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ABSTRACT

We introduce a manifold analysis technique for neural network representations.
Normalized Space Alignment (NSA) compares pairwise distances between two
point clouds derived from the same source and having the same size, while po-
tentially possessing differing dimensionalities. NSA can act as both an analytical
tool and a differentiable loss function, providing a robust means of comparing
and aligning representations across different layers and models. It satisfies the
criteria necessary for both a similarity metric and a neural network loss function.
We showcase NSA’s versatility by illustrating its utility as a representation space
analysis metric, a structure-preserving loss function, and a robustness analysis tool.
NSA is not only computationally efficient but it can also approximate the global
structural discrepancy during mini-batching, facilitating its use in a wide variety of
neural network training paradigms.

1 INTRODUCTION

Deep learning and representation learning have rapidly emerged as cornerstones of modern artificial
intelligence, revolutionizing how machines interpret complex data. At the heart of this evolution is the
ability of deep learning models to learn efficient representations from vast amounts of unstructured
data, transforming it into a format where patterns become discernible and actionable. As these models
delve deeper into learning intricate structures and relationships within data, the necessity for advanced
metrics that can accurately assess and preserve the integrity of these learned representations becomes
increasingly evident. The ability to preserve and align the representation structure of models would
enhance the performance, interpretability and robustness (Finn et al., 2017) of these models.

Despite the significant advancements achieved through representation learning in understanding
complex datasets, the challenge of precisely maintaining the structural integrity of representation
spaces remains. Current methodologies excel at optimizing the relative positions of embeddings
(Chen et al., 2020; Schroff et al., 2015), yet they often overlook the challenge of preserving exact
structural relationships to improve the performance, interpretability, and robustness of neural networks.
A similarity index that is computationally efficient and differentiable would not only empower
practitioners to navigate high-dimensional spaces with ease but also facilitate the seamless integration
of similarity-based techniques into gradient-based optimization pipelines.

We present a distance preserving structural similarity index 1 called “Normalized Space Alignment
(NSA).” NSA measures both the global and the local discrepancy in structure between two spaces
while ensuring computational efficiency. The compared representations can lie in different dimen-
sional spaces provided there is a one to one mapping between the points. Globally, NSA measures
the average discrepancy in pairwise distances; locally, it measures the average discrepancy in Local
Intrinsic Dimensionality (Houle, 2017) of each point.

While manifold learning (Tenenbaum et al., 2000; Islam et al., 2023; Fefferman et al., 2016; Genovese
et al., 2012) has become integral to deep learning, when applied to deep learning, they encounter
three primary challenges (Psenka et al., 2023): (1) the lack of an explicit projection map between
the original data and its corresponding low-dimensional representation, making adaptation to unseen
data difficult; (2) the inability to scale to large datasets due to computational constraints; and (3) the

1Since NSA is a distance-based measure, it measures dissimilarity but we use the term ’similarity metric’
colloquially throughout the paper to refer to metrics that quantify relationships between representation spaces.
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extensive parameter tuning required, along with the need for a predefined understanding of the data.
NSA aims to address these challenges while offering versatility in deep learning applications.

In line with previous works that introduce and theoretically establish similarity indices (Kornblith
et al., 2019; Barannikov et al., 2022; Chen et al., 2022), we adopt a breadth-first approach in this
paper. Rather than focusing on a specific application, we present NSA’s broad applicability across
various use cases, establishing its viability in a wide range of scenarios. Future work can explore
NSA’s impact in greater depth within specialized fields. Our contributions are summarized below:

• NSA is proposed as a differentiable and efficiently computable index. NSA’s quadratic
computational complexity (in the number of points) is much better than some of the existing
measures (e.g., cubic in the number of simplices for RTD (Barannikov et al., 2022)). NSA
is shown to be a viable loss function and its computation over mini-batches of the data is
proven to be representative of the global NSA value.

• NSA’s viability as a similarity index is evaluated in Section 4.1 and as a loss function in
Section 4.2. It can be used as a supplementary loss in autoencoders for dimensionality
reduction. Results on several datasets and downstream task analyses show that NSA
preserves structural characteristics and semantic relationships of the original data better
compared to previous works.

• NSA can analyze perturbations that result from adversarial attacks on GNNs(Section 4.4).
NSA shows a high correlation with misclassification rate across varying perturbation rates
and can also provide insights on node vulnerability and the inner workings of popular
defense methods. Simple tests with NSA can provide insights on par with other works that
review and investigate the robustness of Neural Networks (Mujkanovic et al., 2022; Jin et al.,
2020a).

2 RELATED WORK

Early proposed measures of Structural Similarity Indices were based on variants of “Canonical
Correlation Analysis (CCA)” (Morcos et al., 2018; Raghu et al., 2017). “Centered Kernel Alignment
(CKA)” (Kornblith et al., 2019) utilizes a Representational Similarity Matrix (RSM) with mean-
centered representations and a linear kernel to measure structural similarity. But it was shown to
lack sensitivity to certain representational changes (Ding et al., 2021) and not satisfy the triangle
inequality (Williams et al., 2021). Barannikov et al. (2022) proposed “Representation Topology
Divergence (RTD),” to measure the dissimilarity in multi-scale topology between two point clouds of
equal size with a one-to-one point correspondence. RTD has better correlation with model prediction
disagreements than CKA but its high computational complexity and limited practicality for larger
sample sizes constrain its wider application. Recently, Chen et al. (2023) proposed a filter subspace
based similarity measure which can compare neural network similarity by utilising the weights from
the convolutional filter of CNNs. Although not strictly a feature representation based similarity
measure, it is capable of evaluating neural network similarity more efficiently than CKA or CCA.

Besides RTD and CKA, multiple other similarity indices have been proposed. Alignment based
measures (Ding et al., 2021; Williams et al., 2022; Li et al., 2016; Hamilton et al., 2018; Wang
et al., 2018) aim to compare pairs of representation spaces directly. Representational Similarity
Matrix based measures (Shahbazi et al., 2021; Kriegeskorte et al., 2008; Kornblith et al., 2019;
Székely et al., 2007; Tang et al., 2020; May et al., 2019; Boix-Adsera et al., 2022; Chen et al., 2022)
generate an RSM that describes the similarity between representations of each instance in order
to avoid measuring representations directly. This helps overcome the dimensionality limitation,
allowing RSM based measures to compute similarity regardless of what dimension the two spaces
lie in. Neighborhood based measures (Schumacher et al., 2020; Hamilton et al., 2016) compare
the nearest neighbors of instances in the representation space by looking at the consistency in the
k-nearest neighbors of each instance in the representation space. Topology based measures (Khrulkov
& Oseledets, 2018; Tsitsulin et al., 2020b; Barannikov et al., 2022) are motivated by the manifold
hypothesis. These measures aim to approximate the manifold of the representation space in terms of
discrete topological structures such as graphs of simplicial complexes (Goodfellow et al., 2016b).
Previous works are either incapable of comparing spaces across dimensions, do not satisfy one or
more of the invariance conditions required to be an effective similarity index, have high computational
complexity, cannot satisfy the conditions necessary to be a pseudometric or are not differentiable.
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3 NORMALIZED SPACE ALIGNMENT

NSA comprises of two distinct but complementary components: Local NSA (LNSA) and Global
NSA (GNSA). LNSA focuses on preserving the local neighborhoods of points, leveraging Local
Intrinsic Dimensionality to ensure nuanced neighborhood consistency. In contrast, GNSA extends
this analysis to a broader scale, aiming to maintain relative discrepancies between points across
the entire representation space. Together, these components provide a multifaceted understanding
of representation spaces. As a similarity index (Kornblith et al., 2019), NSA does not distinguish
between two point clouds that belong to the same E(n) symmetry group.

3.1 LOCAL NORMALIZED SPACE ALIGNMENT (LNSA)

LNSA focuses on the alignment of local neighborhoods of individual points within a dataset. This
approach is grounded in the extensive research on Local Intrinsic Dimensionality (LID) (Bailey et al.,
2022; Houle, 2017; Tsitsulin et al., 2020a; Camastra & Staiano, 2016). Prior to defining LNSA, we
provide a foundational overview of LID, setting the stage for a comprehensive understanding of how
LNSA leverages these principles to achieve precise alignment in local representation spaces.

3.1.1 LOCAL INTRINSIC DIMENSIONALITY

Given a point cloud X = { x⃗1, . . . , x⃗N } ⊆ Rn, we say X has intrinsic dimensionality m if all points
of X lie in an m-dimensional manifold (Fukunaga, 1982). LID is intuitively defined to find the lowest
dimensional manifold containing a local neighbor of a point of importance. Houle (2017) formally
defined local intrinsic dimensionality as follows:
Definition 3.1. Given a point cloud X ⊆ Rn and a point of interest x⃗ ∈ X . Let Rx⃗ be the random
variable denoting distances of all points from x⃗ and Fx⃗(·) be the cumulative distribution function of
Rx⃗. Let Fx⃗ be continuous and differentiable, then the LID of x⃗ is

IntrDimX(x⃗) = lim
ε→0
r→0

Fx⃗((1 + ε)r)− Fx⃗(r)

εFx⃗(r)
. (1)

In practice, we estimate the LID of a point using the distances to its k nearest neighbours. Amsaleg
et al. (2015) defined the Maximum Likelihood Estimator for LID and defined lid of x⃗i ∈ X as:

lid(i,X) = −

1

k

∑
ij :

(i1,...,ik)←kNNX(i)

log
d(x⃗i, x⃗ij )

d(x⃗i, x⃗ik)


−1

, (2)

where (i1, . . . , ik)← kNNX(i) denotes that the k nearest neighbours of x⃗i in X are (x⃗i1 , . . . , x⃗ik).
d(·, ·) is a differentiable distance measure between two vectors.

When aligning two points in different spaces to ensure they have similar local structures, the objective
extends beyond merely matching their local dimensions. It also involves ensuring that both points
share the same neighbors. To achieve this we have to identify the same k points near some point i in
space X and Y . Hence we define the notion of approximate dimensionality (AD) of a point x⃗i with
respect to any k tuple (x⃗i1 , . . . , x⃗ik) as:

ADX(i, (i1, . . . , ik)) = −

1

k

k∑
j=1

log
d(x⃗i, x⃗ij )

d(x⃗i, x⃗ik)

−1 . (3)

The measure lid is then defined as: lid(i,X) = ADX(i, kNNX(i)).

Levina & Bickel (2004) defined the intrinsic dimensionality of a space as the average LID of all its
points. This was later corrected by MacKay & Ghahramani (2005) to be the reciprocal of the average
reciprocal of LID of each point. Formally defined as:

IntrDim(X) =

 1

|X|
∑
x⃗i∈X

lid(i,X)−1

−1 . (4)
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MacKay & Ghahramani (2005) showed that performing aggregation operations on the reciprocals of
the LIDs of each point yields much better approximations.

3.1.2 DEFINITION

To define Local NSA (LNSA) using LID, we start with the premise that closely structured point
clouds should have similar dimensional manifolds in their local neighborhoods. Formally, for two
point clouds X and Y , and considering the k nearest neighbours of the ith point in X indexed as
i1, . . . , ik, we examine the manifold dimensions in Y that contain i, i1, . . . , ik. This leads to the
concept of "Symmetric lid" defined as:

lidX(i, Y ) = ADY (i, kNNX(i)). (5)

We notice that the mean discrepancy of the reciprocals of the LID is strongly correlated with the
local structure being preserved, this is similar to MacKay & Ghahramani (2005) where they show
that taking a mean of reciprocals of the LID is correlated to the intrinsic dimensionality of the whole
space. Hence we define LNSA of X with respect to Y as:

LNSAY (X) = N−1
∑

1≤i≤N

(
lid(i, Y )−1 − lidY (i,X)−1

)2
. (6)

Further, we can symmetricise this term to get the premetric LNSAmetric as:

LNSAmetric(X,Y ) = LNSAX(Y ) + LNSAY (X). (7)

When using NSA-based loss functions, we use LNSA whereas when using NSA-based similarity
indices, we use LNSAmetric.

3.1.3 ANALYTICAL PROPERTIES

We show that LNSAmetric is a premetric by proving the necessary properties in Appendix D: •
LNSAmetric(X,X) = 0, • Symmetry, • Non-negativity.

LNSA is shown to satisfy the necessary conditions of Invariance to Isotropic Scaling, Invariance to
Orthogonal Transformation, and (Not) Invariance to Invertible Linear Transformation as proposed by
Kornblith et al. (2019) for a similarity index. These condition are proved in Appendix E and ensure
that the similarity index is unaffected by rotation or scaling of the representation space.

3.2 GLOBAL NORMALIZED SPACE ALIGNMENT (GNSA)

GlobalNSA is a similarity index based on Representational Similarity Matrices (RSMs) (Klabunde
et al., 2023). Given a representation R : N × D, all RSM based measures generate a matrix of
instance wise similarities D ∈ RN×N where Di,j := d(Ri, Rj). Given two representations R and
R′, two corresponding RSMs are generated. GlobalNSA is calculated by subtracting the pairwise
similarities between the two spaces and averaging these discrepancies to produce a single value
that reflects the global difference between the two representation spaces. We present the motivation
behind GlobalNSA and how RSMs capture global discrepancy in Appendix C.3.

3.2.1 DEFINITION

The GNSA between two point clouds X = {x⃗1, . . . , x⃗N} and Y = {y⃗1, . . . , y⃗N} is computed as:

GNSA(X,Y, i) =
1

N

∑
1≤j≤N

∣∣∣∣∣∣ d(x⃗i, x⃗j)

max
x⃗∈X

d(x⃗, 0⃗)
− d(y⃗i, y⃗j)

max
y⃗∈Y

d(y⃗, 0⃗)

∣∣∣∣∣∣ .2 (8)

GNSA(X,Y ) =
1

N

∑
1≤i≤N

GNSA(X,Y, i). (9)

Throughout the paper, we use d(·, ·) to denote the euclidean distance (unless specified otherwise).

20⃗ denotes a vector (of appropriate size) which is the origin of the space.

4
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3.2.2 ANALYTICAL PROPERTIES

We show that GNSA is a pseudometric by proving the necessary properties in the Appendix A: •
GNSA(X,X) = 0, • Symmetry, • Non-negativity, • Triangle Inequality.
GNSA is proven to be a similarity index by satisfying the three established criteria in Appendix B.

3.3 PUTTING IT ALL TOGETHER

We utilize GNSA for our empirical analysis as it performs well when comparing entire representation
spaces. When using NSA as a structure-preserving loss function, we calculate the final NSA Loss
through a weighted sum of local and global NSA, allowing us to adjust the emphasis between local
and global perspectives. One could prioritize local neighborhood preservation, such as in classifiers
with tightly clustered data, or emphasize global structure, as needed in link prediction models for
densely interconnected graphs. Hence, NSA is defined as:

NSA = l ∗ LNSA+ g ∗ GNSA. (10)

Only GNSA is used during empirical analysis while both GNSA and LNSA are used during dimen-
sionality reduction. We present ablation studies on how the two components affect performance,
quantifying the difference and visualizing it in Appendix Q.

3.3.1 COMPLEXITY ANALYSIS

LNSA’s computational complexity is O(N2D+kND) 3 and GNSA’s complexity is O(N2D) where
N is the number of data points, k is the number of nearest neighbours considered in LNSA and D is
max(D(R), D(R′)) with R and R′ being the two representation spaces and D(·) the dimensionality
of the space. Hence, overall NSA has complexity of O(N2D + kND). Empirically, we find that
computing NSA on a GPU scales quadratically up to a very high batch size (Appendix H). CKA has
similar complexity to NSA while RTD has a complexity of O(N2D +R3), where R is the number
of simplices (in practice R >> N ). Running times of NSA-AE are given in Appendix M. NSA-AE
is several times faster than RTD-AE and it can run on much larger batch sizes.

4 APPLICATIONS

NSA serves a dual purpose, acting not only as a similarity index to compare structural discrepancies
in representation spaces, but also as a structure preserving loss function. This enables a wide range of
applications where NSA could potentially be useful. We first validate NSA’s viability as a similarity
index using the tests proposed by (Ding et al., 2021). We then present experiments in two broad
domains; dimensionality reduction and adversarial attack analysis. Additional experiments on cross-
layer analysis (Appendix V and Appendix J), convergence prediction (Appendix W) and manifold
approximation (Appendix R) are presented in the appendix.

4.1 ANALYZING REPRESENTATION SPACES

We evaluate the performance of our structural similarity index using statistical tests proposed by Korn-
blith et al. (2019) and further refined by Ding et al. (2021). These tests are based on two fundamental
intuitions: (1) a good structural similarity index should show the highest relative similarity between
corresponding layers of architecturally identical neural networks with different weight initializations,
and (2) it should be sensitive to the removal of high variance principal components from the data.
These initial tests are essential for validating the effectiveness of a similarity index.

4.1.1 SPECIFICITY TEST

When analyzing layerwise dissimilarity using structural similarity indices, a good metric is expected
to assign the lowest dissimilarity to corresponding layers of neural networks trained with different

3The time complexity of computing the k-nearest neighbours of each point is O(N2D +N2 log k) since it
takes O(N2D) time to find all pairwise distances and finding k minimum elements of N lists of size N can
be done in O(N2 log k) using min-heaps of size k. Since D >> log k in most cases, we write the total time
complexity as O(N2D).

5
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initialization seeds while ensuring that the dissimilarity between non-corresponding layers remains
higher. This expectation stems from the intuition that neural networks with the same architecture,
trained on the same data but initialized differently, should exhibit structurally similar intermediate
representations for corresponding layers.

Model A Model B
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Figure 1: Specificity (Left) and Sensitivity (Right) Tests. Left (from top to bottom): CKA’, RTD
and NSA pairwise distances between each layer of two differently initialized networks. Right:
Dissimilarities between a layer’s representation and its low-rank approximation. Principal components
are deleted in order of least variance.

In the first experiment, we evaluate whether the dissimilarity assigned to corresponding layers (e.g.,
layer 7 in model A vs. layer 7 in model B where A and B are the same architecture with different
initializations) is lower than the dissimilarity assigned to non-corresponding layers (e.g., layer 7
in model A vs. layer 6 in model B). We trained ResNet-18 models on CIFAR-10 with different
initialization seeds and computed layerwise dissimilarity on the intermediate embeddings4 using
NSA, CKA, and RTD. Our results in Figure 1 demonstrate that NSA assigns the lowest dissimilarity
to corresponding layers across different initializations. However, both CKA (layers 6 and 8) and RTD
(layers 7 and 8) fail to maintain this behavior in certain layers. We also extend this analysis to include
comparisons between layers of the same model trained with the same seed and present our results
and experimental setup in Appendix U.

4.1.2 SENSITIVITY TEST

An effective structural similarity index should be robust to the removal of low variance principal
components and sensitive to the removal of high variance principal components. Previous studies
have shown that CKA is insensitive to the removal of principal components until the most significant
ones are removed. We conducted a sensitivity test with our ResNet-18 models trained on CIFAR-10,
following a similar experimental setup to that used by Ding et al. (2021).

4Since RTD and NSA measure dissimilarity while CKA measures similarity, we present the results of 1-CKA
for consistency in all our experiments.
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For each index, we set the dissimilarity detectable threshold to be the score between representations
from different seed initializations. The percentage of principal components that need to be deleted for
the dissimilarity score to rise beyond the detectable threshold determines the sensitivity of the metric.
The results on the first and last layer, shown in Figure 1, demonstrate that NSA is more sensitive
to the removal of high variance principal components compared to RTD and CKA, by crossing the
detection threshold when removing an average of 90.25% of principal components, compared to 96%
for RTD and 99% for CKA.

4.2 NSA AS A LOSS FUNCTION

The viability of NSA as a loss function is established by demonstrating its non-negativity, nullity and
continuity, and by developing a differentiation scheme. Proofs for all four properties are presented in
Appendix C and F. We also demonstrate that the expectation of NSA over a minibatch is equal to the
NSA of the whole dataset, cementing its feasibility as a loss function in Appendix G.

4.2.1 CONVERGENCE OF GLOBAL NSA IN MINI BATCHING

Neural networks are often trained on mini batches, which means that at any step a global structure
preserving loss will only have access to a subset of the data. It is vital that a structure preserving loss
function like GNSA converge to its global measure when used as a loss function. Similarity indices
usually have a high computation cost, therefore most similarity indices work with a sample of the
data and show that the value computed on the sample is a good approximation of the global value.
Additionally, for a loss function, the expectation is that the mean of the losses from the mini-batches
converges to the true loss over the entire dataset. This principle underlies stochastic gradient descent
(SGD) and its variants, which are foundational to training neural networks. SGD assumes that the
expected value of the gradients calculated on the mini-batches converges to the true gradient over the
entire dataset, and a similar concept applies to the expectation of the loss. In Lemma G.1 we prove
theoretically that in expectation, GNSA over a minibatch is equal to GNSA of the whole dataset.

Figure 2 shows that subset GNSA averaged over increasing trials approximates the GNSA of the
entire dataset while RTD fails to do so. Here, we use the output embeddings of two GCN models
with the exact same architecture but different initializations trained on node classification onthe
Cora dataset. Using subset sizes of 200 and 500, we randomly sample from the original dataset and
compute the metrics, averaging their results and comparing it to the value of the entire dataset.

While LNSA does not exhibit formal convergence under mini-batching, it intuitively demonstrates
favorable behavior in such settings. LNSA’s design, which relies on nearest-neighbor computations
to assess structural preservation within local neighborhoods, ensures that these neighborhoods are
typically preserved in expectation. This is because the sampling process in mini-batching generally
retains a sufficient number of neighboring points in each batch. By appropriately adjusting the number
of nearest neighbors k considered in each mini-batch, LNSA is able to approximate the structural
consistency of local representations, ensuring that the loss function remains representative of the
global structure on a local scale. We present empirical convergence results on LNSA in Appendix Q
where we discuss the effects of varying k and observed best practices.

(a) (b)

Figure 2: Expectation of subset metrics over a large number of trials. (a) Mean subset GlobalNSA
variation over increasing trials. (b) Mean subset RTD variation over increasing trials.
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4.2.2 DEFINING NSA-AE: AUTOENCODER USING NSA

To evaluate the efficacy of NSA as a structural discrepancy minimization metric, we take inspiration
from TopoAE Moor et al. (2020) and RTD-AE Trofimov et al. (2023), and use NSA as loss function in
autoencoders for dimensionality reduction. A normal autoencoder minimizes the MSE loss between
the original X and reconstructed embedding X̂ . We add NSA-Loss as an additional loss term that
aims to minimize the discrepancy in representation structure between the original embedding space
X and the latent embedding space Z. The autoencoder is built as a compression autoencoder where
the encoder attempts to reduce the original data to a latent dimension and the decoder attempts to
reconstruct the original embedding. Since NSA can be used in autoencoders with mini-batch training,
NSA-AE runs almost as fast as a regular autoencoder. We compare the performance of NSA-AE
against PCA, UMAP, a regular autoencoder, TopoAE and RTD-AE on four real world datasets.

The performance of NSA-AE is evaluated on the structural and topological similarity between the
input data X and the latent data Z. We use the following evaluation metrics: (1) linear correlation of
pairwise distances, (2) triplet distance ranking accuracy (Wang et al., 2021), (3) RTD (Barannikov
et al., 2022), (4) GNSA, (5) LNSA and (6) kNN-Consistency. As seen in Table 1, NSA-AE has
better structural similarity between the original data and the latent data compared to the other models.
NSA-AE achieves MSE and running times similar to a normal autoencoder while previous works are
several times slower, as presented in Appendix M. We also present the hyperparameters used along
with dataset statistics in Appendices L and P.

Table 1: Autoencoder results. L.C = Linear Correlation, T.A. = Triplet distance ranking accuracy,
RTD = Representation Topology Divergence, GNSA = GlobalNSA, LNSA@100 = LocalNSA on
100 nearest neighbors, kNN C @ 100 = 100 nearest neighbors consistency. NSA-AE outperforms
or almost matches all other approaches on all the evaluation metrics. RTD-AE, which explicitly
minimizes on RTD occasionally has lower LID and kNN-C.

Quality measure
Dataset Method L. C. T. A. RTD GNSA LNSA @ 100 kNN-C @ 100
MNIST PCA 0.910 0.871 ± 0.008 6.69 ± 0.21 0.0817 ± 0.0025 0.0267 ± 0.00 0.584

UMAP 0.424 0.620 ± 0.013 18.06 ± 0.48 0.2305 ± 0.0031 1.0353 ± 0.02 0.353
AE 0.801 0.778 ± 0.007 7.47 ± 0.20 0.0571 ± 0.0011 0.0529 ± 0.00 0.619
TopoAE 0.765 0.771 ± 0.010 6.16 ± 0.23 0.0477 ± 0.0011 0.0335 ± 0.00 0.631
RTD-AE 0.837 0.811 ± 0.004 4.26 ± 0.14 0.1694 ± 0.0024 0.0133 ± 0.00 0.709

NSA-AE 0.947 0.886 ± 0.005 4.29 ± 0.11 0.0222 ± 0.00 0.0123 ± 0.00 0.634
F-MNIST PCA 0.978 0.951 ± 0.006 5.91 ± 0.12 0.1722 ± 0.0038 0.0566 ± 0.00 0.513

UMAP 0.592 0.734 ± 0.012 12.16 ± 0.39 0.1420 ± 0.0011 0.6738 ± 0.01 0.365
AE 0.872 0.850 ± 0.008 5.60 ± 0.21 0.0527 ± 0.0028 0.0515 ± 0.00 0.614
TopoAE 0.875 0.854 ± 0.009 4.27 ± 0.15 0.111 ± 0.0027 0.0291 ± 0.00 0.601
RTD-AE 0.949 0.902 ± 0.004 3.05 ± 0.12 0.0349 ± 0.0015 0.0104 ± 0.00 0.661

NSA-AE 0.985 0.939 ± 0.003 2.78 ± 0.09 0.0114 ± 0.00 0.0133 ± 0.00 0.633
CIFAR-10 PCA 0.972 0.926 ± 0.009 4.99 ± 0.16 0.1809 ± 0.0046 0.0175 ± 0.00 0.432

UMAP 0.756 0.786 ± 0.010 12.21 ± 0.22 0.1316 ± 0.0026 0.2880 ± 0.00 0.119
AE 0.834 0.836 ± 0.006 4.07 ± 0.28 0.0616 ± 0.0019 0.0224 ± 0.00 0.349
TopoAE 0.889 0.854 ± 0.007 3.89 ± 0.11 0.0625 ± 0.0014 0.0277 ± 0.00 0.360
RTD-AE 0.971 0.922 ± 0.002 2.95 ± 0.08 0.0113 ± 0.0003 0.0124 ± 0.00 0.416
NSA-AE 0.985 0.941 ± 0.003 3.04 ± 0.16 0.0086 ± 0.00 0.0103 ± 0.00 0.437

COIL-20 PCA 0.966 0.932 ± 0.005 6.49 ± 0.23 0.2204 ± 0.0 0.2000 ± 0.00 0.801
UMAP 0.274 0.567 ± 0.016 15.50 ± 0.67 0.1104 ± 0.0 3.3023 ± 0.00 0.569
AE 0.850 0.836 ± 0.008 9.57 ± 0.27 0.0758 ± 0.0 0.5678 ± 0.00 0.683
TopoAE 0.804 0.805 ± 0.011 7.33 ± 0.21 0.0676 ± 0.0 0.1044 ± 0.00 0.654
RTD-AE 0.908 0.871 ± 0.005 5.89 ± 0.10 0.0523 ± 0.0 0.0496 ± 0.00 0.761
NSA-AE 0.976 0.919 ± 0.005 3.55 ± 0.18 0.0139 ± 0.00 0.0085 ± 0.00 0.809

4.3 DOWNSTREAM TASK ANALYSIS ON LINK PREDICTION

We demonstrate that NSA-AE effectively preserves the structural integrity between the original data
and the latent space. However, it is imperative to note that such preservation does not inherently
ensure the utility of the resultant latent embeddings. Metrics like NSA, which focus on exact structure
preservation, excel in scenarios where the preservation of semantic relationships between data points
holds paramount importance.

Link prediction is an ideal task to demonstrate NSA’s structure preserving ability. Successful link
prediction mandates a global consistency within the embedding space, necessitating that nodes with
likely connections are proximate while dissimilar nodes are distant. Any form of clustering or
localized alterations to the representation structure can disrupt node interrelationships. In our study,
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we employ a Graph Convolutional Network (GCN) to train link prediction models across four distinct
graph datasets. The original GCN embedding space encompasses 256 dimensions. This space is
subsequently processed through NSA-AE, resulting in a reduced-dimensional representation. The
latent embeddings are then tested on their ability to predict the existence of links between nodes.
Notably, the latent embeddings produced by NSA-AE exhibit superior performance when compared
to both a normal AE and RTD-AE as shown in Table 2. Additionally, we demonstrate that NSA can
work at scale by working with the Word2Vec dataset. We present results showcasing the effectiveness
of semantic textual similarity matching using Word2Vec embeddings in the Appendix K.

Table 2: Downstream task analysis with Link Prediction. The outputs from a GCN trained on link
prediction are used as input. Latent embeddings are obtained at various dimensions and ROC-AUC
scores are calculated on the reduced dimension embeddings using the original ground truth labels.
NSA-AE outperforms both a regular autoencoder and RTD-AE across almost all datasets and all latent
dimensions. The first row presents the results of training a normal GCN at different dimensionalities
for reference. NSA-AE achieves competitive performance with GCN models trained from scratch.

Dataset
Method Latent Dim Amazon Comp Cora Citeseer Pubmed
GCN 128 95.59 98.9 98.71 97.39
AE 128 50.478 50.0 50.0 51.17
RTD-AE 128 94.63 86.52 90.54 91.80
NSA-AE 128 95.75 97.83 97.91 97.37
GCN 64 96.00 99.00 98.76 97.38
AE 64 50.56 50.0 50.0 50.03
RTD-AE 64 91.63 82.38 89.23 97.26
NSA-AE 64 94.60 97.89 98.38 96.97
GCN 32 96.48 98.83 98.55 97.32
AE 32 59.63 49.84 49.80 52.78
RTD-AE 32 88.34 83.13 57.18 87.05
NSA-AE 32 95.76 97.68 96.11 97.66

4.4 ANALYZING ADVERSARIAL ATTACKS
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Figure 3: Robustness tests on GNN architectures with NSA. (a) Misclassification Rate against Data
Perturbation Rate under global evasion attack. (b) NSA against perturbation rate under global evasion
attack. (c) Misclassification Rate against Data Perturbation Rate under global poisoning attack. (d)
NSA against perturbation rate under global poisoning attack

Adversarial attacks have become a critical area of concern across various domains in machine learning,
from computer vision to natural language processing and graph-based data. These attacks exploit
vulnerabilities in model architectures, to introduce subtle perturbations in the model’s representation
space to drastically alter its predictions. A structural discrepancy analysis term like NSA can help
analyze and identify vulnerabilities in these networks. By comparing the underlying structure of data
representations before and after an attack, NSA allows us to quantitatively assess how adversarial
perturbations impact the model’s predictions, regardless of the architecture being employed. For our
study, we applied NSA in the context of GNNs, but the method can be equally effective in analyzing
the robustness of other architectures, such as CNNs or transformers, under adversarial conditions.

In this experimental study, we subjected five distinct GNN architectures to both poisoning and evasion
adversarial attacks using projected gradient descent Metattack(Xu et al., 2019; Mujkanovic et al.,
2022) on the Cora Dataset. We use a GCN along with four robust GNN variants; SVD-GCN (Entezari
et al., 2020), GNNGuard (Zhang & Zitnik, 2020), GRAND (Chamberlain et al., 2021) and ProGNN
(Jin et al., 2020b). To assess the vulnerability of these architectures, we perturbed the initial adjacency
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Figure 4: Analyzing node vulnerability with NSA. (a) Nodewise NSA of the 50 nodes with the
greatest decline in Classification Confidence. SVD-GCN has the highest nodewise NSA variations.
(b) Distribution of Classification Confidence before and after an evasion attack on various Graph
Neural Network architectures. A suffix of ’C’ after the architecture name refers to original dataset
results and a suffix of ’E’ refers to confidence on the poisoned dataset (c) Increase in number of
boundary nodes for each model post attack and its correlation with the NSA of the boundary nodes.

matrices by introducing edge additions ranging from 5% to 25% of the total edges. The objective was
to gauge the impact of these perturbations on the misclassification rates of the GNN models and to
see if NSA shows a strong correlation to the misclassification rates over different perturbation rates.

NSA was computed at each stage by comparing the entire graph’s output representations (Cora has
2708 nodes) with those from the perturbed graph. Our experiments revealed that NSA’s variation over
different perturbation rates mirrors the misclassification trends of various GNN architectures during
poisoning attacks Figure 3 and NSA’s ranking of architecture vulnerability is in line with previous
works (Jin et al., 2020a; Mujkanovic et al., 2022).

However, in evasion attacks, SVD-GCN stood out with its NSA scores significantly deviating from
its misclassification rates. To further explore such anomalies, NSA can also be used to measure
node-level discrepancies. Figure 4 examines the boundary nodes of different GNN architectures.
Post-attack, SVD-GCN showed a substantial increase in boundary nodes—defined by low classifi-
cation confidence and proximity to the decision boundary—accompanied by a general decline in
classification confidence. This surge, coupled with SVD-GCN’s highest pointwise NSA values among
all tested architectures, potentially accounts for its high NSA scores and heightened vulnerability
despite appearing to be robust when evaluated only using accuracy based metrics. It is also this
vulnerability in structure, that is exploited by Mujkanovic et al. (2022) with adaptive adversarial
attacks, to cause a catastrophic failure in SVD-GCN. This demonstrates that NSA can be used to
interpret and identify the source of discrepancies and can unveil concealed weaknesses in defense
methods not immediately apparent from conventional metrics.

5 CONCLUSION AND LIMITATIONS

We have demonstrated that the proposed measure of NSA is simple, efficient, and useful across
many aspects of analysis and synthesis of representation spaces: robustness across initializations,
convergence across epochs, autoencoders, adversarial attacks, and transfer learning. Its computational
efficiency and the ability to converge to its global value in mini batches allow it to be useful in many
applications and generalizations where scalability is desired.

While NSA demonstrates substantial benefits in various applications, certain limitations must be
acknowledged to provide a comprehensive understanding of its scope and potential areas for future
improvements. The choice of Euclidean distance as the primary metric for NSA may not be optimal in
high-dimensional spaces due to the curse of dimensionality (Bellman, 1961). Despite this, Euclidean
distance remains prevalent in various domains, including contrastive (Chen et al., 2020) or triplet
losses (Schroff et al., 2015), style transfer (Johnson et al., 2016) and similarity indices. NSA’s
versatility across different applications is a significant strength, yet it is not a universal solution
suitable for all scenarios without modification. Finally, NSA is primarily a structural similarity
metric, which means that it focuses on preserving the geometrical configuration of data points rather
than their functional equivalency. This focus can lead to scenarios where NSA indicates significant
differences between datasets that are functionally similar but structurally distinct.
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A APPENDIX

A PROOFS FOR GNSA AS A PSEUDOMETRIC

Lemma A.1 (Identity). Let X be a point cloud over some space, then GNSA(X,X) = 0.

Proof. Let X = {x1, . . . , xN}. Let maxx∈X(d(x, 0)) = D. Then

GNSA(X,X) =
1

N2

∑
1≤i,j≤N

∣∣∣∣d(xi, xj)

D
− d(xi, xj)

D

∣∣∣∣ .
Simplifying, we get

GNSA(X,X) =
1

N2D

∑
1≤i,j≤N

|d(xi, xj)− d(xi, xj)| = 0.

Lemma A.2 (Symmetry). Let X,Y be two point clouds of the same size, then GNSA(X,Y ) =
GNSA(Y,X).

Proof. Let X = {x1, . . . , xN} and Y = {y1, . . . , yN}. Let maxx∈X(d(x, 0)) = DX and
maxy∈Y (d(y, 0)) = DY . Then

GNSA(X,Y ) =
1

N2

∑
1≤i,j≤N

∣∣∣∣d(xi, xj)

DX
− d(yi, yj)

DY

∣∣∣∣ .
Since |a− b| = |b− a|,

GNSA(X,Y ) =
1

N2

∑
1≤i,j≤N

∣∣∣∣d(yi, yj)DY
− d(xi, xj)

DX

∣∣∣∣ .
Hence, GNSA(X,Y ) = GNSA(Y,X).

Lemma A.3 (Non-negativity). Let X,Y be two point clouds of the same size, then GNSA(X,Y ) ≥ 0.

Proof. Let X = {x1, . . . , xN} and Y = {y1, . . . , yN}. Let maxx∈X(d(x, 0)) = DX and
maxy∈Y (d(y, 0)) = DY . Then

GNSA(X,Y ) =
1

N2

∑
1≤i,j≤N

∣∣∣∣d(xi, xj)

DX
− d(yi, yj)

DY

∣∣∣∣ .
Since, for all i, j, ∣∣∣∣d(xi, xj)

DX
− d(yi, yj)

DY

∣∣∣∣ ≥ 0,

we get GNSA(X,Y ) ≥ 0.

Lemma A.4 (Triangle inequality). Let X,Y and Z be three point clouds of the same size, then
GNSA(X,Z) ≤ GNSA(X,Y ) + GNSA(Y, Z).

Proof. Let X = {x1, . . . , xN}, Y = {y1, . . . , yN} and Z = {z1, . . . , zN}. Let
maxx∈X(d(x, 0)) = DX , maxy∈Y (d(y, 0)) = DY and maxz∈Z(d(z, 0)) = DZ . Then

GNSA(X,Z) =
1

N2

∑
1≤i,j≤N

∣∣∣∣d(xi, xj)

DX
− d(zi, zj)

DZ

∣∣∣∣ .
For each i, j, add and subtract d(yi,yj)

DY
, then

GNSA(X,Z) =
1

N2

∑
1≤i,j≤N

∣∣∣∣(d(xi, xj)

DX
− d(yi, yj)

DY

)
+

(
d(yi, yj)

DY
− d(zi, zj)

DZ

)∣∣∣∣ .
16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Since |a+ b| ≤ |a|+ |b|,

GNSA(X,Z) ≤ 1

N2

∑
1≤i,j≤N

(∣∣∣∣d(xi, xj)

DX
− d(yi, yj)

DY

∣∣∣∣+ ∣∣∣∣d(yi, yj)DY
− d(zi, zj)

DZ

∣∣∣∣) .

Hence,

GNSA(X,Z) ≤ 1

N2

∑
1≤i,j≤N

∣∣∣∣d(xi, xj)

DX
− d(yi, yj)

DY

∣∣∣∣+ 1

N2

∑
1≤i,j≤N

∣∣∣∣d(yi, yj)DY
− d(zi, zj)

DZ

∣∣∣∣ ,
or GNSA(X,Z) ≤ GNSA(X,Y ) + GNSA(Y,Z).

From Lemma A.1, Lemma A.2, Lemma A.3 and Lemma A.4, we see that GNSA is a psuedometric
over the space of point clouds.

B PROOFS FOR GNSA AS A SIMILARITY METRIC

B.1 INVARIANCE TO ISOTROPIC SCALING

Lemma B.1 (Invariance to Isotropic scaling in the first coordinate). Let X and Y be two point clouds
of the same size. Let c ∈ R and c ̸= 0, Xc be the point cloud with each point in X scaled by a factor
of c, then GNSA(X,Y ) = GNSA(Xc, Y ).

Proof. Let X = {x1, . . . , xN} and Y = {y1, . . . , yN}, then Xc = {cx1, . . . , cxN}. Let
maxx∈X(d(x, 0)) = DX , maxy∈Y (d(y, 0)) = DY and maxx∈Xc(d(x, 0)) = DXc . Since, each
point in Xc is the c times each point in X . Then, we can write DXc = maxx∈X(d(cx, 0)). Since, for
any two points, x1 and x2, d(cx1, cx2) = |c|d(x1, x2), then DXc = |c|maxx∈X(d(x, 0)). Hence,
Dxc

= |c|DX . From the definition of GNSA,

GNSA(Xc, Y ) =
1

N2

∑
1≤i,j≤N

∣∣∣∣(d(cxi, cxj)

DXc

− d(yi, yj)

DY

)∣∣∣∣ .
Again, using d(cxi, cxj) = |c|d(xi, xj) and DXc = |c|DX ,

GNSA(Xc, Y ) =
1

N2

∑
1≤i,j≤N

∣∣∣∣( |c|d(xi, xj)

|c|DX
− d(yi, yj)

DY

)∣∣∣∣ .
Simplifying,

GNSA(Xc, Y ) =
1

N2

∑
1≤i,j≤N

∣∣∣∣(d(xi, xj)

DX
− d(yi, yj)

DY

)∣∣∣∣ .
Hence, GNSA(Xc, Y ) = GNSA(X,Y ).

By Lemma A.2, we can see that this gives us invariance to isotropic scaling in the second coordinate
as well.

Lemma B.2 (Invariance to Isotropic scaling in the second coordinate). Let X and Y be two point
clouds of the same size. Let c ∈ R and c ̸= 0, Yc be the point cloud with each point in Y scaled by a
factor of c, then GNSA(X,Y ) = GNSA(X,Yc).

Combining Lemma B.1 and Lemma B.2, we get the required lemma.

Lemma B.3 (Invariance to Isotropic scaling). Let X and Y be two point clouds of the same size.
Let c1, c2 ∈ R, c1 ̸= 0 and c2 ̸= 0, Xc1 be the point cloud with each point in X scaled by
a factor of c1 and Yc2 be the point cloud with each point in Y scaled by a factor of c2, then
GNSA(X,Y ) = GNSA(Xc1 , Yc2).
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B.2 INVARIANCE TO ORTHOGONAL TRANSFORMATION

Lemma B.4 (Invariance to Orthogonal transformation in the first coordinate). Let X and Y be two
point clouds of the same size. Let U be an orthogonal transformation on the point space of X , XU

be the point cloud with each point in X transformed using U , then GNSA(X,Y ) = GNSA(XU , Y ).

Proof. Let X = {x1, . . . , xN} and Y = {y1, . . . , yN}, then XU = {Ux1, . . . , UxN}. Let
maxx∈X(d(x, 0)) = DX , maxy∈Y (d(y, 0)) = DY and maxx∈XU

(d(x, 0)) = DXU
. Since, each

point in XU is the U times each point in X . Then, we can write DXU
= maxx∈X(d(Ux, 0)).

Since, for any two points, x1 and x2, d(Ux1, x2) = d(x1, U
Tx2), and UT 0 = 0, then DXc

=
maxx∈X(d(x, 0)). Hence, Dxc

= DX . From the definition of GNSA,

GNSA(XU , Y ) =
1

N2

∑
1≤i,j≤N

∣∣∣∣(d(Uxi, Uxj)

DXc

− d(yi, yj)

DY

)∣∣∣∣ .
Again, using d(Uxi, Uxj) = d(xi, U

TUxj), and UTU = I ,

GNSA(XU , Y ) =
1

N2

∑
1≤i,j≤N

∣∣∣∣(d(xi, xj)

DX
− d(yi, yj)

DY

)∣∣∣∣ .
Hence, GNSA(XU , Y ) = GNSA(X,Y ).

By Lemma A.2, we get invariance to orthogonal transformation in the second coordinate too and
combining, we get the required lemma.
Lemma B.5 (Invariance to Orthogonal transformation). Let X and Y be two point clouds of the
same size. Let U1 be an orthogonal transformation on the point space of X , XU1 be the point cloud
with each point in X transformed using U1. Similarly, let U2 be an orthogonal transformation
on the point space of Y , YU2 be the point cloud with each point in Y transformed using U2, then
GNSA(X,Y ) = GNSA(XU1

, YU2
).

B.3 NOT INVARIANT UNDER INVERTIBLE LINEAR TRANSFORMATION (ILT)

We can easily see this with a counter example. Let X = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Let Y =
{(1, 1, 0), (1, 0, 1), (0, 1, 1)}. Define A to be an invertible linear map such that A(1, 0, 0) = (2, 0, 0),
A(0, 1, 0) = (0, 1, 0) and A(0, 0, 1) = (0, 0, 1). Let XA be the point cloud with each point in
X transformed using A. Then from some calculation, we can see that GNSA(X,Y ) = 0 but
GNSA(XA, Y ) = 1

9 . Hence, we can see that GNSA is not invariant under Invertible Linear Transfor-
mations.

C PROOFS FOR GNSA AS A LOSS FUNCTION

C.1 DIFFERENTIABILITY OF GNSA

To derive the sub-gradient ∂GNSA(X,Y )
∂xi

, we first define the following notation. Let I : {T, F} →
{0, 1} be a function that takes as input some condition and outputs 0 or 1 such that I(T ) = 1 and
I(F ) = 0. Let DX = maxx∈X(d(x, 0)). Then it is easy to see that

∂DX

∂xi
=

xi

d(xi, 0)
I{argmax

x∈X
(d(x, 0)) = i}.

Also, notice that ∂d(xi,xj)
xi

=
xi−xj

d(xi,xj)
, and that for j ̸= i and k ̸= i, ∂d(xj ,xk)

xi
= 0.

Let mi,j
X =

d(xi,xj)
DX

and mi,j
Y =

d(yi,yj)
DY

. Hence, combining, we get

∂mj,k
X

∂xi
=

∂d(xj ,xk)
∂xi

DX
−

d(xj , xk)
∂DX

∂xi

(DX)2
, where these partial differentials are derived above.

Lastly, notice that
∂|mj,k

X −m
j,k
Y |

∂mj,k
X

= (−1)I(m
j,k
Y >mj,k

X ).
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Combining all the above, we get

∂GNSA(X,Y )

∂xi
=

1

N2

∑
1≤j,k≤N

∂
∣∣∣mj,k

X −mj,k
Y

∣∣∣
∂mj,k

X

∂mj,k
X

∂xi
=

1

N2

∑
1≤j,k≤N

(−1)I(m
j,k
Y >mj,k

X ) ∂m
j,k
X

∂xi
.

Sub-gradients ∂GNSA(X,Y )
∂yi

can be similarly derived.

C.2 CONTINUITY

We prove the continuity of GNSA by showing that GNSA is a composition of continuous functions
(Carothers, 2000, Theorem 5.10). Let

fi,j(X,Y ) =

∣∣∣∣ d(xi, xj)

maxx∈X(d(x, 0))
− d(yi, yj)

maxy∈Y (d(y, 0))

∣∣∣∣ .
It’s easy to see that GNSA(X,Y ) =

1

N2

∑
1≤i,j≤N

fi,j(X,Y ).

Since a sum of continuous functions is continuous, all we need to show is that fi,j(X,Y ) is continuous
for all 1 ≤ i, j ≤ N . This is easy to see because fi,j(X,Y ) can be seen as a composition of d(·, ·)
and max(·), along with the algebraic operations of subtraction, division and taking the absolute value.
All the above operations are continuous everywhere5, we get that their composition is also continuous
everywhere. Hence, GNSA(·, ·) is continuous.

C.3 MOTIVATION FOR GNSA

The global part of NSA is inspired by Representational Similarity Matrix (RSM)-Based Measures
(Klabunde et al., 2023). RSMs describe the similarity of the representation of each instance to all
other instances within a given representation. The elements of the RSM Si,j can be defined using a
valid distance or similarity function, formally: Si,j := s(Ri, Rj).

The motivation behind RSM-based measures is to capture the relational structure in the data. By
comparing the pairwise similarities of instances within two different representations, RSM-based
measures provide insights into how the internal structure of representations changes. RSMs are
invariant to orthogonal transformations, which means they retain their structure under rotations and
reflections. When using euclidean distance as a similarity function, the RSM is invariant under
euclidean group E(n), assuming translations.

One might think that the most intuitive approach to compare RSMs is to use a matrix norm. This
method works well when the data is similarly scaled, as it is zero when the data is identical and larger
when the data is dissimilar. However, it is not invariant to scaling, which can cause issues if the data
is not similarly scaled. To ensure the data is on a similar scale, we first normalize the data using the
normalization function:

Rnorm =
R

2 ∗max(||xi||)
Where xi is the point farthest from the origin in the space. One of the primary reasons for our
metric’s effectiveness is this normalization scheme. Although other normalizations are possible, NSA
performs best when we normalize the space X by twice the distance between the origin of the space
and the farthest point in the space. This ensures that all the points are within a unit sphere in N
dimensions where N is the dimensionality of the space. The origin of the space is the point in RN

around which all points belonging to X are centered.

Most popular similarity measures, such as CKA(Kornblith et al., 2019) and RTD(Barannikov et al.,
2022) also generate a similarity matrix. GNSA is simple in its implementation, but our choice of
distance function and unique normalization scheme make GNSA a pseudometric, a similarity index
and a valid, differentiable loss function.

5Note that division is not continuous when the denominator goes to zero. Since, the denominators are
maxx∈X(d(x, 0)) and maxy∈Y (d(y, 0)), as long as neither of the representations is all zero, the denominator
does not go to zero.
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C.4 IMPROVING ROBUSTNESS OF NSA

Formally, NSA is normalized by the point that is furthest away from the origin for the representation
space. In practice, NSA yields more robust results and exhibits reduced susceptibility to outliers
when distances are normalized relative to a quantile of the distances from the origin (e.g., 0.98
quantile). This quantile-based approach ensures that the distances are adjusted proportionally, taking
into account the spread of values among the points with respect to their distances from the origin. It
also ensures that any outliers do not affect the rescaling of the point cloud to the unit space.

D PROOFS FOR LNSA AS A PREMETRIC

Lemma D.1 (Identity). Let X be a point cloud over some space, then LNSAmetric(X,X) = 0.

Proof. Let X = {x⃗1, . . . , x⃗N}. Hence, we see that

LNSAmetric(X,X) = LNSAX(X) + LNSAX(X) = 2LNSAX(X).

We show that LNSAX(X) = 0. We see that

LNSAX(X) =
1

N

∑
1≤i≤N

(
lid(i,X)−1 − lidX(i,X)−1

)2
.

Note that
lidX(i,X) = ADX(i, kNNX(i)) = lid(i,X).

Hence we get

LNSAX(X) =
1

N

∑
1≤i≤N

(
lid(i,X)−1 − lid(i,X)−1

)2
= 0.

And hence we have
LNSAmetric(X,X) = 2LNSAX(X) = 0.

Lemma D.2 (Symmetry). Let X,Y be two point clouds of the same size, then LNSAmetric(X,Y ) =

LNSAmetric(Y,X).

Proof. Let X = {x1, . . . , xN} and Y = {y1, . . . , yN}. Then

LNSAmetric(X,Y ) = LNSAX(Y ) + LNSAY (X) = LNSAmetric(Y,X).

Hence,
LNSAmetric(X,Y ) = LNSAmetric(Y,X).

Lemma D.3 (Non-negativity). Let X,Y be two point clouds of the same size, then
LNSAmetric(X,Y ) ≥ 0.

Proof. Let X = {x1, . . . , xN} and Y = {y1, . . . , yN}. Note that

LNSAmetric(X,Y ) = LNSAX(Y ) + LNSAY (X),

and
LNSAX(Y ) =

1

N

∑
1≤i≤N

(
lid(i,X)−1 − lidX(i, Y )−1

)2
.

Since, for all i,
(
lid(i,X)−1 − lidX(i, Y )−1

)2 ≥ 0, hence we get LNSAX(Y ) ≥ 0. Similarly,
LNSAY (X) ≥ 0 and hence, LNSAmetric(X,Y ) ≥ 0.

From Lemma D.1, Lemma D.2 and Lemma D.3, we see that LNSAmetric is a premetric over the space
of point clouds.
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E PROOFS FOR LNSA AS A SIMILARITY METRIC

E.1 INVARIANCE TO ISOTROPIC SCALING

Lemma E.1 (Invariance to Isotropic scaling in the first coordinate). Let X and Y be two point clouds
of the same size. Let c ∈ R and c ̸= 0, Xc be the point cloud with each point in X scaled by a factor
of c, then LNSAmetric(X,Y ) = LNSAmetric(Xc, Y ).

Proof. Let X = {x⃗1, . . . , x⃗N} and Y = {y⃗1, . . . , y⃗N}, then Xc = {cx⃗1, . . . , cx⃗N}. We show that
ADXc

(i, (i1, . . . , ik)) = ADX(i, (i1, . . . , ik)). Note that

ADXc
(i, (i1, . . . , ik)) = −

1

k

k∑
j=1

log

(
d(cx⃗i, cx⃗ij )

d(cx⃗i, cx⃗ik)

)−1 .
Since,

d(cx⃗i,cx⃗ij
)

d(cx⃗i,cx⃗ik
) =

cd(x⃗i,x⃗ij
)

cd(x⃗i,x⃗ik
) =

d(x⃗i,x⃗ij
)

d(x⃗i,x⃗ik
) . Hence,

ADXc
(i, (i1, . . . , ik)) = −

1

k

k∑
j=1

log

(
d(x⃗i, x⃗ij )

d(x⃗i, x⃗ik)

)−1 .
Hence, ADXc

(i, (i1, . . . , ik)) = ADX(i, (i1, . . . , ik)). Hence, we get lid(·, Xc) = lid(·, X). Also
note that since kNNXc(·) = kNNX(·), we have that lidXc(·, Y ) = lidX(·, Y ). Hence, we get
LNSAmetric(X,Y ) = LNSAmetric(Xc, Y ).

By Lemma D.2, we can see that this gives us invariance to isotropic scaling in the second coordinate
as well.
Lemma E.2 (Invariance to Isotropic scaling in the second coordinate). Let X and Y be two point
clouds of the same size. Let c ∈ R and c ̸= 0, Yc be the point cloud with each point in Y scaled by a
factor of c, then LNSAmetric(X,Y ) = LNSAmetric(X,Yc).

Combining Lemma E.1 and Lemma E.2, we get the required lemma.
Lemma E.3 (Invariance to Isotropic scaling). Let X and Y be two point clouds of the same size.
Let c1, c2 ∈ R, c1 ̸= 0 and c2 ̸= 0, Xc1 be the point cloud with each point in X scaled by
a factor of c1 and Yc2 be the point cloud with each point in Y scaled by a factor of c2, then
LNSAmetric(X,Y ) = LNSAmetric(Xc1 , Yc2).

E.2 INVARIANCE TO ORTHOGONAL TRANSFORMATION

Lemma E.4 (Invariance to Orthogonal transformation in the first coordinate). Let X and Y be
two point clouds of the same size. Let U be an orthogonal transformation on the point space of
X , XU be the point cloud with each point in X transformed using U , then LNSAmetric(X,Y ) =

LNSAmetric(XU , Y ).

Proof. Let X = {x⃗1, . . . , x⃗N} and Y = {y⃗1, . . . , y⃗N}, then XU = {Ux⃗1, . . . , Ux⃗N}. We show
that ADXU

(i, (i1, . . . , ik)) = ADX(i, (i1, . . . , ik)). Note that

ADXc(i, (i1, . . . , ik)) = −

1

k

k∑
j=1

log

(
d(Ux⃗i, Ux⃗ij )

d(Ux⃗i, Ux⃗ik)

)−1 .
Since,

d(Ux⃗i,Ux⃗ij
)

d(Ux⃗i,Ux⃗ik
) =

d(UTUx⃗i,x⃗ij
)

d(UTUx⃗i,x⃗ik
)
=

d(x⃗i,x⃗ij
)

d(x⃗i,x⃗ik
) . Hence,

ADXc(i, (i1, . . . , ik)) = −

1

k

k∑
j=1

log

(
d(x⃗i, x⃗ij )

d(x⃗i, x⃗ik)

)−1 .
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Hence, ADXU
(i, (i1, . . . , ik)) = ADX(i, (i1, . . . , ik)). Hence, we get lid(·, XU ) = lid(·, X). Also

note that since kNNXU
(·) = kNNX(·), we have that lidXU

(·, Y ) = lidX(·, Y ). Hence, we get
LNSAmetric(X,Y ) = LNSAmetric(XU , Y ).

By Lemma D.2, we get invariance to orthogonal transformation in the second coordinate too and
combining, we get the required lemma.

Lemma E.5 (Invariance to Orthogonal transformation). Let X and Y be two point clouds of the
same size. Let U1 be an orthogonal transformation on the point space of X , XU1 be the point cloud
with each point in X transformed using U1. Similarly, let U2 be an orthogonal transformation
on the point space of Y , YU2

be the point cloud with each point in Y transformed using U2, then
LNSAmetric(X,Y ) = LNSAmetric(XU1

, YU2
).

E.3 NOT INVARIANT UNDER INVERTIBLE LINEAR TRANSFORMATION (ILT)

We can easily see this with a counter example. Let X = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Let Y =
{(1, 1, 0), (1, 0, 1), (0, 1, 1)}. Define A as an invertible linear map such that A(1, 0, 0) = (2, 0, 0),
A(0, 1, 0) = (0, 1, 0) and A(0, 0, 1) = (0, 0, 1). Let XA be the point cloud with each point in X

transformed using A. Then from some calculations we can see that LNSAmetric(X,Y ) = 0 but
LNSAmetric(XA, Y ) = 1

12 (log(5)− log(2))
2. Hence, we can see that GNSA is not invariant under

Invertible Linear Transformations.

F PROOFS FOR LNSA AS A LOSS FUNCTION

F.1 DIFFERENTIABILITY OF LNSA

To derive the sub-gradient ∂LNSAY (X)
∂xi

, we first define the following notation.

Let
fj,Y (X) =

(
lid(j, Y )−1 − lidY (j,X)−1

)2
.

Using this, LNSAY (X) =
1

N

∑
1≤j≤N

fj,Y (X).

Hence,
∂LNSAY (X)

∂xi
=

1

N

∑
1≤j≤N

∂fj,Y (X)

∂x⃗i
.

Note that lid(j, Y )−1 is constant with respect to x⃗i, hence,

∂fj,Y (X)

∂x⃗i
= −2

(
lid(j, Y )−1 − lidY (j,X)−1

) ∂lidY (j,X)−1

∂x⃗i
.

To compute ∂lidY (j,X)−1

∂x⃗i
, we divide this into the four cases below:

• i = j: Let kNNY (i) = (i1, ·, ik), then lidY (i,X)−1 =
∑k

l=1 log
(

d(x⃗i,x⃗il
)

d(x⃗i,x⃗ik
)

)
. Hence,

∂lidY (i,X)−1

∂x⃗i
=

k∑
l=1

(
1

d(x⃗i, x⃗il)

∂d(x⃗i, x⃗il)

∂x⃗i
− 1

d(x⃗i, x⃗ik)

∂d(x⃗i, x⃗ik)

∂x⃗i

)
.

• j ∈ kNNY (i) and j is not the last element of kNNY (i): Let kNNY (i) = (i1, ·, ik), then
lidY (i,X)−1 =

∑k
l=1 log

(
d(x⃗i,x⃗il

)

d(x⃗i,x⃗ik
)

)
. Hence,

∂lidY (i,X)−1

∂x⃗i
=

1

d(x⃗i, x⃗j)

∂d(x⃗i, x⃗j)

∂x⃗i
.
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• j ∈ kNNY (i) and j is the last element of kNNY (i): Let kNNY (i) = (i1, ·, ik), then
lidY (i,X)−1 =

∑k
l=1 log

(
d(x⃗i,x⃗il

)

d(x⃗i,x⃗ik
)

)
. Hence,

∂lidY (i,X)−1

∂x⃗i
= (1− k)

(
1

d(x⃗i, x⃗j)

∂d(x⃗i, x⃗j)

∂x⃗i

)
.

• j ̸∈ kNNY (i) and j ̸= i: Then

∂lidY (i,X)−1

∂x⃗i
= 0.

Hence, combining the above, we have the sub-gradients of LNSAY (X).

F.2 CONTINUITY

We prove the continuity of LNSAmetric by showing that LNSAmetric is a composition of continuous
functions (Carothers, 2000, Theorem 5.10). Let

fi,Y (X) =
(
lid(i, Y )−1 − lidY (i,X)−1

)2
.

Using this, LNSAY (X) =
1

N

∑
1≤i≤N

fi,Y (X).

Since a sum of continuous functions is continuous, all we need to show is that fi,Y (X) is continuous
for all 1 ≤ i ≤ N . Let kNNY (i) = (i1, ·, ik), then note that

fi,Y (X) =

(
k∑

l=1

(
log

(
d(x⃗i, x⃗il)

d(x⃗i, x⃗ik)

)
− log

(
d(y⃗i, y⃗il)

d(y⃗i, y⃗ik)

)))2

,

hence can be seen as a composition of d(·, ·) and log(·), along with the algebraic operations of addition,
subtraction, multiplication and division. All the above operations are continuous everywhere6, we get
that their composition is also continuous everywhere. Hence, LNSAY (·) is continuous.

G CONVERGENCE OF SUBSET GNSA

Here, we prove that GNSA adapts well to minibatching and hence can be used as a loss term. In
particular, Lemma G.1 proves theoretically that in expectation, GNSA over a minibatch is equal to
GNSA of the whole dataset. This supplements the results presented in Figure 2. The experiment
is run on the output embeddings of a GCN trained on node classification for the Cora Dataset. We
compare the convergence with a batch size of 200 and 500.
Lemma G.1 (Subset GNSA convergence). Let X,Y be two point clouds of the same size N such
that X = {x1, . . . , xN} and Y = {y1, . . . , yN}. Let X̃ be some randomly sampled s sized subsets
of X (for some s ≤ N ). Define Ỹ ⊂ Y as yi ∈ Ỹ iff xi ∈ X̃ . Then the following holds true

Ẽ
X,Ỹ

[
GNSA(X̃, Ỹ )

]
= GNSA(X,Y ).

Proof. Let maxx∈X(d(x, 0)) = DX and maxy∈Y (d(y, 0)) = DY . Then

GNSA(X,Y ) =
1

N2

∑
1≤i,j≤N

∣∣∣∣d(xi, xj)

DX
− d(yi, yj)

DY

∣∣∣∣ .
Define IX̃ (xi) as

IX̃ (xi) =

{
1 if xi ∈ X̃,

0 otherwise.

6Note that division is not continuous when the denominator goes to zero. Since, the denominators are
(d(x⃗i, x⃗ik )), as long as all k neighbours of a point are not zero distance away, the denominator does not go to
zero.
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Then we can see that

GNSA(X̃, Ỹ ) =
1

s2

∑
1≤i,j≤N

∣∣∣∣d(xi, xj)

DX
− d(yi, yj)

DY

∣∣∣∣ IX̃ (xi) IX̃ (xj) .

Hence, taking expectation over X̃, Ỹ , we get

Ẽ
X,Ỹ

[
GNSA(X̃, Ỹ )

]
=

1

s2
Ẽ

X,Ỹ

 ∑
1≤i,j≤N

∣∣∣∣d(xi, xj)

DX
− d(yi, yj)

DY

∣∣∣∣ IX̃ (xi) IX̃ (xj)

 .

By linearity of expectation, we get

Ẽ
X,Ỹ

[
GNSA(X̃, Ỹ )

]
=

1

s2

∑
1≤i,j≤N

∣∣∣∣d(xi, xj)

DX
− d(yi, yj)

DY

∣∣∣∣ Ẽ
X,Ỹ

[IX̃ (xi) IX̃ (xj)] .

Assuming s >> 1, each xi is independently in X̃ with probability s/N , hence, we get

Ẽ
X,Ỹ

[
GNSA(X̃, Ỹ )

]
=

1

s2

∑
1≤i,j≤N

∣∣∣∣d(xi, xj)

DX
− d(yi, yj)

DY

∣∣∣∣ s

N

s

N
.

Hence, we have
Ẽ

X,Ỹ

[
GNSA(X̃, Ỹ )

]
= GNSA(X,Y ).

H NSA RUNNING TIME OVER INCREASING BATCH SIZES

Theoretically, NSA is quadratic in the number of points as we need to calculate pairwise distances.
But since we use torch functions and the data is loaded on the GPU, empirical running times are
significantly lower. Figure 5(a) presents the running time of GlobalNSA and Figure 5(a) presents
the running time of NSA (Global and Local combined) on two embedding spaces of very high
dimensionality ( 200,000). We notice that even when we get to a very high batch size (5000), the
running time scaling is nearly linear. It is worth noting that these running times are higher as the
dimensionality is very high, in most practical scenarios, your embeddings would lie in a lower
dimension.

(a) (b)

Figure 5: Running time of NSA over increasing batch sizes. (a) Running time of GlobalNSA over
increasing batch size. (b) Running time of NSA over increasing batch size

I ADDITIONAL TESTS WITH CNNS

We perform additional layer-wise similarity tests and initial adversarial analysis on ResNet architec-
tures and present the results here. Using ResNet-18 and ResNet-32 models pretrained on ImageNet,
we extract intermediate embeddings from a subset of 100K images, focusing on post-residual layers
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(end of blocks). This choice is supported by prior findings (Kornblith et al., 2019; Veit et al., 2016),
which show that layers within blocks do not capture meaningful information correlating with other
layers. Consistent with our other experiments, NSA is computed on a subset of 4,000 samples and
averaged over 10 trials. The resulting similarity heatmap, shown in Figure 6, exhibits a clear layerwise
pattern in both models. This reinforces NSA’s ability to quantify dissimilarity across architectures,
approximate large datasets, and scale efficiently.

In Section 4.4, we present results demonstrating NSA’s correlation with traditional metrics in an-
alyzing adversarial attacks. While our earlier experiments focus on GNN architectures, NSA is
architecture-agnostic and can work with any model generating high-dimensional embeddings. It
effectively quantifies the structural changes in representation spaces caused by adversarial perturba-
tions.

To validate this, we perform a Projected Gradient Descent (PGD) evasion attack (Madry et al., 2019)
on a ResNet-20 model pretrained on CIFAR-10, poisoning increasing percentages of the test data.
NSA is computed between the embeddings of the original test set and the poisoned test set. Results,
presented in Figure 7 (a), show a clean correlation between NSA and misclassification rate. We
extend this analysis to a few more ResNet models, where we focus on interpretability. We present the
NSA of the first 50 images computed individually in Figure 7 (b) . It is observed that any image that
is perturbed demonstrates a large increase in NSA value upon being poisoned, indicating a notable
shift in their positions within the embedding space. These findings demonstrate NSA’s utility in
analyzing, interpreting, and identifying the sources of perturbations in models, aligning with our
earlier results on GNN architectures in Section 4.4.

(a) (b)

Figure 6: Layerwise Analysis of ResNet models trained on ImageNet with NSA

(a) (b)

Figure 7: Adversarial analysis on ResNet models trained on CIFAR-10. (a) Correlation of NSA with
misclassification rate under evasion attack at increasing perturbation rates. (b) Nodewise NSA on
the first 50 images of the test set of CIFAR-10 on the perturbed dataset vs the clean dataset. Any
perturbed image shows a significant spike in its NSA value post attack.
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J ARE GNNS TASK SPECIFIC LEARNERS?

We use NSA to investigate whether representations produced by GNNs are specific to the downstream
task. For this, we explored the similarity of representations of different GNN architectures when
trained on the same task versus their similarity when trained on different downstream tasks.

J.1 CROSS ARCHITECTURE TESTS ON THE SAME DOWNSTREAM TASK

NSA

(a) GCN vs CGCN (b) GraphSAGE vs GAT (c) GCN vs CGCN (d) GCN vs GSAGE

Figure 8: Cross Architecture Tests using NSA on the Amazon Computers Dataset. (a) Layerwise
NSA values between GCN and ClusterGCN on Node Classification (b) Layerwise NSA values
between GraphSAGE and GAT on Node Classification (c) Layerwise NSA values between GCN
and ClusterGCN on Link Prediction (d) Layerwise NSA values between GCN and GSAGE on Link
Prediction. Similar architectures showcase a layerwise pattern when trained on the same task.

We tested layerwise representational similarity on the task of node classification (on the Amazon
Computers Dataset) across different GNN architectures: GCN, ClusterGCN (CGCN), GraphSAGE,
and GAT. Just like in the sanity tests, models that are similar in architecture or training paradigms
have a higher layerwise similarity: this implies that the highest similarity is between GCN and
ClusterGCN that differ only in their training paradigms. We also observe (a less pronounced) linear
relationship between the other pairs of architectures. These results are shown in Figure 8.

J.2 ARCHITECTURE TESTS ON DIFFERENT DOWNSTREAM TASKS

GCN GSAGE GAT CGCN

NSA

Figure 9: Effect of Downstream Task on Representations Achieved by the Same Architecture
(Amazon Computers Dataset). The layerwise dissimilarity of four GNN architectures is compared on
two different downstream tasks: Node Classification and Link Prediction. There is no observable
correlation across layers suggesting that the GNNs generate different representation spaces for the
same dataset on different downstream tasks.

We conducted experiments with different downstream tasks to assess layerwise similarity between
two models, both of which shared structural identity except for disparities in their final layers.
Specifically, we employed node classification and link prediction as the two downstream tasks for our
investigations. We present our findings in Figure 9. They reveal that there is little relationship across
layers for any of the four architectures.

The results presented in this section indicate that that different GNN architectures have similar
representation spaces when trained on the same downstream task and conversely, similar architectures
have different representation spaces when trained on different downstream tasks. Extending this
idea further, it should be possible to train Graph Neural Networks to conform to a task specific
representation template. This structural template will be agnostic of GNN architectures and provide a
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high degree of functional similarity. If we train GNNs to minimize discrepancy loss with such a task
specific template, we could train more directly and without adding downstream layers of tasks.

K DOWNSTREAM TASK ANALYSIS WITH THE STS DATASET

We assess the performance of embeddings derived from NSA-AE in the context of the Semantic Text
Similarity (STS) Task. We employ Google’s Word2Vec word vectors as the initial dataset, processing
these 300-dimensional vectors through both a standard autoencoder and the NSA-Autoencoder to
achieve reduced dimensions of 128 and 64. The efficacy of these dimensionality-reduced embeddings
is then evaluated using the STS Multi EN dataset (Cer et al., 2017). This evaluation aims to determine
if the word vectors, once dimensionally reduced, maintain their alignment, as evidenced by a strong
positive correlation in similarity scores on the STS dataset. The comparative results, as detailed in
Table 3, demonstrate that the NSA-Autoencoder outperforms the traditional autoencoder in preserving
semantic accuracy at both 128 and 64 dimensions.

Table 3: Pearson Correlation between the similarities output from the original embeddings and the
similarities output from the reduced embeddings. NSA-AE shows a much higher correlation with the
similarity outputs obtained by evaluating the original word2vec embeddings on the STS multi EN
dataset

Latent Dimension Basic AutoEncoder NSA AutoEncoder

128 -0.518 0.7632

64 0.567 0.7619

L AUTOENCODER HYPERPARAMETERS

The hyperparameter setup for all the autoencoder architectures is detailed in Table 4. All autoen-
coder architectures are trained using pytorch-lightning and the input data is normalized using a
MinMaxScaler.

Table 4: Autoencoder Hyperparameters. All four architectures used the same hyperparameters. To
ensure similarity of testing conditions we replicate the hyperparameter setup from Trofimov et al.
(2023)

Dataset Name Batch Size LR Hidden Dim Layers Epochs Metric Start Epoch

MNIST 256 10−4 512 3 250 60

F-MNIST 256 10−4 512 3 250 60

CIFAR-10 256 10−4 512 3 250 60

COIL-20 256 10−4 512 3 250 60

M RUNNING TIME AND RECONSTRUCTION LOSS FOR AUTOENCODER

We show that using NSA along with Mean Squared Error in an autoencoder does not significantly
compromise the model’s ability to reconstruct the original embedding. Additionally, NSA-AE is
more efficient than RTD-AE and Topo-AE. The results are presented in Table 5

N GNN HYPERPARAMETERS

The hyperparameter setup for all the GNN architectures is detailed in Table 6
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Table 5: Reconstruction Loss and Time Per Epoch for different Autoencoder architectures. All
architectures were trained for 250 epochs with the auxiliary loss (TopoLoss, RTD, NSA) kicking in
after 60 epochs.

Metric
Dataset Method Time per epoch Train MSE Test MSE

MNIST AE 2.344 7.64e-3 8.62e-3
TopoAE 39.168 6.89e-3 8.16e-3
RTD-AE 51.608 9.36e-3 1.07e-2
NSA-AE 5.816 8.75e-3 1.00e-2

F-MNIST AE 6.436 8.99e-03 9.79e-03
TopoAE 37.26 8.94-03 9.83e-03
RTD-AE 59.94 1.12e-02 1.24e-02
NSA-AE 5.764 9.49e-03 1.04e-02

CIFAR-10 AE 5.16 1.56e-02 1.65e-02
TopoAE 58.664 1.54e-02 1.68e-02
RTD-AE 56.172 1.60e-02 1.91e-02
NSA-AE 6.996 1.58e-02 1.71e-02

COIL-20 AE 2.012 1.67e-02 -
TopoAE 4.876 1.09e-02 -
RTD-AE 16.404 1.90e-02 -
NSA-AE 8.716 1.80e-02 -

Table 6: GNN Architecture Information

Architecture Layers Hidden Dim LR Epochs Additional Info

GCN 4 128 0.001 200 -

GraphSAGE 4 128 0.001 200 Mean Aggregation

GAT 4 128 0.001 200 8 heads with Hid Dim 8 each

CGCN 4 128 0.001 200 8 subgraphs

O GNN METRICS

The test accuracy for node classification and the ROC AUC value for link prediction is detailed in
Table 7

Table 7: GNN Metric Data on Amazon Computer Dataset. Test Accuracy is for Node Classification
and ROC AUC Score is for Link Prediction

Architecture Accuracy (NC) ROC AUC (LP)

GCN 0.8257 0.8638

GraphSAGE 0.8800 0.8068

GAT 0.8273 0.7997

CGCN 0.8200 0.8716
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P DATASETS

We report the statistics of the datasets used for the empirical analysis of GNNs in Table 8. We report
the exact statistics of the autoencoder datasets in Table 9.

P.1 GRAPH DATASETS

The Amazon computers dataset is a subset of the Amazon co-purchase graph (Shchur et al., 2019).
The nodes represent products on amazon and the edges indicate that two products are frequently
bought together. The node features are the product reviews encoded in bag-of-words format. The
class labels represent the product category. We also use the Flickr, Cora, Citeseer and Pubmed dataset
in additional experiments.

Table 8: Dataset Statistics for Graph

Dataset Amazon Computer Flickr Cora Citeseer Pubmed

Number of Nodes 13752 89250 2708 3327 19717

Number of Edges 491722 899756 10556 9104 88648

Average Degree 35.76 10.08 3.90 2.74 4.50

Node Features 767 500 1433 3703 500

Labels 10 7 7 6 3

P.2 AUTOENCODER DATASETS

Four diverse real-world datasets were utilized for our experiments: MNIST (LeCun et al., 2010),
Fashion-MNIST (F-MNIST) (Xiao et al., 2017), COIL-20 (Nene et al., 1996), and CIFAR-10
(Krizhevsky & Hinton, 2009), to comprehensively evaluate the performance of our autoencoder
model. MNIST, comprising 28x28 grayscale images of handwritten digits, serves as a foundational
benchmark for image classification and feature extraction tasks. Fashion-MNIST extends this by
offering a similar format but with 10 classes of clothing items, making it an ideal choice for fashion-
related image analysis. COIL-20 presents a unique challenge, with 20 object categories, where each
category consists of 72 128x128 color images captured from varying viewpoints, offering a more
complex 3D object recognition scenario.

Table 9: Dataset Statistics for AE

Dataset Classes Train Size Test Size Image Size Data Type

MNIST 10 60,000 10,000 28x28 (784) Grayscale

Fashion-MNIST (F-MNIST) 10 60,000 10,000 28x28 (784) Grayscale

COIL-20 20 1,440 - 128x128 (16384) Color

CIFAR-10 10 60,000 10,000 32x32*3 (3072) Color

Q ABLATION STUDY

NSA consists of two parts, GlobalNSA and LocalNSA. These two components work well together
and are capable of working individually too. LocalNSA makes locally optimal decisions but it could
run into a problem when the global structure needs to be preserved. Figure 10 shows a scenario
where LocalNSA would not obtain a high k-NN consistency between two representation spaces. This
could potentially explain the low kNN consistency when minimizing with just LocalNSA in Table 10.
LocalNSA’s inability to preserve global structure becomes especially prevalent in our LinkPrediction
tests in Table 11. We intend on further improving LocalNSA and coming up with better preprocessing
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Table 10: Autoencoder results. NSA-AE outperforms or almost matches all other approaches on all
the evaluation metrics. RTD-AE, which explicitly minimizes on RTD has a slightly lower RTD value
while PCA has marginally higher Triplet Ranking Accuracy on Cluster Centers.

Quality measure
Dataset Method L. C. T. A. RTD T. A. C.C NSA LID-NSA kNN-C
MNIST GNSA-AE 0.942 0.885 ± 0.006 5.44 ± 0.12 0.944 ± 0.230 0.0198 ± 0.0001 0.0342 ± 0.00 0.616

LNSA-AE 0.819 0.794 ± 0.007 7.39 ± 0.21 0.832 ± 0.374 0.0548 ± 0.00 0.0373 ± 0.00 0.607
NSA-AE 0.947 0.886 ± 0.005 4.29 ± 0.11 0.946 ± 0.226 0.0222 ± 0.00 0.0123 ± 0.00 0.634

F-MNIST GNSA-AE 0.987 0.952 ± 0.002 4.11 ± 0.21 0.992 ± 0.089 0.0091 ± 0.0001 0.0350 ± 0.00 0.592
LNSA-AE 0.887 0.859 ± 0.006 5.41 ± 0.18 0.952 ± 0.214 0.0488 ± 0.00 0.0470 ± 0.00 0.608
NSA-AE 0.9854 0.939 ± 0.003 2.78 ± 0.09 0.992 ± 0.089 0.0114 ± 0.00 0.0133 ± 0.00 0.633

CIFAR-10 GNSA-AE 0.985 0.936 ± 0.004 3.07 ± 0.11 0.984 ± 0.125 0.0077 ± 0.0001 0.0122 ± 0.00 0.453
LNSA-AE 0.8616 0.849 ± 0.006 4.02 ± 0.28 0.936 ± 0.245 0.0624 ± 0.00 0.0220 ± 0.00 0.359
NSA-AE 0.985 0.941 ± 0.003 3.04 ± 0.16 0.984 ± 0.125 0.0086 ± 0.00 0.0103 ± 0.00 0.437

COIL-20 GNSA-AE 0.955 0.919 ± 0.004 7.46 ± 0.23 0.939 ± 0.240 0.0157 ± 0.0 0.3427 ± 0.00 0.721
LNSA-AE 0.848 0.838 ± 0.007 9.74 ± 0.26 0.887 ± 0.316 0.0672 ± 0.00 0.5810 ± 0.00 0.703
NSA-AE 0.976 0.919 ± 0.005 3.55 ± 0.18 0.962 ± 0.191 0.0139 ± 0.00 0.0085 ± 0.00 0.809

schemes to optimize its performence. In practice, GNSA works well and performs competitively even
when used without LNSA. LNSA provides a noticeable improvement but requires dataset specific
fine tuning to find the optimal hyperparameter set up.

Figure 10: Illustration showing why LocalNSA might not maintain neighborhood consistency when
used without GlobalNSA. The objective is to minimize the structural discrepancy between the
reference space X (top) and generated space Y (mid-bottom). LocalNSA aims to minimize the
difference in distances for the k-nearest neighbors of the ith point in X space (in yellow). If a random
initialization causes an unknown point (in red) to move close to the ith point in Y space, LocalNSA
will not move it out, instead focusing on bringing the 5 NNs of X close to i in Y causing a drop in
neighborhood consistency YL (left-bottom). Using GlobalNSA with LocalNSA alleviates this issue
as GlobalNSA pushes point 4 away in the YGL (right-bottom) .

Table 11: Downstream task analysis with Link Prediction. The output embeddings from a GCN
trained on link prediction are passed through all 3 autoencoder architectures. Latent embeddings are
obtained at various dimensions and ROC-AUC scores are calculated on the latent embeddings. Using
both LNSA and GNSA gives the best performance.

Dataset
Method Latent Dim Amazon Comp Cora Citeseer Pubmed

128 95.74 96.04 97.18 97.31
G-NSA-AE 64 95.90 95.54 96.85 96.40

32 96.01 95.37 94.25 97.53
128 76.82 50.01 50.13 93.03

L-NSA-AE 64 74.24 50.69 50.25 93.64
32 80.67 55.44 51.43 95.69
128 95.75 97.83 97.91 97.37

NSA-AE 64 94.60 97.89 98.38 96.97
32 95.76 97.68 96.11 97.66

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Q.1 VISUALIZING THE EFFECT WITH SPHERES DATASET

We use the Spheres dataset (Moor et al., 2020), reducing the original 100 dimension data to 2
dimensions to visually observe the effect that different scaling factors for GNSA and LNSA have.
The Spheres dataset consists of 10 spheres clustered within an 11th large sphere in 100 dimensions.
A visualization of what the structure looks like in 3D is provided in Figure 15. The model is trained
on a batch size of 200 and with no rescaling applied to the Spheres dataset. Additionally, NSA is the
only loss applied here while in the autoencoder experiments, we also use MSE loss to contain the
latent space. We observe that neither LNSA or GNSA do a perfect job when working individually.
LNSA seems to work best with a scaling factor of 0.5 or 1 while GNSA starts exhibiting stable
behavior when g is atleast 1. Throughout all our experiments where both LNSA and GNSA are used,
the values of both l and g are set to 1.

Figure 11: Illustrating the effect that different values of l and g have on convergence on the Spheres
Dataset. A good reconstruction is defined by all the colored spheres being within the gray sphere.

Q.2 CHOOSING THE RIGHT VALUE OF k

While l and g typically work without scaling (setting both values to 1), the choice of k is more
nuanced. The parameter k controls the number of nearest neighbors in the reference space that LNSA
uses to compute local similarity. Intuitively, smaller values of k provide a more localized view, while
larger values approach a global perspective. Figure 13 confirms this intuition.

In this experiment, we attempt to reconstruct a 3D swiss roll using only the LocalNSA loss, where
the neural network minimizes distances within the local neighborhood defined by k. As k increases,
the reconstructed swiss roll retains more of its geometric structure. At low k values, where LocalNSA
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focuses solely on local structures without a global perspective, the reconstruction results in a ribbon-
like structure that lacks global coherence. However, as k increases, the network progressively captures
the broader geometric characteristics of the swiss roll.

(a) (b)

Figure 12: Variation of Mean and Standard Deviation of subsets for GNSA and LNSA. Values
are computed between the outputs of a ResNet-18 and a ResNet-34 on 50,000 ImageNet images.
(a) Mean and Standard Deviation of GlobalNSA at various mini batch sizes. (b) Convergence of
LocalNSA to its Global value in mini batching. The subset values are averaged over 10 runs. The
X-axis varies the k value of the minibatch. The minibatch size is set to 5000. We also present the
standard deviations to demonstrate the stability of LocalNSA

A critical consideration is how to select the appropriate k value during mini-batching. Intuitively,
LocalNSA converges to its global value if the proportion of k to the dataset size is preserved when
applied to mini-batches. For example, if the dataset contains 20,000 points and the global k value is
set to 200 (1/100th of the dataset), then the mini-batch k value should also be set to 1/100th of the
mini-batch size to maintain consistency.

We illustrate this concept in Figure 12, showing how consistent k scaling between the full dataset
and mini-batches ensures that LocalNSA converges to the expected global value, maintaining both
stability and interpretability in the loss function across different batch sizes.

Figure 13: Illustrating the effect of different values of k on the reconstruction of a Swiss Roll. The
width of the Swiss Roll is varied across rows to showcase how nearest neighbors approximation
might falter when the width is too high and the k is too low. The batch size is set to 128 and the Swiss
Roll consists of 20,000 points

R APPROXIMATING THE MANIFOLD OF A REPRESENTATION SPACE

Incorporating a structure-preserving metric with MSE, NSA-AE maintains the Euclidean distances
between data points as it compresses the data into a lower-dimensional space. High-dimensional data
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typically resides in a lower-dimensional manifold (Goodfellow et al., 2016a), where the Euclidean
distance approximates the geodesic distance. Utilizing this approximation allows NSA-AE to unfold
complex datasets to their manifold dimensions, providing a clearer interpretation of underlying data
relationships that are often obscured in higher dimensional ambient spaces.

Our experiments with the Swiss Roll dataset illustrate the effectiveness of this approach. Figure
14(b) and 14(c) from our results display the outcomes of dimensionality reduction when prioritizing
Euclidean distances versus geodesic distances. Preserving the geodesic distances lets us construct a
more accurate representation of the Swiss Roll’s original manifold structure. Conversely, in cases
where the manifold dimension of the input data remains unknown, the latent dimension at which
NSA minimization becomes optimal inherently corresponds to the manifold dimension of the data.
This observation underscores the practical significance of understanding the manifold dimension
when leveraging NSA for dimensionality reduction within an autoencoder framework.

We also present results on dimensionality reduction for the Spheres Dataset from Moor et al. (2020).
We show that you can use NSA-AE to reduce the 100 dimension dataset to 3 or even 2 dimensions
and still preserve the structure of the representation space in Figure 15. While manifold learning
techniques such as ISOMAP (Tenenbaum et al., 2000) and MDS (Kruskal, 1964) are also capable
of unfolding complex datasets and preserving geodesic distances, they require access to the entire
dataset for computation. This necessitates significant computational resources, particularly for large
datasets. In contrast, NSA is able to achieve the same result while operating on mini-batches, making
it substantially more computationally efficient and scalable.

Finally, we present reconstruction results on the Mammoth dataset. The original dataset is in 3
Dimensions and NSA-AE successfully preserves the structure of the dataset in 2 Dimensions. We
present this result in Figure 16.

(a) (b) (c)

Figure 14: Results of NSA-AE on the Swiss Roll Dataset. (a) The original Swiss Roll Dataset in 3D.
(b) Result of dimensionality reduction to 2D using NSA-AE when minimizing euclidean distance. (c)
Result of dimensionality reduction to 2D using NSA-AE when minimizing geodesic distance
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Figure 15: Dimensionality reduction on the Spheres dataset with NSA-AE. (a) 2 randomly chosen
dimensions from the 100 dimension dataset (b) 2D-Latent Space obtained from NSA-AE (c) 3
randomly chosen dimensions from the 101 dimension dataset (d) 3D-Latent Space obtained from
NSA-AE
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(a) (b)

Figure 16: Results of NSA-AE on the Mammoth Dataset. (a) The original Mammoth Dataset in 3D.
(b) Result of dimensionality reduction to 2D using NSA-AE.

S VISUALIZING THE LATENT EMBEDDINGS FROM AUTOENCODERS

(a) F-MNIST on AE (b) MNIST on AE (c) COIL-20 on AE

(d) F-MNIST on RTD-AE (e) MNIST on RTD-AE (f) COIL-20 on RTD-AE

(g) F-MNIST on NSA-AE (h) MNIST on NSA-AE (i) COIL-20 on NSA-AE

Figure 17: Visualizing the latent representations of the autoencoders with t-SNE
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We use t-SNE(van der Maaten & Hinton, 2008) to reduce the latent embeddings obtained from all 4
datasets used in Table 1 to reduce their dimension from 16 to 3. The results are presented in Figure 17.
We observe that t-SNE generates similar clusters across all three architectures; the basic Autoencoder,
RTD-Autoencoder and NSA-Autoencoder.
It is important to note that the observation of similar clustering patterns between AE and NSA-AE
embeddings in t-SNE plots does not necessarily indicate identical representation structures in the
original high-dimensional latent spaces. This is because t-SNE’s emphasis on local similarities
can result in visually analogous clusters even when the global structures or the exact nature of the
representations differ significantly between the two methods. NSA-AE’s latent space captures the
exact structure of the input representation space significantly better than a normal AE, preserving the
data’s geometric and topological properties. This is demonstrated by NSA-AE’s latent embeddings
having superior accuracy in downstream tests where exact structure preservation is vital (Section 4.3
and Appendix K).

T REPRODUCIBILITY STATEMENT

Our code is anonymously available at https://anonymous.4open.science/r/NSA-B1EF. The code
includes notebooks with instructions to reproduce all the experiments presented in this paper. Hy-
perparameter setups are available in Appendices L, N and P. Detailed instructions are given in the
README and in the notebooks. All the code was run on a conda environment with a single NVIDIA
V100 GPU.

U LAYERWISE SPECIFICITY TESTS

In the second experiment, we compare the layerwise dissimilarity of differing initializations to layers
of the same model trained with the same seed. In this setup, a robust metric should not only assign the
lowest dissimilarity to corresponding layers across different seeds but also ensure that the dissimilarity
between corresponding layers is lower than that between non-corresponding layers within the same
model (e.g., layer 7 vs. other layers of the same network). This analysis is crucial for quantifying
a metric’s depth insensitivity, which we define as the average number of non corresponding layers
within the same network that exhibit a lower dissimilarity than corresponding layers across different
seeds. A high depth insensitivity indicates poor specificity, as it implies that the metric fails to
differentiate layers in different networks from non-corresponding layers within the same network.

We observe that NSA exhibits the lowest depth insensitivity, with an average of 1.11 layers being
incorrectly prioritized over corresponding layers in different networks. In contrast, CKA and RTD
show average depth insensitivity values of 2.33 and 1.88, respectively. These results are in line with
the experiments proposed by Ding et al. (2021) to quantify the performance of similarity indices.

Both the specificity experiments use the same experimental setup, with six models trained indepen-
dently on CIFAR-10 using different initialization seeds. Similarity computations for all metrics are
averaged over 10 trials, with subset sizes of 4000 for NSA and 400 for RTD, following their respective
recommendations. We also average results across three sets of pairwise comparisons between the
models to ensure reliability and present the standard deviations across the sets. Standard deviations
across trials are orders of magnitude smaller than the mean and do not affect the reported trends and
are therefore not reported. Figure 18 showcases the results of our layerwise experiments.

35

https://anonymous.4open.science/r/NSA-B1EF


1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

CKA RTD NSA

Heatmap

Model A Model B

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Layer

0
1

2
3

4
5

6
7

8
M

od
el

 A
 L

ay
er

0.2

0.4

0.6

0.8

Model A Model B

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Layer

0
1

2
3

4
5

6
7

8
M

od
el

 A
 L

ay
er

0

5

10

15

20

Model A Model B

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Layer

0
1

2
3

4
5

6
7

8
M

od
el

 A
 L

ay
er

0.00

0.05

0.10

0.15

0.20

Layer 1

Same Seed Different Seed

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
CK

A 
Va

lu
es

Base Value

Same Seed Different Seed

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Layer

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

RT
D 

Va
lu

es

Base Value

Same Seed Different Seed

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Layer

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

NS
A 

Va
lu

es

Base Value

Layer 4

Same Seed Different Seed

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

CK
A 

Va
lu

es

Base Value

Same Seed Different Seed

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Layer

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

RT
D 

Va
lu

es

Base Value

Same Seed Different Seed

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Layer

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

NS
A 

Va
lu

es

Base Value

Layer 5

Same Seed Different Seed

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Layer

0.0

0.1

0.2

0.3

0.4

0.5

CK
A 

Va
lu

es

Base Value

Same Seed Different Seed

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Layer

0

2

4

6

8

10

12

RT
D 

Va
lu

es

Base Value

Same Seed Different Seed

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Layer

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

NS
A 

Va
lu

es

Base Value

Layer 6

Same Seed Different Seed

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Layer

0.0

0.1

0.2

0.3

0.4

0.5

CK
A 

Va
lu

es

Base Value

Same Seed Different Seed

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Layer

0

2

4

6

8

10

12

RT
D 

Va
lu

es

Base Value

Same Seed Different Seed

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Layer

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

NS
A 

Va
lu

es

Base Value

Layer 7

Same Seed Different Seed

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

CK
A 

Va
lu

es

Base Value

Same Seed Different Seed

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Layer

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

RT
D 

Va
lu

es

Base Value

Same Seed Different Seed

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Layer

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

NS
A 

Va
lu

es

Base Value

Layer 8

Same Seed Different Seed

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

CK
A 

Va
lu

es

Base Value

Same Seed Different Seed

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Layer

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

RT
D 

Va
lu

es

Base Value

Same Seed Different Seed

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Layer

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

NS
A 

Va
lu

es

Base Value

Layer 9

Same Seed Different Seed

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

CK
A 

Va
lu

es

Base Value

Same Seed Different Seed

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Layer

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

RT
D 

Va
lu

es

Base Value

Same Seed Different Seed

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Layer

0.00

0.02

0.04

0.06

0.08

0.10

NS
A 

Va
lu

es

Base Value

Figure 18: Layer wise Specificity Tests. We showcase the variation of all 3 metrics when trained on
different seeds. Column 1 shows the layerwise dissimilarity of CKA, Column 2 shows the layerwise
dissimilarity of RTD, and Column 3 shows the layerwise dissimilarity of NSA. The blue columns are
the mean values across all 3 pairs of experiments and the red columns are the standard deviations.
The dotted line marks the dissimilarity value of corresponding layers across initializations. The left
set of columns in each subfigure represent the results on the same initialization while the right set of
columns represent the results on different initializations.
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V EMPIRICAL ANALYSIS ON ADDITIONAL DATASETS

Empirical analysis of intermediate representations with similarity measures can help uncover the
intricate workings of various neural network architectures. When two networks that are struc-
turally identical but trained from different initial conditions are compared, we expect that, for each
layer’s intermediate representation, the most similar representation in the other model should be
the corresponding layer that matches in structure. We can also perform cross-layer analysis and
cross-downstream task analysis of the intermediate representations of a neural network to help
uncover learning patterns of a network. We use 4 different GNN architectures; GCN (Kipf & Welling,
2017), GraphSAGE (Hamilton et al., 2017), ClusterGCN (Chiang et al., 2019) and Graph Attention
Network (GAT) (Veličković et al., 2018). We evaluate with Sanity Tests, Cross Architecture Tests,
Downstream Task tests and Convergence Tests. We utilize the Amazon Computers Dataset (Shchur
et al., 2019), Cora (McCallum et al., 2000), Citeseer (Giles et al., 1998), Pubmed (Sen et al., 2008)
and Flickr (Zeng et al., 2020) Datasets for our experiments.

V.1 INITIALIZATION SANITY TESTS

The sanity test compares the intermediate representations obtained from each layer of the Graph
Neural Network against all the other layers of another GNN with the exact same architecture but
trained with a different initialization. we expect that, for each layer’s intermediate representation, the
most similar intermediate representation in the other model should be the corresponding layer that
matches in structure. We only demonstrate the performance of NSA for both Node Classification and
Link Prediction.

GCN GSAGE GAT CGCN

Amazon

Cora

Citeseer

Pubmed

Figure 19: Sanity Tests for Link Prediction on 3 datasets. The heatmaps show layer-wise dissimilarity
values for two different initialization of the same dataset on four different GNN architectures.
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GCN GSAGE GAT CGCN

Amazon

Cora

Citeseer

Pubmed

Flickr

Figure 20: Sanity Tests for Node Classification on all 4 datasets. The heatmaps show layer-wise
dissimilarity values for two different initialization of the same dataset on four GNN architectures.
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V.2 CROSS ARCHITECTURE TESTS ON NODE CLASSIFICATION

In this section we evaluate the similarity in representations across architectures for the Amazon Com-
puters dataset and the three Planetoid datasets; Cora, Citeseer and Pubmed on Node Classification.

Normalized
Space

Alignment (a) GCN vs ClusterGCN (b) GraphSAGE vs GAT (c) GCN vs GAT

(d) GCN vs GraphSAGE (e) GAT vs ClusterGCN (f) GSAGE vs CGCN

Figure 21: Cross Architecture Tests using NSA for Node Classification on the Amazon Dataset

Normalized
Space

Alignment (a) GCN vs ClusterGCN (b) GraphSAGE vs GAT (c) GCN vs GAT

(d) GCN vs GraphSAGE (e) GAT vs ClusterGCN (f) GSAGE vs CGCN

Figure 22: Cross Architecture Tests using NSA for Node Classification on the Cora Dataset
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Normalized
Space

Alignment (a) GCN vs ClusterGCN (b) GraphSAGE vs GAT (c) GCN vs GAT

(d) GCN vs GraphSAGE (e) GAT vs ClusterGCN (f) GSAGE vs CGCN

Figure 23: Cross Architecture Tests using NSA for Node Classification on the Citeseer Dataset

Normalized
Space

Alignment (a) GCN vs ClusterGCN (b) GraphSAGE vs GAT (c) GCN vs GAT

(d) GCN vs GraphSAGE (e) GAT vs ClusterGCN (f) GSAGE vs CGCN

Figure 24: Cross Architecture Tests using NSA for Node Classification on the Pubmed Dataset
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V.3 CROSS ARCHITECTURE TESTS ON LINK PREDICTION

In this section we evaluate the similarity in representations across architectures for the Amazon
Computers dataset and the three Planetoid datasets; Cora, Citeseer and Pubmed on Link Prediction.

Normalized
Space

Alignment (a) GCN vs ClusterGCN (b) GraphSAGE vs GAT (c) GCN vs GAT

(d) GCN vs GraphSAGE (e) GAT vs ClusterGCN (f) GSAGE vs CGCN

Figure 25: Cross Architecture Tests using NSA for Link Prediction on the Amazon Dataset

Normalized
Space

Alignment (a) GCN vs ClusterGCN (b) GraphSAGE vs GAT (c) GCN vs GAT

(d) GCN vs GraphSAGE (e) GAT vs ClusterGCN (f) GSAGE vs CGCN

Figure 26: Cross Architecture Tests using NSA for Link Prediction on the Cora Dataset
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Normalized
Space

Alignment (a) GCN vs ClusterGCN (b) GraphSAGE vs GAT (c) GCN vs GAT

(d) GCN vs GraphSAGE (e) GAT vs ClusterGCN (f) GSAGE vs CGCN

Figure 27: Cross Architecture Tests using NSA for Link Prediction on the Citeseer Dataset

Normalized
Space

Alignment (a) GCN vs ClusterGCN (b) GraphSAGE vs GAT (c) GCN vs GAT

(d) GCN vs GraphSAGE (e) GAT vs ClusterGCN (f) GSAGE vs CGCN

Figure 28: Cross Architecture Tests using NSA for Link Prediction on the Pubmed Dataset
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V.4 CROSS DOWNSTREAM TASK TESTS

We perform cross downstream task tests where we compare the layerwise intermediate representations
between two models of the same architecture type but trained on different tasks. The two tasks we
use are Node Classification and Link Prediction. The size of the intermediate embeddings is the
same between the two models (Node Classification model vs Link Prediction model) except for
the last layer. Since NSA is agnostic to the dimension of the embedding, we can compare all the
layers regardless of their dimensionality. Just like the previous experiments, we test on the Amazon
Computers Dataset and the three Planetoid Datasets. We observe that there is no strong correlation as
we go further down the layers between the two models. The highest relative similarity is in the early
layers and as we get to the final layers the similarity is almost non existent.

GCN GSAGE GAT CGCN

Amazon

Cora

Citeseer

Pubmed

Figure 29: Cross Downstream Task Tests with NSA on the Amazon, Cora, Citeseer and Pubmed
Datasets
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W CONVERGENCE TESTS

As a neural network starts converging, the representation structure of the data stops changing
significantly and the loss stops dropping drastically. Ideally, a similarity index should be capable of
capturing this change. We examine epoch-wise convergence by comparing representations between
the current and final epochs. We observe that NSA starts dropping to low values as the test accuracy
stops increasing significantly. This shows that NSA can be used to help approximate convergence and
even potentially be used as an early stopping measure during neural network training, stopping the
weight updates once the structure of your intermediate representations stabilize. We show results for
all 4 architectures on node classification and link prediction. Link Prediction models were trained for
200 epochs and show similar patterns to the ones observed with node classification. All convergence
tests are performed with NSA only. We show the convergence tests on all 4 architectures on Node
Classification in Figure 31 and on Link Prediction in Figure 30 .

(a) GCN LP Epochwise Convergence Heatmap (b) SAGE LP Epochwise Convergence Heatmap

(c) Test Accuracy (d) Test Accuracy

(e) GAT LP Epochwise Convergence Heatmap (f) CGCN LP Epochwise Convergence Heatmap

(g) Test Accuracy (h) Test Accuracy

Figure 30: Convergence Tests on Link Prediction
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(a) GCN NC Epochwise Convergence Heatmap (b) SAGE NC Epochwise Convergence Heatmap

(c) Test Accuracy (d) Test Accuracy

(e) GAT NC Epochwise Convergence Heatmap (f) CGCN NC Epochwise Convergence Heatmap

(g) Test Accuracy (h) Test Accuracy

Figure 31: Convergence Tests on Node Classification
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Figure 32: Specificity Tests Resized. From top to bottom: CKA’, RTD and NSA pairwise distance
between each layer of two differently initialized networks
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Figure 33: Sensitivity Tests Resized. From top to bottom: CKA’, RTD and NSA sensitivity to removal
of prinicipal components.
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Figure 34: Robustness tests on GNN architectures with NSA resized. (a) Misclassification Rate
against Data Perturbation Rate under global evasion attack. (b) NSA against perturbation rate
under global evasion attack. (c) Misclassification Rate against Data Perturbation Rate under global
poisoning attack. (d) NSA against perturbation rate under global poisoning attack
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Figure 35: Analyzing node vulnerability with NSA resized. (a) Nodewise NSA of the 50 nodes
with the greatest decline in Classification Confidence. SVD-GCN has the highest nodewise NSA
variations. (b) Distribution of Classification Confidence before and after an evasion attack on various
Graph Neural Network architectures. A suffix of ’C’ after the architecture name refers to original
dataset results and a suffix of ’E’ refers to confidence on the poisoned dataset (c) Increase in number
of boundary nodes for each model post attack and its correlation with the NSA of the boundary nodes.
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(a)

(b)

Figure 36: Expectation of subset metrics over a large number of trials resized. (a) Mean subset
GlobalNSA variation over increasing trials. (b) Mean subset RTD variation over increasing trials.
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Y INSTABILITY WITH THE ORIGINAL LID FORMULATION OF LNSA

(a)

Figure 37: Variation of Mean and Standard Deviation over subsets for LNSA if we were to use the
formulation of LNSA proposed by MacKay & Ghahramani (2005). Values are computed between the
outputs of a ResNet-18 and a ResNet-34 on 50,000 ImageNet images. The X-axis varies the k value
of the minibatch. The minibatch size is set to 5000. Not only does this variation of LNSA not show a
clean pattern, the values are extremely high ( 1e8) and show erratic standard deviation.
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