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Abstract001

Recent advancements in Large Language Mod-002
els (LLMs) have demonstrated significant003
progress in various areas, such as text gener-004
ation and code synthesis. However, the relia-005
bility of performance evaluation has come un-006
der scrutiny due to data contamination—the007
unintended overlap between training and test008
datasets. This overlap has the potential to artifi-009
cially inflate model performance, as LLMs are010
typically trained on extensive datasets scraped011
from publicly available sources. These datasets012
often inadvertently overlap with the bench-013
marks used for evaluation, leading to an over-014
estimation of the models’ true generalization015
capabilities. In this paper, we first exam-016
ine the definition and impacts of data con-017
tamination. Secondly, we review methods018
for contamination-free evaluation, focusing on019
three strategies: data updating-based methods,020
data rewriting-based methods, and prevention-021
based methods. Specifically, we highlight dy-022
namic benchmarks and LLM-driven evaluation023
methods. Finally, we categorize contamination024
detecting methods based on model information025
dependency: White-Box, Gray-Box, and Black-026
Box detection approaches. Our survey high-027
lights the requirements for more rigorous eval-028
uation protocols and proposes future directions029
for addressing data contamination challenges.030

1 Introduction031

Recent breakthroughs in Large Language Models032

(LLMs) have demonstrated remarkable capabilities033

in text generation, code synthesis, and mathemat-034

ical reasoning (Zhao et al., 2023; OpenAI et al.,035

2024; DeepSeek-AI et al., 2025). However, the036

reliability of LLM evaluation is increasingly ques-037

tioned due to data contamination-the unintended038

overlap between training and test data sets (Bal-039

loccu et al., 2024; Chang et al., 2024). This is040

*Corresponding authors

especially problematic as LLMs use large web- 041

scraped datasets that are prone to overlap with test- 042

ing benchmarks. (Xu et al., 2024b) analyzed 31 043

LLMs in the context of mathematical reasoning, 044

uncovering widespread data contamination. LLMs 045

are known to memorize portions of their training 046

data, and under certain prompts, they can repro- 047

duce this data verbatim (Carlini et al., 2022). As 048

highlighted by (Sainz et al., 2023), a critical con- 049

sequence of data contamination is that scientific 050

studies relying on contaminated LLMs may pro- 051

duce erroneous conclusions, potentially invalidat- 052

ing valid hypotheses. To underscore the importance 053

of addressing data contamination in both the de- 054

velopment and evaluation of LLMs, we present a 055

comprehensive review of data contamination. 056

In section 2, we define data contamination as the 057

inclusion of data from the testing set during the 058

pre-training phase, which artificially inflates model 059

performance. Recent studies extend this defini- 060

tion along two dimensions: phase-based contamina- 061

tion in LLMs’ lifecycle and benchmark-based con- 062

tamination in LLMs’ evaluation. For phase-based 063

analysis, contamination mechanisms include pre- 064

training phase leakage, fine-tuning biases, cross- 065

modal leakage (Yao et al., 2024), and indirect hu- 066

man interactions (Palavalli et al., 2024). Mean- 067

while, we divide benchmark-based contamination 068

into four types: Text contamination, Text-label con- 069

tamination, Augmentation-based contamination, 070

and Benchmark-level contamination. We provide a 071

fine-grained analysis of its impacts, including Ev- 072

idence collection, Non-Contamination scenarios, 073

Quantification of contamination, and Characteris- 074

tics of data contamination. 075

In section 3, we discuss how to achieve 076

contamination-free evaluation. For static bench- 077

marks, current research focuses on three key 078

contamination-free strategies: automatically up- 079

dating datasets using the most recent data, rewrit- 080

ing existing data, and implementing proactive risk 081
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prevention mechanisms. Meanwhile, dynamic eval-082

uation frameworks(Zhu et al., 2024a; Lei et al.,083

2024; Zhang et al., 2024e; Ying et al., 2024) gener-084

ate test samples using techniques like combinato-085

rial optimization, graph-based reasoning, and con-086

trolled randomization, creating an evolving eval-087

uation system. Additionally, the LLM-as-a-judge088

paradigm(Bai et al., 2024) turns LLMs into meta-089

evaluators, enabling intelligent assessments inde-090

pendent of static benchmarks.091

In section 4, we explore methodologies for de-092

tecting data contamination in LLMs. We categorize093

data contamination detection approaches into three094

distinct paradigms: white-box detection, which re-095

lies on full access to model architectures or training096

data to achieve high precision, employing tech-097

niques such as N-gram overlap (Brown et al., 2020)098

or embedding similarity (Reimers, 2019); gray-box099

detection, which leverages partial model informa-100

tion, such as token probabilities, to identify contam-101

ination; and black-box detection, which operates102

without access to internal model details, relying103

instead on heuristic rules (the details are outlined104

in Appendix B). Together, these approaches illus-105

trate the evolving and multifaceted landscape of106

data contamination detection methods, each offer-107

ing unique advantages and challenges.108

The organization of this paper is as follows, as109

shown in figure 1. In Section 2, we discuss ex-110

isting work on the definition and impacts of data111

contamination. Section 3 summarizes current meth-112

ods for constructing contamination-free datasets113

and dynamic evaluation approaches. Section 4 dis-114

cusses how to detect data contamination. Finally,115

in Section 5, we present several significant future116

challenges in this area.117

Difference with previous survey Our paper sys-118

tematically summarizes the definitions of data con-119

tamination across different scenarios and provides120

a fine-grained analysis of its impacts, particularly121

focusing on the characteristics of data contamina-122

tion in Section 2.2.4. Additionally, we enumerate123

several benchmarks utilized for quantifying data124

contamination in Section 3.4.125

2 What is Data Contamination126

2.1 Definition127

In recent years, a growing body of research has128

emerged to address the issue of data contamination129

in LLMs. However, the field lacks a standardized130

methodology to comprehensively summarize data131

Survey Definition Detection Mitigation
Ravaut et al. × ✓ ×

Xu et al. ✓ ✓ ✓
Fu et al. × Partial ×

Chen et al. × × Partial
Deng et al. ✓ ✓ ✓

Ours Comprehensive ✓ ✓

Table 1: Summary of Prior Surveys, ✓ means full cov-
erage and × indicates it is not the main focus. Details
are in Appendix D.

contamination. Simply, let Dtrain denote the train- 132

ing dataset and Dtest the evaluation dataset. Data 133

contamination occurs when: Dtrain ∩ Dtest ̸= ∅. 134

Building on this definition, our research extends 135

the framework into two significant directions: (1) 136

examining vulnerabilities across the entire lifecy- 137

cle of LLMs, including pre-training, fine-tuning, 138

and post-deployment contamination, and (2) ad- 139

dressing risks to benchmark integrity, such as data 140

manipulation and potential label leakage. 141

2.1.1 Phase-based Contamination 142

Contamination during pre-training (Sainz et al., 143

2023) During initial training, web-scraped data 144

often contains unwanted content (e.g., benchmark 145

datasets like GLUE) because of imperfect filtering 146

and deduplication (Lee et al., 2022). While com- 147

plete prevention is impractical, transparency about 148

pre-training data helps avoid biased evaluations 149

(Dodge et al., 2021). 150

Contamination during fine-tuning (Sainz et al., 151

2023) Directly fine-tuning models on benchmark 152

data constitutes a significant form of data contam- 153

ination. This practice is relatively uncommon in 154

industrial settings (Dekoninck et al., 2024b), as 155

developers prioritize maintaining model generaliz- 156

ability. However, in academic contexts, researchers 157

deliberately employ this approach to create contam- 158

inated models for controlled experimental analysis. 159

Contamination after deployment (Balloccu et al., 160

2024) Post-deployment contamination introduces 161

the notion of indirect data leakage, where human 162

interactions during model operation may inadver- 163

tently expose benchmark. 164

Multi-modal contamination (Song et al., 2024) 165

Contamination in multi-modal models can occur 166

in two primary ways. First, when text-label pairs 167

or just the text inputs appear in the training corpus, 168

creating direct overlap with test examples. Second, 169

when triplets containing text, image, and labels 170
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Data Contamination

What is data
contamination
(Sec. 2)

Contamination
Types

Phase-based Contamination:
Sainz et al.,Balloccu et al., Song et al.
Benchmark-based Contamination:
Jiang et al. Palavalli et al.

Impacts

Evidence Collection:
Li and Flanigan, Riddell et al. Liu et al., Sainz et al.
Non-Contamination Scenarios:
Dekoninck et al. Palavalli et al.
Quantifying Methods:
Brown et al.; Touvron et al.; Singh et al. Li
Characteristics of Data Contamination:
Villalobos et al., Deng et al., Kocyigit et al.,Riddell et al., Balloccu et al.
Palavalli et al.,Golchin and Surdeanu,Jiang et al.,Yao et al.,Zhang et al.

How to
avoid data
contamination
(Sec. 3)

Benchmark
Contamination-free

Data Updating-based Methods:
Li et al., White et al., Jain et al., Li et al., Fan et al.
Data Rewriting-based Methods:
Zhu et al., Zhao et al., Li et al.,Ying et al.
Prevention-based Methods:
Zhu et al., Li et al.

Dynamic Evaluation Zhu et al., Lei et al., Zhang et al.
Srivastava et al., Qian et al., Wang et al.

LLM-as-a-Judge Bai et al., Yu et al., Li et al.,Li et al.

Benchmark for detection methods Shi et al., Duan et al., Zhang et al., Ye et al.

How to
detect data
contamination
(Sec. 4)

White-Box
Detection

Elangovan et al., Brown et al., Touvron et al., Chowdhery et al.
Achiam et al., Reimers, Lee et al., Tu et al., Yang et al.

Gray-Box
Detection

Duan et al., Ye et al., Shi et al., Zhang et al.
Zhang et al., Li, Wei et al., Zhang et al.

Black-Box
Detection

Golchin and Surdeanu, Golchin and Surdeanu, Duarte et al.
Dong et al., Ranaldi et al., Chang et al., Deng et al., Carlini et al.

Future Directions
(Sec. 5)

(1)LLM Unlearning Methods (2)Robust Detection Methods
(3)Distinguishing Between Data Contamination and Generalization

Figure 1: Structure of this paper

appear in the training corpus, allowing models to171

memorize text-image-label triplet rather than learn-172

ing generalizable capabilities.173

2.1.2 Benchmark-based Contamination174

Text contamination (Jiang et al., 2024) Text175

contamination occurs when the input text com-176

ponents of evaluation samples appear in the pre-177

training corpus, creating an overlap between test178

and training data that may artificially inflate model179

performance metrics.180

Text-label contamination (Jiang et al., 2024)181

Text-label contamination refers to cases where the182

pre-training corpus contains not only input text but183

also prompts (task instructions) and corresponding184

labels or answers from evaluation samples, effec-185

tively exposing the model to both questions and186

correct answers prior to testing.187

Augmentation-based contamination (Palavalli 188

et al., 2024) Augmentation-based contamination 189

refers to data contamination caused by means 190

such as sample masking (deleting key input/output 191

content), noise injection (rewriting/replacing la- 192

bels/alternative answers), or adversarial augmenta- 193

tion (adding distracting options/irrelevant context). 194

Benchmark-level contamination (Palavalli et al., 195

2024) Benchmark-level contamination arises 196

when the model incorporates partial source cor- 197

pora of benchmark datasets or outdated versions of 198

these benchmarks during the training process. 199

2.2 Impacts 200

Data contamination critically undermines evalua- 201

tion reliability and research validity. As (Sainz 202

et al., 2023; Riddell et al., 2024) demonstrated, 203

benchmark overfitting can artificially inflate model 204

performance and compromise scientific conclu- 205
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sions in NLP studies. For a comprehensive un-206

derstanding of data contamination, we need to col-207

lect evidence, clarify non-contamination scenarios,208

quantify contamination and identify characteristics209

of data contamination.210

2.2.1 Evidence Collection211

Some papers reproduce results from previous work212

by attributing them to data contamination. Li and213

Flanigan (2024) proposed evaluating models on214

training datasets with membership inference at-215

tacks, revealing contamination effects on perfor-216

mance. Riddell et al. (2024) quantitatively ana-217

lyzes the overlap between popular code generation218

benchmarks and pretraining corpora and reveals219

data contamination. Liu et al. (2024) revealed that220

Chinese LLMs exhibit superficial knowledge de-221

spite extensive training, a phenomenon that may222

partially stem from data contamination. For a broad223

perspective, Sainz et al. (2023) highlighted that224

current evidence on contamination remains frag-225

mented across publications and informal channels,226

suggesting that the prevalence of contamination227

may be significantly underestimated.228

2.2.2 Non-Contamination Scenarios229

In this section, we explore non-contamination sce-230

narios, where the overlap between training and test-231

ing data does not lead to performance improvement.232

Dekoninck et al. (2024a) established a causal rela-233

tionship between model performance improvement234

and data contamination, explicitly defining cases235

where such overlap exists but does not enhance236

performance as non-contamination. Furthermore,237

Palavalli et al. (2024) clarified several phenomena238

that improve performance on downstream tasks239

without being influenced by contamination. These240

include language understanding, prior task under-241

standing, and transductive learning. These phe-242

nomena enhance empirical results while preserving243

the integrity of both the task and the model, distin-244

guishing them from data contamination.245

2.2.3 Quantifying Contamination246

For model developers, the scenario for quantify-247

ing contamination focuses on using the N-grams248

algorithm to measure the overlap between the249

training and test data. Contamination scoring250

mechanisms classify evaluation samples through251

threshold-based indices. For instance, Brown et al.252

(2020) used N-grams to evaluate contamination by253

checking whether each token in the tested sample254

appears in an n-gram from the pre-training cor- 255

pus. In contrast, Touvron et al. (2023) introduced a 256

method to align extensions between the testing sam- 257

ples and pre-training corpus, allowing mismatches 258

in certain token positions using a "skip_budget" hy- 259

perparameter. Singh et al. (2024) further extended 260

this method, focusing on the longest contaminated 261

token span rather than all potential matches. In 262

cases where this corpus is unavailable, search en- 263

gines can be utilized to identify relevant problems 264

and their corresponding solutions. If we can find 265

it, it has likely already been used as training data 266

by large language models (Li, 2023b). Besides 267

N-grams, (Cao et al., 2024) proposed that current 268

MIA-related metrics such as perplexity and Zlib 269

compression entropy cannot effectively distinguish 270

contaminated data from cleansed data, and there is 271

a need for new metrics to quantify data contamina- 272

tion. Singh et al. (2024) proposed a new contamina- 273

tion evaluation protocol, ConTAM, to explore how 274

data contamination affects the evaluation results of 275

LLMs, and provided a method to quantify it. 276

2.2.4 Characteristics of Data Contamination 277

In this section, we summarize five key characteris- 278

tics of data contamination in large language mod- 279

els. 280

The inevitability of data contamination As 281

large language models (LLMs) continue to scale 282

up, the size of their training datasets expands corre- 283

spondingly (Villalobos et al., 2024). These datasets 284

are often sourced from extensive web crawls, which 285

may inadvertently overlap with evaluation bench- 286

marks, leading to data contamination (Deng et al., 287

2023). This process is currently inevitable. 288

Scaling laws Larger models exhibit stronger con- 289

tamination effects than smaller ones (Kocyigit et al., 290

2025). As LLMs’ memorization ability grows sig- 291

nificantly with their model size, we argue it be- 292

comes even easier for them to reproduce training 293

data instances (Riddell et al., 2024). 294

Cross-stage Characteristics Data contamina- 295

tion can occur during model pre-training, post- 296

training, and deployment (Balloccu et al., 2024). 297

Kocyigit et al. (2025) found that the training stage 298

at which contamination occurs plays a crucial role 299

in its impact. Early contamination leads to a sharp 300

initial performance increase, but this effect gradu- 301

ally diminishes as training progresses. Late-stage 302

contamination ultimately causes a larger perfor- 303
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mance gap. Uniform contamination (spread across304

the entire training process) produces the most last-305

ing effects, with no significant spikes.306

Task-specific Characteristics Recent research307

indicates that data contamination impact varied308

across different tasks. Comparative experiments309

by Palavalli et al. (2024) further reveal significant310

differences in the performance gains contributed311

by verbatim versus reformatted contamination in312

summarization tasks. Moreover, Golchin and Sur-313

deanu (2023b), using an prompt-guided detection314

approach, demonstrated that the efficacy of the315

same contamination type varies markedly across316

different tasks during pretraining. Jiang et al.317

(2024) confirmed that the order and distribution318

of contaminated data moderate performance across319

different tasks, underscoring the need for evalua-320

tion protocols to be differentially designed for each321

task.322

Cross-lingual Characteristics LLMs are over-323

fitted to translated versions of benchmark test324

sets in non-English languages. This practice in-325

flates model performance on the original English326

benchmarks without direct exposure to them (Yao327

et al., 2024), while evading existing detection meth-328

ods (Zhang et al., 2024a). Kocyigit et al. (2025)329

finds that contamination requires sufficient lan-330

guage representation to produce measurable effects:331

for resource-scarce languages, contamination has332

almost no impact on performance. These findings333

reveal the complexity and threshold effects of data334

contamination in multilingual environments.335

3 How to Avoid Data Contamination336

This section discusses methods to avoid data con-337

tamination in evaluation. First, to reduce risks,338

benchmarks are often constructed following three339

strategies: data updating-based methods, data340

rewriting-based methods, and prevention-based341

methods. Second, dynamic evaluation generates342

adaptive samples using techniques like rule-based343

methods or agent-based methods. Finally, LLM-as-344

a-judge eliminates contamination risks, making it345

a key for contamination-free evaluation. However,346

there may be issues of preference contamination347

(Li et al., 2025).348

3.1 Benchmark Contamination-free Strategies349

Contamination-free benchmarking strategies en-350

sure datasets stay up-to-date, preventing models351

from using outdated data. Data rewriting-based 352

methods demonstrate the practical efficacy of para- 353

phrasing techniques in contamination mitigation. 354

Preventive measures involve technical defenses like 355

encryption, access control, and de-contamination 356

during inference to guarantee the reliability and 357

fairness of LLM evaluation. 358

3.1.1 Data Updating-based Methods 359

Using the most recent data is intuitive for construct- 360

ing contamination-free benchmarks, and some stud- 361

ies have proposed automatically collecting recent 362

data to build questions. Meanwhile, recent data 363

also need to maintain the stability of difficulty. 364

LatestEval proposed an automated pipeline to dy- 365

namically generate contamination-free test sets 366

from recent materials (Li et al., 2024d). White 367

et al. (2024) introduced LiveBench, a dynamically 368

updated benchmark that integrates tasks across 369

math, coding, and reasoning with automated scor- 370

ing to mitigate data contamination. Similarly, Jain 371

et al. (2024) introduced LiveCodeBench, a code- 372

generation benchmark that extends prior method- 373

ologies by dynamically evaluating self-repair capa- 374

bilities and maintaining update cycles. Fan et al. 375

(2024) introduced NPHardEval4V-a dynamically 376

updated benchmark to assess reasoning capabilities 377

of MLLMs. In code evaluation, EvoCodeBench (Li 378

et al., 2024a) is proposed to dynamically align with 379

recent code repositories for fair evaluation. 380

3.1.2 Data Rewriting-based Methods 381

This type of methods use data augmentation to re- 382

move contamination from benchmarks, with LLMs’ 383

superior rephrasing and verifying capabilities. Zhu 384

et al. (2024d) proposed Clean-Eval to purify con- 385

taminated benchmarks by paraphrasing and back- 386

translating data into semantically equivalent but 387

lexically distinct forms. Zhao et al. (2024) pro- 388

posed the MMLU-CF dataset, which is constructed 389

by collecting diverse questions, cleaning data, 390

sampling difficulty reasonably, checking data in- 391

tegrity with LLMs, and applying rewriting methods 392

such as rephrasing questions and shuffling options 393

to ensure the dataset remains contamination-free. 394

CLEVA (Li et al., 2023) employs non-repetitive 395

sampling and multi-strategy data rewriting for 396

robust evaluation. Ying et al. (2024) updated 397

benchmarks with two strategies: style-preserving 398

mimicry with LLMs and cognitive-level expansion 399

using Bloom’s taxonomy. 400
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3.1.3 Prevention-based Methods401

Preventive measures focus on safeguarding test402

data integrity through technical and procedural con-403

trols. Core strategies include encrypting public404

test data with public-key cryptography, enforcing405

strict access permissions, and prohibiting deriva-406

tive data creation. Zhu et al. (2024c) introduced407

Inference-Time Decontamination (ITD), a novel408

technique that identifies and rewrites potentially409

memorized responses during model inference. Li410

et al. (2024c) introduced C2LEVA, a comprehen-411

sive bilingual benchmark with systematic contami-412

nation prevention mechanisms, which implements413

proactive measures such as test data rotation and414

enhanced encryption.415

3.2 Dynamic Evaluation416

Rule-based Dynamic approaches address data417

contamination by leveraging adaptive assessment418

frameworks. Zhu et al. (2024a) introduced DY-419

VAL, a graph-based system that generates eval-420

uation samples through algorithmic composition,421

constraint application, and functional descriptions.422

Its directed acyclic graph (DAG) architecture fa-423

cilitates multi-step reasoning tasks with precisely424

controlled complexity. Lei et al. (2024) developed425

S3EVAL, a framework for SQL evaluation that uti-426

lizes randomized table-query pairs. This synthetic427

approach allows for customizable task lengths and428

difficulty levels, while systematically assessing429

long-context reasoning capabilities. Zhang et al.430

(2024e) proposed the DARG method, which dy-431

namically generates evaluation samples with ad-432

justable complexity and diversity using adaptive433

reasoning graphs. Srivastava et al. (2024) intro-434

duced functionalization, a technique that trans-435

forms static question-answer pairs into parameter-436

ized code, enabling the generation of infinite test437

variants. Qian et al. (2024) further extended dy-438

namic evaluation by perturbing key variables in439

questions, allowing for the dynamic generation of440

datasets with controlled variations.441

Agent-based Zhu et al. (2024b) proposed Multi-442

Principle Assessment (MPA), which utilizes LLM-443

based agents to automatically transform questions444

into new ones. Wang et al. (2024) introduced a445

multi-agent framework to implement self-evolving446

benchmarks, which dynamically mutates question447

contexts and structures to update benchmarks.448

3.3 LLM-as-a-Judge 449

Next-generation evaluation leverages LLMs them- 450

selves as assessment tools. They can serve the roles 451

of scoring, ranking, and selection. Bai et al. (2024) 452

presented the "LM-as-Examiner" framework, gen- 453

erating questions and evaluating responses through 454

reference-free analysis. Yu et al. (2024) deployed 455

LLMs as "Interactors" in structured multi-turn dia- 456

logues that probe model capabilities while minimiz- 457

ing contamination risks. Li et al. (2024b) proposed 458

TreeEval, a benchmark-free system where LLMs 459

generate hierarchical question trees. This adaptive 460

approach adjusts difficulty based on model per- 461

formance, creating unique assessment paths that 462

prevent data contamination. 463

But Li et al. (2025) identified systematic bias in 464

LLM-as-a-judge evaluations, where models trained 465

on synthetic data from architecturally similar foun- 466

dations receive unfair preference, compromising 467

evaluation fairness. 468

3.4 Benchmarks for Detection Methods 469

In this section, we enumerate existing bench- 470

marks utilized for quantifying data contamination. 471

These datasets consistently comprise textual con- 472

tent paired with corresponding labels. The annota- 473

tion of labels within these benchmarks is systemati- 474

cally conducted based on release dates, establishing 475

a temporal framework for analysis. WikiMIA(Shi 476

et al., 2024) datasets serve as a benchmark de- 477

signed to evaluate membership inference attack 478

(MIA) methods, specifically in detecting pretrain- 479

ing data from extensive large language models. 480

BookMIA(Shi et al., 2024) utilizes book data to 481

evaluate detection methods. Duan et al. (2024) 482

introduce MIMIR, a Python package for evaluat- 483

ing memorization in LLMs, which presents greater 484

challenges than WikiMIA. Zhang et al. (2024d) 485

introduce PatentMIA, specifically designed for 486

Chinese-language pre-training data detection. Ye 487

et al. (2024) propose a StackMIAsub dataset which 488

supports most white- and black-box models, to 489

evaluate detection methods. 490

4 How to Detect Data Contamination 491

Data contamination detection involves identifying 492

whether a text or dataset has been included in a 493

model’s training corpus. We categorize detection 494

methods into three paradigms based on model ac- 495

cess: white-box, gray-box, and black-box and anal- 496

yse robustness in section 5.2. For practical imple- 497
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mentation guidance, we list some detection tools498

in Appendix C.499

4.1 White-Box Detection500

White-box methods use model internals or training501

data to detect contamination.502

N-gram based The n-gram overlap method,503

known for its effectiveness and simplicity, is widely504

used for model developer contamination detec-505

tion. Leading LLMs like LLaMA2 (Touvron et al.,506

2023), PaLM (Chowdhery et al., 2023), and GPT-507

4 (Achiam et al., 2023) stress the importance of508

detecting train/test overlaps. Riddell et al. (2024)509

quantifies the contamination levels between code510

generation benchmarks and pretraining corpora511

through surface-level and semantic-level methods512

involving n-gram matching.513

Embeddings similarity based Embeddings sim-514

ilarity compares texts via cosine similarity of515

their embeddings (with a threshold value), cap-516

turing semantic relationships beyond lexical vari-517

ations (Reimers, 2019). Lee et al. (2023) used a518

similarity exclusion method based on embeddings,519

reducing dataset redundancy and filtering out du-520

plicate data to ensure clean training data. To ad-521

dress sophisticated contamination forms, Yang et al.522

(2023) introduced a hybrid approach combining523

embedding similarity search with GPT-4 powered524

semantic analysis. This detects paraphrased sam-525

ples, enabling proactive benchmark decontamina-526

tion.527

Layer-specific Tu et al. (2024) proposed DICE528

to detect in-distribution contamination during fine-529

tuning by analyzing layer-specific activation pat-530

terns. This method trains contamination classifiers531

on sensitive intermediate layers, demonstrating a532

strong correlation between detection signals and533

performance inflation across multiple LLMs.534

4.2 Gray-Box Detection535

Gray-box approaches utilize partial model infor-536

mation, such as token probabilities, to compute537

perplexity or confidence, which can help detect538

data contamination. These methods mostly make539

a binary decision by comparing the score against540

a threshold value. Duan et al. (2024) systemati-541

cally investigated the underwhelming MIA perfor-542

mance on LLMs, identifying three primary con-543

tributing factors: the massive scale of training544

datasets that complicates memorization patterns,545

the limited number of training iterations that reduce 546

model overfitting, and the inherently fuzzy deci- 547

sion boundaries between member and non-member 548

samples. To address these shortcomings, the Min- 549

K% method established token-based effective meth- 550

ods using outlier token probabilities for pretraining 551

data detection (Shi et al., 2024). However, the ef- 552

fectiveness of this approach heavily depends on 553

pre-designed K values and threshold parameters. 554

Zhang et al. (2024c) subsequently proposed Min- 555

K%++, theoretically grounding detection in local 556

probability maxima identification and moved be- 557

yond heuristic-based methods. Similarly, based 558

on the Min-K% method, Ye et al. (2024) intro- 559

duced PAC, an MIA method that calculates polar- 560

ization distances (based on Max k1% and Min k2%) 561

through input perturbations. Zhang et al. (2024d) 562

proposed DC-PDD to employ corpus frequency 563

divergences to reduce false positives. Without a 564

threshold value, Zhang et al. (2024b) introduced Pa- 565

CoST, a method that detects data contamination by 566

statistically comparing confidence scores between 567

original test items and their semantically equivalent 568

paraphrased counterparts. Alternative perplexity- 569

based methods, Li (2023a) compare perplexity on 570

benchmark samples against contaminated and clean 571

baselines to show data contamination.Similar to 572

this, (Wei et al., 2023) uses GPT-4 to generate data 573

that is stylistically similar to the original GSM8K. 574

The authors then compute the perplexity on the 575

GSM8K training set (train), GSM8K test set (test), 576

and GSM8K reference set (ref). 577

Efficiency analysis Token-based methods(Min- 578

K% (Shi et al., 2024), PAC (Ye et al., 2024), Min- 579

K%++ (Zhang et al., 2024c), DC-PDD (Zhang 580

et al., 2024d)) consist of a constant number of LLM 581

forward passes and then some basic algebraic oper- 582

ations, making them efficient. And PaCoST (Zhang 583

et al., 2024b) requires computational resources for 584

sample paraphrasing. 585

4.3 Black-Box Detection 586

Black-box methods operate without access to 587

model internals, training corpus, primarily relies on 588

the model’s outputs for decision-making. Specifi- 589

cally, these methods heavily rely on certain assump- 590

tions shown in Appendix B. 591

Memorization-based methods Masked and 592

completions are key practices in black-box meth- 593

ods. Golchin and Surdeanu (2023b) first proposed 594

a guided prompt-based detection method, which 595
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effectively identifies contamination in datasets596

through instance completion. Golchin and Sur-597

deanu (2023a) introduced DCQ, a multiple-choice598

question framework where each question presents599

an original instance alongside three perturbed ver-600

sions (in which words are replaced with contextu-601

ally relevant synonyms) and one invalid option.602

If the LLM consistently selects the original in-603

stance, this behavior may indicate data contami-604

nation. Similarly, Chang et al. (2023) introduced605

a challenging cloze task and used data archaeol-606

ogy to investigate the memorization of passages607

from 571 novels by LLMs. Deng et al. (2023) pro-608

posed TS-Guessing, a protocol designed to test a609

model’s ability to reconstruct masked elements of610

test data. Duarte et al. (2024) developed DE-COP,611

a copyright detection framework that employs ver-612

bal versus paraphrased multiple-choice probing.613

This approach uncovers subtle contamination in614

major benchmarks. As highlighted by (Ranaldi615

et al., 2024), the Text-to-SQL task with GPT-3.5616

involves data contamination, where the model is617

tasked with reconstructing masked column names618

using the table name, the remaining column names,619

and contextual information.620

In contrast to previous studies, Dong et al.621

(2024) introduced CDD to identify contamination622

by analyzing the peakedness of output distribu-623

tions. When paired with the TED mitigation tech-624

nique, the CDD approach effectively addresses625

both explicit and implicit forms of contamination626

while preserving the validity of model evaluations.627

Canary insertion (Carlini et al., 2021a) involves628

retraining open models on synthetic benchmark-629

mimicking examples ("canaries") and measuring630

recall rates, with higher recall rates indicating a631

greater propensity for memorization.632

5 Future Directions633

5.1 LLM Unlearning Methods634

Unlearning techniques offer the potential to mit-635

igate LLM privacy risks by erasing specific data636

elements. For language models, (Jang et al., 2023)637

demonstrates that performing gradient ascent on tar-638

get token sequences is an effective method for for-639

getting them. Eldan and Russinovich (2023) is the640

first paper to present an effective technique for un-641

learning in large language models. Future research642

should explore integrating contamination mitiga-643

tion through unlearning methods. This emerging644

field shows promise and fundamental challenges.645

For instance, Shumailov et al. (2024) claims such 646

data erasure may be fundamentally unachievable in 647

current architecture. Shi et al. (2024) uses Min-K% 648

to audit unlearning methods and they’ve found that 649

some content still remain. 650

5.2 Robust Detection Methods 651

Current detection methods confront several chal- 652

lenges. Existing black-box contamination detec- 653

tion approaches rely on heuristic rules that Fu et al. 654

(2024) showed fail under certain conditions, raising 655

concerns about their fundamental reliability. Safety 656

mechanisms within LLMs further complicate de- 657

tection efforts, as methods that directly prompt 658

for contaminated content often trigger filters that 659

mask contamination indicators. Meanwhile, tra- 660

ditional methods may lack effectiveness in detect- 661

ing augmentation-based contamination(Dekoninck 662

et al., 2024b). Future work should focus on devel- 663

oping detection methods with more robust assump- 664

tions that remain valid across a variety of scenarios 665

and transformation strategies. 666

5.3 Distinguishing Between Data 667

Contamination and Generalization 668

The ambiguity between contamination and general- 669

ization remains unresolved. (Ishikawa, 2025) sys- 670

tematically distinguishes data contamination from 671

generalization in LLM benchmarks through a three- 672

tier framework combining n-gram alignment, ca- 673

nary insertion, and perturbation testing. In this con- 674

text, out-of-distribution (OOD) data performance is 675

considered a true form of generalization. Building 676

on this, future work should emphasize the distinc- 677

tions between data contamination and generaliza- 678

tion. 679

6 Conclusion 680

Our paper examines three fundamental perspec- 681

tives in data contamination research: (1) defining 682

data contamination through the lenses of phases 683

and benchmarks; (2) exploring methodologies for 684

conducting contamination-free evaluations, with a 685

particular focus on dynamic evaluation and LLM- 686

based assessment techniques; and (3) investigat- 687

ing methods for detecting data contamination, of- 688

fering a comprehensive analysis of existing tech- 689

niques and their limitations. Furthermore, we pro- 690

vide actionable recommendations for enhancing 691

contamination-aware evaluation systems, aiming to 692

foster more reliable LLM development practices. 693
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7 Limitations694

While we extensively cover various forms of data695

contamination, it is possible that new contamina-696

tion mechanisms or models may not be fully cap-697

tured in our analysis. Additionally, our focus is698

primarily on data contamination within the context699

of LLMs, and we may not have fully incorporated700

previous research on data contamination in other701

areas of machine learning. And there are so many702

static benchmarks that we only list some to demon-703

strate a contamination-free benchmark construc-704

tion method. Additionally, as this survey focuses705

on LLM data contamination, we may not cover all706

related areas such as membership inference attacks707

(MIA), machine unlearning, and LLM memoriza-708

tion.709
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A Data Contamination Evidence1154

Collection Efforts1155

Several initiatives are currently collecting evidence1156

on data contamination. Below are key platforms1157

and resources involved in this effort:1158

• The Language Model Contamination In-1159

dex (LM Contamination Index): This is a1160

database used to track and record evidence1161

of language model contamination. For more1162

information, visit: https://hitz-zentroa.1163

github.io/lm-contamination/.1164

• CONDA-Workshop Data Contamination1165

Database: This is a community-driven1166

project focused on the centralized collection1167

of data contamination evidence. The goal is to1168

help the community understand the extent of1169

the problem and assist researchers in avoiding1170

previous mistakes. Detailed information can1171

be found at: https://huggingface.1172

co/spaces/CONDA-Workshop/1173

Data-Contamination-Database.1174

B Definition of Assumptions1175

B.1 Verbatim Memorization1176

In the context of LLMs, verbatim memoriza-1177

tion (Carlini et al., 2021b, 2022) refers to the phe-1178

nomenon where a model recalls exact sequences of1179

text, often from the data it has been trained on. This1180

occurs when a model has seen a specific passage1181

or piece of information during its training process1182

and is able to reproduce it exactly when prompted. 1183

Verbatim memorization can lead to issues of data 1184

contamination, where the model unintentionally 1185

outputs copyrighted or sensitive material verba- 1186

tim, causing concerns regarding privacy, intellec- 1187

tual property, and validity in analytical tasks. 1188

B.2 Black-Box Method Assumption 1189

Golchin and Surdeanu (2023a) has assumed that 1190

when a model has memorized instances from the 1191

original dataset, it will prefer selecting options con- 1192

taining the original instance over semantically sim- 1193

ilar perturbations. Additionally, LLMs may ex- 1194

hibit positional biases, where certain positions in 1195

multiple-choice options are more likely to be cho- 1196

sen, leading to potential overestimation or underes- 1197

timation of contamination levels. 1198

Golchin and Surdeanu (2023b) gave the assump- 1199

tion that by providing a "guided instruction" with 1200

dataset name, partition information, and part of the 1201

reference instance, LLMs can generate the com- 1202

plete version of the data instance. This allows for 1203

calculating overlap between generated completions 1204

and reference instances, helping to infer whether 1205

the dataset partition is contaminated. 1206

Duarte et al. (2024) assumed that LLMs may 1207

memorize specific copyrighted content, such as 1208

books or academic papers, during training. When 1209

encountering similar content, they can distinguish 1210

whether they’ve seen it before. DE-COP exploits 1211

this by designing multiple-choice questions to test 1212

if the model can accurately identify original copy- 1213

righted content from paraphrased versions. Addi- 1214

tionally, model selection biases can affect copyright 1215

detection results, and DE-COP introduces a cali- 1216

bration method to minimize such biases. 1217

In (Dong et al., 2024), it is assumed that contam- 1218

inated training data significantly affects the output 1219

distribution of large language models. Specifically, 1220

when trained on contaminated data, the model’s 1221

output distribution becomes more peaked, causing 1222

it to produce more consistent outputs on contam- 1223

inated data, favoring outputs strongly correlated 1224

with the training data. 1225

Deng et al. (2023) assumed that if an LLM can 1226

accurately guess missing parts of a test set, such as 1227

keywords or answer options, without external assis- 1228

tance, it suggests that the model has encountered 1229

the corresponding benchmark data during training. 1230

This indicates memorization-based contamination. 1231

The TS-Guessing protocol tests whether the model 1232

has memorized benchmark data by having it guess 1233
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hidden information.1234

Ranaldi et al. (2024) assumed that data contami-1235

nation can be detected solely by analyzing the in-1236

puts and outputs of LLMs. For example, unusually1237

high accuracy on tasks from datasets like Spider1238

indicates that the model may have been exposed1239

to this dataset during training, leading to memo-1240

rization rather than genuine understanding. Addi-1241

tionally, data contamination may lead to inflated1242

performance on zero-shot tasks when the model1243

encounters potentially contaminated data during1244

training.1245

Chang et al. (2023) assumed that LLMs may1246

memorize portions of text from their training data,1247

especially when evaluation datasets contain known1248

texts. This memorization can lead to inflated per-1249

formance on tasks such as code generation. More-1250

over, data repetition on the web—through search1251

engines and open datasets—encourages memoriza-1252

tion, which improves accuracy on tasks involving1253

familiar content.1254

B.3 Memorization and Data Contamination1255

Instance-level contamination (Fu et al., 2024) does1256

not always lead to verbatim memorization. Uti-1257

lizing instance generation (Carlini et al., 2022;1258

Karamolegkou et al., 2023), demonstrates that ver-1259

batim memorization requires repeated exposures1260

to this instance x during training. Indeed, future1261

research on contamination should place more em-1262

phasis on LLMs’ memorization. Schwarzschild1263

et al. (2024) proposed that strings can be consid-1264

ered memorized if they can be reproduced using a1265

shorter prompt, while Karamolegkou et al. (2023)1266

investigated verbatim memorization, particularly1267

in the context of copyrighted materials.1268

C Data Contamination Detector1269

Li (2023b) present Contamination Detector to1270

check whether test examples appear on the inter-1271

net via Bing search and Common Crawl index.1272

The tool is available at: https://github.com/1273

liyucheng09/Contamination_Detector.1274

Ravaut et al. (2024) presented an open-source1275

library for contamination detection in NLP datasets1276

and LLMs. The library combines multiple meth-1277

ods for contamination detection and is avail-1278

able at: https://github.com/liyucheng09/1279

Contamination_Detector.1280

Overlapy is a Python package developed to1281

evaluate textual overlap (N-Grams) between two1282

volumes of text. This tool can be accessed at: 1283

https://github.com/nlx-group/overlapy. 1284

Yao et al. (2024) introduced Deep Contam, 1285

a method that detects cross-lingual contamina- 1286

tion, which inflates LLMs’ benchmark perfor- 1287

mance while evading existing detection methods. 1288

An effective detection method is provided in the 1289

repository, accessible at: https://github.com/ 1290

ShangDataLab/Deep-Contam. 1291

Tu et al. (2024) discussed the detection of in- 1292

distribution data contamination using LLM’s in- 1293

ternal state. The tool is available at: https: 1294

//github.com/THU-KEG/DICE. 1295

Bordt et al. (2023, 2024) presented Tabmem- 1296

check, an open-source Python library designed to 1297

test language models for memorization of tabu- 1298

lar datasets. The package includes four differ- 1299

ent tests for verbatim memorization of a tabu- 1300

lar dataset (header test, row completion test, fea- 1301

ture completion test, first token test). It also 1302

provides additional heuristics to test what an 1303

LLM knows about a tabular dataset, such as 1304

feature names test, feature values test, dataset 1305

name test, and sampling. The package can be 1306

found at: https://github.com/interpretml/ 1307

LLM-Tabular-Memorization-Checker. 1308

Yang et al. (2023) provided a package that in- 1309

cludes the LLM decontaminator, which quantifies 1310

a dataset’s rephrased samples relative to a bench- 1311

mark. Based on the detection results, the contam- 1312

ination of rephrased samples in the dataset can 1313

be estimated and removed from the training set. 1314

This tool is available at: https://github.com/ 1315

lm-sys/llm-decontaminator. 1316

D Prior Surveys 1317

Prior research on data contamination primarily fo- 1318

cuses on three main areas: definition, detection, 1319

and mitigation. Xu et al. (2024a) and Deng et al. 1320

(2024) provide comprehensive surveys that thor- 1321

oughly examine data contamination in large lan- 1322

guage models, covering conceptual definitions, de- 1323

tection methodologies, and mitigation strategies 1324

with similar classification frameworks for detection 1325

methods (matching-based and comparison-based). 1326

However, they differ significantly in their concep- 1327

tualization of contamination types. The first paper 1328

primarily distinguishes between task-level contam- 1329

ination and language-level contamination, provid- 1330

ing a function-oriented taxonomy. In contrast, the 1331

second paper presents a more granular severity- 1332
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based hierarchy with four distinct levels: semantic-1333

level (topical overlap), information-level (metadata1334

and distributions), data-level (content without la-1335

bels), and label-level contamination (complete ex-1336

posure including ground truth). Their approaches1337

to mitigation strategies also diverge notably. While1338

the first paper emphasizes evaluation guidelines1339

and procedural recommendations, the second pa-1340

per offers a more structured framework categorized1341

into three comprehensive strategies: data curation,1342

data refactoring, and benchmark-free evaluation.1343

The remaining three studies focus on special-1344

ized subdomains of data contamination. (Fu et al.,1345

2024) focuses on black-box detection assumptions1346

and shows these methods fail under certain con-1347

ditions, raising concerns about their fundamental1348

reliability. Ravaut et al. (2024) investigates the1349

critical issue of contamination in LLMs, catego-1350

rizing it into data contamination and model con-1351

tamination , while further distinguishing between1352

input-only and input-label contamination scenarios.1353

The authors systematically review state-of-the-art1354

detection methods, including string matching, em-1355

bedding similarity analysis, likelihood-based tech-1356

niques, and novel LLM-driven approaches, high-1357

lighting their strengths and limitations. Chen et al.1358

(2025) conduct an in-depth analysis of existing1359

static to dynamic benchmark aimed at reducing1360

data contamination risks. Based on this, they pro-1361

pose a series of optimal design principles for dy-1362

namic benchmarking and analyze the limitations of1363

existing dynamic benchmarks.1364
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