
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

StableMoFusion: Towards Robust and Efficient Diffusion-based
Motion Generation Framework

Anonymous Authors

ABSTRACT
Thanks to the powerful generative capacity of diffusion models,
recent years have witnessed rapid progress in human motion gener-
ation. Existing diffusion-based methods employ disparate network
architectures and training strategies. The effect of the design of
each component is still unclear. In addition, the iterative denoising
process consumes considerable computational overhead, which is
prohibitive for real-time scenarios such as virtual characters and
humanoid robots. For this reason, we first conduct a comprehen-
sive investigation into network architectures, training strategies,
and inference processs. Based on the profound analysis, we tailor
each component for efficient high-quality human motion genera-
tion. Despite the promising performance, the tailored model still
suffers from foot skating which is an ubiquitous issue in diffusion-
based solutions. To eliminate footskate, we identify foot-ground
contact and correct foot motions along the denoising process. By
organically combining these well-designed components together,
we present StableMoFusion, a robust and efficient framework for
human motion generation. Extensive experimental results show
that our StableMoFusion performs favorably against current state-
of-the-art methods.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Anima-
tion.

KEYWORDS
Human Motion Generation, Diffusion Model, Efficient Inference,
Footskate Cleanup

1 INTRODUCTION
Human motion generation aims to generate natural, realistic, and
diverse human motions, which could be used for animating virtual
characters or manipulating humanoid robots to imitate vivid and
rich human movements without long-time manual motion mod-
eling and professional skills[1, 4, 36]. It shows great potential in
the fields of animation, video games, film production, human-robot
interaction and etc. Recently, the application of diffusion models to
human motion generation has led to significant improvements in
the quality of generated motions [3, 27, 36].

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Table 1: StableMoFusion achieves superior performance on
motion generation compared to other state-of-the-art meth-
ods. Lower FID and higher R Precision mean, the better.

Method FID↓ R Precision (top3)↑

MDM [27] 0.544 0.611
MLD [3] 0.473 0.772
MotionDiffuse [36] 0.630 0.782
ReMoDiffuse [37] 0.103 0.795
StableMoFusion (Ours) 0.098 0.841

Figure 1: Comparison of the inference time costs on motion
generation. The closer the model is to the origin, the better.

Despite the notable progress made by diffusion-based motion
generation methods, its development is still hindered by several
fragmented and underexplored issues: 1) Lack of Systematic Anal-
ysis: these diffusion-based motion generation work usually employ
different network architectures and training pipelines, which hin-
ders cross-method integration and the adoption of advancements
from related domains. 2) Long Inference Time: due to the time-
consuming iterative sampling process, most existing methods are
impractical for applications with virtual characters and humanoid
robots, where real-time responsiveness is crucial. 3) Footskate Is-
sue: foot skating (footskate) in generated motions remains a major
concern. This significantly undermines the quality of generated
motions and limits their practical applicability.

Therefore, in order to fill these research gaps and enhance the
effectiveness and reliability of diffusion-based motion generation
in practical applications, our study conducts a comprehensive and
systematic investigation into network architectures, training strate-
gies, and inference process. Our investigation is specifically directed

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

towards text conditional motion generation, as text prompts are
arguably the most promising format for practical application and
the most convenient input modality among various conditional
signals. Ultimately, we present a robust and efficient framework
for diffusion-based motion generation, called StableMoFusion, as
illustrated in Figure 2.

In StableMoFusion, we use Conv1D UNet with AdaGN and linear
cross-attention as the motion-denoising network, and improve its
generalization capability with GroupNorm tweak. During training,
two effective strategies were employed to enhance the network’s
ability to generate motion. During inference, we use four training-
free acceleration tricks to achieve efficient inference. Furthermore,
we present a footskate cleanup method based on a mechanical
model and optimization.

Extensive experiments demonstrate that StableMoFusion achieves
an excellent trade-off between text-motion consistency and mo-
tion quality compared to other state-of-the-art methods, as shown
in Table 1. Meanwhile, Stablemofusion’s efficient inference process
notably reduces the minimum number of iterations required for
generation from 1000 to 10, as well as shorter inference times than
methods of about the same performance, achieving an average in-
ference time of 0.5 seconds on the Humanm3D test set, as shown
in Figure 1. In addition, our footskate cleanup method within diffu-
sion framework sizably solves the foot skating problem of motion
generation as shown in Section 5.4.

Our major contributions can be summarized as follows:

• We perform a systematic evaluation and analysis on the
design of each component in the diffusion-based motion
generation pipeline, including network architectures, train-
ing strategies, and inference process.

• We propose an effective mechanism to eliminate foot skat-
ing which is a comment issue in current methods.

• By consolidating thesewell-designed components, we present
a robust and efficient diffusion-based motion generation
framework named StableMoFusion. Extensive experiments
demonstrate its superiority in text-motion consistency and
motion quality.

2 RELATEDWORK
2.1 Motion Diffusion Generation
In recent years, the application of diffusion models to human mo-
tion generation has led to significant improvements in the quality
of generated motions. MotionDiffuse [36] softly fuses text features
into diffusion-based motion generation through cross-attention.
MDM [27] experimented with the separate Transformer encoder,
decoder, GRU as denoising networks, respectively. PyhsDiff [34]
incorporates physical constraints to generate more realistic mo-
tions; Prior MDM [23] uses diffusion priors to allow the model to
be applied to specific generative tasks; MLD [3] utilizes the latent
space of VAE to speed up diffusion generation; ReMoDiffuse [37]
uses a retrieval mechanism to enhance the motion diffusion model.
All of these methods use Transformer-based network structure,
while MoFusion [4] and GMD [13] use Conv1D UNet for motion
diffusion generation.

Our work towards a more robust and efficient diffusion-based
motion generation framework through a comprehensive investiga-
tion into network architectures, training strategies, and inference
process. It also addresses the practical application challenges of
long inference time and footskate phenomenon.

2.2 Training-Free Sampling
To reduce the inference time with a trained network, there have
been many advanced samplers to accelerate DDPM [8].

Song et al. [25] show that using Stochastic Differential Equation
(SDE) for sampling has a marginally equivalent probability Ordi-
nary Differential Equations (ODE). And then, DDIM [24] constructs
a class of non-Markovian diffusion processes that realize skip-step
sampling. PNDN [15] uses pseudo numerical to accelerate the deter-
ministic sampling process. DEIS [38] and DPMSolver [16] improve
upon DDIM by numerically approximating the score functions
within each discretized time interval.

Meanwhile, several work have focused on speeding up stochastic
sampling. For example, Gotta Go Fast [11] utilizes adaptive step
sizes to speed up SDE sampling, and Lu et al. [17] converts the
higher-order ODE solver into an SDE sampler to address the insta-
bility issue.

While these samplers have demonstrated efficacy in image gener-
ation, their impact on motion diffusion models remains unexplored.
In this work, we evaluate them to find the most appropriate one
for motion generation.

2.3 Footskate Cleanup
In order to generate realistic motions in computer animation, vari-
ous methods have been developed to improve footskate issue.

Edge [28] embeds the foot contact term into the action repre-
sentation for training and applies Contact Consistency Loss as a
constraint to keep the physical plausibility of motion. RFC [33],
Drop [10] and Physdiff [34] uses reinforcement learning to con-
strain the physical states of actions, such as ground force reaction
and collision situations to get a realism motion. UnderPressure [18]
and GroundLink [7] respectively collect foot force datasets during
motion. UnderPressure [18] also utilizes this dataset to train a net-
work capable of predicting vertical ground reaction forces. Based
on this, UnderPressure proposes a foot skating cleanup method.

3 PRELIMINARIES
The pipeline of Diffusion model [8] involve three interconnected
processes: a forward process that gradually diffuses noise into
sample, a reverse process that optimizes a network to eliminate
the above perturbation, and an inference process that utilizes the
trained network to iteratively denoise noisy sample.

Specifically, a motion denoising network is first trained to predict
the original motion 𝑥0 from the noisy motion 𝑥𝑡 : randomly select
a ground-truth motion 𝑥0 and a diffusion timestep 𝑡 ∼ 𝑈 [0,𝑇], 𝑇
being the maximum timestep. And then the noisy motion 𝑥𝑡 after
t-step diffusion is gained by Equation 1,

𝑥𝑡 =
√
𝛼𝑡𝑥0 +

√
1 − 𝛼𝑡𝜖 (1)

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

StableMoFusion: Towards Robust and Efficient Diffusion-based Motion Generation Framework ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

LayerNorm

Retention

LayerNorm

FFN

xt

Linear

Multi-Head

Cross-Attention

... ...

the person is dancing the

waltz.

N Random Mask

Forward Process

Reverse Process

Inference Process

the person is dancing the

waltz.the person is is waving Text

Encoder

Timestep

Encodertimestep t

Linear

Multi-Head

Cross-Attention

X[Cond_indices]

Embedded_timestepX

Dropout

Scale, Shift

Conv1d

GroupNorm

permute(0,2,1)

permute(0,2,1)

Mish

Cond_indices

Embedded_text

Mish

GroupNorm

permute(0,2,1)

permute(0,2,1)

Conv1d

MLP

Text prompts

...
SDE

DPM-Solver++

2M Karras

Output

Footskate

Cleanup

...

[N, D, L] [N, L]

permute(0,2,1)

permute(0,2,1)

Conv1D U-Net DiT RetNet

(a) (b) (c) (d) (e) (f)

text

else

Linear

Multi-Head

Cross-Attention

Conv1d

Mish

Conv1d

Mish

Scale, Shift

Dropout

MLP

x t

text

GroupNorm

Rearrange

Rearrange

GroupNorm

Rearrange

Rearrange

LayerNorm

Retention

LayerNorm

FFN

xt

text

Conv1d

GroupNorm

Mish

Conv1d

GroupNorm

Mish

Scale, Shift

x t

MLP

text

Linear

Multi-Head

Cross-Attention

Conv1d

Mish

Conv1d

Mish

Scale, Shift

Dropout

MLP

x t

text

GroupNorm

Rearrange

Rearrange

GroupNorm

Rearrange

Rearrange

CondUNet1D Block

Motion Padding

Motion sequence

xtext

Scale, Shift

LayerNorm

Scale

Multi-Head

Self-Attention

Scale, Shift

LayerNorm

Scale

FFN

t

MLP

x

Linear

Multi-Head

Cross-Attention

Scale, Shift

LayerNorm

Scale

Multi-Head

Self-Attention

Scale, Shift

LayerNorm

Scale

FFN

text

MLP

t

Figure 2: Overview of StableMoFusion, which is composed of a diffusion forward process, a reverse process on CondUNet1D
motion-denoising network, and an efficient inference. The colors of the arrows indicate different stages: blue for training, red
for inference, and black for both.

where 𝜖 is a Gaussian noise.
√
𝛼𝑡 and

√
1 − 𝛼𝑡 are the strengths of

signal and noise, respectively. When
√
𝛼𝑡 is small enough, we can

approximate 𝑥𝑡 ∼ N(0, 𝐼).
Next, given a motion-denoising model G𝜃 (𝑥𝑡 , 𝑡, 𝑐) for predicting

the original sample, parameterized by 𝜃 , the optimization can be
formulated as follows:

min
𝜃

𝐸𝑡∼𝑈 [0,𝑇],𝑥0∼𝑝𝑑𝑎𝑡𝑎 | |G𝜃 (𝑥𝑡 , 𝑡, 𝑐) − 𝑥0 | |22 (2)

In the inference process, a trained motion-denoising network can
progressively generate samples from noise with various samplers.
For instance, DDPM [8] iteratively denoise the noisy data from 𝑡 to
a previous timestep 𝑡 ′, as shown in Algorithm 1.

Algorithm 1 Inference
Given a text prompt 𝑐
x𝑡 ∼ N(0, I)
for 𝑡 = 𝑇 to 1 do

x̃0 = G(x𝑡 , 𝑡, 𝑐)
𝜖 ∼ N(0, 𝐼) if 𝑡 > 1, else 𝜖 = 0
x𝑡−1 =

√
𝛼𝑡−1𝛽𝑡
1−𝛼𝑡 x̃0 +

√
𝛼𝑡 (1−𝛼𝑡−1)

1−𝛼𝑡 x𝑡 + 𝛽𝑡𝜖

end for
return x0

4 METHOD
Through comprehensive exploratory experiments conducted on
diffusion-based motion generation, we propose a novel diffusion

framework, named StableMoFusion, as illustrated in Figure 2, to
facilitate robust and efficient motion generation. This section begins
with our investigation on the architecture of motion-denoising
networks. Next, we discuss several training strategies pivotal for
enhancing model performance in Section 4.2. Subsequently, we
introduce our improvements in the inference process in Section 4.3,
tailored to enable efficient inference. Lastly, we discuss and present
a solution to the footskate issue in Section 4.4.

4.1 Model Architecture
Most existing work use Transformer [29]-based architectures as
the motion-denoising network; however, it remains questionable
whether these architectures are best for diffusion-based motion
generation. In this subsection, we will present three new network
architectures fine-tuned for the motion generation task: Conv1D
UNet [4, 13], Diffusion Transformer (DiT) [19] and the latest Reten-
tive Network (RetNet) [26].

4.1.1 Conv1D UNet.

Baseline. We chose the Conv1D UNet with AdaGN [5] and skip
connections in GMD [13] as the Conv1D UNet baseline and modify
the structure to a canonical Unet structure, which consist of four
downsampling stages. The motion length 𝑛 is successively reduced
from 𝑁 to ⌊𝑁 /8⌋, and then the corresponding up-sampling phase is
used to up-sample. There are two residual Conv1D blocks for each
down-sampling or up-sampling stage, with a single block shown
as Figure 3 (a).

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

LayerNorm

Retention

LayerNorm

FFN

xt

Linear

Multi-Head

Cross-Attention

... ...

the person is dancing the

waltz.

N Random Mask

Forward Process

Reverse Process

Inference Process

the person is dancing the

waltz.the person is is waving Text

Encoder

Timestep

Encodertimestep t

Linear

Multi-Head

Cross-Attention

X[Cond_indices]

Embedded_timestepX

Dropout

Scale, Shift

Conv1d

GroupNorm

permute(0,2,1)

permute(0,2,1)

Mish

Cond_indices

Embedded_text

Mish

GroupNorm

permute(0,2,1)

permute(0,2,1)

Conv1d

MLP

Text prompts

...
SDE

DPM-Solver++

2M Karras

Output

Footskate

Cleanup

...

[N, D, L] [N, L]

permute(0,2,1)

permute(0,2,1)

Conv1D UNet DiT RetNet

(a) (b) (c) (d) (e) (f)

text

else

Linear

Multi-Head

Cross-Attention

Conv1d

Mish

Conv1d

Mish

Scale, Shift

Dropout

MLP

x t

text

GroupNorm

Rearrange

Rearrange

GroupNorm

Rearrange

Rearrange

LayerNorm

Retention

LayerNorm

FFN

xt

text

Conv1d

GroupNorm

Mish

Conv1d

GroupNorm

Mish

Scale, Shift

x t

MLP

text

Linear

Multi-Head

Cross-Attention

Conv1d

Mish

Conv1d

Mish

Scale, Shift

Dropout

MLP

x t

text

GroupNorm

Rearrange

Rearrange

GroupNorm

Rearrange

Rearrange

CondUNet1D Block

Motion Padding

Motion sequence

xtext

Scale, Shift

LayerNorm

Scale

Multi-Head

Self-Attention

Scale, Shift

LayerNorm

Scale

FFN

t

MLP

x

Linear

Multi-Head

Cross-Attention

Scale, Shift

LayerNorm

Scale

Multi-Head

Self-Attention

Scale, Shift

LayerNorm

Scale

FFN

text

MLP

t

Figure 3: Visualization of the block structure and their adjustments of Conv1D UNet, DiT and RetNet. Pink blocks indicate
structures that have been added or modified.

Block Adjustment. We introduce Residual Linear Multi-Head
Cross-Attention after each block to effectively integrate textual
cues, and dropout is incorporated into the original Conv1D block to
enhance model generalization, as shown in Figure 3 (b). In the base-
line block, text prompts are encoded with timesteps and integrated
into motion coding using a simple formula: 𝑥 · (1 + 𝑠𝑐𝑎𝑙𝑒) + 𝑠ℎ𝑖 𝑓 𝑡 .
However, this approach doesn’t effectively incorporate textual cues
into motion sequences because it applies uniform operations across
the entire sequence. In diffusion pipelines, noise uniformly affects
the entire sequence, resulting in consistent mappings between mo-
tion frames and timesteps. However, since each frame’s motion
corresponds to distinct textual cues, a straightforward "scale and
shift" approach is insufficient for injecting textual information. Our
solution employs an attention mechanism to dynamically focus
each motion frame on its associated textual information. Residual
connections help mitigate potential computation biases introduced
by cross attention.

GroupNorm Tweak. We rearranged the data before and after
applying Group Normalization, as depicted in Figure 3 (b), to min-
imize the impact of padded data during network forward propa-
gation. When testing the adapted Conv1D UNet on datasets like
KIT-ML with varying sequence lengths, we noticed a significant
performance drop. This suggests that the model struggles with
datasets containing extensive padding. Further investigation re-
vealed that implementing Group Normalization within the baseline
block caused this issue. Since Conv1D operates along the temporal
dimension, directly applying Group Normalization to the input
disrupted the differentiation between padded and non-padded data,
affecting loss computation and gradient descent.

4.1.2 Diffusion Transformer.

Baseline. To explore the effectiveness of the DiT structure for
motion generation, we replace the Vision Transformer used for

images in the DiT with self-attention used for motion data as the
baseline, with the basic block structure shown in Figure 3 (c). For
text-to-motion generation, we embed text prompts via the CLIP [21]
encoder and project them into token concatenated with motion
embeddings for self-attention. It scales and shifts the motion em-
bedding before and after each autoregressive computation using
timestep, which ensures the motion denoising trajectory closely
aligned with the timestep.

Block Adjustment. We have also tried to incorporate Linear Multi-
Head Cross-Attention into the DiT framework, as shown in Figure 3
(d). This adjustment allows for a more nuanced fusion of textual
cues with motion dynamics than fusing all the text information into
the one-dimensional text embedding in baseline, which enhances
the coherence and relevance of generated motion sequences.

4.1.3 Retentive Network.

Baseline. Our RetNet baseline follows a straightforward imple-
mentation similar to MDM, where the timesteps encoding is con-
catenated with the textual projection to form tokens, which are
then fed along with motion embeddings into RetNet, with its basic
block shown in Figure 3 (e). RetNet incorporates a gated multi-scale
retention mechanism, which enhances information retention and
processing capabilities, thereby enabling nuanced comprehension
and generation of motion sequences. Through our investigation,
we aim to ascertain the feasibility of leveraging RetNet for motion
generation tasks.

Block Adjustment. To further integrate textual information, we
also employ Linear Multi-Head Cross-Attention between retention
and FFN, as shown in Figure 3 (f). By segregating temporal and
textual features, our approach aims to preserve the distinct char-
acteristics of each modality and allow the model to independently

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

StableMoFusion: Towards Robust and Efficient Diffusion-based Motion Generation Framework ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

learn and leverage relevant cues for motion generation. This separa-
tion enhances the model’s interpretability and flexibility, enabling
it to better capture the intricacies of both temporal dynamics and
semantic context.

4.1.4 Final Model Architecture.
Ultimately, we choose the Conv1D UNet with block adjustment

and GroupNorm tweak as the motion-denoising model of StableMo-
Fusion, as shown in Figure 2. We call this network as CondUNet1D.
Both DiT and RetNet use the idea of attention to activate the global
receptive field in the temporal dimension, which benefits the model-
ing of long-range dependency. The receptive field of Conv1D UNet
is mainly in the convolution kernel window, promoting a coher-
ent and smooth transition between frames. We tend to prioritize
smoother generation in current applications of motion generation.

In our StableMoFusion, we set the base channel and channel
multipliers of UNet to 512 and [2,2,2,2] respectively. For text encoder,
we leverage pre-trained CLIP [21] token embeddings, augmenting
them with four additional transformer encoder layers, the same
as MotionDiffuse [36], with a latent text dimension of 256. For
timesteps encoder, it is implemented using position encoding and
two linear layers, the same as StableDiffusion [22], with a latent
time dimension of 512.

4.2 Training strategies
Recent research has shown that key factors in the training strategies
of the diffusion model affect the learning pattern and its generative
performance [2]. In this subsection, we will analyze the impact of
two empirically valid training strategies on diffusion-based mo-
tion generation: exponential moving average and classifier-free
guidance.

4.2.1 Exponential Moving Average.
Exponential Moving Average (EMA) calculates a weighted av-

erage of a series of model weights, giving more weight to recent
data. Specifically, assume the weight of the model at time t as 𝜃𝑡 ,
then the EMA formulated as: 𝑣𝑡 = 𝛽 · 𝑣𝑡−1 + (1 − 𝛽) · 𝜃𝑡 , where
𝑣𝑡 denotes the average of the network parameters for the first t
iterations (𝑣0 = 0), and 𝛽 is the weighted weight value.

During the training of the motion-denoising network, the net-
work parameters change with each iteration, and the motion model-
ing oscillates between text-motion consistency and motion quality.
Therefore, the use of EMA can smooth out the change process of
these parameters, reduce mutations and oscillations, and help to
improve the stability ability of the motion-denoising model.

4.2.2 Classifier-Free Guidance.
To further improve the generation quality, we use Classifier-Free

Guidance (CFG) to train the motion-denoising generative model.
By training the model to learn both conditioned and unconditioned
distributions (e.g., setting c = ∅ for 10% of the samples), CFG ensures
that the models can effectively capture the underlying data distri-
bution across various conditions. In inference, we can trade-off
text-motion consistency and fidelity using s:

𝐺𝑠 (𝑥𝑡 , 𝑡, 𝑐) = 𝐺 (𝑥𝑡 , 𝑡, ∅) + 𝑠 · (𝐺 (𝑥𝑡 , 𝑡, 𝑐) −𝐺 (𝑥𝑡 , 𝑡, ∅)) (3)

This ability to balance text-motion consistency and fidelity is crucial
for producing varied yet realistic outputs, enhancing the overall
quality of generated motion.

4.3 Efficient Inference
Time-consuming inference time remains a major challenge for
diffusion-based approaches. To address this problem, we improve
inference speed by integrating four effecient and training-free tricks
in the inference process: 1) efficient sampler, 2) embedded-text
cache, 3) parallel CFG computation, and 4) low-precision inference.

4.3.1 Efficient Sampler.
We integrate the SDE variant of second-order DPM-Solver++

sampler (SDE DPM-Solver++ 2M) into diffusion-based motion gen-
eration to reduce denoising iterations. DPM-Solver is a high-order
solver for diffusion stochastic differential equations (SDEs), which
implies additional noise will be introduced during the iterative sam-
pling. Thereby, stochasticity of its sampling trajectories helps to
reduce the cumulative error [32], which is crucial for the realism of
generated motion. In addition, we adopt the Karras Sigma [12] to set
discrete timesteps. This method leverages the theory of constant-
velocity thermal diffusion to determine optimal timesteps, thereby
maximizing the efficiency of motion denoising within a given num-
ber of iterations.

4.3.2 Embedded-text Cache.
We integrate the Embedded-text Cache mechanism into the in-

ference process to avoid redundant calculations. In diffusion-based
motion generation, the text prompt remain unchanged across itera-
tions, resulting in same embedded text in each computation of the
denoising network. Specifically, we compute the text embedding
initially and subsequently utilize the embedded text directly in each
network forward, thereby reducing computational redundancy and
speeding up inference.

4.3.3 Parallel CFG Computation.
We implement the inference process of CFG in parallel to speed

up the single iteration calculation while maintaining model gen-
eration performance. Due to the CFG mechanism Equation 3, in
each iterative step during inference, it is necessary to execute a
conditional and an unconditional denoising, respectively, using the
trained motion network, and then sum up the results.

4.3.4 Low-precision Inference.
We utilize half-precision floating point (FP16) computation dur-

ing inference to accelerate processing. Newer hardware supports
enhanced arithmetic logic units for lower-precision data types. By
applying parameter quantization, we convert FP32 computations
to lower-precision formats, effectively reducing computational de-
mands, parameter size, and memory usage of the model.

4.4 Footskate Reduction
Figure 4 shows an example for the foot skating phenomenon. The
motion frame rate is 20. The two frames in the figure have a time
difference of 0.25s. Based on our life experience, it is difficult to
complete a motion and return to the original pose within 0.25s.
Although the foot postures in the two frames remain unchanged,
there are changes in the positions of the joints, as observed from

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 4: Red: the foot joints as 0th frame. Green: the corre-
sponding keypoints. At 5th frame, the offset of red and green
points indicate the footskate phenomenon.

the variations in joint position values and their distances relative
to red points. For this motion, what we expect is that the feet are
anchored at the same point. Typically, choosing the foot position
of middle frames during foot skating as the fixed point minimizes
the impact on the adjacent frames.

The key to eliminating foot skating is to first identify the foot
joints and frame ranges where foot skating occurs, and then anchor
those keypoints at their positions 𝑝 in the intermediate frames. We
formulate this constraint as a loss term shown in Equation 4 where
𝑗 indicates joint and 𝑓 is frame ranges.

𝐿𝑓 𝑜𝑜𝑡 =

𝐽𝑠𝑘𝑎𝑡𝑖𝑛𝑔∑︁
𝑗

𝐹𝑠𝑘𝑎𝑡𝑖𝑛𝑔∑︁
𝑓

(𝑃 𝑗 − 𝑝) (4)

𝐽𝑠𝑘𝑎𝑡𝑖𝑛𝑔 contains all the joints where foot skating may occur,
specifically including right ankle, right toes, left ankle and left toes.
𝐹𝑠𝑘𝑎𝑡𝑖𝑛𝑔 is a collection of all frame ranges of the joint 𝑗 . 𝑃 𝑗 means
the positions of joint 𝑗 . We incorporate Equation 4 to a gradient
descent algorithm to correct foot skating motion.

Following UnderPressure [18], we use vertical ground reaction
forces (vGRFs) to identity foot joint 𝑗 and its skating frames 𝑓 . The
vGRFs predition model of UnderPressure 𝑉23 requires motion of a
predefined 23 joints skeleton 𝑆23, which is different from our mo-
tion data. In our work, we utilize HumanML3D[6] with 22 skeletal
joints 𝑆22 and KIT-ML [20] motion with 21 skeletal joints. The sub-
sequent foot skating cleanup primarily focused on HumanML3D.
We transferred the pre-trained weights of 𝑉23 to our own model
𝑉 𝜃

22 using the constraints Equation 5, enabling us to directly predict
the vertical ground reaction forces for HumanML3D motions. 𝑃 is
keypoints of HumanML3D motion. 𝑃𝑆23 is the result of retargeting
𝑃 to skeleton 𝑆23.

min
𝜃

∥𝑉 𝜃
22 (𝑃) −𝑉23 (𝑃𝑆23)∥

2
2 (5)

𝐿 = 𝜔𝑞𝐿pose + 𝜔 𝑓 𝐿foot + 𝜔𝑡𝐿trajectory + 𝜔𝑣𝐿vGRFs (6)

𝐿foot = 𝐿foot (𝑃, 𝑃,𝑉23, 𝑃𝑆23) (7)

𝐿vGRFs = 𝐿vGRFs (𝑃, 𝑃,𝑉 𝜃
22) (8)

Drawing inspiration from UnderPressure [18], we use foot con-
tact loss 𝐿𝑓 𝑜𝑜𝑡 to fix contact joints, pose loss 𝐿𝑝𝑜𝑠𝑒 and trajectory
loss 𝐿𝑡𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦 to to keep the semantic integrity of motion, vGRFs
loss 𝐿𝑣𝐺𝑅𝐹𝑠 to keep valid foot pose. Our supplementary material

provides detailed definitions of these loss terms. The final definition
of our loss function is as Equation 6 [18] where 𝜔𝑞 , 𝜔 𝑓 , 𝜔𝑡 , 𝜔𝑣 are
weights of its loss item. 𝑃 is keypoints of footskating motion and 𝑃
is the result keypoints after footskate cleanup.

Through our method, the footskate cleanup process can be gen-
eralized to various skeletal motions.

In a few cases, motion corrected by Equation 6 may occurs un-
reasonable or unrealistic poses. The diffusion model trained on a
large amount of motion data learns the prior knowledge of real
motions and has the ability to correct the invalid motions.

Therefore, we use our pretrained diffusion model to correct
such cases. Motivated by OmniControl [31] and Physdiff [34], we
incorporates footskate cleaning method into the diffusion denoising
process, denote as StableMoFusion∗.

5 EXPERIMENTS
5.1 Dataset and Evaluation Metrics
We use HumanML3D [6] and KIT-ML [20] dataset for our experi-
ments. HumanML3D Dataset contains 14,646 motions and 44,970
motion annotations. KIT Motion Language Dataset contains 3,911
motions and 6,363 natural language annotations.

The evaluation metrics can be summarized into four key aspects:
1) Motion Realism: Frechet Inception Distance (FID), which eval-
uates the similarity between generated and ground truth motion
sequences using feature vectors extracted by a pre-trained motion
encoder [6]. 2) Text match: R Precision calculates the average top-k
accuracy of matching generated motions with textual descriptions
using a pre-trained contrastive model [6]. 3) Generation diversity:
Diversity measures the average joint differences across generated
sequences from all test texts. Multi-Modality quantifies the diversity
within motions generated for the same text. 4) Time costs: Average
Inference Time per Sentence (AITS) [3] measures the inference
efficiency of diffusion models in seconds, considering generation
batch size as 1, without accounting for model or data loading time.

In all of our experiments, FID and R Precision are the principal
metrics we used to conduct our analysis and draw conclusions.

5.2 Implements Details
For training, we use DDPM [8] with 𝑇 = 1, 000 denoising steps and
variances 𝛽𝑡 linearly from 0.0001 to 0.02 in the forward process.
And we use AdamW with an initial learning rate of 0.0002 and a
0.01 weight decay to train the sample-prediction model for 50,000
iterations at batch size 64 on an RTX A100. Meanwhile, learning
rate reduced by 0.9 per 5,000 steps. On gradient descent, clip the
gradient norm to 1. For CFG, setting c = ∅ for 10% of the samples.

For inference, we use the SDE variant of second-order DPM-
Solver++ [17] with Karras Sigmas [12] in inference for sampling 10
steps. The scale for CFG is set to 2.5.

5.3 Quantitative results
We compare our StableMoFusion with several state-of-the-art mod-
els, including T2M [6], MDM [27], MLD [3], MotionDiffuse [36],
T2M-GPT [35], MotionGPT [9], ReMoDiffuse [37], M2DM [14] and
fg-T2M [30]. on the HumanML3D [6] and KIT-ML [20] datasets
in Table 2 and Table 3, respectively. Most results are borrowed from

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

StableMoFusion: Towards Robust and Efficient Diffusion-based Motion Generation Framework ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Quantitative results on the HumanML3D test set. The right arrow→means the closer to real motion the better. Red
and Blue indicate the best and the second best result.

Method FID ↓ R Precision↑ Diversity→ Multi-modality ↑top1 top2 top3

Real 0.002±.000 0.511±.003 0.703±.003 0.797±.002 9.503±.065 -

T2M [6] 1.067±.002 0.457±.002 0.639±.003 0.743±.003 9.188±.002 2.090±.083

MDM [27] 0.544±.044 0.320±.005 0.498±.004 0.611±.007 9.599±.086 2.799±.072

MLD [3] 0.473±.013 0.481±.003 0.673±.003 0.772±.002 9.724±.082 2.413±.079

MotionDiffuse [36] 0.630±.001 0.491±.001 0.681±.001 0.782±.001 9.410±.049 1.553±.042

GMD [13] 0.212 - - 0.670 9.440 -
T2M-GPT [35] 0.116±.004 0.491±.003 0.680±.003 0.775±.002 9.761±.081 1.856±.011

MotionGPT [9] 0.232±.008 0.492±.003 0.681±.003 0.778±.002 9.528±.071 2.008±.084

ReMoDiffuse [37] 0.103±.004 0.510±.005 0.698±.006 0.795±.004 9.018±.075 1.795±.043

M2DM [14] 0.352±.005 0.497±.003 0.682±.002 0.763±.003 9.926±.073 3.587±.072

Fg-T2M [30] 0.243±.019 0.492±.002 0.683±.003 0.783±.002 9.278±.072 1.614±.049

StableMoFusion (Ours) 0.098±.003 0.553±.003 0.748±.002 0.841±.002 9.748±.092 1.774±.051

Table 3: Quantitative results on the KIT-ML test set. The right arrow→means the closer to real motion the better. Red and
Blue indicate the best and the second best result.

Method FID ↓ R Precision↑ Diversity→ Multi-modality ↑top1 top2 top3

Real Motion 0.031±.004 0.424±.005 0.649±.006 0.779±.006 11.08±.097 -

T2M [6] 2.770±.109 0.370±.005 0.569±.007 0.693±.007 10.91±.119 1.482±.065

MDM [27] 0.497±.021 0.164±.004 0.291±.004 0.396±.004 10.847±.109 1.907±.214

MLD [3] 0.404±.027 0.390±.008 0.609±.008 3.204±.027 10.80±.117 2.192±.071

MotionDiffuse [36] 1.954±.062 0.417±.004 0.621±.004 0.739±.004 11.10±.143 0.730±.013

T2M-GPT [35] 0.514±.029 0.416±.006 0.627±.006 0.745±.006 10.921±.108 1.570±.039

MotionGPT [9] 0.510±.016 0.366±.005 0.558±.004 0.680±.005 10.35±.084 2.328 ±.117

ReMoDiffuse [37] 0.155±.006 0.427±.014 0.641±.004 0.765±.055 10.80±.105 1.239±.028

M2DM [14] 0.515±.029 0.416±.004 0.628±.004 0.743±.004 11.417±.97 3.325±.37

Fg-T2M [30] 0.571±.047 0.418±.005 0.626±.004 0.745±.004 10.93±.083 1.019±.029

StableMoFusion (Ours) 0.258±.029 0.445±.006 0.660±.005 0.782±.004 10.936±.077 1.362±.062

their own paper and we run the evaluation 20 times and ± indicates
the 95% confidence interval.

Our method achieves the state-of-the-art results in FID and R
Precision (top k) on the HumanML3D dataset, and also achieves
good results on the KIT-ML dataset: the best R Precision (top k)
and the second best FID. This demonstrates the ability of Stable-
MoFusion to generate high-quality motions that align with the
text prompts. On the other hand, while some methods excel in
diversity and multi-modality, it’s crucial to anchor these aspects
with accuracy (R-precision) and precision (FID) to strengthen their

persuasiveness. Otherwise, diversity or multimodality becomes
meaningless if the generated motion is bad. Therefore, our Stable-
MoFusion achieves advanced experimental results on two datasets
and shows robustness in terms of model performance.

StableMoFusion∗ focuses on the real effect of footskate cleanup.
Therefore, the timestep to begin cleaning footskate during inference
depends on the motion and thus the StableMoFusion∗ doesn’t apply
to the evaluation process of [6].

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

5.4 Qualitative result
Figure 5 shows the visual results of our footskate cleanup method,
StableMoFusion∗. The red bounding box of footskate motion clearly
has multiple foot outlines, whereas ours shows only one. The com-
parison graph shows the effectiveness of our method for cleaning
footskate. Directly applying the footskate cleanup method of Un-
derPressure [18] to our motion would result in motion distortion,
while our method effectively avoids such deformation. In our sup-
plementary material, we will further present a comparison between
our method and the UnderPressure method by videos to illustrate
it.

Figure 5: Visualization comparison results before and after
our footskate cleanup. The red bounding box shows details
of skating feet.

5.5 Inference Time
We calculate AITS of StableMoFusion and ReMoDiffuse [37] with
the test set of HumanML3D[6] on Tesla V100 as MLD [3] does,
the other results of Figure 1 are borrowed from [3]. For instance,
MDM [27] with CFG requires 24.74s for average inference; Motion-
Diffuse [36] without CFG uses condition encoding cache and still
requires 14.74s of average inference. While the MLD [3] reduces
the average inference time to 0.217s by applying DDIM50 in latent
space, we find this approach lacks the ability to edit and control
motion by manipulating the model input.

To tackle this, we employ 1) efficient sampler, 2) embedded-text
cache, 3) parallel CFG computation, and 4) low-precision inference
to reduce iteration counts and network latency. As shown in Fig-
ure 1, our StableMoFusion significantly shortens the inference time
and achieves higher performance within the original motion space.

However, it remains incontrovertible that StableMoFusion’s in-
ference speed trails behind that of MLD, and fails to meet the in-
dustry’s real-time standard with an average inference time of 0.5s.
Thus, our future work will focus on acceleration: the inference
time of StableMoFusion is currently tied to the computation of the
network, and we will further investigate how to scale down the
model and how to reduce single-step latency in inference.

5.6 Ablation
5.6.1 Network Architecture. We evaluate and compare all the ar-
chitectures mentioned in Section 4.1 with the same training and
inference pipeline. For a fair comparison, all methods use the real
motion length from the ground truth to clip generated motion
and seed(0) for one evaluation. As Table 4 show, each network
enhancement in cross-attention has demonstrated performance
enhancements, elucidating its pivotal role in augmenting model

efficacy and effectiveness. Among them, Conv1D UNet achieves
the best generation performance. And fine-tuning Conv1D UNet’s
GroupNorm can effectively improve its performance on the KIT-
ML dataset, reducing the FID by about 64%. It also proves that the
GoupNorm tweak on UNet is mainly useful for the dataset with
dispersed length distributions, such as KIT-ML dataset.

Table 4: Comparison of various architectures and adjust-
ments.

Dataset Network FID ↓ R Precision
(top3) ↑

HumanML3D

Conv1D UNet basline 0.245 0.780
+ cross-attention 0.074 0.821
+ GroupNorm Tweak 0.089 0.840

DiT baseline 0.884 0.711
+ cross-attention 0.113 0.787

RetNet baseline 1.673 0.740
+ cross-attention 0.147 0.853

KIT-ML Conv1D UNet+ cross-attention 0.658 0.756
+ GroupNorm Tweak 0.237 0.780

5.6.2 Effectie Inference. By using the SDE variant of second-order
DPM-Solver++with Karras sigma, the inference process of diffusion-
based motion generation is able to significantly reduce the mini-
mum number of iterations required for generation from 1000 to 10
while enhancing the quality of generated motions, approximately
99% faster than the original inference process, as shown in Table 5.

The application of embedded text caching and parallel CFG fur-
ther reduces the average inference time by about 0.3s and 0.15s,
respectively. Our experiments also show that reducing the com-
putational accuracy of the motion-denoising model by half, from
FP32 to FP16, does not adversely affect the generation quality. This
suggests that 32-bit precision is redundant for motion generation
task.

Table 5: The progressive effect of each efficient and training-
free trick of StableMoFusion in inference process.

Method FID↓ R Precision
(top3)↑ AITS↓ Inference

Steps↓

base (DDPM1000) 1.251 0.760 99.060 1000
+ Efficient Sampler 0.076 0.836 1.004(-99%) 10
+ Embedded-text Cache 0.076 0.836 0.690(-31%) 10
+ Parallel CFG 0.076 0.836 0.544(-21%) 10
+ FP16 0.076 0.837 0.499(-8%) 10

6 CONCLUSION
In this paper, we propose a robust and efficient diffusion-based mo-
tion generation framework, StableMoFusion, which uses Conv1DUNet
as a motion-denoising network and employs two effective training
strategies to enhance the network’s effectiveness, as well as four
training-free tricks to achieve efficient inference. Extensive experi-
mental results show that our StableMoFusion performs favorably
against current state-of-the-art methods. Furthermore, we propose
effective solutions for time-consuming inference and footskate prob-
lems, facilitating diffusion-based motion generation methods for
practical applications in industry.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

StableMoFusion: Towards Robust and Efficient Diffusion-based Motion Generation Framework ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Samaneh Azadi, Akbar Shah, Thomas Hayes, Devi Parikh, and Sonal Gupta.

2023. Make-An-Animation: Large-Scale Text-conditional 3D Human Motion
Generation. arXiv preprint arXiv:2305.09662 (2023).

[2] Hanqun Cao, Cheng Tan, Zhangyang Gao, Yilun Xu, Guangyong Chen, Pheng-
Ann Heng, and Stan Z Li. 2022. A Survey on Generative Diffusion Model. arXiv
preprint arXiv:2209.02646 (2022).

[3] Xin Chen, Biao Jiang, Wen Liu, Zilong Huang, Bin Fu, Tao Chen, and Gang Yu.
2023. Executing your Commands via Motion Diffusion in Latent Space. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
18000–18010.

[4] Rishabh Dabral, Muhammad Hamza Mughal, Vladislav Golyanik, and Christian
Theobalt. 2023. MoFusion: A Framework for Denoising-Diffusion-based Motion
Synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 9760–9770.

[5] Prafulla Dhariwal and Alexander Nichol. 2021. Diffusion Models Beat Gans on
Image synthesis. Advances in neural information processing systems 34 (2021),
8780–8794.

[6] Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji, Xingyu Li, and Li Cheng.
2022. Generating Diverse and Natural 3D Human Motions From Text. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
5152–5161.

[7] Xingjian Han, Benjamin Senderling, Stanley To, Deepak Kumar, Emily Whiting,
and Jun Saito. 2023. GroundLink: A Dataset Unifying Human Body Movement
and Ground Reaction Dynamics. In ACM SIGGRAPH Asia 2023 Conference Pro-
ceedings. 1–10.

[8] JonathanHo, Ajay Jain, and Pieter Abbeel. 2020. DenoisingDiffusion Probabilistic
Models. Advances in neural information processing systems 33 (2020), 6840–6851.

[9] Biao Jiang, Xin Chen, Wen Liu, Jingyi Yu, Gang Yu, and Tao Chen. 2024. Mo-
tiongpt: Human motion as a foreign language. Advances in Neural Information
Processing Systems 36 (2024).

[10] Yifeng Jiang, Jungdam Won, Yuting Ye, and C Karen Liu. 2023. DROP: Dynamics
Responses from Human Motion Prior and Projective Dynamics. SIGGRAPH Asia
(2023).

[11] Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, and Ioannis
Mitliagkas. 2021. Gotta Go Fast When Generating Data with Score-Based Models.
arXiv preprint arXiv:2105.14080 (2021).

[12] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. 2022. Elucidating
the Design Space of Diffusion-Based Generative Models. Advances in Neural
Information Processing Systems 35 (2022), 26565–26577.

[13] Korrawe Karunratanakul, Konpat Preechakul, Supasorn Suwajanakorn, and Siyu
Tang. 2023. GMD: Controllable Human Motion Synthesis via Guided Diffusion
Models. arXiv preprint arXiv:2305.12577 (2023).

[14] Hanyang Kong, Kehong Gong, Dongze Lian, Michael Bi Mi, and Xinchao Wang.
2023. Priority-Centric Human Motion Generation in Discrete Latent Space. In
Proceedings of the IEEE/CVF International Conference on Computer Vision. 14806–
14816.

[15] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. 2021. Pseudo Numerical Methods
for Diffusion Models on Manifolds. In International Conference on Learning
Representations.

[16] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. 2022.
DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in
Around 10 Steps. Advances in Neural Information Processing Systems 35 (2022),
5775–5787.

[17] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu.
2022. DPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic
Models. arXiv preprint arXiv:2211.01095 (2022).

[18] Lucas Mourot, Ludovic Hoyet, François Le Clerc, and Pierre Hellier. 2022. Un-
derPressure: Deep Learning for Foot Contact Detection, Ground Reaction Force
Estimation and Footskate Cleanup. Computer Graphics Forum 41, 8 (Dec. 2022),
195–206. https://doi.org/10.1111/cgf.14635

[19] William Peebles and Saining Xie. 2023. Scalable Diffusion Models with Trans-
formers. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 4195–4205.

[20] Matthias Plappert, Christian Mandery, and Tamim Asfour. 2016. The KIT Motion-
Language Dataset. arXiv preprint arXiv:1607.03827 (2016).

[21] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
2021. Learning Transferable Visual Models From Natural Language Supervision.
In International conference on machine learning. PMLR, 8748–8763.

[22] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. 2022. High-resolution Image Synthesis with Latent Diffusion Models. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
10684–10695.

[23] Yonatan Shafir, Guy Tevet, Roy Kapon, and Amit H Bermano. 2023. Human
Motion Diffusion as A Generative Prior. arXiv preprint arXiv:2303.01418 (2023).

[24] Jiaming Song, Chenlin Meng, and Stefano Ermon. 2020. Denoising Diffusion
Implicit Models. In International Conference on Learning Representations.

[25] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Ste-
fano Ermon, and Ben Poole. 2020. Score-Based Generative Modeling through
Stochastic Differential Equations. arXiv preprint arXiv:2011.13456 (2020).

[26] Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jiany-
ong Wang, and Furu Wei. 2023. Retentive Network: A Successor to Transformer
for Large Language Models. arXiv preprint arXiv:2307.08621 (2023).

[27] Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir, Daniel Cohen-Or, and
Amit H Bermano. 2022. Human Motion Diffusion Model. arXiv preprint
arXiv:2209.14916 (2022).

[28] Jonathan Tseng, Rodrigo Castellon, and C Karen Liu. 2022. EDGE: Editable Dance
Generation From Music. arXiv preprint arXiv:2211.10658 (2022).

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. Advances in neural information processing systems 30 (2017).

[30] Yin Wang, Zhiying Leng, Frederick WB Li, Shun-Cheng Wu, and Xiaohui Liang.
2023. Fg-t2m: Fine-Grained Text-Driven HumanMotion Generation via Diffusion
Model. In Proceedings of the IEEE/CVF International Conference on Computer Vision.
22035–22044.

[31] Yiming Xie, Varun Jampani, Lei Zhong, Deqing Sun, and Huaizu Jiang. 2024.
OmniControl: Control Any Joint at Any Time for Human Motion Generation. In
The Twelfth International Conference on Learning Representations.

[32] Yilun Xu, Mingyang Deng, Xiang Cheng, Yonglong Tian, Ziming Liu, and Tommi
Jaakkola. 2023. Restart Sampling for Improving Generative Processes. arXiv
preprint arXiv:2306.14878 (2023).

[33] Ye Yuan and Kris Kitani. 2020. Residual Force Control for Agile Human Behavior
Imitation and Extended Motion Synthesis. In Advances in Neural Information
Processing Systems.

[34] Ye Yuan, Jiaming Song, Umar Iqbal, Arash Vahdat, and Jan Kautz. 2023. Physdiff:
Physics-Guided Human Motion Diffusion Model. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 16010–16021.

[35] Jianrong Zhang, Yangsong Zhang, Xiaodong Cun, Shaoli Huang, Yong Zhang,
Hongwei Zhao, Hongtao Lu, and Xi Shen. 2023. T2m-gpt: Generating Human
Motion from Textual Descriptions with Discrete Representations. arXiv preprint
arXiv:2301.06052 (2023).

[36] Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou Hong, Xinying Guo,
Lei Yang, and Ziwei Liu. 2022. MotionDiffuse: Text-Driven Human Motion
Generation with Diffusion Model. arXiv preprint arXiv:2208.15001 (2022).

[37] Mingyuan Zhang, Xinying Guo, Liang Pan, Zhongang Cai, Fangzhou Hong,
Huirong Li, Lei Yang, and Ziwei Liu. 2023. ReMoDiffuse: Retrieval-Augmented
Motion Diffusion Model. In Proceedings of the IEEE/CVF International Conference
on Computer Vision. 364–373.

[38] Qinsheng Zhang and Yongxin Chen. 2022. Fast Sampling of Diffusion Models
with Exponential Integrator. In NeurIPS 2022 Workshop on Score-Based Methods.

9

https://doi.org/10.1111/cgf.14635

	Abstract
	1 Introduction
	2 Related Work
	2.1 Motion Diffusion Generation
	2.2 Training-Free Sampling
	2.3 Footskate Cleanup

	3 Preliminaries
	4 Method
	4.1 Model Architecture
	4.2 Training strategies
	4.3 Efficient Inference
	4.4 Footskate Reduction

	5 Experiments
	5.1 Dataset and Evaluation Metrics
	5.2 Implements Details
	5.3 Quantitative results
	5.4 Qualitative result
	5.5 Inference Time
	5.6 Ablation

	6 Conclusion
	References

