorithm (Williams,
1992) to directly optimize non-differentiable, sequence-level metrics.

Assume we are training an LLM decoder model with parameters θ. REINFORCE is based on the
observation that the expected gradient of a non-differentiable reward function can be computed as
follows:

∇θLR(θ) = −Ey∼pθ

[
r(y)∇θ log pθ(y)

]
, (1)

where y = (y1, . . . , yT ) is a sequence of generated tokens, yt ∼ pθ(yt|y1, . . . , yt−1).

In practice, the expected gradient can be approximated using a single Monte-Carlo sample from pθ.
Using the sum of our target metrics as a reward function brings us to the final expression for our
REINFORCE loss component:

LR(θ) = −(EM(y) + ES(y))
T∑

t=1

log pθ(yt|y1, . . . , yt−1), (2)

where ES(y) and EM(y) are the EM and ES metrics computed from a model rollout with greedy
approach. Greedy generation prevents us from using the variance-reducing baseline term from Ren-
nie et al. (2017), which is necessary in standard REINFORCE due to stability issues. However,
as discussed in Section 3.6, this limitation is offset by the additional components of our final loss
function 4.

3.4 COSINE ALIGNMENT LOSS

While training the projection from encoder representations into the LLM embedding space in our ini-
tial experiments, we observed that the projection MLP often collapsed to an almost one-dimensional
subspace: the angles between projected vectors converged to nearly zero across most pairs (see
Figure 2b), while the encoder itself is expressive, producing embeddings with pairwise cosine simi-
larities broadly distributed in the range [0.0, 1.0] (see Figure 2a).

5
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Figure 3: Relationship between the three loss components (Cross-Entropy, REINFORCE, and Co-
sine Alignment) and the evaluation metrics Exact Match (EM) and Edit Similarity (ES).

This behavior is undesirable, since we aim to preserve the distinctions between retrieved text chunks.
To address this collapse and retain the relative differences among encoder embeddings after projec-
tion, we introduce a specialized Cosine Alignment Loss:

LA(θ) =
1√
2
∥SC(yenc)− SC(yproj)∥F , (3)

where SC denotes the cosine similarity matrix between vectors of the output batch, and yenc and yproj
represent the encoder and projection output batches, respectively. This loss enforces preservation of
pairwise cosine similarities within a batch by minimizing the mean squared error (MSE) between
the similarity matrices. The factor 1√

2
compensates for the symmetry of the cosine similarity matrix.

The loss formulation in Equation 3 helps preserve relative differences between retrieved contexts.
Figure 2c shows the resulting cosine distance matrix for 100 random samples, demonstrating that
the projections remain mostly well-separated and their cosine distance matrix has the same structure
as the original embeddings’ matrix. In contrast to that, collapsed projector outputs form a single
indistinguishable representation, as seen in Figure 2b.

3.5 KL-LOSS

In contrast to the findings reported by Cheng et al. (2024), we observe that the KL-divergence loss
between models trained with compressed versus uncompressed retrieved context does not improve
prediction quality. This outcome directly conflicts with the results presented in the xRAG paper,
where the KL-loss term was assigned a weight of 2.0 relative to the NLL-loss weight of 1.0. Their
choice was based on ablation studies with instruction-tuned models on QA datasets, where they at-
tributed performance gains primarily to the KL-loss component, arguing that it improved the model’s
resilience rate—defined as the proportion of cases in which responses remained correct both before
and after retrieval augmentation.

To thoroughly evaluate the xRAG approach to projector training, we perform an ablation study
using multiple loss formulations, including a full reproduction of the xRAG loss described above.
As shown in Table 1, this loss configuration yields performance below the unaugmented model
baseline.

3.6 FINAL LOSS FUNCTION

We optimize our model using the following composite loss function:

L(θ) = αCELCE(θ) + αRLR(θ) + αALA(θ), (4)

where the coefficients αCE , αR, and αA are weighting factors. These weights are selected through
hyperparameter tuning using the Optuna framework (Akiba et al., 2019)3. These and other training
hyperparameters fot all trained models are listed in Appendix C. The loss dynamic and its corre-
spondence to target metrics EM and ES can be seen in Figure 3.

3https://optuna.org
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Method αCE αR αA αKL CE Loss ↓ EM ↑ ES ↑
Base Model w/o CFC - - - - 0.97 45.97 66.57
Base Model w/ CFC - - - - 0.99 50.87 69.43
LLaVA (Liu et al., 2023) 1.0 0.0 0.0 0.0 0.80 38.57 63.6
REINFORCE-only 0.0 1.0 0.0 0.0 5.18 40.61 63.91
CE + Cos Align 0.9 0.0 0.1 0.0 0.89 42.3 64.43
xRAG (Cheng et al., 2024) 1.0 0.0 0.0 2.0 0.84 44.0 65.5
LlavaCode (ours) 0.9 0.1 0.1 0.0 1.02 47.66 68.74

Table 1: Ablation studies on different approaches to projection training. Result without context
augmentation is denoted ”w/o CFC”. Result with uncompressed cross-file context is denoted by “w/
CFC” and highlighted with gold. αKL denotes the weight of KL-loss. Other loss components are as
in Section 3.6. Metrics are reported on evaluation subset of our dataset (≈ 4.3k samples).

As noted in Section 3.3, we use standard REINFORCE without a variance-reduction baseline, an
approach reported to be weaker then SCST, as reported by Rennie et al. (2017). However, the CE
loss term serves as a strong stabilizer, reducing the need for such a baseline in the REINFORCE
component. As shown in Table 1, REINFORCE alone diverges, whereas in the presence of CE loss
REINFORCE trains successfully—confirming the stability issues of standard REINFORCE when
used in isolation.

4 EXPERIMENTS

4.1 DATASET

We trained our models on the Python subset of The Stack dataset (Kocetkov et al., 2022). To en-
sure dataset quality, we organized files by repository and applied the following filtering steps: we
excluded repositories with fewer than 50 stars, fewer than 5 files, or files containing fewer than 3 im-
port statements. After filtering, the dataset contained approximately 150k code completion samples,
each paired with at least ten relevant cross-file context snippets. Relevant examples were identi-
fied using the Jaccard text similarity metric applied to code chunks drawn from the surrounding
repository (excluding the current file used for code completion).

The code completion task takes fill-in-the-middle (FIM) format, where the left and right contexts
are provided and the missing middle segment must be generated by the LLM. Each target segment
consists of nt lines (1 ≤ nt ≤ 9), with nt sampled from a Poisson distribution. Code was segmented
into chunks of 10 × nt lines with an overlap of 5 × nt lines. We tried to enhance RAG with more
sophisticated code search techniques, such as utilizing cosine distance between text embeddings
from various models, but Jaccard showed the best results. For more information, see Appendix F.

During training, we use all available length of the target, while evaluation is performed specifically
on single line completions. For evaluation, the dataset was split at the repository level to ensure
that samples from a given repository appeared exclusively in either the training or validation set.
Additionally, we remove all leading and trailing whitespace to ensure that ES metric is not artificially
inflated.

4.2 TRAINING

We train 2- and 3-layer MLP projection modules that map sentence encoder outputs (e.g., UniX-
Coder or Qwen3Embedding) into the dimension of code LLM embeddings. For each sample, the top
10 cross-file contexts, encoded and projected into LLM representations at the time of RAG database
creation, are concatenated with the code completion prompt embeddings before being passed to the
LLM. When comparing against the LLM with non-compressed text context, the top 10 retrieved
contexts are concatenated into one sequence, truncated to 512 tokens and then concatenated with
the same code completion prompt. The code completion prompt budget (without retrieved context)
is 2k tokens for both methods. As a result, the input sequence length in our approach is 502 tokens
shorter than in conventional RAG.

7
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Benchmark Model Seq Length EM ↑ ES ↑ CodeBLEU↑

CCEvalLong (Wu et al., 2024)
w/o CFC 2000 45.64 71.75 55.82
w/ CFC 2500 49.74 73.2 58.01

LlavaCode (ours) 2010 47.16 73.35 57.46

RepoEval (Zhang et al., 2023)

w/o CFC 2000 58.13 77.98 58.09
w/ CFC 2500 64.56 81.69 64.34

LlavaCode (ours) 2010 60.56 80.46 59.67
Context Pruning 2010 57.91 78.1 58.05

Context Summarization 2010 58.04 78.26 58.23
CodePromptZip (He et al., 2025) 2010 57.91 78.3 58.26

RepoEval Api (Zhang et al., 2023)
w/o CFC 2000 48.75 74.13 52.32
w/ CFC 2500 55 79.31 57.6

LlavaCode(ours) 2010 51.31 77.95 55.56

Table 2: Results on code completion benchmarks. Qwen2.5Coder-7B was used as the base code-
generating LLM for all methods.

During training, only the projection weights are updated, while both the encoder and the LLM
remain frozen. Optimization is performed using the joint loss described in Section 3.6, which
combines all three loss components. Cross-Entropy is only computed over the sequence after the
<|fim middle|> special token. For REINFORCE loss, we generate 50 tokens using greedy
decoding and evaluate EM and ES metrics on the obtained sequence. A full list of training hyperpa-
rameters, including the coefficients for each loss component, is provided in Appendix C.

Table 1 presents the results of our ablation studies across different loss formulations, comparing four
configurations: Cross-Entropy only (LLaVA-style), REINFORCE only, Cross-Entropy with Cosine
Alignment, and Cross-Entropy with KL Loss (the xRAG objective). As discussed in Section 3.2,
relying solely on the Cross-Entropy objective degrades performance on both EM and ES metrics.
Conversely, optimizing exclusively with the REINFORCE loss leads to uncontrolled entropy growth
and fails to outperform the w/o CFC baseline, due to the absence of variance-reducing baseline. In
contrast, only a carefully balanced combination of all three loss components (Section 3.6) yields
consistent improvements across the target metrics (Figure 3).

The ablation in Table 3 studies the effect of encoder choice and projection depth. We evaluate
two encoders and code modalities: UniXCoder with AST representations of retrieved code, and
the Qwen-3-Embedding-0.6B model with retrieved code. Qwen-3-Embedding-0.6B used as the
retrieved-context compressor outperforms UniXCoder. A three-layer MLP projection further im-
proves both EM and ES but increases the number of trainable parameters by roughly 4×.

Our main results on several well-known code-completion benchmarks are presented in Table 2. We
compare our approach—retrieved-context compression via LlavaCode—against a base model with
no additional context, as well as a model that uses uncompressed retrieved context. For the Repo-
Eval benchmark, we further compare our method with other context-compression techniques that
achieve a similar compression ratio, such as token pruning and summarization. Pruning and sum-
marization were performed using the Qwen2.5Coder-7B Instruct model. Additionally, we compare
our approach with CodePromptZip (He et al., 2025), a code-focused technique designed to reduce
context length. As shown in the table, the level of extreme compression achieved by LlavaCode
leads to severely bad performance for methods that operate in token space, which typically perform
best only at moderate compression ratios (around 0.3).

Despite negligible latency impact introduced by the additional 10 tokens, our approach surpasses
the no-CFC baseline on EM and ES metrics by a sizable margin, which makes our approach prefer-
able in latency-limited environments, such as IDE code completion, where vanilla RAG introduces
noticeable latency impact in the range of 20-38%. Detailed latency measurements are presented in
Section 5 and in Tables 8, 9. When compared to other context compression methods, LlavaCode
significantly outperforms them; the alternative approaches show virtually no improvement over the
base model’s prediction quality at such extreme compression rates.

Concrete code completion examples, along with resilience rates from the benchmark results, are
presented in Table 6 and Figure 4 in Appendix B. Table 5 shows the results of running the original
xRAG pipeline with openly available model4 on RepoEval benchmark.

4https://huggingface.co/Hannibal046/xrag-7b
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Encoder Modality Projection # Trainable Parameters EM ES
UniXCoder AST 2-layer MLP 3.5M 46.69 67.65
UniXCoder AST 3-layer MLP 16.5M 46.94 68.26
Qwen3Embedding Code 2-layer MLP 3.9M 47.01 68.15
Qwen3Embedding Code 3-layer MLP 17.3M 47.66 68.74

Table 3: Comparison of different encoders and projection heads with their trainable parameters and
performance metrics. Differences in the number of trainable parameters emerge from the encoder
output dimension and the number of MLP layers. All configurations were trained for ≈ 6,600
training steps (3 epochs).

5 SPEEDUP ESTIMATION

In our LlavaCode pipeline, the Encoder + Projector processes contextual chunks from the surround-
ing repository during the RAG database build—typically when the IDE indexes the project. As
a result, at inference time the system simply appends the precomputed projections to the code-
completion prompt. This means that the primary factor influencing how quickly the user receives a
completion suggestion is the sequence length. In this section we demonstrate the practical benefits
of sequence length reduction, provided by LlavaCode.

Two deployment patterns dominate today’s LLM serving landscape. First, prefill–decode mixing,
uses single engine which interleaves chunks from prompt prefill with decoding passes across re-
quests. For instance, one of the inference engines, which utilizes this approach, is vLLM framework
Kwon et al. (2023). Second, disaggregated prefill-decode, when prefill and decode run on separate
GPU pools or nodes (possibly on different clusters) with independent resource plans. An example
of an engine that uses this approach is DistServe Zhong et al. (2024).

Colocating prefill and decode is utilization-friendly and achieves high throughput on single ma-
chines via memory-efficient KV management and continuous batching. However, prefill and decode
contend for distinct resources and interfere with each other, which makes it hard to independently
control TTFT (time to first token) and TPOT (time per output token) under enterprise’s Service
Level Agreement (SLA). As a result, systems are often over-provisioned with hardware to satisfy
both metrics. Agrawal et al. (2024); Wang et al. (2024)

Separating the phases decouples resource allocation and parallelism strategies, eliminating pre-
fill–decode interference and enabling direct tuning of TTFT (prefill stage) and TPOT (decode stage).
Operationally, it simplifies capacity planning and horizontal scaling because each fleet can scale
along its own bottleneck. User will operate over IDE in interactive manner, so TTFT of code com-
pletion LLM is the main metric to which the experience is sensitive, since, as soon as tokens start
generating, user can start reviewing code suggestions.

For disaggregated serving (transformers) and colocated prefill–decode (vllm) the results are shown
in Table 8. For performance measurements, we report scaling metrics for both inference patterns.
For benchmarking, we implement separate prefill and decode workers using the transformers run-
time Wolf et al. (2020). More detailed results, including TPOT metric, are listed in Appendix D.

Reducing prompt length primarily improves TTFT; in colocated engines it often yields limited gains
on decode-side TPOT, which remains dominated by iterative decode dynamics and batching. Under
disaggregation, the effect becomes more predictable: shorter contexts directly reduce prefill latency
and lower the number of GPUs requirements to handle the same load while leaving decode behavior
isolated, allowing clearer SLA tuning for each phase.

6 CONCLUSIONS AND FUTURE WORK

In conclusion, we propose a novel pipeline for retrieval augmented code generation using LLaVA-
like projection of retrieved code chunks into LLM embeddings, which significantly increases the
quality of code completions, while introducing negligible effect on latency. Compared to full RAG,
our approach results in 20-38% better prompt processing speed and latency metrics, which is criti-

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Sequence compression Model TTFT transformers TTFT vllm
2500→ 2010↓ 20% Qwen2.5-Coder-1.5B 198.2 → 156.6↓ 21% 74.7 → 68.2↓ 9%

Qwen2.5-Coder-7B 668.6 → 541.1↓ 19% 198.3 → 166.5↓ 16%
Qwen2.5-Coder-14B 822.8 → 661.3↓ 20% 349.8 → 291.7↓ 17%

2000→ 1510↓ 24% Qwen2.5-Coder-1.5B 157.4 → 113.4↓ 28% 65.3 → 58.4↓ 11%
Qwen2.5-Coder-7B 540.0 → 406.8↓ 25% 179.0 → 134.0↓ 25%
Qwen2.5-Coder-14B 662.2 → 496.3↓ 25% 291.5 → 232.9↓ 20%

1500→ 1010↓ 33% Qwen2.5-Coder-1.5B 112.2 → 69.7↓ 38% 58.9 → 50.3↓ 15%
Qwen2.5-Coder-7B 406.4 → 282.2↓ 31% 138.0 → 112.4↓ 19%
Qwen2.5-Coder-14B 495.6 → 339.6↓ 31% 238.2 → 174.6↓ 27%

Table 4: For disaggregated inference deployment (measured with transformers library) context com-
pression directly leads to almost same decrease of TTFT. This way, response for user’s query start
generating and showing to user much earlier. For prefill-decode mixing, as described in Section 5,
speedup is lower than context compression, due to decode workload dominating on latency. Mea-
sured on NVIDIA A100.

cal for code completion applications, while maintaining slightly worse, but comparable generation
quality.

To the best of our knowledge, our work is the first among the LLaVA-like approaches to apply
compression to code generation models, explore the addition of semantically rich code modalities,
utilize base models instead of instruction-tuned models, and apply reinforcement learning to train
the projection for downstream code-completion tasks. We achieve this by training only a lightweight
projection module, without modifying the embedding model and code generation LLM.

Using the REINFORCE algorithm, we directly optimize ES and EM metrics, which are closely
linked to positive user experience in interactive code completion environments. Additionally, by in-
troducing a novel Cosine Alignment Loss, we preserve document-level distinctions after projection.
Moreover, we demonstrate that all previously proposed methods for training a projector fail on code
completion tasks, and design a more sophisticated loss function that consistently improves the target
metrics.

Future work could investigate state-of-the-art RL methods to improve alignment with EM/ES met-
rics, such as PPO or GRPO. In addition, as new encoders for graph modalities are developed, our
approach could be re-evaluated using these improved architectures. Finally, our current experiments
are limited to the Python subset of The Stack dataset; extending the evaluation to other widely
used languages such as Java, C#, and beyond would provide a broader assessment of the method’s
generality.
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Sequence Length EM ↑ ES ↑ CodeBLEU↑
w/ CFC 2000 0.19 14.05 3.88
xRAG 2010 0.19 13.42 4.10

Table 5: Results of openly available xRAG model5 on RepoEval benchmark.
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A LLM USAGE STATEMENT

We used ChatGPT-5 and ChatGPT-4o to correct grammatical and stylistic errors, condense text,
perform translations, and rephrase content.

B DETAILED RESULTS

Figure 4: Resilience rate of two augmentation
methods: uncompressed retrieved cross-file context
(w/o CFC) and LlavaCode over a Qwen2.5Coder-
7B baseline without retrieval augmentation.

Table 6 presents examples illustrating how
LlavaCode handled code completion tasks
from our benchmarks, compared with both
the baseline model without cross-file con-
text (w/o CFC) and the model using uncom-
pressed cross-file context (w/ CFC).

Figure 4 shows the resilience rates—the per-
centage of instances where the model’s re-
sponse remains correct both before and after
retrieval augmentation—for LlavaCode com-
pared to a model using uncompressed cross-
file context. Overall, the rates are compara-
ble, with LlavaCode showing a slight advan-
tage on average.
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Table 5 presents the results of running the original xRAG pipeline on RepoEval. Since xRAG relies
on the general-purpose, non code-specific Mistral-7B model and its compression mechanism was
trained on retrieved documents for downstream QA tasks, we do not include these results in our
main comparison in Table 2. Nevertheless, the results highlight that context compression techniques
designed for natural language documents are insufficient for code, leading to either a marginal in-
crease in CodeBLEU or a decrease in other metrics such as Exact Similarity.

Code Completion
groundtruth pos += slice length

w/o CFC return
w/ CFC yield ""

LlavaCode pos += slice length
groundtruth fields_values[name] = NAO

w/o CFC if name in fields:
w/ CFC if name in fields:

LlavaCode fields_values[name] = NAO
groundtruth trial_metadata: Iterable[UnitMetadataUpdate],

w/o CFC trial_metadata: Iterable[
w/ CFC trial_metadata: Iterable[UnitMetadataUpdate],

LlavaCode trial_metadata: Iterable[key_value_pb2.KeyValue],
groundtruth from jax import random

w/o CFC import random
w/ CFC from jax import random

LlavaCode from jax import random
groundtruth from fortuna.prob_model.posterior.map.map_stat

w/o CFC cfg = compile_config(cfg, create_cfg=create_cfg)
w/ CFC from fortuna.prob_model.posterior.map.map_ste

LlavaCode # Get env_fn from env_setting.

Table 6: Examples of generated code for the code-completion benchmarks reported in Table 2. “w/o
CFC” denotes model without cross-file context, and “w/ CFC” denotes model using uncompressed
cross-file context. Although some benchmark tasks involve multi-line completions, only one-line
examples are shown here to fit more examples.

C TRAINING PARAMETERS

For our primary evaluations, we used the Qwen2.5Coder family of models, with the Qwen-3-
Embedding-0.6B model serving as the encoder. A three-layer MLP was employed as the projector,
mapping from the encoder dimension to twice the embedding size of the LLM, and finally down to
the LLM’s embedding size. A GELU activation and a LayerNorm were applied between the first and
second layers, and again between the second and final layer. Training hyperparameters for different
model sizes are described in 7.

Hyperparameter Qwen2.5Coder-1.5B Qwen2.5Coder-7B
optimizer AdamW AdamW

alpha Cosine Alignment 0.1 0.2
alpha Cross-Entropy 0.9 0.9
alpha REINFORCE 0.1 0.05

learning rate 1e-3 1e-4
lr scheduler type cosine cosine

warmup ratio 0.03 0.04
weight decay 0.0 0.0

epochs 3 3
effective batch size 66 64

train samples 150k 150k

Table 7: Hyperparameters for projection training
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Sequence compression Model TTFT TPOT
2500→ 2010↓ 20% Qwen2.5-Coder-1.5B 198.2 → 156.6↓ 21% 23.6 → 23.2↓ 2%

Qwen2.5-Coder-7B 668.6 → 541.1↓ 19% 27.2 → 25.4↓ 7%
Qwen2.5-Coder-14B 822.8 → 661.3↓ 20% 58.5 → 52.8↓ 10%

2000→ 1510↓ 24% Qwen2.5-Coder-1.5B 157.4 → 113.4↓ 28% 23.5 → 23.1↓ 2%
Qwen2.5-Coder-7B 540.0 → 406.8↓ 25% 25.1 → 24.1↓ 4%
Qwen2.5-Coder-14B 662.2 → 496.3↓ 25% 52.7 → 47.0↓ 11%

1500→ 1010↓ 33% Qwen2.5-Coder-1.5B 112.2 → 69.7↓ 38% 23.2 → 23.5↑ 1%
Qwen2.5-Coder-7B 406.4 → 282.2↓ 31% 24.1 → 24.2
Qwen2.5-Coder-14B 495.6 → 339.6↓ 31% 46.8 → 41.1↓ 12%

Table 8: For disaggregated inference deployment (measured with transformers library) context com-
pression directly leads to almost same decrease of TTFT. This way, response for user’s query start
generating and showing to user much earlier. Measured on a single NVIDIA A100.

Sequence compression Model TTFT TPOT
2500→ 2010↓ 20% Qwen2.5-Coder-1.5B 74.7 → 68.2↓ 9% 5.3 → 5.3

Qwen2.5-Coder-7B 198.3 → 166.5↓ 16% 11.7 → 11.7
Qwen2.5-Coder-14B 349.8 → 291.7↓ 17% 22.3 → 21.8↓ 2%

2000→ 1510↓ 24% Qwen2.5-Coder-1.5B 65.3 → 58.4↓ 11% 5.3 → 5.6↑ 5%
Qwen2.5-Coder-7B 179.0 → 134.0↓ 25% 11.7 → 11.6↓ 1%
Qwen2.5-Coder-14B 291.5 → 232.9↓ 20% 21.8 → 21.8

1500→ 1010↓ 33% Qwen2.5-Coder-1.5B 58.9 → 50.3↓ 15% 5.4 → 6.3↑ 16%
Qwen2.5-Coder-7B 138.0 → 112.4↓ 19% 11.6 → 11.5↓ 1%
Qwen2.5-Coder-14B 238.2 → 174.6↓ 27% 21.7 → 21.4↓ 1%

Table 9: For prefill-decode mixing, context compression leads to more efficiency. But, as described
in Section 5, speedup is lower than for context compression, due to decode workload dominating on
latency. Measured on NVIDIA A100.

D DETAILED LATENCY AND LOAD MEASUREMENTS

This section expands on the results presented in Section 5, including TTOP measurements as shown
in Tables 8 and 9, as well as latency reduction measurements for prefill-only regime (1-token gener-
ation), reported in Tables 10 and 11.

E ON PRETRAINING OF THE PROJECTION MODULE

Whereas most prior work adopts two-stage training, we use a single-stage pipeline based on a com-
posite loss function, discussed in Section 3.6. For completeness, we also evaluated a conventional
two-stage pretrain–finetune pipeline for projection training.

Sequence compression Model TTFT
2500→ 2010↓ 20% Qwen2.5-Coder-1.5B 198.2 → 159.3↓ 20%
2500→ 2010↓ 20% Qwen2.5-Coder-7B 668.1 → 539.1↓ 19%
2500→ 2010↓ 20% Qwen2.5-Coder-14B 820.9 → 661.1↓ 19%
2000→ 1510↓ 24% Qwen2.5-Coder-1.5B 159.9 → 121.2↓ 24%
2000→ 1510↓ 24% Qwen2.5-Coder-7B 539.1 → 406.3↓ 25%
2000→ 1510↓ 24% Qwen2.5-Coder-14B 660.6 → 495.8↓ 25%
1500→ 1010↓ 33% Qwen2.5-Coder-1.5B 120.7 → 75.5↓ 37%
1500→ 1010↓ 33% Qwen2.5-Coder-7B 405.4 → 281.0↓ 31%
1500→ 1010↓ 33% Qwen2.5-Coder-14B 494.9 → 339.6↓ 31%

Table 10: Latency reduction in prefill-only regime (generation of 1 token). Transformers library.
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Sequence compression Model TTFT
2500→ 2010↓ 20% Qwen2.5-Coder-7B 197.4 → 165.9↓ 16%
2500→ 2010↓ 20% Qwen2.5-Coder-14B 351.5 → 291.2↓ 17%
2500→ 2010↓ 20% Qwen2.5-Coder-1.5B 79.1 → 67.0↓ 15%
2000→ 1510↓ 24% Qwen2.5-Coder-7B 164.4 → 135.8↓ 17%
2000→ 1510↓ 24% Qwen2.5-Coder-14B 290.0 → 240.9↓ 17%
2000→ 1510↓ 24% Qwen2.5-Coder-1.5B 65.9 → 56.4↓ 14%
1500→ 1010↓ 33% Qwen2.5-Coder-7B 136.5 → 104.6↓ 23%
1500→ 1010↓ 33% Qwen2.5-Coder-14B 240.2 → 191.4↓ 20%
1500→ 1010↓ 33% Qwen2.5-Coder-1.5B 56.4 → 48.7↓ 14%

Table 11: Latency reduction in prefill-only regime (generation of 1 token). vLLM framework.

In prior work, pretraining often relies on parallel datasets, such as paraphrase pairs in xRAG or
image–caption pairs in LLaVA. Inspired by xRAG, we experimented with a similar pretraining ap-
proach, attempting to reconstruct retrieved context chunks from projected vectors by optimizing the
entropy loss. This approach did not yield improvements in the second stage of training, likely due
to the entropy issues discussed in Section 3.2.

Kuratov et al. (2025) demonstrate that up to 1,568 tokens can be compressed into a single continuous
”memory” token by treating the token as a trainable parameter and optimizing it via backpropagation
with a cross-entropy reconstruction loss. Because these continuous tokens reconstruct to reference
texts, we treat them as ground truth for training our projection layer. Concretely, we encode text
with our encoder, project the resulting embeddings into a single token, and optimize a mixture of
Mean Squared Error (MSE) and cosine-similarity (CS) losses between the projected embedding and
the trained ground-truth compressed token.

However, the space spanned by the memory tokens proved to be highly non-smooth. For instance,
identical text inputs could be compressed into vectors that are widely separated, and introducing
even small perturbations to a learned memory token often results in reconstruction of completely
different text. This leads to poor generalization for an MLP module attempting to map into this
space. Consequently, learning a projection into such a space requires extreme overparameterization,
effectively amounting to memorizing the entire dataset. As a result, we could only overfit on a small
subset of memory tokens and were unable to learn a meaningful translation into the memory token
space.

We leave the more sophisticated pretraining of the projection module for code compression to future
work.

F ON DIFFERENT RETRIEVAL TECHNIQUES

We evaluated multiple retrieval metrics for selecting the top-10 most relevant code chunks. Specif-
ically, we compared sparse retrievers such as BM25 and Jaccard with dense retrievers based on
cosine similarity over embeddings from UniXCoder and Jina v2. Each retriever-augmented model
was benchmarked against a baseline model without any additional retrieved context. The compar-
ison was conducted on a subset of 1,600 code completion tasks from our dataset as described in
Section 4.1. The results show that Jaccard and UniXCoder achieved the best performance. Given its
lower latency, we adopt Jaccard as the primary retrieval method in Section 4.1.

Method EM ES
No CFC 50.50 73.12
BM25 55.56 76.5
Jaccard 56.19 76.68
UniXCoder 56.00 76.84
Jina v2 54.31 75.56

Table 12: Comparison of different retrieval strategies.
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