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ABSTRACT

Predicting the behavior of Al-driven agents is particularly challenging without a
preexisting model. In our paper, we address this by treating Al agents as stochastic
nonlinear dynamical systems and adopting a probabilistic perspective to predict
their statistical behavior using the Fokker-Planck equation. We formulate the
approximation of the density transfer operator as an entropy minimization problem,
which can be solved by leveraging the Markovian property and decomposing
its spectrum. Our data-driven methodology simultaneously approximates the
Markov operator to perform prediction of the evolution of the agents and also
predicts the terminal probability density of Al agents, such as robotic systems
and generative models. We demonstrate the effectiveness of our prediction model
through extensive experiments on practical systems driven by Al algorithms.

1 INTRODUCTION

Autonomous agents operate in dynamic environments, making decisions based on continuous feed-
back that enables them to learn and adapt over time. Therefore, studying the behavior and alignment
of these Al-driven agents is critical for several reasons. Analyzing their actions can help prevent
behaviors that conflict with human values and ethical standards [Rossi & Mattei (2019), Doshi
& Gmytrasiewicz (2005)]. Furthermore, understanding their behavior is essential for enhancing
their efficiency and reliability, particularly in safety-critical applications such as autonomous robots
[Pourmehr & Dadkhah (2012)]. These intelligent models are typically complex, high-dimensional,
and only partially observable over short time intervals. This complexity raises the question of
which properties can be efficiently quantified to truly understand their capabilities. The design and
understanding of AI components embedded within these agents depend crucially on analyzing the
interplay between Al-driven decision-making and the physical behavior of the closed-loop system.
This capability is foundational for users to perceive, predict, and interact effectively with intelligent
systems. It also provides the theoretical and technical basis for practical tasks such as decision-making
and reinforcement learning [Levine et al. (2016), Ganzfried & Sandholm (2011)].

Given these challenges, it is important to develop methods capable of harnessing critical information
to identify the behavior of AI components in closed-loop systems. In Déletang et al. (2021) and Roy
et al. (2022), the authors try to model the Al agent as a system that was pre-trained using reinforcement
learning and the environment is a partially-observable Markov decision process. The authors in Dipta
et al. (2022) present a card game and leverage the game theory framework to analyze learning agents’
characteristics with environmental changes. Moreover, Lee & Popovi¢ (2010) try capture a rich set
of behavior variations by determining the appropriate reward function in the reinforcement learning
framework. For a comprehensive review of literature on modeling and predicting Al agents behavior,
we refer readers to Albrecht & Stone (2018). Among these emerging methodologies, there has been
a notable increase in modeling these behaviors as nonlinear dynamical systems. Originating from
studies in partial differential equations (PDEs) and fluid mechanics, techniques such as Dynamic
Mode Decomposition (DMD) and its generalizations have also demonstrated significant capability in
revealing the underlying evolutionary laws of Al agents [ Schmid (2022), Brunton et al. (2021)].

Despite these advances made in the above mentioned works chaotic behavior resulting from nonlin-
earity and stochasticity encountered in practical problems pose significant challenges to deterministic
modeling and identification. However, despite the substantial uncertainties, and sensitivities to initial
conditions affecting Al agents, their statistical behavior and properties can be surprisingly regular.
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Specifically, when the closed-loop dynamics of Al agents are time-invariant, the density evolution
of the agents’ states follows a Markovian property [Risken (1996), Gardiner (2009), Hoehn et al.
(2005)].

These observations motivate analyzing this problem from a statistical perspective. In particular,
modeling the evolution trajectories of the state via a stochastic process and then studying the transfer
and propagation of the probability density functions, has gathered a lot of attention. This approach,
drawing from statistical mechanics, assumes that the agents trajectories are independent and governed
by the same Fokker-Planck equation, which characterizes the statistical behavior of agents based
on their underlying dynamics, showing significant advantages in handling systems with complex,
high-dimensional nonlinear chaotic dynamics and noise perturbations [Risken (1996); Lasota &
Mackey (2013)]. Another motivation for analyzing the evolution of densities arises from generative
Al The characteristics of the sampling probability density are often intricate. Traditional statistical
models frequently fall short due to the high dimensionality of the data and the inherent complexities
of the sampling process. Generative models, such as those based on denoising diffusion processes
[Ho et al. (2020)] or iterative reward-based sampling methods using transformers [Kingma (2013)],
introduce complex stochastic dynamics. These dynamics are challenging to analyze at the level of
individual samples. Instead, adopting a macroscopic perspective and focusing on the evolution of
probability densities induced by these models enables the study of the aggregate behavior of complex
models and a better understanding of their underlying mechanisms.

The application of probabilistic models to learn and predict the statistical behavior of complex Al
agents has gained increasing attention in areas such as autonomous driving, motion planning, and
human-robot interaction. However, algorithms based on this probabilistic perspective, particularly
those studying the propagation of density processes, remain underexplored. Several open challenges
persist in advancing this field, especially in developing unified frameworks that bridge the gap
between domain-specific methodologies and general modeling approaches [Baarslag et al. (2016)].

In this work, we focus on virtual or physical agents with stochastic dynamics, which are controlled or
operated by Al algorithms. We model the evolution of their state distributions as a Markov chain
(or process). Unlike existing approaches that primarily predict agent evolution, our work adopts a
macroscopic/statistical mechanics perspective. Our aim is to develop algorithms capable of predicting
not only the propagation of future densities but also the stationary distribution of the Markov process,
which corresponds to the controlled objective applied to the Al agents.

Specifically, we utilize the spectral decomposition theorem [Lasota & Mackey (2013)] for Markov
operators to decompose the propagation of the Markov transfer operator into a transient decaying term
and projections onto a set of cyclical bases representing the asymptotic behavior. As demonstrated
in our analysis, this approach significantly simplifies the learning and representation of Markov
processes, while also facilitating the prediction of the agents’ future behavior from a macroscopic
perspective.

1.1 RELATED WORKS

Here we review some empirical and theoretical models from a statistical modeling perspective that
have been developed with the aim of improving the prediction of the behavior of agents with Al
models in the loop. In Goswami et al. (2018), the constrained Ulam Dynamic Mode Decomposition
method is presented to approximate the Perron-Frobenius operators for both the deterministic and
the stochastic systems. Norton et al. (2018) provides a numerical approximation of the PF operators
using the finite volume method. These early numerical methods lay very important foundations for
the subsequent development of deep-learning-based methods, which turn out to be more scalable
approaches. For example, Meng et al. (2022) provides a direct learning method by training a neural
network-based state transfer function (operator). The works Huang et al. (2019); Everett et al. (2021);
Zhang et al. (2023) estimate the reachability sets of neural network-controlled systems. The works Li
et al. (2021) and De Ryck & Mishra (2022) use deep operator networks (DeepONets) and Fourier
neural operators (FNOs) to approximate the solution trajectories of PDEs. More recently, Surasinghe
et al. (2024) proposes an approximation method based on kernel density estimation (KDE) and
Hashimoto et al. (2024) present a deep reproducing kernel Hilbert module (deep-RKHM), serving
as a deep learning framework for kernel methods. Beside the above-mentioned empirical methods,
there are also some works that try to learn to statistical behavior from an optimal-transport-theory
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perspective. For example, in Yang et al. (2022), the authors seek to recover the parameters in
dynamical systems with a single smoothly varying attractor by approximating the physical invariant
measure. In Karimi & Georgiou (2022), the authors provided a data-driven approximation approach
to the Perron-Frobenius operator using the Wasserstein Metric.

A formal analysis of agents with AI models in feedback from the perspective of the evolution of
the density is currently lacking in the literature. Reachability analysis needs tracking of every
possible trajectory which can be computationally expensive. The density evolution approach uses
a single quantity that measures the probability of evolution of trajectories and offers a significant
computational advantage. Further, the density perspective allows a convenient method to verify the
alignment of machine learning models. We seek to address these challenges in this work.

1.2 OUR CONTRIBUTIONS
Our main contributions are as follows:

* Al-driven agents behave in unpredictable ways due to machine learning black boxes. We
look at this through the lens of propagation of probability densities and the stochastic transfer
operator. Al agents are trained with data that has inherent biases. This, coupled with the
structure of machine learning models, can potentially alter the alignment of the model. To
verify the alignment of the model, we predict the asymptotic behavior of the model by
analyzing the terminal stationary density of the Al agents.

* We propose PISA, a novel and scalable algorithm that can simultaneously predict the
evolution of the densities of Al agents and estimate their terminal density. Our algorithm is
motivated by the spectral decomposition theorem [Lasota & Mackey (2013)] and provides a
theoretical backing for its performance. PISA simultaneously approximates the action of
the Markov transfer operator from the trajectory data of agents and predicts their asymptotic
behavior.

* In our proposed algorithm PISA, the model complexity is indexed by the number of basis
functions. The number of basis functions is a tunable parameter that can be altered according
to the user’s needs. We provide a theoretical guarantee of the existence of the optimal solution
to our operator estimation problem.

* We numerically verify the effectiveness of PISA in a variety of practical cases and compare it
with existing literature. We first predict the behavior of unicycle robots driven by a controller
based on diffusion models. Then we analyze the behavior of generative models from the
lens of density evolution. Lastly, we apply PISA in the case of predicting the movement of
pedestrians. We observe that PISA performs significantly better than the existing literature.

1.3 STATISTICAL BEHAVIOR PERSPECTIVE AND THE FOKKER-PLANCK EQUATION

Consider a practical Al agent with physical dynamics defined by
& = h(z,u) + g(x)¢, ey
where u is an external input to the system and £ represents the white noise signal. With a parameterized

machine learning model as feedback © = MLgy(x), the system’s dynamics including the feedback
input is given by

& = h(z,MLo(x)) + g(2)§ = f() + g(2)§, @

where z(t) € X C R™ and f(-) : RM — RM and g(-) : RM ~ RP are nonlinear continuous
functions.

The nonlinear system (2) is highly dependent on initial conditions and the noise £. Instead of
analyzing individual trajectories of (2), we take the perspective of analyzing several independent
trajectories simultaneously. Despite the challenges posed by stochasticity, and complexity in the
system dynamics, the evolution of the statistical distribution over the states of all agents remains
well-structured [Lasota & Mackey (2013)]. Particularly, at each time instance, samples from all the
independent trajectories can be viewed as a probability density of the states. Therefore, the evolution
of states from various initial conditions can be viewed as the evolution of a probability density. The
evolution of the probability density function of states at time ¢, denoted by p(z, t), forms a Markov
process that obeys the Fokker-Planck equation, as described below:
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Lemma 1 (Risken (1996)) For agents governed by (2), we have that the evolution of the density of
states p(x,t) is a Markov process. The evolution is given by the Fokker-Planck equation

Op(z, 1) "0 (filz,ue)p n 2 (g(x)g" (x )p(x,t))l..
ot - Z o, ZZ O0x;0x; t= Arpop,t), ()

=1 7,1]1

where App is the differential operator the characterizes the evolution of p(x,t) with time, also
denoted as the Markov transfer operator. For the series of densities {py,(z)} = {p(z, kT)} with some
T > 0, the density transfer operator P is a Markov operator such that

pr+1(z) = P o py(x), “)

and if the Markov process is constrictive [(Lasota & Mackey, 2013, Definition 5.3.1)], then there is a
correspondent stationary density p*(x) such that

p*(&) = P o p* (). ®)

Remark 1 It is important to note that the Markov transfer operator P completely defines the
evolution of the density of the system. Hence, our goal is to analyze the behavior of the Al-driven
agents given by (2), through the estimation of the action of P. Our goal is to also estimate the
asymptotic behavior of Al-driven agents as several systems (2) exhibit stationary states asymptotically.
For example, robotics systems are designed to stabilize certain points in the domain. Another example
is a diffusion model which is trained to sample from unknown target distributions. For systems
that exhibit stationary states, there exists an invariant density p* [Lasota & Mackey (2013)] for the
Markov operator such that (5) holds. Here agents following (2) reach p* asymptotically. We seek to
estimate the terminal density p* as it provides a convenient method to assess the alignment of the
Al-driven agents.

Remark 2 We have noticed that for some general Al agents, the density evolution process of the state
may not be a Markovian process. This happens, for example, when h(zx,u), g(x) or u(zx) in (1) and
(2) are time-variant and non-stationary. In these cases, a similar form of time-variant Fokker-Planck
equation holds, though it does not implies a Markov process [Risken (1996)]. Nonetheless, we
claim that the Markovian setting is actually widely used and considered for model simplicity and
convenience of analysis. To give an example, the state evolution of Markov decision processes (MDPs)
with any fixed (stationary) control policy applied, forms a Markov process [Bertsekas (2012)].

1.4 FROM SAMPLES TO DENSITIES

Our data consists of the state trajectory of IV identical agents governed by the dynamics (2). The

trajectory of these agents are collected from ¢ = 0 to ¢ = T with a fixed sampling period 7 = %

The sampled dataset is given by {X,,})_; of the state x, where X, = [x&, X%, X%, ,X%] €
RM*(K+1) Note that the collected data set can also come from a single agent starting from N
different initial states.

Estimating probability densities from samples is an active problem in machine learning and statistics.
In this work, we employ Kernel Density Estimation to numerically construct the probability density
pr(z) using the data {X,,}. We can view {X,, } by iterating with respect to time as {}; }~_,, where
Ve =[x}, X3, , X2 ] denotes the state vectors of N particles at time ¢ = k7. Using kernel density
estimation [Hastie et al. (2009)], we then get an empirical probability distribution estimation py ().
In this paper, we choose to use the Gaussian kernel for the estimation of p; which is given by

] N feoxpl?

— 208 6
pi() N/det(2moiln) zjle ©

It is important to note that any choice of density estimation algorithm can be used with the data
{X,,} to obtain {py(z)}_ . KDE provides a convenient choice for measuring the probability p(z)
at fixed reference points. The choice of reference points and the parameter oy, can be chosen by the
user to better approximate py. In this paper, we choose to uniformly sample the reference points
in the domain X to estimate every py(x). We fix a constant 0 = o for simplicity. More specific
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KDE-related tools can be used based on the system in consideration and the domain, as enlisted in
[Chen (2017)].

We illustrate in Figure 1 how the state trajectory x(t) is coupled with the probability density p(x, t)
for the Van der Pol oscillator,

T1 = X9, @9 =pu(l-— a:%):cz — 1.
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Figure 1: Illustration of the relationship between the states and probability density of the Van der
Pol oscillator in a bounded domain. The x-axis in the figures corresponds to z; and the y-axis in
the figures corresponds to xo. (a) Various particles with different initial states driven by Van der Pol
dynamics. (b) Density of initial state of agents. (c) States of the agent after time ¢ = 15007. (d)
Density of the states at time ¢ = 15007. Brighter colors in (b) and (d) represent higher probability.
The states are sampled with ¢ = 0.01.

Remark 3 We acknowledge that the choice of kernels significantly affects both the accuracy and
the computational complexity of the algorithm. However; since our main focus lies in predicting the
trajectories of densities, we opted for a practical kernel choice tailored to the application at hand.
More sophisticated methods to approximate densities from data choosing might yield better results
and our algorithm can easily be used with these techniques.

2 PREDICTION INFORMED BY SPECTRAL-DECOMPOSITION ALGORITHM
(PISA) FOR LEARNING MARKOV TRANSFER OPERATORS

We present our algorithm to estimate the Markov transfer operator in this section. Further, we predict
the asymptotic behavior of the system by estimating the terminal density of the dynamical system.
We approximate the action of the Markov transfer operator using the following model,

Lo . _
Popy(a lzpk i) = Y (7 - 2000 Ghia). )

=1

Here, we are decomposing the action of the Markov transfer operator on the density py (z) into 21
components as given by I functionals Aj(px) and [ functions G/ (z). The functionals Aj(p) and
functions G’V(a:) are parameterized by 6 and y respectively. Moreover, we impose the following
constraints:

PoGi(z) =Gt (z), Vi=1,---,1—1;
PoGl(z) = Gy(x); ®)
(61(2), 6L (2)) = 0,¥i # j.

This method of decomposing the Markov transfer operator is guided by the spectral decomposition
theorem which we elaborate on in Section 4.
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Given the decomposition of the Markov transfer operator, we propose the following loss function,
K—1 1
D( Zpk il Z(-%%) G, (2)
-1

guided by the spectral decomposition theorem, to learn the parameter 6 and .
Pr+1(x ))
k=l— i=1

l ©

!
+AZ<Gi(x),G§(x)>+MZD (ZAG Gr+1( )>

i#]
We then construct PISA as the following alternating optimization algorithm to compute 6 and +, in
which we choose Aj(p) and G/ () to be outputs of two distinct neural networks parameterized by 6
and 7, respectively. An important aspect of PISA is that it can also predict the terminal density of the
Markov transfer operator. The estimate of terminal density of P can be expressed as

l
ﬁ@:;Zd@) (10)

Algorithm 1: Prediction Informed by Spectral-decomposition Algorithm (PISA)

Data: [ > 0, A > 0, u > 0; pi(z), for k =0, 1,--- , K; initial values of y and 6; two small
positive thresholds €; and e€s;

Result: v and 6;

Nepochs < 1000

while N,y 7 0 do

Solve the following optimization problem to get v*
min L(6,~)
v
‘ , an
s.t. G%(z) > 0and /G,Y(x)dx =1,fori=1,---,;
if |7* — 7| > €1 then
| ey
end
Solve the following optimization problem to get 6*
mein L(0,7)
, Lo 12)
s.t. Ap(pg) >0, fori=1,---,land ZAé(pk) =1
i=1
if ||0* — || > e then
| 0« 6"
end
Nepochs = Nepochs -1
end

Note that optimization problems (11) and (12) are constrained by the structure of G/, and A}. These
constraints are easily satisfied by non-negative output layers of typical neural network architectures.
For instance, normalized sigmoid layer for GEY satisfies the constraints in (11) and (12).

3 NUMERICAL EXPERIMENTS

We present the effectiveness of PISA on different numerical testbeds. We performed the numerical
experiments on a machine with Intel i19-9900K CPU with 128GB RAM and the Nvidia Quadro
RTX 4000 GPU. In our numerical experiments, we compare the performance of PISA with that of
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Meng et al. (2022) and DDPD proposed in Zhao & Jiang (2023). Particularly, Meng et al. (2022)

appl‘oxlmates the Perr()n—FrObeniuS ()pel‘ator as
t-NNgs (x,t
kar] =€ ( ? )pk-.

Here, note that NN;s approximates the differential operator App given in (3). Then e!™¥¢ is an

approximately linear solution to (4). Moreover, in Zhao & Jiang (2023), the authors provided the
dynamic probability density decomposition (DPDD) method, which is based on Extended Dynamic
Mode Decomposition and makes a linear finite-dimensional approximation of the Markov transfer
operator to forecast the density evolution.

3.1 LUNAR LANDER (CONTINUOUS)

We apply PISA to predict the behavior of a reinforcement learning algorithm. Lunar lander (Continu-
ous) is a rocket trajectory optimization problem on the Gymnasium platform Towers et al. (2024),
with an eight-dimensional state and three-dimensional control input. We first train a feedback control
policy using the Actor-Critic algorithm to make the rocket land on the landing pad which is always
given by the coordinates (0,0) in the simulation environment. The feedback policy results in stochastic
nonlinear dynamics as described in (2). We collect 3000 trajectories of length 500 time steps. We
evaluate the density of the states via kernel density estimation (KDE) method to get a trajectory
of densities as {p;(7)}729. We use the first 100 steps of the density trajectory to learn the Markov
transfer operator using PISA. We also estimate the Markov transfer operator using DPDD (Zhao &
Jiang (2023)), and direct NN (Meng et al. (2022)), respectively to compare the different models. We
evaluate the performance of the learned models to predict the density for the following 400 steps to
get {py ()}, for each of the three algorithms. We use the KL divergence between the predicted
density gy, and the true density pj, to characterize the performance of each algorithm. In Figure 2(a),
we compare the performance of the three algorithms. We see that Meng et al. (2022) performs better
initially due to its linearity assumption on the transfer operator but PISA performs better in the long
term. However, DPDD performs significantly worse as it projects the operator on a finite basis. In
Figure 2(b), we depict the predicted stationary density p* of the lunar lander. We see that p* is
centered around (0,0) with a high probability which verifies that the controller makes the rocket land
within the landing pad most times.
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Q !
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time Ty
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Figure 2: Experiments on the lunar lander in the Gymnasium environment. (a) Comparison of
performance between PISA, Meng et al. (2022) and DPDD. PISA performs better than the other
algorithms in the long term although Meng et al. (2022) performs better initially due to its linearity
assumption. (b) Prediction of the stationary density p* of the lunar lander centered at (0,0). This
confirms that the controller ensures that the rocket lands within the landing pad.

3.2 PREDICTING BEHAVIOR OF SCORE-BASED GENERATIVE MODEL

We consider the problem of analysis of the behavior of diffusion models. Diffusion models generate
data using a bidirectional scheme. Given data samples from an unknown density, in the forward
process, noise is sequentially added until the data samples resemble white noise samples from a
standard Gaussian. Then, to generate new samples, the reverse process of diffusion models iteratively
removes noise from white noise samples to generate realistic samples from the target density. The
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reverse process is particularly complex as the amount of noise to be removed at every step is estimated
using neural networks. Our task is to analyze the behavior of diffusion models in the reverse process
from the lens of evolving probability densities. We particularly consider the case of diffusion models
based on estimating the score Song et al. (2020). We seek to study the behavior of these score-based
generative models by their action on samples in the reverse process.

In Song et al. (2020), the forward and reverse processes use the following Stochastic Differential
Equation (SDE),

& = Ax + Bu, (13)

where x,u € R, In the forward process where noise is sequentially added, x(0)are samples from
an unknown target distribution, and u(t) is sampled from a Gaussian u(t) ~ N(0, I). In the reverse
process, 2(T") ~ N(0, I) is the initial point, and u(t) is the output of a neural network S, (x, t) that
estimates the amount of noise needed to be removed at each step ¢ to obtain a realistic sample. In
this experiment, we predict the behavior of the score-based diffusion model in the reverse process.
For the reverse process, the task is to sample from Gaussians centered at —61 and 61 and kI where
k ~ N(=3,1). The noise distribution is the standard Gaussian. In Figure 3(a) we show the first
two dimensions of the samples used in the reverse process of the diffusion model. The blue points
denote the initial points sampled from a standard Gaussian. The red points denote the final samples
from the target distribution. To train the diffusion model, we use N = 12000 samples from the target
distribution. The data samples are diffused in the forward process for a time period of 8 seconds. In
the reverse process, to sample from the desired distributions, we learn the score as proposed in Song
et al. (2020). Once the score is sufficiently learned using a neural network, we record NV trajectories
in the reverse process for a time period of five seconds, which constitute the training dataset. Then
we predict the behavior for the next three seconds which is the testing dataset.

We use the KL divergence between the predicted p; and the true p; from the testing dataset as a
metric to numerically analyze the performance of PISA. It is evident from Figure 3(b) that PISA
accurately predicts the behavior of the diffusion model with varying choices of the number of basis
functions. We use the logarithm of the KL divergence to emphasize that PISA performs at least one
order of magnitude better than the other methods Meng et al. (2022) and DDPD Zhao & Jiang (2023).
We see that Meng et al. (2022) performs better initially due to its linear solution to the PDE but its
performance deteriorates rapidly. PISA retains relatively much better performance over a longer time
horizon. In Figure 3(c), we take a closer look at the performance of PISA for different choices of
basis functions /. We see that a choice of [ > 10 is required to achieve good performance. We use
feedforward neural networks with 3 hidden layers for A}, G and NNJ.
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Figure 3: Experiments on the ten dimensional score-based generative model Song et al. (2020). (a)
Data samples of diffusion model. Blue points of the standard Gaussian are the initial points in the
reverse process. Red points denote samples from the unknown final distribution. (b) Comparison
of performance of PISA with different choices of basis functions [, Meng et al. (2022) and DPDD
on testing dataset. PISA performs an order of magnitude better for any choice of basis function. (c)
Comparison of PISA with different choices of basis functions /. A choice of [ > 10 is required to
achieve the best performance.
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3.3 UCY PEDESTRIAN DATASET

Here, we show the effectiveness of PISA on physical data where the transfer operator is not constrictive
and the dynamics are not Markov. We apply PISA on the UCY pedestrian dataset Lerner et al. (2007)
to predict the movement of pedestrians by estimating the evolution of the density of pedestrians. The
dataset consists of videos of pedestrians walking in several regions as depicted in Figure 4(a). We
use the Zara(O1 subsection of the dataset in our experiments. We obtained pre-processed data from
the code repository of Salzmann et al. (2020), where the video was processed to obtain the x and y
coordinates of the position of the pedestrians. As pedestrians are walking everywhere in state space,
the constrictive property no longer holds. Further, pedestrians enter and exit the scene which results
in highly stochastic behavior in the density. Given these complications, we show that PISA still
performs better than other methods that learn transfer operators. We assume that every pedestrian is
identical and their movement is governed by the dynamics given in (2). Both DDPD and Meng et al.
(2022) require Markovian dynamics of the density, however we show that PISA can perform well
even when this assumption fails.

Given the positions of pedestrians as depicted in Figure 4(a), we approximate the probability density
of the pedestrians as depicted in Figure 4(b). In Figure 4(c), we once again compare PISA with the
exponential model Meng et al. (2022) on the test data for the first 200 time samples. We choose
! = 5 and feedforward neural networks with 3 hidden layers for Aé, Giy and NNg. Here, we see
that the initial time period in which the exponential model works better than PISA is significantly
shorter due to the model inaccuracy. However, PISA continues to perform well over a longer time
horizon. It is also important to note that both models have significantly higher estimation errors in the
testing performance for this experiment compared to performance in experiments on the Gymnaisum
Lunar Lander model and the score-based generative model. This is due to the stochasticity of the
data and the assumption we make about the nature of the pedestrians. Better density approximation
algorithms that are suited for stochastic data and for incorporating jumps in the probability density
can be employed to obtain an improvement in the performance.
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Figure 4: Experiments on the UCY pedestrian dataset. (a) A snapshot from the dataset. (b) Corre-
sponding estimated probability density. (c) Comparison between PISA and Meng et al. (2022) in the
estimation of future probability densities.

4 THEORETICAL FOUNDATIONS OF SPECTRAL DECOMPOSITION

If the Markov transfer operator P is constrictive, it pushes forward the probability distribution py, ()
to a stationary distribution p*(x) corresponding to the attractors of dynamical systems. This evolution
of the probability distribution is in fact a Markov Process (see Appendix A). For Markov operators
with the constrictive property, we have the following spectral decomposition theorem.

Lemma 2 (Lasota & Mackey (2013) ) Let P be a constrictive Markov operator. Then there exists

an integer 1, two sequences of non-negative functions g;(x) € L1 and h;(x) € Loo, 1 =1,2,--- 1,
and an operator Q) : L1 — L1 such that for all p(x) € L4, P o p(x) can be written in the form

l
Pop(x) = aip)gi(x) + Qo p(x), (14)
i=1
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where
() = [ plalhi(a)da.
The functions g;(x) and the operator @ have the following properties:

1) Each g;(x) is normalized to one and

gi(x)gj(x) =0, foralli# j, (15)
i.e., the density functions g;(x) have disjoint supports;
2) For each integer i there exists a unique integer (i) such that
P o gi(z) = gagi) (). (16)
where a(i) # a(j) fori # j. Thus, P just permutes the functions g;(x);

3) Moreover,
[P"Q o p(z)[| — 0 (17)

as n — oo for every p(x) € L.

Lemma 2 states that the action of the PF operator can be decomposed into [ components through the
functionals a;(p) and the functions g;(x). Here [ is a finite integer that serves as a measure of the
model complexity of PISA. Further, the operator ) captures the effect of the terminal density on
p(x). Ast — oo, the action of Q on p(x) decays to 0. This drives our motivation to use Q o p(x) as

I I
Qo pr(z) = %Zpkfm(i’?) - > gilx). (18)
i=1 =1

Further, as ¢ — oo, we can see that

l
RGEED I (19)

This implies that the density functions g; serve as a basis for the stationary terminal density p*. It is
easy to verify for (19) that P o p*(x) = p*(x) through the permutation property. Given the Lemma 2,
(18), and (19), we provide a sufficient condition on the output of our algorithm PISA.

Theorem 1 For systems (2) that have a stationary terminal density, there exists a finite [, an operator
Q, | non-negative functionals A})(p) and l densities G (x) such that the loss L(8, ) = 0.

Proof 1 We provide a brief overview of the proof. Lemma 2 guarantees the existence of | functions
a;(p) and g;(x) that exactly decompose the action of the PF operator. These are approximated
using neural networks Aé (p) and G'iy(:zc) respectively. The cost function L is designed to satisfy the
properties of a; and g;. The first term in the cost function L addresses the propagation of the PF
operator. The second term addresses the orthogonality property of every g; and the last term captures
the permutative property g;. |

5 CONCLUSION

In this study, we explore the task of predicting the behavior of agents controlled by Al models,
using a probabilistic framework to analyze the evolution of probability densities. Our proposed
algorithm, PISA, effectively estimates the Markov transfer operator that characterizes the evolution
of these densities, thus enabling predictions of both the short and long-term behavior of Al-driven
agents. This ability to forecast asymptotic behaviors is critical for assessing whether such agents
align with the controller’s requirements. Currently, our approach utilizes kernel density estimation to
approximate the probability densities from individual trajectories; however, this method introduces
potential inaccuracies. Optimizing the choice of kernel functions and adopting more sophisticated
density estimation techniques could significantly enhance our model’s performance. Additionally, a
comprehensive evaluation of the model’s computational efficiency remains to be conducted, which
will be crucial for practical applications and further scalability.
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A OPERATOR THEORY AND STATISTICAL MECHANICS

Our idea of studying the density evolution from a macroscopic/statistical behavior perspective
originates from statistical mechanics [Lasota & Mackey (2013); Risken (1996)]. There are some
basic assumptions which are critical for our problem setting, as shown as follows:

Assumption 1 (Ash (2012)) (Independent Particles Approximation) In our basic problem setting, we
assume that there are N trajectories indexed by n and each trajectory X, = [x§, xT, X5, - s X% €
RM*(E+1) js eenerated independently and governed by the identical systems dynamics as shown in

2.

This assumption is fundamental in statistical mechanics, providing a basis for understanding the
behavior of an ideal gas in thermodynamics. In our problem setting, it helps to significantly simplify
the analysis. By assuming that all trajectories are independent and identically distributed (i.i.d.), we
can use a single probabilistic model to characterize the collective behavior of all trajectories.

With this assumption, we can adopt a unified macroscopic statistical model—a stochastic process
{pr(x)}32 ,—to describe the evolution of all particles or agents. This unification enables us to
analyze their collective behavior at a macroscopic level, thereby simplifying our understanding of the
system.

Besides treating different trajectories as originating from multiple independent agents, we can also
view them as multiple simulated trajectories generated independently by the same agent. This
approach serves as a reasonable approximation even in scenarios where the particles or agents exhibit
weak correlations, which is a very common case in practice.

As shown in Section 1.3 and Lemma 1, for trajectories collection we consider in this paper, the density
evolution chain {py(z)}7° , forms a Markov process (Markov chain). Next, we will introduce some
basic properties of Markov processes (chains) and Markov operators.

Definition 1 (Ash (2012); Lasota & Mackey (2013)) In probability theory and statistics, a (dis-
crete) Markov chain or Markov process is a stochastic process {py () }32 describing the evolution
of states x € RM, in which the state at time instant k depends only on the state attained in
the previous event x_1. In operator theory, a Markov operator propagates densities as, that is
Popi(z) = prt1(x). Here, P is a linear operator on a certain function space (positive Ly function
space) that conserves the L1 norm (the so-called Markov property).

In other words, for the corresponding Markov transfer operator P that propagates the density py ()
forward, we have that

* P is alinear operator;
* P o p(z) is non-negative if p(x) is non-negative;

* Integral invariance: For p(x) > 0,

/Pop(w)da@ = /p(x)dx;

Moreover, in this paper, we consider the Markov processes corresponding to controlled stochastic
dynamics (2) with specific control goals. These processes has a very good property: they are
constrictive Markov processes and therefore are asymptotically periodic [Lasota & Mackey (2013)].
The Markov transfer operator P has at least one stationary distribution (fixed point). These properties
are detailed as follows.

Assumption 2 (Lasota & Mackey (2013)) Throughout this paper, we assume that the Markov oper-
ator P corresponding to the system dynamics is constrictive.

Proposition 1 (Lasota & Mackey (2013)) If P is constrictive, then it has at such a fixed point
(probability distribution function) that

Pop*(z) = p'(a)

which is also denoted in some literature that P has a preserved measure [i,«.
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