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Abstract
Graph generative models have recently emerged as an interesting approach to
construct molecular structures atom-by-atom or fragment-by-fragment. In this
study, we adopt the fragment-based strategy and decompose each input mole-
cule into a set of small chemical fragments. In drug discovery, a few drug
molecules are designed by replacing certain chemical substituents with their
bioisosteres or alternative chemical moieties. This inspires us to group decom-
posed fragments into different fragment clusters according to their local struc-
tural environment around bond-breaking positions. In this way, an input
structure can be transformed into an equivalent three-layer graph, in which
individual atoms, decomposed fragments, or obtained fragment clusters act as
graph nodes at each corresponding layer. We further implement a prototype
model, named multi-resolution graph variational autoencoder (MRGVAE), to
learn embeddings of constituted nodes at each layer in a fine-to-coarse order.
Our decoder adopts a similar but conversely hierarchical structure. It first
predicts the next possible fragment cluster, then samples an exact fragment
structure out of the determined fragment cluster, and sequentially attaches it
to the preceding chemical moiety. Our proposed approach demonstrates com-
paratively good performance in molecular evaluation metrics compared with
several other graph-based molecular generative models. The introduction of
the additional fragment cluster graph layer will hopefully increase the odds of
assembling new chemical moieties absent in the original training set and en-
hance their structural diversity. We hope that our prototyping work will in-
spire more creative research to explore the possibility of incorporating differ-
ent kinds of chemical domain knowledge into a similar multi-resolution
neural network architecture.
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1 | INTRODUCTION

In recent years, deep generative models, such as Varia-
tional Autoencoders (VAEs) [1] and Generative Adversa-
rial Networks (GANs) [2], have emerged as promising
approaches for automatic molecule design and chemical
space exploration. Chemical structures are first ex-
pressed as the Simplified Molecular-Input Line-Entry
system (SMILES) [3], and then modern machine learn-
ing models are built to learn the distribution of large
amounts of training compounds and generate novel
structures. Gomez-Bombarelli et al [4]. first developed a
molecular VAE model to convert discrete SMILES mo-
lecular representations into continuous vector repre-
sentations and generate new chemical structures by per-
forming numerical operations on the latent
representation space. Since then, many popular deep
learning architectures, including different variations of
autoencoders [5], recurrent neural networks (RNNs)
[6,7], long short-term memory (LSTM) [6], gated re-
current unit (GRU), [8], generative adversarial networks
(GANs) [9,10] and transformers [11–13] have been ap-
plied for molecular de novo generation. SMILES can also
be described as parse trees. Grammar VAE [14] model
was further leveraged to encode to or decode from these
parse trees to ensure the structural validity of generated
structures.

Several SMILES-based models [15–17] focused on
scaffold-constrained or scaffold-retained molecular gen-
eration. Josep Arús-Pous et al [15]. introduced a new
molecular set preprocessing algorithm to derive an ex-
haustive set of chemical scaffolds and their respective
molecular decorators. Those scaffold-decorator pair data
are further leveraged to train one of the first neural
translation architectures for selectively decorating di-
verse input scaffolds with potentially synthesizable frag-
ments. Several other scaffold-constrained molecular gen-
eration models have been developed in the literature
recently. For example, Langevin et al [16]. built an RNN-
based molecular generative model with a modified sam-
pling procedure to perform scaffold-constrained de novo
design. Their model also incorporated reinforcement
learning to guide the decorative process and optimize
molecular properties. Kaitoh et al [17] proposed a new
hybrid scaffold-constrained method named EMPIRE that
combines the deep learning-based molecular generator
with the traditional fragment enumeration method.
Fragments generated by the VAE and the enumeration
models are merged and subsequently attached to the in-
put scaffold to form new molecules in an arbitrary chem-
ical subspace.

Besides the SMILES notation, a molecular structure
can be described by an undirected graph where nodes

and edges correspond to specific atoms or associated
chemical bonds. Such molecular graph representations
carry additional structural information, such as atomic
properties and bond distance or angles, as node or edge
attributes, which are usually absent in SMILES repre-
sentation. Various deep learning architectures developed
for graph-structured data can be readily applied to che-
moinformatics tasks. Li’s and Simonovsky’s pioneering
works [18,19] show that it is feasible to directly operate
VAEs or autoregressive models on the space of molec-
ular graphs. Shi et al. proposed a flow-based autore-
gressive model termed GraphAF [20] which combines
the advantages of both autoregressive and flow-based ap-
proaches for molecular graph generation. Other notable
examples include MolGAN [21], constrained graph var-
iational autoencoder (CGVAE) [22], Graph convolu-
tional policy networks (GCPN) [23], graph recurrent
neural networks (GraphRNN) [24]. While remarkable
progress has been made, these deep molecular gen-
erative models still face many challenges. More recently,
Jin et al. proposed the Junction Tree Variational Au-
toencoder (JT-VAE) [25] and HierVAE [26] models to
improve the reconstruction accuracy and generation effi-
ciency through the assembly of larger structural motifs,
instead of individual atoms. For instance, a molecule
structure in HierVAE is represented by a hierarchical
graph with three distinct layers: a molecular graph layer
with atoms as nodes, a motif graph layer with molecular
motifs as nodes, and another attachment layer with at-
tachment configurations as nodes. The encoder in Hier-
VAE generates the embedding of each node in the above
three graph layers. Its autoregressive decoder component
reconstructs the molecule structure by sequentially sam-
pling and attaching the structural motif to the expanding
structure. Some real-world data in life science, sociology,
and commerce can often be represented as such multi-
layer networks [27]. For instance, a multi-layer network
exemplified in Figure 1a has been applied in the multi-
omics data analysis to model not only interactions taking
place within the individual genomic, proteomic, or me-
tabolomic data layer but also that crosstalk between no-
des in different layers [28].

Recently, Polishchuk proposed a new computational
workflow called chemically reasonable mutations
(CReM) [29] for a virtual molecular generation. Like the
concept of matched molecular pairs (MMPs) [30], the
fundamental idea behind CReM is that fragments con-
necting to neighbouring structures with identical local
structural environments are treated as interchangeable
molecular building blocks during molecular assembly.
The local structural context of the fragment around its
attachment point is specified by a context radius param-
eter, which is defined as the maximum bond distance
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from the dummy atom where the bond breaking occurs.
Those decomposed fragments that share a common local
structural context around fragment attachment points
are grouped into the same fragment cluster. Inspired by
both CReM and HierVAE studies, we implement a mul-
ti-resolution graph VAE (MRGVAE) model in this study
to incorporate the concept of interchangeable decom-
posed fragment clusters into the multi-layer graph repre-
sentation of molecules. As shown in Figure 1b and c, our
three-level hierarchical representation of chemical struc-
tures now contains a new third layer that is made up of
nodes representing relevant interchangeable fragment
clusters of decomposed fragments. Including such ex-
changeable fragments may incorporate extra chemical
structural knowledge, e. g., bioisosteres information, into
the molecular generation process. This enables the mod-
el to generate novel structural moieties absent or rare in
the original training set and thus increase the structural
diversity of generated structures.

The schematic diagram of our model architecture for
learning three-level hierarchical molecular graph repre-
sentations is illustrated in Figure 2 below. Training com-
pounds are first decomposed into small fragments, and
the resulting fragments are further assigned to different
clusters according to the local structural context around
their attachment points. In this way, each molecule can
be represented by three hierarchical graphs in which no-
des correspond to constituent atoms, fragments, or rele-
vant clusters of interchangeable fragments. Our encoder
consists of three stacked message passing neural net-
works (MPNNs) [31], each of which reads one of the
above three molecular graphs and outputs vector repre-
sentations of constituent atoms, molecular fragments,
and interchangeable fragment clusters in each layer. The
molecular embeddings are derived from these node

representations and fed to the decoder component. Our
decoder component is built based on three multi-layer
perceptions (MLPs) and reconstructs a molecule in a
fragment-by-fragment manner. It iteratively samples a
fragment out of the next likely fragment cluster, de-
termines how that fragment and the previous fragment
are connected, and finally attaches them together. More
details of our implementation will be described in the
method section.

2 | METHOD

2.1 | Molecular fragmentation and the
vocabulary of interchangeable fragment
clusters

The training compounds in the ChEMBL [32] database
are first decomposed into small fragments that comprise
rigid rings, branched flexible linkers, terminal small
functional groups, etc. These structural motifs will serve
as building blocks for later molecular assembly. A few
molecular fragmentation approaches, such as RECAP
[33], BRICS [34], eMolFrag [35] and MolBLOCKS [36],
have been developed previously to decompose molecular
structures into a set of reasonable constituent fragments.
eMolFrag [35] utilizes the BRICS algorithm to generate
fragments comprising larger scaffolds and smaller con-
necting linkers. Our current prototype models adopt the
extended RECAP fragmentation rules from molBLOCKS,
but can be extended to other more sophisticated custom-
ized rules. In each decomposed fragment, a new dummy
atom is added to where the bond breaking occurs to
form a pseudo-bond with the attachment point on the
fragment.

F I G U R E 1 The schematic illustration of multi-layer graph or network models for (a) the multi-omics data and (b) molecular
fragmentation data. After the molecular fragmentation, decomposed fragments are grouped into different clusters. Each fragment cluster
contains structural analogs that share common local structural patterns near attachment points at the given context radius. (c) lists some
examples of fragments that share a similar local chemical environment (highlighted in bold) as piperazinyl and pyrimidinyl groups when
we set the radius as 3. During the assembly process, fragments will be sampled from the interchangeable fragment cluster and sequentially
attached together to form a new structure.
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For example, the example molecule in Figure 2a is
decomposed into five small fragments. In other words,
the original atom-based molecular graph is transformed
into a small but equivalent graph that uses these decom-
posed fragments as nodes. All decomposed fragments are
compiled into a list after removing duplicates. Like
CReM, those decomposed fragments with identical pa-
rent structures but different attachment points, such as
ortho-substituted and para-substituted benzenes, will be
considered as different fragments.

Collected fragments are further grouped into differ-
ent interchangeable fragment clusters. CReM follows the
MMP [37] algorithm to perform an exhaustive fragmen-
tation of the input molecules and then identify a set of
interchangeable fragments with a common neighboring
chemical environment under a user-specified radius. A
database is created to record SMARTS [38] patterns of
neighboring chemical context and canonical SMILES of
those interchangeable fragments in the key-value pair
format, which enables the search of the next potential
interchangeable fragments (values) under a given chem-
ical context around the attachment point (key). In our
current MRGVAE model, those decomposed fragments
with identical chemical environments around the attach-
ment point under the given context radius are defined as

interchangeable fragments and are assigned into the
same fragment cluster.

As shown in Figure 1b and c, a radius parameter is
set to specify the bond distance from the newly added
dummy atom and defines the local chemical environ-
ment around the dummy atom or the attachment point.
We use the FindAtomEnvironmentOfRadiusN() function
in RDKit [39] to extract the local context of fragments
under the given attachment point or radius and then en-
code them with SMARTS [38] strings. Finally, for each
decomposed fragment, its chemical context around the
attachement point at the specified radius and the frag-
ment structure are stored in a fragment vocabulary or
lookup table in a key-value pair data structure. Some ex-
amples of interchangeable fragment clusters and their
fragment members under the context radius of 3 are il-
lustrated in Figure 1c. A fragment that contains more
than one attachment position will be assigned to two or
more fragment clusters. In CReM, structures are gen-
erated via different fragment enumeration operations,
such as mutation, linking, and growing, by looking up
the interchangeable fragment key-value pair. On the oth-
er hand, our MRGVAE model at first manages to learn
how derived interchangeable-fragment clusters are mu-
tually connected. It then builds a probability model to

F I G U R E 2 The pipeline of our MRGVAE model for deep molecular generation. (a) The illustration of the hierarchical molecular
graph. It consists of three levels: atom level, fragment level, and interchangeable fragment level. (b) Our encoder accepts the hierarchical
graph as input and runs three MPNNs to obtain embeddings of nodes at each level. We use the output representation of the top level as the
whole molecular embedding. The VAE is trained to map the molecular embedding to a normal distribution in the latent space. (c) Our
decoder samples an initial vector from latent space and makes three predictions in a coarse-to-fine manner to generate molecules fragment
by fragment.
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estimate what would be the next interchangeable
fragment cluster. According to the probability dis-
tribution of fragments in the same fragment cluster, the
model samples a fragment and finally attaches it to the
preceding structural moiety. We chose radius 3 as exam-
ple and listed the vocabularies of interchangeble frag-
ments, fragments and atoms in Appendix.

2.2 | Proposed MRGVAE pipeline for the
molecular generation

The overall architecture of our MRGVAE model is illus-
trated in Figure 2 where GA, GF , and GC represent the
molecular graphs at the atom, fragment, and inter-
changeable fragment cluster levels, respectively. A VAE
model generally includes two components: an encoder
and a decoder. The encoder in our model consists of
three units of MPNN, which are a family of deep learn-
ing models widely used for graph learning. These MPNN
units are built to learn the above three-level hierarchical
graph representations of molecules in a fine-to-coarse
manner. Our decoder component reconstructs the mo-
lecular structure by iteratively sampling a fragment from
the predicted fragment cluster and attaching it to the
preceding molecular substructure. In the following para-
graphs, we first briefly introduce the concept of generic
MPNN and its edge-based variants, then describe how
we apply the edge-based MPNN variant to obtain the la-
tent representation of each node in a directed graph. Lat-
er we will explain our encoder and decoder components
in more detail. Some mathematical notations used in our
paper are listed in Table 1.

2.2.1 | Edge-based message passing neural
networks (MPNNs)

MPNN [31] is a general deep learning framework that
operates on graphs with node and edge features. Several
MPNN variants [40–44] have been developed in the past
few years to learn the embeddings of a graph. MPNNs
generally follow three operations: message passing, node
updating, and readout. Generic MPNNs directly operate
on graph nodes, each of which has a vector hidden rep-
resentation, or sometimes called the hidden state. Each
graph node‘s hidden state will be updated during the
message passing phase by applying a predefined updat-
ing function on its current hidden state and an inter-
mediate message aggregated from its neighbouring no-
des’ hidden states. Afterward, all graph nodes’ hidden
states are aggregated together in the final readout phase
to compute the final vector representation of the whole
graph. Rather than operating on graph nodes, some re-
cent MPNNs, such as Directed MPNNs (D-MPNN) [42]
or Edge Memory Neural Networks (EMNN) [45] ag-
gregate messages from preceding adjacent edges in a di-
rected graph. In this work, we follow the edge-updated
MPNN variant in Jin et al.’s recent HierVAE work [26]
to implement the VAE encoder and learn the hier-
archical latent representations of molecular graphs.

For a direct graph G ¼ V ;Eð Þ where V and E are its
node and edge set, N wð Þ is the set of neighbouring nodes
that forward edge message to the node w; xw is the fea-
ture vector of the node w, and xv;w is the feature vector of
an edge ðv;wÞ 2 E. For instance, for a chemical graph
with atoms as nodes, the xw vector consists of several
atomic attributes of the atom w, such as its atom identi-
fier in the graph, its atom type, associated formal charge,
etc., and xv;w will be another feature vector characteriz-
ing the chemical bond between atoms v and w. As
shown in Figure 3a, the flow of messages during the
message passing phase of edge-based MPNNs is direc-
tional. The edge ðv;wÞ in an undirected graph is asso-
ciated with two edge messages: mv;w from v to w and vice
versa. In edge-based MPNNs, each edge message will
start as a zero vector, i. e., m 0ð Þ

v;w ¼ 0. Then it will run a
predefined number of iterations of message passing op-
erations to update every edge message. For example in
Figure 3a, we assume that, at the ðt � 1Þth iteration, two
edge messages mðt� 1Þu1 ;v and mðt� 1Þu2;v are flowing from preced-
ing nodes, u1 and u2, to the central node v, respectively.
The next edge message, mt� 1

v;w , from the central node v to
the next node w can then be updated to mt

v;w by applying
the LSTM function illustrated in Figure 3b on three in-
put arguments: the feature vector xv of node v, the fea-
ture vector xv;w of edge ðv;wÞ, and the aggregation of pre-
ceding edge messages that flow toward the node v, such

T A B L E 1 Commonly used notations.

Notations Descriptions

GðV;EÞ Molecular Graph

V Node set in molecular graph G

E Edge set in molecular graph G

xw The feature vector of a node w

xv;w The feature vector of an edge (u; vÞ

mu;v The message of an edge (u; vÞ

cu Identifier of interchangeable fragment u

N uð Þ A set containing the neighbours of node u

xu The features of node u,

xu;v The feature of edge ðu; vÞ

FCLðÞ A fully connected layer function

MPNaðÞ MPN function, a is sets of parameters

zG The representation of molecular graph G
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as mðt� 1Þu1 ;v and mðt� 1Þu2 ;v . After T iterations, a fully connected
layer (FCL) function is applied to aggregate all edge mes-
sages that flow from preceding neighboring nodes to the
node w and then compute the embedding of node w, i. e.,
hw ¼ FCLðxw;

P
v2N wð Þm Tð Þ

v;wÞ where xw is the feature vector
of node w.

2.2.2 | Encoder

Our encoder contains three MPNN units, denoted as
MPNað Þ, MPNf ð Þ and MPNcð Þ, which are trained to
compute embeddings of atoms, fragments and fragment
cluster nodes in three-layer molecular graph. As illus-
trated in Figure 2a, the MPNa unit reads a chemical
graph GA with atom nodes and is trained to obtain the
embedding of each atom node v in GA. Each atom has a
latent vector as,

hA
v ¼ MPNa GA; eðxvð Þ; eðxu;vÞÞ (1)

where eð:Þ is the embedding function, xAv is the identifier
of atom v and xu;v is the identifier of bond ðu; vÞ.

Next, the original graph GA is transformed to a frag-
ment graph GF with decomposed fragments as nodes
and passed to the MPNf ð Þ unit to compute the embed-
ding of each fragment node v,

hFv ¼ MPNf ðGF; SFv ; e xFu;vÞ
� �

(2)

where e xFu;v
� �

is the embedding vector of the bonding or-

der between two fragment nodes. The fragment feature
vector of SFv includes not only the fragment identifier but

also a weighted sum of atom embedding vectors derived
from the previous step, SFv is defined as,

SFv ¼ HLNf eð ðxFv Þ; H
A
v Þ (3)

where xFv is the identifier of the fragment v. The sum of
fragment v’s atom latent vectors is denoted as HA

v ,
HA

v ¼
P

i2v hA
i . HLNf is one hidden layer network

(HLN).
At the interchangeable fragment level, the molecular

graph is converted to connections between correspond-
ing fragment clusters of decomposed fragments. xCv is the
identifier of the interchangeable fragment v. Their node
feature, SCv , contains the information of the identifier of
interchangeable fragment xCv and the embedding of the
fragment hF

v in the cluster learned from the preceding
MPNf ð Þ unit. We get SCv via one hidden layer network
(HLN) as,

SCv ¼ HLNf eð ðxCv Þ ; h
F
v Þ (4)

The MPNc unit output the embedding for each clus-
ter of interchangeable fragments,

hC
v ¼ MPNcðGC; SCv ; x

C
u;vÞ (5)

where the edge feature xCu;v is the binary feature between
two nodes.

Once embeddings of fragment clusters are obtained,
their average is computed as the final embedding for the
molecule hc. The encoder outputs the mean vector
m hcð Þand standard deviation vectors s2 hcð Þ and map
them to a standard normal distribution, as

zG ¼ m hcð Þ þ s2 hcð Þ � e e � Nð0; IÞ (6)

F I G U R E 3 Illustration of the message passing in the edge-based MPNNs. (a): Each black arrow represents an edge message. The
edge message mt

v;w flowing from the node v to w at the tth iteration will be updated according to the preceding edge messages at the
previous iteration, mðt� 1Þu1 ;v and mðt� 1Þu2 ;v . (b): A LSTM unit is used as the message function to update message from v to w at tth iteration.
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2.2.3 | Decoder

The general VAE decoder component aims to re-
construct the original data from its latent space during
the encoding process. Our decoder is trained to re-
construct a chemical structure by sequentially sampling
new fragments and then assembling them to existing
substructures. As schemed in Figure 4, the decoding
process starts with a vector zG sampled from the latent
space of molecules. This initial zG vector is forwarded to
the decoder to estimate the probabilities pc of inter-
changeable fragment clusters to which the initial frag-
ment moiety belongs to. We sampled the fragment clus-
ter c with the highest probability. The next step is to
ascertain the exact fragmental structure because a frag-
mented cluster often contains several different frag-
ments. The likelihood of every fragment member within
this selected cluster is estimated by the decoder. Once an
exact fragment is chosen, now we have an initial molec-
ular subgraph Gt¼1 highlighted by the red box in
Figure 4b. Besides the initialization procedure, our mod-
el can also accept a given fragment input as Gt¼1. This
will allow us to perform the fragment-based de novo mo-
lecular generation for user-specified scaffolds. This new-
ly generated subgraph will be passed to the trained en-
coder to obtain corresponding embeddings of
constitutuant atoms, fragments, interchangeable frag-
ment clusters as well as the molecular graph embedding,
which are all denoted together as h Gt¼1ð Þ. After the

completion of the first fragment generation cycle, we are
going to estimate the next possible fragment cluster ct¼1,
fragment f t¼1 that will attach to Gt¼1. This reconstruction
process will be repeated to sample and assemble frag-
ments sequentially until the latest sampled substructure
Gt has no more additional attachment points left or until
the generation has reached the predefined maximum
iteration of the fragment generation.

Given current sub-hierarchical graph Gt at step t, the
decoder continues to contruct a molcule using three
multi-layer perceptions (MLPs), MLPa, MLPf , and MLPc,
with the softmax activation function in the output layer.
These three MLPs are trained to estimate the probability
of corresponding chemical moieties, e. g., atom, frag-
ment, and interchangeable fragment cluster, for a given
substructure state in the sequence. Specifically, the mod-
el predicts the next fragment cluster via MLPc and soft-
max activation. This is cast as a classification task over
the fragment vocabulary,

pc ¼ softmax MLPc zG; hðGtÞð Þ þmGtð Þ (7)

where mGt is a mask which is to prevent the formation of
certain undesirable bonds or edges that cannot link to
Gtduring the decoding process. We adopt a similar edge-
mask strategy as the one introduced in NeVAE [46] for
molecular graph generation. We record all atom pairs,
such as “C� C”, “C� N”, “C� O”, “N� C”, “S� O”, which
connect each single bond of decomposed molecules and

F I G U R E 4 Diagram of the decoder in MRGVAE. For simplicity, only two cycles of the fragment assembly are shown here. (a) An
initial vector of a molecule, zG, is sampled from the latent space. (b) The decoder first estimates the probability distribution of
interchangeable fragment vocabulary and samples the one with the highest probability as the initial interchangeable fragment cluster.
Then it selects a fragment member out of this interchangeable fragment cluster as the initial molecular subgraph Gt¼1 for the subsequent
assembling. Alternatively, this initial Gt¼1 subgraph can be specified in the model input if we want to grow structures on a given starting
scaffold. (c) Gt¼1 is passed to the encoder to compute its embedding, h Gt¼1ð Þ. Similar to the procedure in (b), the decoder predicts what will
be the next interchangeable fragment ct¼1 as well as the exact fragment graph f t¼1 via MLPc and MLPf , respectively. The decoder further
estimates how newly sampled f t¼1 are connected to the previously generated molecular subgraph Gt¼1 via MLPa, and assembles them
together to form a new molecular subgraph Gt¼2. (d) Finally, the decoder iteratively attaches another new fragment to the existing
molecular subgraph Gt. The procedure will terminate if no attachment point can be found on the current structure or maximum
generation iterations are reached.
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use them as prior knowledge to form the edge-mask and
guarantee the formation of valid bonds during molecular
generation.

Once the new fragment cluster ct is suggested, the de-
coder will further select the next exact fragment f t using
MLPf , the fragment probability distribution is calculated
as,

pf ¼ softmax MLPf zG; h Gtð Þ; ctð Þ
� �

(8)

Next, the decoder needs to decide how the newly
sampled fragment f t will attach to the previous graph Gt,
because there may be several potential attaching posi-
tions available in Gt. Assume that Gt has multiple attach-
ment positions, the third MLP unit is utilized here to de-
termine the position with attaching atom in f t, we can
compute intermediate atom-pair embedding

li;j ¼ MLPa hAt

i ; h
At

j

� �
, where hAt

i and hAt

j are their node

embeddings in graphs Gt and f t, respectively. This inter-
mediate embedding vector will then be forwarded to a
fully connected layer to estimate the connecting proba-
bility for each investigated atom pair by

pi;j ¼ softmaxðzG � li;jÞÞ (9)

When sampling a fragment from an interchangeable
fragment cluster, this can be done by randomly selecting
a fragment or choosing the one with the highest proba-
bility. However, fragments with the highest probability
may not always be the best fragment candidates. Also,
this may lead to the over-sampling of frequent frag-
ments, such as phenyl, methyl, and halogen groups, and
assembling a structure containing repetitive fragments.
A similar phenomenon often appears in neural text gen-
eration tasks. The top-p [47] sampling approaches have
recently been introduced to alleviate the repetition of
highly frequent words during the text generation. The
top-p sampling, also known as nucleus sampling, choo-
ses the smallest set of tokens whose total probability is
larger than p to reduce the chances of generating less
useful tokens and preserve certain token diversity. In
MRGVAE, we implement two sampling approaches, in-
cluding top-p and random methods, during the decoding
process to inspect whether they can further improve the
quality of generated structures.

2.3 | Model training and
implementation

After the molecular fragmentation, we apply a depth-
first search algorithm to traverse the graph of fragments
and the graph of fragment clusters and convert them
into a sequence of graph nodes and edges in a machine-
readable format. The objective of our VAE training is to
minimize the following negative evidence lower bound
(ELBO) calculated over the entire training set of mole-
cules:

LVAE �; q;Gð Þ ¼ � Ez�Q logPq GjzGð Þ½ �þ

lKLDKL Q�

� �
zG Gj ÞjjP zGð Þ�

(10)

The first term in the above loss function is the re-
construction error or expected negative loglikelihood,
which urges the decoder to learn how to reconstruct the
molecular graph. The generative probabilistic dis-
tribution Pq Gð jzGÞ of molecular graphs conditioned on a
latent vector zG consists of three components para-
meterized by q: pc is the probability of a fragment cluster
connecting to the preceding molecular subgraph G, pf is
the probability of an exact fragment structure connecting
to the preceding molecular subgraph G, and finally pi;j is
the connection probability between a particular atom i in
the newly sampled fragment and another atom j in pre-
ceding graph G. One of the decoder‘s main objectives is
to minimize the total cross-entropy loss between the esti-
mated pc, pf , and pu;k distributions and ground-truth dis-
tributions from the training data. The second term is a
regularizer, Kullback-Leibler divergence, which quanti-
fies how much information will be lost if the prior Gaus-
sian distribution P zG

� �
is used to approximate the en-

coder‘s posterior distribution Q� zGjG
� �

. The
minimization of the KL divergence ensures that
Q� zGjG
� �

is similar to P zG
� �

. A regularization hyper-
parameter, lKL, with the default value of 0.1 in our ex-
periments, controls the balance between the above two
loss terms in the objective function.

Our deep molecular generative models are built on
PyTorch 1.1.0 [48] and trained with the Adam algorithm.
In this study, the size of the mini-batch is set to 32. The
dimension of both hidden layers and the latent vectors
are all set to 250. The VAE network is trained for ten
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epochs with a learning rate of 0.001. RDKit [39]
(2020.03.3 version) is utilized for some data preprocess-
ing and post hoc analyses, such as analyses of the dis-
tribution of molecular properties. Other required python
libraries, such as networkx 2.4 for the graph process and
data storage, are listed in the GitHub readme file. All
deep learning models are trained on one Nvidia Tesla V-
100 card and 32 CPU cores using CUDA 10.

2.4 | Model training and
implementation

ChEMBL version 28 [32] is used and preprocessed as the
molecular training set in this study. We first remove
some irrelevant components or structures, e. g., saltions,
solvents, SMILES containing isotopes, duplicate com-
pounds, etc. Since the main focus of this study is to
check how well those deep learning-based generative
models perform on the traditional small molecular drug-
like chemical space. Therefore, those extra large, greesy
or flexible compounds are removed according to some
structural descriptors, such as molecular weight, number
of hydrogen bond donors/acceptors, the ring size, etc.
We also check the remaining molecules using some em-
pirical SMARTS [38]-based structural filters to further
remove those toxic or over-reactive structures. The pre-
processing python codes and employed SMARTS rules
are described in Data and Software Availability section.
All the above data preprocesses result in nearly 1 M re-
maining structures, which are decomposed into around
ten thousand unique fragments. Some statistics of the re-
sulted training set and decomposed fragments are sum-
maried in Appendix Figure S1.

Besides the JT_VAE and HierVAE models mentioned
earlier, we also include several other molecular graph
generative models as baselines in this paper. NAT
GraphVAE [49] is a graph variational autoencoder for
molecular graph generation in a non-autoregressive
manner. NAGVAEcompress [50] is another non-autore-
gressive graph VAE model, in which six prevalent sub-
structural patterns in real-world molecules are converted
to graph edges and attributes by the graph compression
method. We also include SMILES LSTM [6] for the com-
parative study.

Several metrics are employed to evaluate the per-
formances of various deep molecular generative models.
Some are directly adopted from the MOSES benchmark
[51]. They include internal diversity (IntDivp), structural
validity, uniqueness, and novelty. In addition to the dis-
tance-based diversity, we also include the coverage-based
diversity measurement here. Given a predefined func-
tional group (FG) or ring set (RS), they measure how

well these reference fragments or rings are covered in
the newly generated molecular set. Such coverage-based
methods have been used as the surrogate of chemical di-
versity analysis in some recent chemoinformatics liter-
ature [52,53].

3 | RESULTS AND DISCUSSIONS

In this section, we carry out a series of experiments to
(1). compare MRGVAE’s performance with other graph-
or SMILES-based baseline models over some molecular
benchmark metrics; (2). explore the influence of the con-
text radius parameter on the physicochemical dis-
tribution profile of structures generated by MRGVAE;
(3). investigate how different sampling techniques dur-
ing the decoding process affect physicochemical profiles
of generated structures.

3.1 | Molecular metric evaluation of
structures generated by the MRGVAE
model and other baseline models

This section will assess the quality of structures gen-
erated by MRGVAE and how well models learn to gen-
erate molecules that are similar to the training set. We
first use the MRGVAE model to assemble 50,000 struc-
tures without specifying any starting fragments. One
hundred examples of generated structures are demon-
strated in Figure 5 below. In this initial experiment, ra-
dius and top-p parameters are set as 3 and 0.99, re-
spectively. Since the model performance will vary with
different choices of sampling methods and input pa-
rameters, such as the fragment context radius, we also
investigate the effect of varying sampling approaches
and context radii on the model performance. In this
study, we also try two different sampling methods, ran-
dom and nucleus sampling, to find the subsequent frag-
ments during the molecular decoding process. More
analyses about the influence of different context radii
or sampling methods will be discussed in sections 3.2
and 3.3.

Results of different molecular generative models are
summarized in Table 2. Our MRGVAE models demon-
strate competitive performance compared to other base-
line models. As shown in the table, our MRGVAE model
with a context radius of 2 and random sampling yields
comparable or higher scores in terms of validity, unique-
ness, novelty, diversity, functional group coverage, and
system ring coverage. The improvement of the structural
diversity and novelty by our three-level VAE model is
partially related to the introduction of additional
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fragment candidates from the same interchangeable
fragment cluster, which may result in novel structural
moieties absent in the training set. However, we also ob-
serve a much larger distribution divergence of calculated

chemical properties when random sampling is adopted
in the decoder. Such property distribution divergence
can be lowered by exploring top-p methods, as discussed
in section 3.3.

F I G U R E 5 A hundred examples randomly sampled out of 50,000 generated structures generated by the MRGVAE model (the radius
parameter and the top-p values are set as 3 and 0.99, respectively.).

T A B L E 2 Generation performance comparison of baseline and proposed models.

Method Validity Uniqueness Novelty IntDiv
FG
Coverage

RS
Coverage

SMILES LSTM 0.945 0.996 0.959 0.872 0.508 0.365

NAT GraphVAE 0.831 0.866 1.000 0.823 0.159 0.025

NAGVAEcompress 0.932 0.885 1.000 0.827 0.139 0.033

JT-VAE 1.000 0.997 0.995 0.867 0.476 0.301

HierVAE 1.000 0.952 0.976 0.886 0.492 0.263

MRGVAE with Radius 2 (Top-p=0.99) 1.000 0.955 0.995 0.887 0.419 0.464

MRGVAE with Radius 2 (Random) 1.000 0.995 1.000 0.888 0.594 0.649

MRGVAE with Radius 3 (Top-p=0.99) 1.000 0.945 0.994 0.885 0.338 0.314

MRGVAE with Radius 3 (Random) 1.000 0.963 0.995 0.886 0.402 0.475
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3.2 | The influence of the context radius
on the molecular generation

To study the potential effect of different fragment con-
text radii on the molecular generation, we try five differ-
ent context radii ranging from 1 to 5 and build five cor-
responding models for each radius using the same
ChEMBL dataset. In the previous section, we sampled
the fragment with the highest probability in the frag-
ment vocabulary as the initial fragment. However, differ-
ent initial fragments would also affect the size and mo-
lecular properties of generated structures. To alleviate
the data variation caused by different initial fragments,
we extract 200 structurally diverse druglike fragments or
scaffolds from the fragment vocabulary. Structures of fif-
ty out of these two hundred scaffolds are listed as initial
fragment examples in Appendix Figure S2. To simplify
the follow-up analysis, we only extract those particular
fragments containing only one attachment point and ex-
clude those tiny fragments, e. g., the methylene spacer or
ether linkage, whose fragment radius from the attach-
ment point is less than four. Each of these 200 fragments
will serve as a new starting point for assembling 200 dif-
ferent molecules. Thirty examples of quinazolinone

derivatives generated by our MRGVAE model are shown
in Figure 6.

We also compute scores of structural uniqueness,
novelty, and diversity for each set of structures derived
from one of the 200 scaffolds and draw the boxplots in
Figure 7. Average uniqueness and diversity scores of
generated molecules from 200 different scaffolds sub-
stantially dropped when models were constructed using
a larger context radius to define interchangeable frag-
ments. Increasing the context radius usually leads to
fewer fragments in the same interchangeable cluster,
which will decrease the structural diversity and cause
the model to generate more structures identical to the
original training compounds.

However, when we adopt smaller context radii, we
observe a larger divergence of the physicochemical prop-
erty distributions between generated and training com-
pounds. The distribution of four calculated molecular
properties, lipophilicity (LogP), molecular weight (MW),
chemical synthetic bulky accessibility score (SA), and
quantitative estimation of drug-likeness (QED), for
structures generated under different radii are shown in
Figure 8. When we adopt a small context radius, there is
less structural restriction for the selection of the next

F I G U R E 6 Thirty examples of quinazolinone derivatives generated by the MRGVAE model (with the radius parameter and the top-p
value of 3 and 0.99).

F I G U R E 7 Boxplots of uniqueness, novelty, and diversity scores obtained from 200 scaffold derivatives under different context radii
ranging from 1 to 5.
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fragment, which increases the possibility of attaching
more fragments. Thus, we will observe a significant
rightward shift of the distributions of LogP and molec-
ular weight under a smaller context radius. On the other
hand, such distribution discrepancies will be alleviated
when increasing the context radius.

3.3 | The effect of various sampling
parameter setting on chemical property
profiles of generated structures

Inspired by several recent studies [47] showing that the
quality of neural text generation can be improved by
adopting top-p and random sampling method, we imple-
ment these two methods in our decoder to check wheth-
er they can improve the quality of generated structures.
The effect of various sampling techniques along with
context radii on uniqueness, novelty, and diversity scores
of generated molecules are illustrated in Figure S3 of the
Appendix. To save the space, here we only show results
when the context radius is set to 3 because the other rad-
ii follow a similar general trend. Boxplots of uniqueness,
novelty, and diversity scores produced by different pa-
rameters p of top-p sampling method are demonstrated
in Figure 9. For both sampling methods, when we

increase the values of p, more less-frequent fragments
within the same fragment cluster will be sampled. This
will result in the monotonic improvement of uniqueness
and diversity scores. In addition, because the top-p sam-
pling method keeps only fragments with either the high-
est probability or cumulative probability larger than the
cutoff, the fragment candidate pool for top-p sampling
will be much smaller and restricted than in the random
sampling case. Therefore, the top-p method will yield
lower uniqueness and diversity scores than the random
method.

As shown in Figure 10, We also check how LogP,
MW, SA, and QED distributions shift under different
sampling methods or parameters. The context radius of 3
is chosen as the example here again, while more prop-
erty distributions under various radii parameters and
sampling methods are included in Appendix Figure S4.
Similar to the effect of the context radius parameter, the
distributions of these molecular properties start to shift
right when we increase p values. When p is small, it will
be more equivalent to selecting the fragment with the
highest probability learned from the ChEMBL training
set. Therefore, under this scenario, the trained gen-
erative model generates a new set of molecules with
more similar property distribution profiles as the train-
ing ChEMBL data. When we increase values of p, as

F I G U R E 8 Density Plots of chemical properties for the ChEMBL training set (highlighted in red) and 40,000 structures derived from
200 different scaffolds with radii ranging from 1 to 5. (a) The distribution of lipophilicity (LogP). (b) The distribution of Molecular Weight
(MW), (c) The distribution of chemical synthetic accessibility score (SA). (d) The distribution of drug-likeness (QED).

F I G U R E 9 Effect of top-p sampling methods on the uniqueness, novelty, and diversity scores of generated structures.
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shown in Figure 9, diversity and novelty scores of
generated structures will increase. But as discussed ear-
lier, a concomitant effect is that the distribution-learning
capability is weakened when the novelty scores of gen-
erated structure increase. As shown in Figure 10, in con-
trast to top-p method, the random sampling method pro-
duces a molecular set with a much higher calculated
logP, molecular size, and poor synthetic accessibility
score.

4 | CONCLUSIONS

In this paper, we present a new graph-based variational
autoencoder model for the virtual molecular generation.
Unlike other motif-based molecular graph generative
models, we further group decomposed fragments into
different interchangeable fragment clusters according to
their local structural environment so that the chemical
structure can be represented by a new molecular graph,
which uses these interchangeable fragment clusters as
graph nodes. Our new VAE model is constructed to
learn such three-layer hierarchical graph representations
of chemical structures in a fine-to-coarse order. Atoms,
decomposed fragments, and related fragment clusters act
as graph nodes at each corresponding graph layer. Its de-
coder component is designed to iteratively select a frag-
ment out of a predicted fragment cluster vocabulary and
then attach it to the preceding substructure. Our pro-
posed prototype approach demonstrates comparative
performance in terms of several molecular evaluation
metrics when compared with several other graph- and
SMILES-based generative molecular models. Moreover,
the interchangeable fragment graph layer may enable us
to indirectly inject additional chemical structural knowl-
edge, e. g., bioisosteres information, into the molecular
generation process and increase the odds of assembling
novel chemical moieties absent in the original training
set.
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Python 3.6.10. Its python source codes and the readme
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https://github.uconn.edu/mldrugdiscovery/MRGVAE.
Other three graph-based molecular generative models
(JT-VAE, HierVAE, and CGVAE) are downloaded from
their published repositories: https://github.com/wen-
gong-jin/icml18-jtnn, https://github.com/wengong-jin/
hgraph2graph, and https://github.com/microsoft/con-
strained-graph-variational-autoencoder. We adopt their
default model parameters when applying these three
graph-based molecular generative models to our own
training set. SMILES strings of the preprocessed
ChEMBL training data as well as 200 structurally diverse
scaffolds utilized in this study for the scaffold-based mo-
lecular generation are available under the data directory
of our MRGVAE GitHub repository.

We wrote in-house Python scripts, StructCleansing, to
handle the preprocessing of ChEMBL dataset, which is
available under https://github.uconn.edu/mldrugdiscov-
ery/ ChemStructClean.git. It is implemented based on two
publically available curation pipelines of chemical struc-
tures: ChEMBL_Structure_Pipeline [54] and rd_filters
[55]. Users can customize our ChemStructClean pipeline
to exclude certain classes of compounds by adding or
modifying particular SMARTS filters or molecular de-
scriptor criteria. Molecular descriptor filters are specified
in the “rules_one_step.json” file, while SMARTS rules fil-
ers are listed within the “alert_collection.csv” file. Both of
these files can be found in our code repository.

F I G U R E 1 0 Kernel density plots of molecular property distributions when using different sampling techniques.
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