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ABSTRACT
Thanks to the powerful generative capacity of diffusion models,
recent years have witnessed rapid progress in human motion gener-
ation. Existing diffusion-based methods employ disparate network
architectures and training strategies. The effect of the design of
each component is still unclear. In addition, the iterative denoising
process consumes considerable computational overhead, which is
prohibitive for real-time scenarios such as virtual characters and
humanoid robots. For this reason, we first conduct a comprehen-
sive investigation into network architectures, training strategies,
and inference processs. Based on the profound analysis, we tailor
each component for efficient high-quality human motion genera-
tion. Despite the promising performance, the tailored model still
suffers from foot skating which is an ubiquitous issue in diffusion-
based solutions. To eliminate footskate, we identify foot-ground
contact and correct foot motions along the denoising process. By
organically combining these well-designed components together,
we present StableMoFusion, a robust and efficient framework for
human motion generation. Extensive experimental results show
that our StableMoFusion performs favorably against current state-
of-the-art methods.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Anima-
tion.

KEYWORDS
Human Motion Generation, Diffusion Model, Efficient Inference,
Footskate Cleanup

1 INTRODUCTION
Human motion generation aims to generate natural, realistic, and
diverse human motions, which could be used for animating virtual
characters or manipulating humanoid robots to imitate vivid and
rich human movements without long-time manual motion mod-
eling and professional skills[1, 4, 36]. It shows great potential in
the fields of animation, video games, film production, human-robot
interaction and etc. Recently, the application of diffusion models to
human motion generation has led to significant improvements in
the quality of generated motions [3, 27, 36].
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Table 1: StableMoFusion achieves superior performance on
motion generation compared to other state-of-the-art meth-
ods. Lower FID and higher R Precision mean, the better.

Method FID↓ R Precision (top3)↑

MDM [27] 0.544 0.611
MLD [3] 0.473 0.772
MotionDiffuse [36] 0.630 0.782
ReMoDiffuse [37] 0.103 0.795
StableMoFusion (Ours) 0.098 0.841

Figure 1: Comparison of the inference time costs on motion
generation. The closer the model is to the origin, the better.

Despite the notable progress made by diffusion-based motion
generation methods, its development is still hindered by several
fragmented and underexplored issues: 1) Lack of Systematic Anal-
ysis: these diffusion-based motion generation work usually employ
different network architectures and training pipelines, which hin-
ders cross-method integration and the adoption of advancements
from related domains. 2) Long Inference Time: due to the time-
consuming iterative sampling process, most existing methods are
impractical for applications with virtual characters and humanoid
robots, where real-time responsiveness is crucial. 3) Footskate Is-
sue: foot skating (footskate) in generated motions remains a major
concern. This significantly undermines the quality of generated
motions and limits their practical applicability.

Therefore, in order to fill these research gaps and enhance the
effectiveness and reliability of diffusion-based motion generation
in practical applications, our study conducts a comprehensive and
systematic investigation into network architectures, training strate-
gies, and inference process. Our investigation is specifically directed
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towards text conditional motion generation, as text prompts are
arguably the most promising format for practical application and
the most convenient input modality among various conditional
signals. Ultimately, we present a robust and efficient framework
for diffusion-based motion generation, called StableMoFusion, as
illustrated in Figure 2.

In StableMoFusion, we use Conv1D UNet with AdaGN and linear
cross-attention as the motion-denoising network, and improve its
generalization capability with GroupNorm tweak. During training,
two effective strategies were employed to enhance the network’s
ability to generate motion. During inference, we use four training-
free acceleration tricks to achieve efficient inference. Furthermore,
we present a footskate cleanup method based on a mechanical
model and optimization.

Extensive experiments demonstrate that StableMoFusion achieves
an excellent trade-off between text-motion consistency and mo-
tion quality compared to other state-of-the-art methods, as shown
in Table 1. Meanwhile, Stablemofusion’s efficient inference process
notably reduces the minimum number of iterations required for
generation from 1000 to 10, as well as shorter inference times than
methods of about the same performance, achieving an average in-
ference time of 0.5 seconds on the Humanm3D test set, as shown
in Figure 1. In addition, our footskate cleanup method within diffu-
sion framework sizably solves the foot skating problem of motion
generation as shown in Section 5.4.

Our major contributions can be summarized as follows:

• We perform a systematic evaluation and analysis on the
design of each component in the diffusion-based motion
generation pipeline, including network architectures, train-
ing strategies, and inference process.

• We propose an effective mechanism to eliminate foot skat-
ing which is a comment issue in current methods.

• By consolidating thesewell-designed components, we present
a robust and efficient diffusion-based motion generation
framework named StableMoFusion. Extensive experiments
demonstrate its superiority in text-motion consistency and
motion quality.

2 RELATEDWORK
2.1 Motion Diffusion Generation
In recent years, the application of diffusion models to human mo-
tion generation has led to significant improvements in the quality
of generated motions. MotionDiffuse [36] softly fuses text features
into diffusion-based motion generation through cross-attention.
MDM [27] experimented with the separate Transformer encoder,
decoder, GRU as denoising networks, respectively. PyhsDiff [34]
incorporates physical constraints to generate more realistic mo-
tions; Prior MDM [23] uses diffusion priors to allow the model to
be applied to specific generative tasks; MLD [3] utilizes the latent
space of VAE to speed up diffusion generation; ReMoDiffuse [37]
uses a retrieval mechanism to enhance the motion diffusion model.
All of these methods use Transformer-based network structure,
while MoFusion [4] and GMD [13] use Conv1D UNet for motion
diffusion generation.

Our work towards a more robust and efficient diffusion-based
motion generation framework through a comprehensive investiga-
tion into network architectures, training strategies, and inference
process. It also addresses the practical application challenges of
long inference time and footskate phenomenon.

2.2 Training-Free Sampling
To reduce the inference time with a trained network, there have
been many advanced samplers to accelerate DDPM [8].

Song et al. [25] show that using Stochastic Differential Equation
(SDE) for sampling has a marginally equivalent probability Ordi-
nary Differential Equations (ODE). And then, DDIM [24] constructs
a class of non-Markovian diffusion processes that realize skip-step
sampling. PNDN [15] uses pseudo numerical to accelerate the deter-
ministic sampling process. DEIS [38] and DPMSolver [16] improve
upon DDIM by numerically approximating the score functions
within each discretized time interval.

Meanwhile, several work have focused on speeding up stochastic
sampling. For example, Gotta Go Fast [11] utilizes adaptive step
sizes to speed up SDE sampling, and Lu et al. [17] converts the
higher-order ODE solver into an SDE sampler to address the insta-
bility issue.

While these samplers have demonstrated efficacy in image gener-
ation, their impact on motion diffusion models remains unexplored.
In this work, we evaluate them to find the most appropriate one
for motion generation.

2.3 Footskate Cleanup
In order to generate realistic motions in computer animation, vari-
ous methods have been developed to improve footskate issue.

Edge [28] embeds the foot contact term into the action repre-
sentation for training and applies Contact Consistency Loss as a
constraint to keep the physical plausibility of motion. RFC [33],
Drop [10] and Physdiff [34] uses reinforcement learning to con-
strain the physical states of actions, such as ground force reaction
and collision situations to get a realism motion. UnderPressure [18]
and GroundLink [7] respectively collect foot force datasets during
motion. UnderPressure [18] also utilizes this dataset to train a net-
work capable of predicting vertical ground reaction forces. Based
on this, UnderPressure proposes a foot skating cleanup method.

3 PRELIMINARIES
The pipeline of Diffusion model [8] involve three interconnected
processes: a forward process that gradually diffuses noise into
sample, a reverse process that optimizes a network to eliminate
the above perturbation, and an inference process that utilizes the
trained network to iteratively denoise noisy sample.

Specifically, a motion denoising network is first trained to predict
the original motion 𝑥0 from the noisy motion 𝑥𝑡 : randomly select
a ground-truth motion 𝑥0 and a diffusion timestep 𝑡 ∼ 𝑈 [0,𝑇 ], 𝑇
being the maximum timestep. And then the noisy motion 𝑥𝑡 after
t-step diffusion is gained by Equation 1,

𝑥𝑡 =
√
𝛼𝑡𝑥0 +

√
1 − 𝛼𝑡𝜖 (1)

2
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Figure 2: Overview of StableMoFusion, which is composed of a diffusion forward process, a reverse process on CondUNet1D
motion-denoising network, and an efficient inference. The colors of the arrows indicate different stages: blue for training, red
for inference, and black for both.

where 𝜖 is a Gaussian noise.
√
𝛼𝑡 and

√
1 − 𝛼𝑡 are the strengths of

signal and noise, respectively. When
√
𝛼𝑡 is small enough, we can

approximate 𝑥𝑡 ∼ N(0, 𝐼 ).
Next, given a motion-denoising model G𝜃 (𝑥𝑡 , 𝑡, 𝑐) for predicting

the original sample, parameterized by 𝜃 , the optimization can be
formulated as follows:

min
𝜃

𝐸𝑡∼𝑈 [0,𝑇 ],𝑥0∼𝑝𝑑𝑎𝑡𝑎 | |G𝜃 (𝑥𝑡 , 𝑡, 𝑐) − 𝑥0 | |22 (2)

In the inference process, a trained motion-denoising network can
progressively generate samples from noise with various samplers.
For instance, DDPM [8] iteratively denoise the noisy data from 𝑡 to
a previous timestep 𝑡 ′, as shown in Algorithm 1.

Algorithm 1 Inference
Given a text prompt 𝑐
x𝑡 ∼ N(0, I)
for 𝑡 = 𝑇 to 1 do

x̃0 = G(x𝑡 , 𝑡, 𝑐)
𝜖 ∼ N(0, 𝐼 ) if 𝑡 > 1, else 𝜖 = 0
x𝑡−1 =

√
𝛼𝑡−1𝛽𝑡
1−𝛼𝑡 x̃0 +

√
𝛼𝑡 (1−𝛼𝑡−1 )

1−𝛼𝑡 x𝑡 + 𝛽𝑡𝜖

end for
return x0

4 METHOD
Through comprehensive exploratory experiments conducted on
diffusion-based motion generation, we propose a novel diffusion

framework, named StableMoFusion, as illustrated in Figure 2, to
facilitate robust and efficient motion generation. This section begins
with our investigation on the architecture of motion-denoising
networks. Next, we discuss several training strategies pivotal for
enhancing model performance in Section 4.2. Subsequently, we
introduce our improvements in the inference process in Section 4.3,
tailored to enable efficient inference. Lastly, we discuss and present
a solution to the footskate issue in Section 4.4.

4.1 Model Architecture
Most existing work use Transformer [29]-based architectures as
the motion-denoising network; however, it remains questionable
whether these architectures are best for diffusion-based motion
generation. In this subsection, we will present three new network
architectures fine-tuned for the motion generation task: Conv1D
UNet [4, 13], Diffusion Transformer (DiT) [19] and the latest Reten-
tive Network (RetNet) [26].

4.1.1 Conv1D UNet.

Baseline. We chose the Conv1D UNet with AdaGN [5] and skip
connections in GMD [13] as the Conv1D UNet baseline and modify
the structure to a canonical Unet structure, which consist of four
downsampling stages. The motion length 𝑛 is successively reduced
from 𝑁 to ⌊𝑁 /8⌋, and then the corresponding up-sampling phase is
used to up-sample. There are two residual Conv1D blocks for each
down-sampling or up-sampling stage, with a single block shown
as Figure 3 (a).

3
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Figure 3: Visualization of the block structure and their adjustments of Conv1D UNet, DiT and RetNet. Pink blocks indicate
structures that have been added or modified.

Block Adjustment. We introduce Residual Linear Multi-Head
Cross-Attention after each block to effectively integrate textual
cues, and dropout is incorporated into the original Conv1D block to
enhance model generalization, as shown in Figure 3 (b). In the base-
line block, text prompts are encoded with timesteps and integrated
into motion coding using a simple formula: 𝑥 · (1 + 𝑠𝑐𝑎𝑙𝑒) + 𝑠ℎ𝑖 𝑓 𝑡 .
However, this approach doesn’t effectively incorporate textual cues
into motion sequences because it applies uniform operations across
the entire sequence. In diffusion pipelines, noise uniformly affects
the entire sequence, resulting in consistent mappings between mo-
tion frames and timesteps. However, since each frame’s motion
corresponds to distinct textual cues, a straightforward "scale and
shift" approach is insufficient for injecting textual information. Our
solution employs an attention mechanism to dynamically focus
each motion frame on its associated textual information. Residual
connections help mitigate potential computation biases introduced
by cross attention.

GroupNorm Tweak. We rearranged the data before and after
applying Group Normalization, as depicted in Figure 3 (b), to min-
imize the impact of padded data during network forward propa-
gation. When testing the adapted Conv1D UNet on datasets like
KIT-ML with varying sequence lengths, we noticed a significant
performance drop. This suggests that the model struggles with
datasets containing extensive padding. Further investigation re-
vealed that implementing Group Normalization within the baseline
block caused this issue. Since Conv1D operates along the temporal
dimension, directly applying Group Normalization to the input
disrupted the differentiation between padded and non-padded data,
affecting loss computation and gradient descent.

4.1.2 Diffusion Transformer.

Baseline. To explore the effectiveness of the DiT structure for
motion generation, we replace the Vision Transformer used for

images in the DiT with self-attention used for motion data as the
baseline, with the basic block structure shown in Figure 3 (c). For
text-to-motion generation, we embed text prompts via the CLIP [21]
encoder and project them into token concatenated with motion
embeddings for self-attention. It scales and shifts the motion em-
bedding before and after each autoregressive computation using
timestep, which ensures the motion denoising trajectory closely
aligned with the timestep.

Block Adjustment. We have also tried to incorporate Linear Multi-
Head Cross-Attention into the DiT framework, as shown in Figure 3
(d). This adjustment allows for a more nuanced fusion of textual
cues with motion dynamics than fusing all the text information into
the one-dimensional text embedding in baseline, which enhances
the coherence and relevance of generated motion sequences.

4.1.3 Retentive Network.

Baseline. Our RetNet baseline follows a straightforward imple-
mentation similar to MDM, where the timesteps encoding is con-
catenated with the textual projection to form tokens, which are
then fed along with motion embeddings into RetNet, with its basic
block shown in Figure 3 (e). RetNet incorporates a gated multi-scale
retention mechanism, which enhances information retention and
processing capabilities, thereby enabling nuanced comprehension
and generation of motion sequences. Through our investigation,
we aim to ascertain the feasibility of leveraging RetNet for motion
generation tasks.

Block Adjustment. To further integrate textual information, we
also employ Linear Multi-Head Cross-Attention between retention
and FFN, as shown in Figure 3 (f). By segregating temporal and
textual features, our approach aims to preserve the distinct char-
acteristics of each modality and allow the model to independently

4
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learn and leverage relevant cues for motion generation. This separa-
tion enhances the model’s interpretability and flexibility, enabling
it to better capture the intricacies of both temporal dynamics and
semantic context.

4.1.4 Final Model Architecture.
Ultimately, we choose the Conv1D UNet with block adjustment

and GroupNorm tweak as the motion-denoising model of StableMo-
Fusion, as shown in Figure 2. We call this network as CondUNet1D.
Both DiT and RetNet use the idea of attention to activate the global
receptive field in the temporal dimension, which benefits the model-
ing of long-range dependency. The receptive field of Conv1D UNet
is mainly in the convolution kernel window, promoting a coher-
ent and smooth transition between frames. We tend to prioritize
smoother generation in current applications of motion generation.

In our StableMoFusion, we set the base channel and channel
multipliers of UNet to 512 and [2,2,2,2] respectively. For text encoder,
we leverage pre-trained CLIP [21] token embeddings, augmenting
them with four additional transformer encoder layers, the same
as MotionDiffuse [36], with a latent text dimension of 256. For
timesteps encoder, it is implemented using position encoding and
two linear layers, the same as StableDiffusion [22], with a latent
time dimension of 512.

4.2 Training strategies
Recent research has shown that key factors in the training strategies
of the diffusion model affect the learning pattern and its generative
performance [2]. In this subsection, we will analyze the impact of
two empirically valid training strategies on diffusion-based mo-
tion generation: exponential moving average and classifier-free
guidance.

4.2.1 Exponential Moving Average.
Exponential Moving Average (EMA) calculates a weighted av-

erage of a series of model weights, giving more weight to recent
data. Specifically, assume the weight of the model at time t as 𝜃𝑡 ,
then the EMA formulated as: 𝑣𝑡 = 𝛽 · 𝑣𝑡−1 + (1 − 𝛽) · 𝜃𝑡 , where
𝑣𝑡 denotes the average of the network parameters for the first t
iterations (𝑣0 = 0), and 𝛽 is the weighted weight value.

During the training of the motion-denoising network, the net-
work parameters change with each iteration, and the motion model-
ing oscillates between text-motion consistency and motion quality.
Therefore, the use of EMA can smooth out the change process of
these parameters, reduce mutations and oscillations, and help to
improve the stability ability of the motion-denoising model.

4.2.2 Classifier-Free Guidance.
To further improve the generation quality, we use Classifier-Free

Guidance (CFG) to train the motion-denoising generative model.
By training the model to learn both conditioned and unconditioned
distributions (e.g., setting c = ∅ for 10% of the samples), CFG ensures
that the models can effectively capture the underlying data distri-
bution across various conditions. In inference, we can trade-off
text-motion consistency and fidelity using s:

𝐺𝑠 (𝑥𝑡 , 𝑡, 𝑐) = 𝐺 (𝑥𝑡 , 𝑡, ∅) + 𝑠 · (𝐺 (𝑥𝑡 , 𝑡, 𝑐) −𝐺 (𝑥𝑡 , 𝑡, ∅)) (3)

This ability to balance text-motion consistency and fidelity is crucial
for producing varied yet realistic outputs, enhancing the overall
quality of generated motion.

4.3 Efficient Inference
Time-consuming inference time remains a major challenge for
diffusion-based approaches. To address this problem, we improve
inference speed by integrating four effecient and training-free tricks
in the inference process: 1) efficient sampler, 2) embedded-text
cache, 3) parallel CFG computation, and 4) low-precision inference.

4.3.1 Efficient Sampler.
We integrate the SDE variant of second-order DPM-Solver++

sampler (SDE DPM-Solver++ 2M) into diffusion-based motion gen-
eration to reduce denoising iterations. DPM-Solver is a high-order
solver for diffusion stochastic differential equations (SDEs), which
implies additional noise will be introduced during the iterative sam-
pling. Thereby, stochasticity of its sampling trajectories helps to
reduce the cumulative error [32], which is crucial for the realism of
generated motion. In addition, we adopt the Karras Sigma [12] to set
discrete timesteps. This method leverages the theory of constant-
velocity thermal diffusion to determine optimal timesteps, thereby
maximizing the efficiency of motion denoising within a given num-
ber of iterations.

4.3.2 Embedded-text Cache.
We integrate the Embedded-text Cache mechanism into the in-

ference process to avoid redundant calculations. In diffusion-based
motion generation, the text prompt remain unchanged across itera-
tions, resulting in same embedded text in each computation of the
denoising network. Specifically, we compute the text embedding
initially and subsequently utilize the embedded text directly in each
network forward, thereby reducing computational redundancy and
speeding up inference.

4.3.3 Parallel CFG Computation.
We implement the inference process of CFG in parallel to speed

up the single iteration calculation while maintaining model gen-
eration performance. Due to the CFG mechanism Equation 3, in
each iterative step during inference, it is necessary to execute a
conditional and an unconditional denoising, respectively, using the
trained motion network, and then sum up the results.

4.3.4 Low-precision Inference.
We utilize half-precision floating point (FP16) computation dur-

ing inference to accelerate processing. Newer hardware supports
enhanced arithmetic logic units for lower-precision data types. By
applying parameter quantization, we convert FP32 computations
to lower-precision formats, effectively reducing computational de-
mands, parameter size, and memory usage of the model.

4.4 Footskate Reduction
Figure 4 shows an example for the foot skating phenomenon. The
motion frame rate is 20. The two frames in the figure have a time
difference of 0.25s. Based on our life experience, it is difficult to
complete a motion and return to the original pose within 0.25s.
Although the foot postures in the two frames remain unchanged,
there are changes in the positions of the joints, as observed from
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Figure 4: Red: the foot joints as 0th frame. Green: the corre-
sponding keypoints. At 5th frame, the offset of red and green
points indicate the footskate phenomenon.

the variations in joint position values and their distances relative
to red points. For this motion, what we expect is that the feet are
anchored at the same point. Typically, choosing the foot position
of middle frames during foot skating as the fixed point minimizes
the impact on the adjacent frames.

The key to eliminating foot skating is to first identify the foot
joints and frame ranges where foot skating occurs, and then anchor
those keypoints at their positions 𝑝 in the intermediate frames. We
formulate this constraint as a loss term shown in Equation 4 where
𝑗 indicates joint and 𝑓 is frame ranges.

𝐿𝑓 𝑜𝑜𝑡 =

𝐽𝑠𝑘𝑎𝑡𝑖𝑛𝑔∑︁
𝑗

𝐹𝑠𝑘𝑎𝑡𝑖𝑛𝑔∑︁
𝑓

(𝑃 𝑗 − 𝑝) (4)

𝐽𝑠𝑘𝑎𝑡𝑖𝑛𝑔 contains all the joints where foot skating may occur,
specifically including right ankle, right toes, left ankle and left toes.
𝐹𝑠𝑘𝑎𝑡𝑖𝑛𝑔 is a collection of all frame ranges of the joint 𝑗 . 𝑃 𝑗 means
the positions of joint 𝑗 . We incorporate Equation 4 to a gradient
descent algorithm to correct foot skating motion.

Following UnderPressure [18], we use vertical ground reaction
forces (vGRFs) to identity foot joint 𝑗 and its skating frames 𝑓 . The
vGRFs predition model of UnderPressure 𝑉23 requires motion of a
predefined 23 joints skeleton 𝑆23, which is different from our mo-
tion data. In our work, we utilize HumanML3D[6] with 22 skeletal
joints 𝑆22 and KIT-ML [20] motion with 21 skeletal joints. The sub-
sequent foot skating cleanup primarily focused on HumanML3D.
We transferred the pre-trained weights of 𝑉23 to our own model
𝑉 𝜃

22 using the constraints Equation 5, enabling us to directly predict
the vertical ground reaction forces for HumanML3D motions. 𝑃 is
keypoints of HumanML3D motion. 𝑃𝑆23 is the result of retargeting
𝑃 to skeleton 𝑆23.

min
𝜃

∥𝑉 𝜃
22 (𝑃) −𝑉23 (𝑃𝑆23 )∥

2
2 (5)

𝐿 = 𝜔𝑞𝐿pose + 𝜔 𝑓 𝐿foot + 𝜔𝑡𝐿trajectory + 𝜔𝑣𝐿vGRFs (6)

𝐿foot = 𝐿foot (𝑃, 𝑃,𝑉23, 𝑃𝑆23 ) (7)

𝐿vGRFs = 𝐿vGRFs (𝑃, 𝑃,𝑉 𝜃
22) (8)

Drawing inspiration from UnderPressure [18], we use foot con-
tact loss 𝐿𝑓 𝑜𝑜𝑡 to fix contact joints, pose loss 𝐿𝑝𝑜𝑠𝑒 and trajectory
loss 𝐿𝑡𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦 to to keep the semantic integrity of motion, vGRFs
loss 𝐿𝑣𝐺𝑅𝐹𝑠 to keep valid foot pose. Our supplementary material

provides detailed definitions of these loss terms. The final definition
of our loss function is as Equation 6 [18] where 𝜔𝑞 , 𝜔 𝑓 , 𝜔𝑡 , 𝜔𝑣 are
weights of its loss item. 𝑃 is keypoints of footskating motion and 𝑃
is the result keypoints after footskate cleanup.

Through our method, the footskate cleanup process can be gen-
eralized to various skeletal motions.

In a few cases, motion corrected by Equation 6 may occurs un-
reasonable or unrealistic poses. The diffusion model trained on a
large amount of motion data learns the prior knowledge of real
motions and has the ability to correct the invalid motions.

Therefore, we use our pretrained diffusion model to correct
such cases. Motivated by OmniControl [31] and Physdiff [34], we
incorporates footskate cleaning method into the diffusion denoising
process, denote as StableMoFusion∗.

5 EXPERIMENTS
5.1 Dataset and Evaluation Metrics
We use HumanML3D [6] and KIT-ML [20] dataset for our experi-
ments. HumanML3D Dataset contains 14,646 motions and 44,970
motion annotations. KIT Motion Language Dataset contains 3,911
motions and 6,363 natural language annotations.

The evaluation metrics can be summarized into four key aspects:
1) Motion Realism: Frechet Inception Distance (FID), which eval-
uates the similarity between generated and ground truth motion
sequences using feature vectors extracted by a pre-trained motion
encoder [6]. 2) Text match: R Precision calculates the average top-k
accuracy of matching generated motions with textual descriptions
using a pre-trained contrastive model [6]. 3) Generation diversity:
Diversity measures the average joint differences across generated
sequences from all test texts. Multi-Modality quantifies the diversity
within motions generated for the same text. 4) Time costs: Average
Inference Time per Sentence (AITS) [3] measures the inference
efficiency of diffusion models in seconds, considering generation
batch size as 1, without accounting for model or data loading time.

In all of our experiments, FID and R Precision are the principal
metrics we used to conduct our analysis and draw conclusions.

5.2 Implements Details
For training, we use DDPM [8] with 𝑇 = 1, 000 denoising steps and
variances 𝛽𝑡 linearly from 0.0001 to 0.02 in the forward process.
And we use AdamW with an initial learning rate of 0.0002 and a
0.01 weight decay to train the sample-prediction model for 50,000
iterations at batch size 64 on an RTX A100. Meanwhile, learning
rate reduced by 0.9 per 5,000 steps. On gradient descent, clip the
gradient norm to 1. For CFG, setting c = ∅ for 10% of the samples.

For inference, we use the SDE variant of second-order DPM-
Solver++ [17] with Karras Sigmas [12] in inference for sampling 10
steps. The scale for CFG is set to 2.5.

5.3 Quantitative results
We compare our StableMoFusion with several state-of-the-art mod-
els, including T2M [6], MDM [27], MLD [3], MotionDiffuse [36],
T2M-GPT [35], MotionGPT [9], ReMoDiffuse [37], M2DM [14] and
fg-T2M [30]. on the HumanML3D [6] and KIT-ML [20] datasets
in Table 2 and Table 3, respectively. Most results are borrowed from

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

StableMoFusion: Towards Robust and Efficient Diffusion-based Motion Generation Framework ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Quantitative results on the HumanML3D test set. The right arrow→means the closer to real motion the better. Red
and Blue indicate the best and the second best result.

Method FID ↓ R Precision↑ Diversity→ Multi-modality ↑top1 top2 top3

Real 0.002±.000 0.511±.003 0.703±.003 0.797±.002 9.503±.065 -

T2M [6] 1.067±.002 0.457±.002 0.639±.003 0.743±.003 9.188±.002 2.090±.083

MDM [27] 0.544±.044 0.320±.005 0.498±.004 0.611±.007 9.599±.086 2.799±.072

MLD [3] 0.473±.013 0.481±.003 0.673±.003 0.772±.002 9.724±.082 2.413±.079

MotionDiffuse [36] 0.630±.001 0.491±.001 0.681±.001 0.782±.001 9.410±.049 1.553±.042

GMD [13] 0.212 - - 0.670 9.440 -
T2M-GPT [35] 0.116±.004 0.491±.003 0.680±.003 0.775±.002 9.761±.081 1.856±.011

MotionGPT [9] 0.232±.008 0.492±.003 0.681±.003 0.778±.002 9.528±.071 2.008±.084

ReMoDiffuse [37] 0.103±.004 0.510±.005 0.698±.006 0.795±.004 9.018±.075 1.795±.043

M2DM [14] 0.352±.005 0.497±.003 0.682±.002 0.763±.003 9.926±.073 3.587±.072

Fg-T2M [30] 0.243±.019 0.492±.002 0.683±.003 0.783±.002 9.278±.072 1.614±.049

StableMoFusion (Ours) 0.098±.003 0.553±.003 0.748±.002 0.841±.002 9.748±.092 1.774±.051

Table 3: Quantitative results on the KIT-ML test set. The right arrow→means the closer to real motion the better. Red and
Blue indicate the best and the second best result.

Method FID ↓ R Precision↑ Diversity→ Multi-modality ↑top1 top2 top3

Real Motion 0.031±.004 0.424±.005 0.649±.006 0.779±.006 11.08±.097 -

T2M [6] 2.770±.109 0.370±.005 0.569±.007 0.693±.007 10.91±.119 1.482±.065

MDM [27] 0.497±.021 0.164±.004 0.291±.004 0.396±.004 10.847±.109 1.907±.214

MLD [3] 0.404±.027 0.390±.008 0.609±.008 3.204±.027 10.80±.117 2.192±.071

MotionDiffuse [36] 1.954±.062 0.417±.004 0.621±.004 0.739±.004 11.10±.143 0.730±.013

T2M-GPT [35] 0.514±.029 0.416±.006 0.627±.006 0.745±.006 10.921±.108 1.570±.039

MotionGPT [9] 0.510±.016 0.366±.005 0.558±.004 0.680±.005 10.35±.084 2.328 ±.117

ReMoDiffuse [37] 0.155±.006 0.427±.014 0.641±.004 0.765±.055 10.80±.105 1.239±.028

M2DM [14] 0.515±.029 0.416±.004 0.628±.004 0.743±.004 11.417±.97 3.325±.37

Fg-T2M [30] 0.571±.047 0.418±.005 0.626±.004 0.745±.004 10.93±.083 1.019±.029

StableMoFusion (Ours) 0.258±.029 0.445±.006 0.660±.005 0.782±.004 10.936±.077 1.362±.062

their own paper and we run the evaluation 20 times and ± indicates
the 95% confidence interval.

Our method achieves the state-of-the-art results in FID and R
Precision (top k) on the HumanML3D dataset, and also achieves
good results on the KIT-ML dataset: the best R Precision (top k)
and the second best FID. This demonstrates the ability of Stable-
MoFusion to generate high-quality motions that align with the
text prompts. On the other hand, while some methods excel in
diversity and multi-modality, it’s crucial to anchor these aspects
with accuracy (R-precision) and precision (FID) to strengthen their

persuasiveness. Otherwise, diversity or multimodality becomes
meaningless if the generated motion is bad. Therefore, our Stable-
MoFusion achieves advanced experimental results on two datasets
and shows robustness in terms of model performance.

StableMoFusion∗ focuses on the real effect of footskate cleanup.
Therefore, the timestep to begin cleaning footskate during inference
depends on the motion and thus the StableMoFusion∗ doesn’t apply
to the evaluation process of [6].
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5.4 Qualitative result
Figure 5 shows the visual results of our footskate cleanup method,
StableMoFusion∗. The red bounding box of footskate motion clearly
has multiple foot outlines, whereas ours shows only one. The com-
parison graph shows the effectiveness of our method for cleaning
footskate. Directly applying the footskate cleanup method of Un-
derPressure [18] to our motion would result in motion distortion,
while our method effectively avoids such deformation. In our sup-
plementary material, we will further present a comparison between
our method and the UnderPressure method by videos to illustrate
it.

Figure 5: Visualization comparison results before and after
our footskate cleanup. The red bounding box shows details
of skating feet.

5.5 Inference Time
We calculate AITS of StableMoFusion and ReMoDiffuse [37] with
the test set of HumanML3D[6] on Tesla V100 as MLD [3] does,
the other results of Figure 1 are borrowed from [3]. For instance,
MDM [27] with CFG requires 24.74s for average inference; Motion-
Diffuse [36] without CFG uses condition encoding cache and still
requires 14.74s of average inference. While the MLD [3] reduces
the average inference time to 0.217s by applying DDIM50 in latent
space, we find this approach lacks the ability to edit and control
motion by manipulating the model input.

To tackle this, we employ 1) efficient sampler, 2) embedded-text
cache, 3) parallel CFG computation, and 4) low-precision inference
to reduce iteration counts and network latency. As shown in Fig-
ure 1, our StableMoFusion significantly shortens the inference time
and achieves higher performance within the original motion space.

However, it remains incontrovertible that StableMoFusion’s in-
ference speed trails behind that of MLD, and fails to meet the in-
dustry’s real-time standard with an average inference time of 0.5s.
Thus, our future work will focus on acceleration: the inference
time of StableMoFusion is currently tied to the computation of the
network, and we will further investigate how to scale down the
model and how to reduce single-step latency in inference.

5.6 Ablation
5.6.1 Network Architecture. We evaluate and compare all the ar-
chitectures mentioned in Section 4.1 with the same training and
inference pipeline. For a fair comparison, all methods use the real
motion length from the ground truth to clip generated motion
and seed(0) for one evaluation. As Table 4 show, each network
enhancement in cross-attention has demonstrated performance
enhancements, elucidating its pivotal role in augmenting model

efficacy and effectiveness. Among them, Conv1D UNet achieves
the best generation performance. And fine-tuning Conv1D UNet’s
GroupNorm can effectively improve its performance on the KIT-
ML dataset, reducing the FID by about 64%. It also proves that the
GoupNorm tweak on UNet is mainly useful for the dataset with
dispersed length distributions, such as KIT-ML dataset.

Table 4: Comparison of various architectures and adjust-
ments.

Dataset Network FID ↓ R Precision
(top3) ↑

HumanML3D

Conv1D UNet basline 0.245 0.780
+ cross-attention 0.074 0.821
+ GroupNorm Tweak 0.089 0.840

DiT baseline 0.884 0.711
+ cross-attention 0.113 0.787

RetNet baseline 1.673 0.740
+ cross-attention 0.147 0.853

KIT-ML Conv1D UNet+ cross-attention 0.658 0.756
+ GroupNorm Tweak 0.237 0.780

5.6.2 Effectie Inference. By using the SDE variant of second-order
DPM-Solver++with Karras sigma, the inference process of diffusion-
based motion generation is able to significantly reduce the mini-
mum number of iterations required for generation from 1000 to 10
while enhancing the quality of generated motions, approximately
99% faster than the original inference process, as shown in Table 5.

The application of embedded text caching and parallel CFG fur-
ther reduces the average inference time by about 0.3s and 0.15s,
respectively. Our experiments also show that reducing the com-
putational accuracy of the motion-denoising model by half, from
FP32 to FP16, does not adversely affect the generation quality. This
suggests that 32-bit precision is redundant for motion generation
task.

Table 5: The progressive effect of each efficient and training-
free trick of StableMoFusion in inference process.

Method FID↓ R Precision
(top3)↑ AITS↓ Inference

Steps↓

base (DDPM1000) 1.251 0.760 99.060 1000
+ Efficient Sampler 0.076 0.836 1.004(-99%) 10
+ Embedded-text Cache 0.076 0.836 0.690(-31%) 10
+ Parallel CFG 0.076 0.836 0.544(-21%) 10
+ FP16 0.076 0.837 0.499(-8%) 10

6 CONCLUSION
In this paper, we propose a robust and efficient diffusion-based mo-
tion generation framework, StableMoFusion, which uses Conv1DUNet
as a motion-denoising network and employs two effective training
strategies to enhance the network’s effectiveness, as well as four
training-free tricks to achieve efficient inference. Extensive experi-
mental results show that our StableMoFusion performs favorably
against current state-of-the-art methods. Furthermore, we propose
effective solutions for time-consuming inference and footskate prob-
lems, facilitating diffusion-based motion generation methods for
practical applications in industry.
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