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Abstract

Magnetic resonance imaging (MRI) is widely employed for diagnostic tests in neurology.
However, the utility of MRI is largely limited by its long acquisition time. Acquiring fewer
k-space data in a sparse manner is a potential solution to reducing the acquisition time, but
it can lead to severe aliasing reconstruction artifacts. In this paper, we present a novelDual-
Domain Cross-Iteration Squeeze and Excitation Network (DD-CISENet) for accelerated
sparse MRI reconstruction. The information of k-spaces and MRI images can be iteratively
fused and maintained using the Cross-Iteration Residual connection (CIR) structures. This
study included 720 multi-coil brain MRI cases adopted from the open-source fastMRI
Dataset (Zbontar et al., 2018). Results showed that the average reconstruction error by DD-
CISENet was 2.28± 0.57%, which outperformed existing deep learning methods including
image-domain prediction (6.03 ± 1.31%, p < 0.001), k-space synthesis (6.12 ± 1.66%, p <
0.001), and dual-domain feature fusion approaches (4.05± 0.88%, p < 0.001).
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1. Introduction

Magnetic resonance imaging (MRI) is an essential clinical diagnosis tool of neurology. How-
ever, the long scanning time of MRI might induce many problems including patient discom-
fort, high exam cost, and motion artifacts. One potential approach for accelerated MRI
scanning is downsampling k-space measurements. However, the reconstructed images using
the downsampled k-space data will display severe aliasing artifacts.

Deep learning has shown great potentials in the accelerated sparse reconstruction of
MRI. Existing deep learning approaches can be generally classified into three categories.
The first category applied the sparsely reconstructed MRI images as input of neural net-
works to predict the synthetic fully reconstructed images. The second category utilized the
sparse k-space as input of networks to generate the synthetic full-view k-space. The third
category combines the features of k-space and images in a dual-domain manner to restore
the full-view k-space (Eo et al., 2018). However, the cross-iteration features were typically
ignored in previous dual-domain methods. In this study, we present a novel Dual-Domain
Cross-Iteration Squeeze-Excitation Network (DD-CISENet) for the accelerated sparse re-
construction of brain MRI. The incorporated Cross-Iteration Residual (CIR) connections
enable data fusion across iterations to enhance the reconstruction accuracy.
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Figure 1: The architecture of DD-CISENet. I-Net or K-Net modules are end-to-end con-
nected for dual-domain feature fusion. Cross-Iteration Residual (CIR) connec-
tions enable the retention of image or k-space features across iterations.

2. Methods

The diagram of DD-CISENet is presented in Fig. 1. The sparse k-space dataKS is first input
to I-Net1 module after reconstruction using Inverse Fourier Transform (IFT), generating the
output I1 = HI1(F�1(KS)), whereHI1 refers to a dual Squeeze-Excitation Network (SENet)
(Chen et al., 2021) in I-Net1. F�1 refers to the IFT operator.

Then, I1 was input to the K-Net1 module after forward projection using Fourier Trans-
form (FT), generating the output K1. Then, the IFT of K1 is input to I-Net2 of the 2nd

iteration. Meanwhile, I1 is also added to I-Net2 using CIR connections to produce the
output I2 = HI2(F�1(K1) + I1). Thus, the image-domain features of the 1st iteration is
retained and transmitted to the next iteration to better incorporate the image features.

Similarly, K1 is added to K-Net2 to retain the k-space features. The output k-space of
the ith (i≥2) iteration can be formulated as:

Ki = D(HKi(D(F(Ii) +Ki�1,KS)),KS), (1)

where D is a data consistency module. HKi is SENet in K-Net i. F is the FT operator.
Then, the predicted KN is reconstructed into the final MRI image Rout as the output.
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Figure 2: Visualizations of the reconstructed MRI images using predicted k-space. Differ-
ence maps are placed at the bottom side for comparison.

The overall end-to-end loss function of DD-CISENet is L = L1 + · · · + Li + · · · + LN ,
where Li = λIi lIi + λKi lKi represents the combined loss of the ith iteration. λ is the loss
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