
Spectral Graph Neural Networks are Incomplete on
Graphs with a Simple Spectrum

Snir Hordan
Faculty of Mathematics

Technion - Israel Institute of Technology

Maya Bechler-Speicher
Meta

Gur Lifshitz
Blavatnik School of Computer Science

Tel-Aviv University

Nadav Dym
Faculty of Mathematics

Technion - Israel Institute of Technology

Abstract

Spectral features are widely incorporated within Graph Neural Networks (GNNs)
to improve their expressive power, or their ability to distinguish among non-
isomorphic graphs. One popular example is the usage of graph Laplacian eigenvec-
tors for positional encoding in MPNNs and Graph Transformers. The expressive
power of such Spectrally-enhanced GNNs (SGNNs) is usually evaluated via the
k-WL graph isomorphism test hierarchy and homomorphism counting. Yet, these
frameworks align poorly with the graph spectra, yielding limited insight into
SGNNs’ expressive power. In this paper, we leverage a well-studied paradigm of
classifying graphs by their largest eigenvalue multiplicity to introduce an expres-
sivity hierarchy for SGNNs. We then prove that many SGNNs are incomplete even
on graphs with distinct eigenvalues. To mitigate this deficiency, we adapt rotation
equivariant neural networks to the graph spectra setting, yielding equiEPNN, a
novel SGNN that provably improves upon contemporary SGNNs’ expressivity on
simple spectrum graphs. We then demonstrate that equiEPNN achieves perfect
eigenvector canonicalization on ZINC, and performs favorably on image classifica-
tion on MNIST-Superpixel and graph property regression on ZINC, compared to
leading spectral methods.

1 Introduction

Graph Neural Networks (GNNs) have become a ubiquitous paradigm for learning on graph-structured
data. The core principle of GNNs is to maintain a representation of each graph vertex and leverage the
graph structure to iteratively refine each representation by its vertex’s graph neighborhood [41]. To
enhance the purview of the vertex’s neighborhood, it is common to incorporate spectral features, such
as Random Walk matrices, positional encoding, and graph distances, into the refinement operation
of GNNs [8, 1, 45, 51]. Such GNNs, which systematically incorporate spectral features within
their representation refinement procedure, or Spectrally-enhanced GNNs (SGNNs)[52], have gained
significant traction in the graph learning community, due to their reasonable complexity and empirical
benefits [17, 53, 52, 12].

Understanding the expressive power of GNNs provides researchers with a framework for comparing
different models and identifying their deficiencies, often leading to improvements [14, 32, 35, 15, 49].
These frameworks ought to characterize which graphs the GNN can distinguish among, based on
the GNNs’ inner workings. For instance, the Weisfeiler-Leman (WL) test, which maintains and
refines vertex representations similarly to Message Passing Neural Networks, a subclass of GNNs,
completely determines which graphs these models can distinguish among [49].

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

1-WL EPNN equiEPNN
⊐ ⊐

Figure 1: Hierarchy of 1-WL test variants. The arrows with ⊐ indicate strict inclusion relationships,
meaning each variant can distinguish all graphs that the previous one can, plus additional graphs.
Standard 1-WL is the least discriminative, while equiEPNN achieves the highest discriminative
power, by incorporating both spectral invariant and equivariant refinement.

To study the expressive power of SGNNs, recent papers [52, 12] proposed a spectrally enhanced GNN,
called Eigenspace Projection GNN (EPNN), which generalizes many popular spectral graph neural
networks, and analyze its expressivity via WL tests and homomorphism counting. This comparison
is valuable in comparing the expressivity of SGNNs to that of their combinatorial GNN counterparts.
Yet, this analysis does not yield insight into the role of the graph spectra in the distinguishing ability
of these GNNs.

To address this gap, we propose analyzing the expressive power of SGNNs via Spectral Graph Theory,
and in particular via the maximal eigenvalue multiplicity of a graph. As isomorphism of graphs
with bounded eigenvalue multiplicity can be determined in polynomial time, with the complexity
depending exponentially on the eigenvalue multiplicity [2], this notion imposes a natural hierarchical
classification of graphs, and SGNNs can potentially be complete on these graph classes, making this
hierarchy a viable method for assessing their expressive power.

Our analysis centers around the expressivity of EPNN on graphs with distinct eigenvalues. This
model is at least as expressive as many commonly used SGNNs [52], making an upper bound on the
expressivity of EPNN applicable to these models. Surprisingly, we find that EPNN is incomplete even
on the class of graphs with distinct eigenvalues. On the positive side, EPNN achieves completeness
on simple spectrum graphs whose eigenvectors exhibit certain sparsity patterns. Based on these
theoretical insights, we propose equiEPNN, inspired by equivariant neural networks for point clouds,
which attains provably improved expressivity on graphs with distinct eigenvalues.

Our main contributions are summarized as follows:

1. We prove the incompleteness of EPNN (in Subsection 3.2) on graphs with a simple spectrum.

2. We formulate a guarantee on the completeness of EPNN on graphs with a simple spectrum
based on sparsity patterns of the eigenvectors.

3. We introduce equiEPNN (in Section 3.3), a modified EPNN variant, which integrates
Euclidean message passing into the feature refinement procedure.

4. We benchmark equiEPNN on the ZINC and MNIST-Superpixel datasets, yielding favor-
able performance in comparison with popular spectral methods. Furthermore, equiEPNN
performs perfect eigenvector canonicalization on the ZINC dataset.

2 Related work

2.1 Spectral invariant GNNs

An enhancement to MPNNs and Transformer models is to incorporate spectral distances such
as Random Walk, resistance, and shortest-path distances within the message passing operation
[25, 50, 33, 11]. Zhang et al. [52] have compared among spectral GNNs and the WL hierarchy by
proving EPNN is strictly more powerful than 1-WL yet strictly less powerful than 3-WL. Despite
the important result that 3-WL strictly bounds the expressive power of EPNN, the large expressivity
gap between 1- and 3-WL makes this determination difficult to conceptualize. Building on this
work, Gai et al. [12] have characterized the expressive power of EPNN via graph homomorphism
counting, showing spectral invariant GNNs can homomorphism-count a class of specific tree-like
graphs. Despite providing a deeper understanding of EPNN’s expressive power, it remains hard to
conceptualize and propose more expressive models based on it.

2

2.2 Spectral canonicalization methods

The eigenvectors of a graph are used as positional encoding to improve the expressive power
of message-passing and as positional encoding for Transformer [38, 20, 31] based models. Yet,
positional encoding has an inherent ambiguity problem. An eigenvector corresponding to a unique
eigenvalue can be represented as itself or its negation [43]. Canonicalization methods [29, 30] are
used to address the ambiguity problems of eigenvectors, by choosing a unique representative for each
eigenvector.

Ma et al. [30] have uncovered an inherent limitation of canonicalization methods that process each
eigenspace separately, which is that they cannot canonicalize eigenvectors with nontrivial self-
symmetries. These models process each eigenbasis independently to obtain an orthogonal invariant
and permutation-equivariant feature, and then use these features for downstream applications. Notable
examples include SignNet and BasisNet [27], MAP [30] and OAP [29]. Ma et al. [29] have shown
that these methods lose information when canonicalizing eigenvectors with self-symmetries, proving
that the popular spectral invariant models SignNet and BasisNet are incomplete. In section 5.2, we
provide a canonicalization scheme that bypasses this issue, and while not provable complete on all
eigenvectors, empirically it canonicalizes all eigenvectors corresponding to distinct eigenvalues, in
the ZINC [18] dataset.

2.3 Expressivity on simple spectrum graphs

An early study on the connection between GNNs and spectral features of the underlying graph studied
the expressive power of CGNs [47]. They have proven that linear graph convolutional neural networks
(GCNs) can map a graph signal to any chosen target vector, if the graph has distinct eigenvalues. Yet,
this graph signal is sampled randomly and thus is not equivariant to permutations of the graph nodes,
which may lead to degraded generalization, see Bechler-Speicher et al. [5].

For more related work see Appendix C.

3 Problem statement

3.1 Spectral graph decomposition

Graphs are typically represented by a matrix A ∈ Rn×n, where the (i, j) entry of the matrix encodes
the relationship between node i and j. This matrix could be the adjacency matrix, the normalized
or un-normalized graph Laplacian, or a distance or Gram Matrix where the graph nodes have some
underlying geometry.

An important principle in the design of graph neural networks is the notion of permutation invariance:
since graph nodes do not come with an intrinsic order, we would like to think of a matrix A
and its conjugation PAPT by a permutation matrix P ∈ Sn, as being equivalent. Graph neural
networks respect this invariance constraint and produce permutation invariant function f satisfying
f(A) = f(PAPT). One popular method to design these functions exploits the eigendecomposition
of the matrix A.

For the purpose of discussion, we assume that A has an eigenbasis v(1), . . . , v(n) of vectors of norm
one, which corresponds to real eigenvalues λ(1), . . . , λ(n). This assumption always holds when in the
typical case where A is a symmetric matrix (e.g., adjacency and Laplacian matrices), and also often
holds in other settings (e.g., random walk laplacian matrix). This gives us an alternative representation
of the matrix A with its own interesting symmetries. Firstly, we note that each vector Pv(q) will be
an eigenvector of PAPT with the same eigenvalue λ(q). Secondly, if v(q) is an eigenvector of norm
one, then so is −v(q). When the eigenvalues of f are pairwise-distinct, then these are all the relevant
ambiguities. This is called the simple spectrum case. In the case of an eigenbasis of dimension k, the
eigendecomposition ambiguity is defined by orthogonal transformations in Ok. In this paper, we will
focus on the simple spectrum case. In this case, we define sign-invariant functions as follows

Definition 1 (Sign Invariant functions). For fixed natural n and K ≤ n, denote

VK
simple = {(V, λ⃗) ∈ Rn×K ⊕ RK | λ1 > λ2 > . . . > λK}.

3

We say that F : VK
simple → Rm is sign invariant if

F (V, λ⃗) = F (PV S, λ⃗), ∀P ∈ Sn, S ∈ {−1, 1}K

We note that in this definition, V represents a n×K matrix whose K columns represent the first K
eigenvectors v(1), . . . , v(K) of A, and the notation S ∈ {−1, 1}K means that S is a diagonal matrix
whose diagonal is a vector in {−1, 1}K .

The notion of sign invariant function was first introduced in [27], and was later discussed in [30, 29].
These papers discuss a collection of parametric functions F = {fθ(V, λ⃗) | θ ∈ Θ}, such that for all
parameters θ the function fθ is sign invariant. To understand the expressiveness of these models, we
formally define the notion of completeness on simple spectrum graphs.
Definition 2 (Sign Invariant Separation). For K ≤ n, let F denote a collection of sign invariant
functions defined on VK

simple, and let D be a subset of VK
simple. We say that F is complete on D if for

any non-isomorphic pair (V, λ⃗) and (U, η⃗) in D, there exists a function f ∈ F such that

f(V, λ⃗) ̸= f(U, η⃗).

Ideally, we would like F to be complete on all of the domain VK
simple. If F is complete, then by

applying it to eigendecompostions of graphs with simple spectrum, we will obtain models which can
separate all graphs with simple spectrum, up to permutation equivalence. The goal of this paper is to
understand whether existing sign-invariant functions are complete.

3.2 EPNN

We will focus on a large family of sign invariant functions named Eigenspace Projection GNNs
(EPNN). This family of functions, introduced in Zhang et al. [52], was shown to generalize many
spectral invariant methods such as Random Walk, resistance, and shortest-path distances [25, 50, 33,
11]. This method is based on a message passing like mechanism, where the spectral information is
encoded by using the projection onto eigenspaces as edge features. In the simple spectrum case, this
method can be formulated as follows:

For a given eigendecomposition (V, λ⃗) ∈ VK
simple, we we initialize a coloring for each ‘node’ i ∈ [n]

by
h
(0)
i = Vi ⊙ Vi, (1)

where Vi is the K dimensional vector [V (1)
i , . . . , V

(k)
i] obtained by sampling all eigenvectors at the

i-th node, and ⊙ denotes elementwise multiplication. Importantly, this initialization is sign-invariant:
while the global sign of each eigenvector is ambiguous, the product of two elements of the same
eigenvector is not.

We next iteratively refine the node features via the update rule:

h
(t+1)
i = UPDATE(t)

(
h
(t)
i , λ⃗,

{
(h

(t)
j , Vi ⊙ Vj) | j = 1, . . . , n

})
(2)

Here and throughout {·} denote multisets (multiplicities are allowed) and the multiset notation implies
that UPDATE(t) is required to be invariant to the order of the elements in the multiset.

Finally, we apply a global pooling operation to obtain a final permutation invariant representation

hglobal = READOUT({h(T)
i | i = 1, . . . , n}) (3)

Once UPDATE(t) and READOUT functions are determined, this procedure determines a function
f(V, λ⃗) = hglobal which is sign-invariant as in Definition 1. The collection of all such functions
obtained by all possible choices of UPDATE(t) and READOUT functions is denoted by FEPNN.

3.3 Equivariant EPNN

In [12], the authors suggest methods based on higher order WL tests to boost the expressive power of
spectral message passing neural networks. The complexity of these methods is considerably higher

4

than EPNN. In contrast, we will now suggest a method for increasing the expressive power of EPNN
without significantly changing model complexity.

Our suggestions are based on constructions from neural networks for geometric point clouds. These
neural networks operate on point clouds X ∈ Rn×d (where in many applications d = 3) and each of
the n points in Rd represents a geometric coordinate. Models for such data are required to be invariant
(or equivariant) to both permutations in Sn and rotations in O(d). This equivariant structure is similar
to, but not identical to, the situation we have for graph eigecomposition: under the simple spectrum
assumption, the symmetry transformations we are interested in is a single global permutation, and
K sign changes, which are rotations in O(1)K . In the more general setting, we will have a single
permutation and multiple rotations, whose dimension is determined by the multiplicity of each
eigenvalue.

Via this analogy, we can look at spectral models for graphs from the perspective of point cloud
networks. From this perspective, EPNN resembles geometric invariant networks, such as Schnet [42],
which are based on simple invariant features. In contrast, [19] and [44] showed that, at least for point
clouds, expressivity can be increased by recursively updating a rotation equivariant (in our scenario,
sign equivariant) feature v(t)i in parallel with the invariant feature h(t)i . Inspired by these observations,
we suggest the following sign equivariant feature refinement procedure:

We use the same initialization h(0)i as in Equation 1, and we initialize the equivariant feature v(0)i to
v
(0)
i = Vi. We then iteratively update these two features via

h
(t+1)
i = UPDATE(t,1)

(
h
(t)
i , λ⃗,

{
(h

(t)
j , v

(t)
i ⊙ v

(t)
j) | j = 1, . . . , n

})
v
(t+1)
i = v

(t)
i +

n∑
j=1

v
(t)
j ⊙UPDATE(t,2)(h

(t)
i , h

(t)
j , v

(t)
i ⊙ v

(t)
j)

where UPDATE(t,1) is a multiset function, and UPDATE(t,2) maps its input to RK so that the
elementwise product in the equation above is well defined.

After running this procedure for T iterations, we obtain an invariant global feature hglobal by
aggregating the invariant node features h(T)

i using a READOUT function, as in (3). This gives us a
sign invariant function f(V, λ⃗) = hglobal. We name the class of all functions obtained by running
this procedure with all different choices of update and readout functions equiEPNN.

We note that we can obtain EPNN models by setting UPDATE(t,2) to be the constant mapping to
the zero vector. Accordingly, Fequi is at least as expressive as EPNN. In Section 4.4 we will show
that it is strictly more expressive.

4 On the incompleteness of spectral graph neural networks

In this section, we analyze the expressive power of EPNN and equiEPNN on graphs with a simple
spectrum. We first provide a counterexample to prove its incompleteness of EPNN on simple spectrum
graphs. We then show that an equiEPNN can separate the counterexample, thus proving it is strictly
more expressive than EPNN. Next we provide a subset of VK

simple on which EPNN is complete.
Finally, we discuss how our results imply the incompleteness of popular spectral GNNs even in the
simple spectrum case.

4.1 EPNN is incomplete

We first introduce a pair of non-isomorphic eigendecompositions, (V, λ⃗) and (U, λ⃗) in VK
simple, which

EPNN cannot distinguish, that is, it assigns them the same final feature after any number of refinement
steps. In this construction n = 12,K = 6, and we fix the same choice of distinct eigenvalues λ⃗ for
both examples. To define V,U , we denote

z0 =

(
1
1

)
, z1 =

(
−1
1

)
, z2 =

(
1
−1

)
, z3 =

(
−1
−1

)
, 02 =

(
0
0

)
,

5

and note that z0, . . . , z3 are the four elements of the abelian group {−1, 1}2. Using these, we define
U, V via

UT =

(
z0 z1 z2 z3 02 02 02 02 z0 z1 z2 z3
z0 z1 z2 z3 z0 z1 z2 z3 02 02 02 02
02 02 02 02 z0 z1 z3 z2 z0 z2 z1 z3

)

V T =

(
z0 z1 z2 z3 02 02 02 02 z0 z1 z2 z3
z0 z1 z2 z3 z0 z1 z2 z3 02 02 02 02
02 02 02 02 z1 z0 z2 z3 z2 z0 z3 z1

)
We now show that U, V are not isomorphic and cannot be separated by EPNN:
Theorem 1. (Incompleteness of EPNN) The following statements hold:

1. U and V are not isomorphic under the group action of S12 × {−1, 1}6.

2. EPNN cannot separate U and V after any number of iterations.

3. U and V have no non-trivial automorphisms.

Therefore, EPNN is incomplete on simple spectrum graphs.

Proof Idea. To show U, V are not isomorphic, we note that for any pair of permutation-sign matrices
taking U to V , the first four columns of UT must be mapped the first four columns of V T . The
same is true for columns 5 − 8 and 9 − 12. Considering the first four columns, we see that any
sign matrix mapping them from U to V will be of the form diag(z, z, z′) for z, z′ ∈ {−1,+1}2.
The same argument for columns 5− 8 and 9− 12 gives sign patterns of the form diag(z′, z, z1 · z)
and diag(z, z′, z2 · z), respectively. But there is no sign pattern satisfying these three constraints
simultaneously.

We now explain the lack of separation of EPNN. We refer to the multiset of the multiplications of a
column i with all the other columns, as the column i’s purview. In the initial step, the purview of
each column in the first 4-column block in V T and UT , is identical, as the first 4 columns exhibit a
group structure with the multiplication operation. Thus, the hidden states of the first 4 indices of UT

and V T will be identical. By similar arguments, this holds for the remaining two blocks. Thus, after
a refinement step, the nodes in each block cannot distinguish among those from other blocks, both
in UT and V T . Therefore, additional refinement procedures maintain identical representations for
members of each index ‘block’ and corresponding blocks in UT and V T . This implies EPNN cannot
separate U and V .

A full proof of the theorem is provided in the Appendix.

Remark: In many cases we are interested in eigenvalue decompositions of symmetric matrices, in
which case the columns of V,U (the rows of V T , UT) should be orthonormal. While our V,U do not
satisfy this condition, in the Appendix we show how they can be enlarged to yield a counterexample
that has the same properties, and does have orthonormal columns.

4.2 When is EPNN complete?

The counterexample proves that there is an inherent limit to the expressive power of contemporary
spectral invariant networks. We note that in this example U, V had a significant number of zero
entries. We now show that when U, V each have at least one row without any zeros, EPNN will be
complete (in particular, this condition always holds when the matrices U, V have less than n zero
entries):
Theorem 2 (EPNN Can Distinguish Dense Graphs with Distinct Eigenvalues). Let D ⊆ VK

simple

denote the set of (V, λ⃗) where V has a row without zero entries. Then EPNN is complete on D .

Proof. By assumption, an index i exists such that the i-th row of V has no zeros. The hidden state
h
(1)
i after a signal iteration of EPNN (see (2)) can encode the eigenvalues λ⃗, the squared values of

each coordinate of Vi, and the multiset of pairwise products Vi ⊙ Vj , as

6

h
(1)
i = (Vi ⊙ Vi,

{
Vi ⊙ Vj | j = 1, . . . , n

}
) (4)

To recover V from h
(1)
i up to symmetries, we can fix the sign ambiguity by choosing all coordinates

of Vi to be positive. We can then recover the remaining Vj from the multiset in Equation 4.

This uncovers the inner workings of EPNN in processing simple spectrum graphs. Essentially, each
entry can be normalized to represent a group element inO(1), which acts as a local frame of reference,
see [9] for more background, allowing us to reconstruct the eigenvectors up to sign symmetries.

4.3 Unique node identification via EPNN

A well-known mechanism for circumventing the limited expressive power of GNNs is by injecting
unique node identifiers (IDs), which break the symmetries that hinder GNNs’ separation ability
[28, 13]. Popular approaches include random node initialization [5] and combinatorial methods
[7], yet they are either limited by their discontinuity or break permutation equivariance. A natural
question is whether the node features from EPNN are unique after finitely many iterations? If
so, we have attained node IDs that do not break equivariance and change continuously with the
eigendecomposition, alleviating the deficiencies of widely-used methods. We answer this question in
the affirmative, provided the eigenvectors adhere to a sparsity pattern.

Theorem 3. (EPNN for Unique Node Identifiers) Let D ⊆ VK
simple denote the set of (V, λ⃗) where V

has no automorphisms, and has at most one zero per eigenvector. Then, one iteration of EPNN with
injective UPDATE and READOUT functions assigns a unique identifier to each hidden node feature.

Proof. By contradiction, assume that there exist distinct indices i, j such that h(1)i = h
(1)
j . By the

definition of EPNN, we have that

{Vi ⊙ Vk}nk=1 = {Vj ⊙ Vk}nk=1 and Vi ⊙ Vi = Vj ⊙ Vj . (5)

We deduce for the second equality that |V (q)
i | = |V (q)

j | for all coordinates q = 1, . . . ,K. If for some

q we had V (q)
i = 0, then also V (q)

j = 0, in contradiction to the assumption that the q-th eigenvector
has at most one zero entry. Thus all entries of Vi and Vj are non-zero.

Next, we deduce from Equation 5 and the fact that |V (q)
i | = |V (q)

j | > 0 for all q, that

{(s(q)i V
(q)
k)Kq=1}nk=1 = {(s(q)j V

(q)
k)Kq=1}nk=1

where s(q)i ∈ {±1} and is defined as V
(q)
i

|V (q)
i |

and s(q)j is defined analogously. This means that there

exists a permutation σ which swaps i with j, such that s(q)i V
(q)
k = s

(q)
j V

(q)
σ(k) for all k = 1, . . . , n and

q = 1, . . . ,K. Equivalently,

PV S1 = V S2 =⇒ PV S1S2 = V (6)

where S1 and S2 are diagonal matrices with s(q)i and s(q)j , respectively, on the diagonals, and P is the
permutation matrix corresponding to σ. Since P swaps i with j, this is a non-trivial automorphism,
in contradiction to the assumption. Thus h(1)i ̸= h

(1)
j , as required.

4.4 equiEPNN is strictly more expressive than EPNN

We show that equiEPNN is strictly more powerful than EPNN, as it separates the pair U and V from
Subsection 4.1, which EPNN cannot separate:
Corollary 1. equiEPNN (see Section 3.3) can separate U and V after 2 iterations. Thus equiEPNN
is strictly stronger than EPNN.

Proof Idea. We show that after a single iteration, the equivariant update step can yield new matrices
U (t), V (t), t = 1 which have no zeros. From Theorem 2, we know that a single iteration of EPNN,
and hence also equiEPNN, is complete for such U (t), V (t), and thus two iterations of equiEPNN are
sufficient for separation.

7

While equiEPNN is stronger than EPNN, the following result (proven in the appendix) shows that
equiEPNN is also incomplete over simple spectrum graphs:

Theorem 4. (Incompleteness of Equivariant EPNN) There exist X,Y ∈ R16×6 such that the
following statements hold:

1. X and Y are not isomorphic under the group action of S16 × {−1, 1}6.

2. Equivariant EPNN cannot separate X and Y after any number of iterations.

Therefore, Equivariant EPNN is incomplete on simple spectrum graphs.

In the appendix we also explain how this counterexample can be extended so thatX,Y are orthogonal
matrices which thus can form a full eigendecomposition of a real symmetric matrix.

4.5 Incompleteness of spectral GNNs

Theorem 1 proves that EPNN is incomplete on graphs with a simple spectrum. This spectral
isomorphism test upper bounds the expressive power of many popular distance-based GNNs, which
incorporate graph distances as edge features, such as Random Walk, PageRank, shortest path, or
resistance distances [50, 25, 1, 45, 51]. Therefore, an immediate corollary of Theorem 1 follows:

Corollary 2. Graphormer-GD [50], PRD-WL [25], DiffWire [1], and Random-Walk based GNNs[45,
51] are incomplete over graphs with a simple spectrum.

In addition to this result, in the appendix we prove that the model proposed by Zhou et al. [53] is not
universal on simple spectrum graphs.

Proposition 3. Vanilla OGE-Aug [53] is incomplete over graphs with a simple spectrum.

5 Experiments

Our goal in the experiments section is twofold: (a) statistically evaluate the validity of our bounded
eigenmultiplicity approach for measuring expressivity and (b) empirically exemplify the utility of
equiEPNN 1. To meet the first goal, we statistically analyze the eigenvalue multiplicity in real-
world datasets, and the number of non-zero entries in the eigenvectors, to compare these with our
theoretical conditions for EPNN completeness. We find that while the sparsity conditions for EPNN
completeness are satisfied on some real-world datasets (MNIST-Superpixel), they are not satisfied
on datasets with more intricate symmetries (ZINC). For the second goal, we evaluate the utility
of the equivariant features derived from equiEPNN on the task of eigenvector canonicalization
[29]. Finally, we benchmark equiEPNN against leading spectral methods on the popular ZINC and
MNIST-Superpixel datasets.

5.1 Dataset statistics

We surveyed popular graph datasets and documented their graph spectral properties. The results
are shown in Table 1. We find that the MNIST Superpixel [34] dataset is almost homogeneously
composed of graphs with a simple spectrum, and we find that (96.9%) of the graphs in this dataset
have a full row without zeros, implying that EPNN is complete on almost all graphs.

Other datasets, such as MUTAG, ENZYMES, PROTEINS and ZINC [18, 36], contain a substantial
amount of graphs with eigenvalue multiplicity 2 and 3. Despite this, the number of eigenspaces of
dimensions 2 and 3 is very low, averaging at around 1 per graph. On datasets with highly symmetric
graphs, such as ENZYMES and PROTEINS, the graphs do not meet the sparsity condition of Theorem
2, thus EPNN will not necessarily faithfully learn the graph structure. This exemplifies the need for
more expressive models that are complete on graphs with higher maximal eigenvalue multiplicity and
sparse eigenvectors.

1Code is available at https://github.com/IntelliFinder/equiEPNN

8

https://github.com/IntelliFinder/equiEPNN

Table 1: Graph Statistics Analysis Across Different Datasets (Eigenvalue Tolerance: 10−4)

Dataset Name MUTAG ENZYMES PROTEINS MNIST ZINC
Dataset Overview
Number of Graphs 188 600 1,113 60,000 10,000

Eigenvalue Characteristics
Graphs with Distinct Eigenvalues 41.5% (78) 34.8% (209) 22.1% (246) 99.9% (59,950) 40.7% (4,072)
Graphs with Multiplicity 2 Eigenvalues 58.5% (110) 65.2% (391) 77.9% (867) – 59.3% (5,928)
Graphs with Multiplicity 3 Eigenvalues 19.1% (36) 46.2% (277) 57.9% (644) – 26.2% (2,617)
Avg. Number of Multiplicity 2 Eigenvalues 0.74 1.01 1.24 – 1.282
Avg. Number of Multiplicity 3 Eigenvalues 0.26 0.58 0.71 – 1.105

Eigenvector Properties
Average Ratio of Zeros 1.67 4.28 6.39 0.31 2.52
Average Number of Zeros 31.13 172.93 817.20 23.16 61.04
Graphs with a Full Row 75.0% (141) 35.8% (215) 37.1% (413) 96.9% (58,077) 64.5% (6,447)
Graphs with ≤1 Zero per Eigenvector 0.0% (0) 6.3% (38) 5.0% (56) 20.2% (12,085) 4.3% (430)
Graphs with Total Zeros < Vertices 29.8% (56) 16.3% (98) 14.3% (159) 89.9% (53,873) 13.0% (1,295)
Graphs Meeting Any Condition 75.0% (141) 35.8% (215) 37.1% (413) 96.9% (58,077) 64.5% (6,447)

5.2 Eigenvector canonicalization

Positional encoding is a cornerstone of graph learning using Transformer architectures, yet they
suffer from the sign ambiguity problem [8]. It can be resolved by eigenvector canonicalization,
which involves choosing a unique representation of each eigenvector. Yet, an inherent limitation of
current canonicalization methods is that they are unable to canonicalize eigenvectors with nontrivial
self-symmetries, often called uncanonicalizable eigenvectors [30, 29].

Table 2: Uncanonicalizable Graph Eigenvectors in ZINC (Subset) [18] as percentage of total eigen-
vectors of eigen-space dimension 1.

Property Percentage (%)
Sum to 0 11.15 %
Uncanonicalizable 10.93 %
equiEPNN output sum to 0 0.0 %
Uncanonicalizable after equiEPNN 0.0 %

To overcome this limitation, we devise a method to choose a canonical representation of the original
eigenvectors via the equivariant output of equiEPNN. The only requirement is that each vector in the
equivariant output does not sum to 0.

We test our hypothesis on a popular benchmark ZINC [18], and find that all the vectors in the
equivariant output are canonicalizable and sum to zero, in contrast to the vectors from the eigende-
composition, where 10% of them are uncanonicalizable. Furthermore, we devise a way to choose a
canonical representation of the original eigenvectors via the equivariant output and describe this in
the Appendix. The results are shown in Table 2.

Table 3: Results on ZINC and MNIST-Superpixel datasets. The values are the MSE for ZINC
(Subset) and the accuracy for MNIST-Superpixel. Edge features are not used even if they are available
in the datasets. For ZINC, all models use node labels. For MNIST-Superpixel, the model uses
superpixel-intensive values and node degree as node features. Models have a budget of 30K free
parameters for ZINC and 35K for MNIST.

Category Model ZINC (MAE ↓) MNIST-Superpixel (Acc.↑)
NN MLP 0.5869± 0.025 25.10%± 0.12
MPNN GCN 0.3322± 0.010 52.80%± 0.31

GAT 0.3977± 0.007 82.73%± 0.21
GIN 0.3044± 0.010 75.23%± 0.41

3-WL PPGN 0.1589± 0.007 90.04%± 0.54
Spectral ChebNet 0.3569± 0.012 92.08%± 0.22

GNNML1 0.3140± 0.015 84.21%± 1.75
equiEPNN (Ours) 0.2805± 0.019 90.32 % ± 0.7

9

5.3 Benchmarks: ZINC and MNIST

We evaluated equiEPNN on the image classification task MNIST-Superpixel [34], in which clustering
of images is performed according to regions with similar pixel values, an algorithm creates a graph
based on these regions, and each node is assigned a region-induced feature. We compared equiEPNN
to leading spectral methods, all with a comparable parameter budget of ≈ 35K (see Table 3). We
observe that it outperforms PPGN [32], which has cubic complexity, and GNNML1, which also
processes the eigendecomposition of the graph. ChebNet outperforms all other methods, perhaps due
to its handcrafted polynomial features.

We further evaluate equiEPNN via the standard regression task on the ZINC dataset of molecular
graphs (we also tested eigenvector canonicalization on this same dataset). ZINC (Subset) has 12000
graphs with an average of 23.16 nodes per graph. We compare ourselves to leading methods with the
standard ≈ 500K parameter budget and find that, out of the spectral methods, our method attains the
best results, see Table 4.

Table 4: Results on ZINC.

method test (MAE ↓)
GIN 0.526±0.051
GraphSage 0.398±0.002
GCN 0.384±0.007
GCN 0.367±0.011
GatedGCN-PE 0.214±0.006
MPNN (sum) 0.145±0.007
PNA 0.142±0.010
GT 0.226±0.014
SAN 0.139±0.006
GraphormerSLIM 0.122±0.006
MPNN .138 ± .006
EPNN .103 ± .006
equiEPNN (Ours) 0.99 ± 0.001
Subgraph GNN .110 ± .007
Local 2-GNN .069 ± .001

6 Future Work

A key future goal is to devise spectral GNNs that achieve completeness on graphs with simple spectra,
and higher eigenvalue multiplicities. One interesting direction is to use higher-order point cloud
networks to process the eigenvectors [53]. We have shown that treating each eigenspace as a separate
entity does not lead to universality (see Subsection 4.5). Thus, these high-order networks should
process the eigenvectors as a single entity, but remain invariant only to the sign and basis symmetries.

Acknowledgements N.D. and S.H. were supported by ISF grant 272/23.

References
[1] Adrián Arnaiz-Rodríguez, Amine Begga, David Gutiérrez-Gómez, Rubén Bernardo-Gavito,

Pierre Borgnat, and Alexandre Gramfort. Diffwire: Inductive graph rewiring via the Lovász
bound. In Advances in Neural Information Processing Systems, volume 35, 2022.

[2] László Babai, D. Yu. Grigoryev, and David M. Mount. Isomorphism of graphs with bounded
eigenvalue multiplicity. In Proceedings of the Fourteenth Annual ACM Symposium on Theory
of Computing, STOC ’82, 1982. ISBN 0897910702.

[3] Guy Bar-Shalom, Yam Eitan, Fabrizio Frasca, and Haggai Maron. A flexible, equivariant
framework for subgraph GNNs via graph products and graph coarsening. In Advances in Neural
Information Processing Systems, volume 37, 2024.

10

[4] Maya Bechler-Speicher, Ido Amos, Ran Gilad-Bachrach, and Amir Globerson. Graph neural
networks use graphs when they shouldn’t. In Proceedings of the 41st International Conference
on Machine Learning, volume 235 of Proceedings of Machine Learning Research, 2024.

[5] Maya Bechler-Speicher, Moshe Eliasof, Carola-Bibiane Schönlieb, Ran Gilad-Bachrach, and
Amir Globerson. Towards invariance to node identifiers in graph neural networks, 2025.

[6] Jan Böker, Ron Levie, Ningyuan Huang, Soledad Villar, and Christopher Morris. Fine-grained
expressivity of graph neural networks. In Advances in Neural Information Processing Systems,
volume 36, 2023.

[7] Zehao Dong, Muhan Zhang, Philip R. O. Payne, Michael A. Province, Carlos Cruchaga,
Tianyu Zhao, Fuhai Li, and Yixin Chen. Rethinking the power of graph canonization in graph
representation learning with stability. In The Twelfth International Conference on Learning
Representations, 2024.

[8] Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio,
and Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning
Research, 24(43), 2023.

[9] Nadav Dym, Hannah Lawrence, and Jonathan W. Siegel. Equivariant frames and the impossi-
bility of continuous canonicalization. In Proceedings of the 41st International Conference on
Machine Learning, volume 235 of Proceedings of Machine Learning Research, 2024.

[10] Yam Eitan, Moshe Eliasof, Yoav Gelberg, Fabrizio Frasca, Guy Bar-Shalom, and Haggai Maron.
On the expressive power of GNN derivatives, 2025.

[11] Or Feldman, Amit Boyarski, Shai Feldman, Dani Kogan, Avi Mendelson, and Chaim Baskin.
Weisfeiler and leman go infinite: Spectral and combinatorial pre-colorings. In Proceedings
of the 39th International Conference on Machine Learning, volume 162 of Proceedings of
Machine Learning Research, 2022.

[12] Jingchu Gai, Yiheng Du, Bohang Zhang, Haggai Maron, and Liwei Wang. Homomorphism
expressivity of spectral invariant graph neural networks. In The Thirteenth International
Conference on Learning Representations, 2025.

[13] Vikas K. Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational
limits of graph neural networks. In Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, 2020.

[14] Snir Hordan, Tal Amir, and Nadav Dym. Weisfeiler leman for Euclidean equivariant machine
learning. In Proceedings of the 41st International Conference on Machine Learning, volume
235 of Proceedings of Machine Learning Research, 2024.

[15] Snir Hordan, Tal Amir, Steven J. Gortler, and Nadav Dym. Complete neural networks for
complete euclidean graphs. In Proceedings of the Thirty-Eighth AAAI Conference on Artificial
Intelligence, volume 38, 2024.

[16] Ningyuan Huang and Soledad Villar. A short tutorial on the weisfeiler-lehman test and its
variants. In IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2021.

[17] Yinan Huang, William Lu, Joshua Robinson, Yu Yang, Muhan Zhang, Stefanie Jegelka, and Pan
Li. On the stability of expressive positional encodings for graphs. In The Twelfth International
Conference on Learning Representations, 2024.

[18] John J. Irwin, Teague Sterling, Michael M. Mysinger, Erin S. Bolstad, and Ryan G. Coleman.
ZINC: A free tool to discover chemistry for biology. Journal of Chemical Information and
Modeling, 52(7), 2012.

[19] Chaitanya K. Joshi, Cristian Bodnar, Simon V. Mathis, Taco Cohen, and Pietro Liò. On the
expressive power of geometric graph neural networks. In Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
2023.

11

[20] Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and Pruden-
cio Tossou. Rethinking graph transformers with spectral attention. In Advances in Neural
Information Processing Systems, volume 34, 2021.

[21] Hannah Lawrence, Kristian Georgiev, Andrew Dienes, and Bobak T. Kiani. Implicit bias of
linear equivariant networks. In International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, 2022.

[22] Hannah Lawrence, Vasco Portilheiro, Yan Zhang, and Sékou-Oumar Kaba. Improving Equivari-
ant Networks with Probabilistic Symmetry Breaking. In International Conference on Learning
Representations (ICLR), 2025.

[23] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11), 1998.

[24] Ron Levie, Federico Monti, Xavier Bresson, and Michael M. Bronstein. Cayleynets: Graph
convolutional neural networks with complex rational spectral filters. IEEE Transactions on
Signal Processing, 67(1), 2019.

[25] Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design
provably more powerful neural networks for graph representation learning. In Advances in
Neural Information Processing Systems, volume 33, 2020.

[26] Derek Lim, Beatrice Bevilacqua, Fabrizio Frasca, Balasubramaniam Srinivasan, Chen Cai,
Gopinath Balamurugan, Michael M. Bronstein, and Haggai Maron. Equivariant subgraph
aggregation networks. In The Eleventh International Conference on Learning Representations,
2023.

[27] Derek Lim, Joshua David Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and
Stefanie Jegelka. Sign and basis invariant networks for spectral graph representation learning.
In The Eleventh International Conference on Learning Representations, 2023.

[28] Andreas Loukas. What graph neural networks cannot learn: depth vs width. In International
Conference on Learning Representations, 2020.

[29] George Ma, Yifei Wang, Derek Lim, Stefanie Jegelka, and Yisen Wang. A Canonicalization Per-
spective on Invariant and Equivariant Learning. In Advances in Neural Information Processing
Systems, volume 36, 2023.

[30] George Ma, Yifei Wang, and Yisen Wang. Laplacian canonization: A minimalist approach to
sign and basis invariant spectral embedding. In Advances in Neural Information Processing
Systems, volume 36, 2023.

[31] Liheng Ma, Chen Lin, Derek Lim, Adriana Romero, Youssef Mroueh, Razvan Pascanu, Misha
Laskin, and Julien Mairal. Graph inductive biases in transformers without message passing.
In Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, 2023.

[32] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Provably powerful graph
networks. In Advances in Neural Information Processing Systems, volume 32, 2019.

[33] Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. GraphiT: Encoding graph
structure in transformers. In Advances in Neural Information Processing Systems, volume 34,
2021.

[34] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda, and
Michael M. Bronstein. Geometric deep learning on graphs and manifolds using mixture
model CNNs. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[35] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence,
volume 33, 2019.

12

[36] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. TUDataset: A collection of benchmark datasets for learning with graphs. In ICML
2020 Workshop on Graph Representation Learning and Beyond, GRL+, 2020.

[37] Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M. Kriege, Martin
Grohe, Matthias Fey, and Karsten Borgwardt. Weisfeiler and leman go machine learning: The
story so far. Journal of Machine Learning Research, 24, 2023.

[38] Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. In Advances in
Neural Information Processing Systems, volume 35, 2022.

[39] Levi Rauchwerger, Stefanie Jegelka, and Ron Levie. Generalization, expressivity, and univer-
sality of graph neural networks on attributed graphs. In International Conference on Learning
Representations, 2025.

[40] Víctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural
networks. In Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, 2021.

[41] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks and Learning Systems,
20(1), 2009.

[42] Kristof T. Schütt, Pieter-Jan Kindermans, Huziel E. Sauceda Felix, Stefan Chmiela, Alexandre
Tkatchenko, and Klaus-Robert Müller. SchNet: A continuous-filter convolutional neural
network for modeling quantum interactions. In Advances in Neural Information Processing
Systems, volume 30, 2017.

[43] Daniel A. Spielman. Spectral graph theory. In Combinatorial Scientific Computing. American
Mathematical Soc., 2012.

[44] Yonatan Sverdlov and Nadav Dym. On the expressive power of sparse geometric MPNNs. In
The Thirteenth International Conference on Learning Representations, 2025.

[45] Ameya Velingker, Alankar Sarkar, Amil Kazi, Shane Barratt, Marzyeh Ghassemi, and David
Sontag. Affinity-aware graph networks. In Advances in Neural Information Processing Systems,
volume 36, 2023.

[46] Soledad Villar, David W. Hogg, Kate Storey-Fisher, Weichi Yao, and Ben Blum-Smith. Scalars
are universal: equivariant machine learning, structured like classical physics. In Advances in
Neural Information Processing Systems, volume 34, 2021.

[47] Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural networks. In Inter-
national Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, 2022.

[48] Yanbo Wang and Muhan Zhang. An empirical study of realized GNN expressiveness. In Ruslan
Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett,
and Felix Berkenkamp, editors, Proceedings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine Learning Research, pages 52134–52155.
PMLR, 2024.

[49] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

[50] Bohang Zhang, Shengjie Luo, Liwei Wang, and Muhan Zhang. Rethinking the expressive power
of GNNs via graph biconnectivity. In The Eleventh International Conference on Learning
Representations, 2023.

[51] Bohang Zhang, Lingxiao Zhao, Chen Cai, Liwei Wang, and Muhan Zhang. A complete expres-
siveness hierarchy for subgraph GNNs via subgraph weisfeiler-lehman tests. In Proceedings
of the 40th International Conference on Machine Learning, volume 202 of Proceedings of
Machine Learning Research, 2023.

13

[52] Bohang Zhang, Lingxiao Zhao, and Haggai Maron. On the expressive power of spectral
invariant graph neural networks. In Proceedings of the 41st International Conference on
Machine Learning, volume 235 of Proceedings of Machine Learning Research, 2024.

[53] Junru Zhou, Cai Zhou, Xiyuan Wang, Pan Li, and Muhan Zhang. Towards stable, globally
expressive graph representations with laplacian eigenvectors, 2024.

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our claims are properly stated in the abstract within their scope. We diligently
wrote the assumptions. The experiments are aligned with the claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We claim that we have not fully determined when completeness on simple
spectrum graphs is achieved.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

15

Answer: [Yes]
Justification: All assumptions are stated, we provide proof ideas and full proofs are provided
in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All code is provided in the supplementary mateial and configurations and
instructions as well.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

16

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All code is reproducible and provided openly with instructions.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All configurations are described in supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: When statistical significance is clear, we mention; otherwise we claim it is
only comparable.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All computer resources needed are mentioned in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We fully abide by the NeurIPS Code of Ethics and preserve anonymity.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This is theoretical research that does not affect society.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There is no risk, all datasets have no risk and are widely used.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the results by other researchers are cited, stated and given credit fully.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All code is reproducible with instructions.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects are involved in this research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

20

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No usage of LLMs in core method.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

Appendix

A Proofs 22

A.1 Proof of Incompleteness of EPNN . 22

A.2 Extension to orthonormal counterexamples . 24

A.3 Proofs for implications for real-world GNNs . 24

A.4 Proof for equiEPNN strictly more expressive . 26

A.5 Proof of Incompleteness of Equivariant EPNN . 26

B Experiments 33

B.1 Dataset statistics . 33

B.2 MNIST Superpixel . 33

B.3 Realizable Expressivity . 35

B.4 Eigenvector Canonicalization . 35

C Further Related Work 37

C.1 Expressive Power and the Weisfeiler-Lehman Hierarchy 37

C.2 Higher-Order and Subgraph GNNs . 37

C.3 Spectral GNNs and Universality . 37

C.4 Equivariant Design and Generalization . 37

C.5 Unified Theories and GNN Limitations . 37

A Proofs

A.1 Proof of Incompleteness of EPNN

Theorem 1. (Incompleteness of EPNN) The following statements hold:

1. U and V are not isomorphic under the group action of S12 × {−1, 1}6.

2. EPNN cannot separate U and V after any number of iterations.

3. U and V have no non-trivial automorphisms.

Therefore, EPNN is incomplete on simple spectrum graphs.

Proof. For convenience, we recall the definitions of the point clouds U and V :

We denoted the four elements of the abelian group {−1, 1}2, and the zero vector in R2, by

z0 =

(
1
1

)
, z1 =

(
−1
1

)
, z2 =

(
1
−1

)
, z3 =

(
−1
−1

)
, 02 =

(
0
0

)
.

Using these, we define U, V via

UT =

(
z0 z1 z2 z3 02 02 02 02 z0 z1 z2 z3
z0 z1 z2 z3 z0 z1 z2 z3 02 02 02 02
02 02 02 02 z0 z1 z3 z2 z0 z2 z1 z3

)

V T =

(
z0 z1 z2 z3 02 02 02 02 z0 z1 z2 z3
z0 z1 z2 z3 z0 z1 z2 z3 02 02 02 02
02 02 02 02 z1 z0 z2 z3 z2 z0 z3 z1

)

22

We first prove: 2. the inseparation of U and V by EPNN.

Observe the purview of node i of U after the first refinement step of EPNN:

h
(1)
i (U) = (Ui ⊙ Ui, {Ui ⊙ Uj | j ∈ [10]}) (7)

We will show that point clouds can be partitioned into ‘blocks’ such that each point in the block
obtains the same hidden state. This block structure is recognized by viewing each point as a group
element and each block as a multiplicative group. We will then show that this multiplicative group
structure allows us to prove the inseparability of EPNN.

Concretely, our proof proceeds as follows:

1. The column entries of UT and V T can be partitioned into 3 blocks : B1 ≜ {1, 2, 3, 4}, B2 ≜

{5, 6, 7, 8}, and B3 ≜ {9, 10, 11, 12}, such h(1)i (U) and h(1)j (U) are identical for every
i, j ∈ Bk, k = 1, 2, 3.

2. It holds that h(1)i (U) = h
(1)
i (V) for every i = 1, 2, . . . , 12.

3. For any t ∈ N, h(t)i (U) = h
(t)
i (V) for every i = 1, 2, . . . , 12.

1. We first focus on B1 and then extend the argument to B2 and B3.

Since the elements Uj for j = 1, 2, 3, 4 admit a multiplicative group structure, then for every
i = 1, 2, 3, 4, the respective entries Ui ⊙ Uj for j ∈ [4] are identical (closure of groups.)

For j = 5, 6, 7, 8 and i = 1, 2, 3, 4, the entries of the products Vi ⊙ Vj , are are zeros in two row
entries and the non-zero entries in the remaining row, each element of the group Z2

2
∼= {z0, z1, z2, z3}

appears exactly once in the non-zero entries of the products, as it holds that ziZ2
2 = Z2

2.

Analogously, we can extend this argument to j = 9, 10, 11, 12 and i = 1, 2, 3, 4.

This means that h(1)i (U) and h(1)j (U) are identical for every i, j ∈ B1.

Since, by definition of U and symmetry, each four-index quadruple B1 ≜ 1, 2, 3, 4, B2 ≜ 5, 6, 7, 8,
and B3 ≜ 9, 10, 11, 12 is a multiplicative group, the analysis for the hidden states of the indices in
B1 holds for B2 and B3. This concludes item 1.

2. Up to now, we proved for indices i, j ∈ Bk for k = 1, 2, 3, it holds that h(1)i = h
(1)
j . It remains to

be proven that these hidden states are equivalent in both point clouds to conclude step 2.

Since the point cloud V T is derived from UT by multiplying the columns in B2 by diag(z0, z0, z1)
and the columns in B3 by diag(z0, z0, z2), the purview (see Equation 7) of each index is identical in
both point clouds, since z2 · z2 = z1 · z1 = z0 which is the identity element, thus by definition of
EPNN, this modification that maps UT to V T doesn’t affect the pairwise multiplications in Equation
7.

3. To prove this step, we only need to show that the hidden states remain identical within each block,
since the fact that they are identical across the point clouds stems from the same justification of step
2.

In the second update step, the arguments of Step 1 remain identical. Still, now we have updated
hidden node information, but the hidden node information is identical across nodes belonging to the
same block. Therefore, the only information this refinement yields is the categorization of nodes into
blocks. Yet this information is already known in the initialized hidden states,{h(0)i i = 1, . . . , n},
since the zero entries of multiplication h

(0)
i = Vi ⊙ Vi determine the block that i belongs to.

Therefore, the hidden states don’t supply the network with any supplementary information other
than the initialization h(0)i = Vi ⊙ Vi. Thus, after a second refinement step, the hidden states remain
identical within each block, as they have after the first refinement step. Moreover, the corresponding
hidden states of the two point clouds also remain equivalent due to the arguments in Step 2, which
remain analogous, as the hidden states after a refinement only assign each node its respective block

23

membership, which is exactly the information given in the first update step. This argument can then
be applied recursively to any number of update steps.

In conclusion, we have shown that for any t ∈ N, the hidden states of both point clouds are identical
(in corresponding indices), therefore after a permutation invariant readout, we obtain the same output.

We now prove 3. U and V have no nontrivial automorphisms. To show U, V are not isomorphic, we
note that for any pair of permutation-sign matrices taking U to V , the first four columns of UT must
be mapped the first four columns of V T . The same is true for columns 5− 8 and 9− 12. Considering
the first four columns, we see that any sign matrix mapping them from U to V will be of the form
diag(z, z, z′) for z, z′ ∈ {−1,+1}2. The same argument for columns 5− 8 and 9− 12 gives sign
patterns of the form diag(z′, z, z1 · z) and diag(z, z′, z2 · z), respectively. But there is no sign pattern
satisfying these three constraints simultaneously.

The automorphism group of this extended eigendecomposition is contained within that of U and U ,
respectively, and thus is also only the trivial group.

The proof of 1. which states that U and V are not isomorphic, is analogous to the proof of 3, and
yields that the only sign pattern taking each point cloud to itself is (z0, z0, z0), which implies each
point cloud has only a trivial automorphism..

A.2 Extension to orthonormal counterexamples

The rows of the above point clouds U, V are not orthonormal. Thus they are not eigenvectors
of an eigendecomposition of a symmetric matrix. We fix this misalignment via the following
‘orthogonalization’ matrices:

Taking Ũ to be a concantenation of the previous U and Û defined by

ÛT =

(
2z0 2z1 2z2 2z3 02 02 02 02 −2z0 −2z1 −2z2 −2z3
− z0

2 − z1
2 − z2

2 − z3
2 2z0 2z1 2z2 2z3 02 02 02 02

02 02 02 02 − z0
2 − z1

2 − z3
2 − z2

2
z0
2

z2
2

z1
2

z3
2

)

Then take Ṽ to be a concatenation of the previous V and V̂ defined by

V̂ T =

(
2z0 2z1 2z2 2z3 02 02 02 02 −2z0 −2z1 −2z2 −2z3
− z0

2 − z1
2 − z2

2 − z3
2 2z0 2z1 2z2 2z3 02 02 02 02

02 02 02 02 − z1
2 − z0

2 − z2
2 − z3

2
z2
2

z0
2

z3
2

z1
2

)

The columns of Ũ and Ṽ are now orthogonal, and they can be made to have unit norm by normalizing
each column. As these extensions exhibit the same symmetries of U and V , respectively, analogous
arguments to the proof of inseparation of U and V by EPNN (Theorem 2) will apply to this new pair
Ũ , Ṽ . Therefore, EPNN cannot distinguish Ũ and Ṽ .

A.3 Proofs for implications for real-world GNNs

Proposition 3. Vanilla OGE-Aug [53] is incomplete over graphs with a simple spectrum.

Proof. The method proposed by Zhou et al. [53] consists of a permutation equivariant and orthogonal
invariant function. We will show that a counterexample by [29] also applies to this network.

Vanilla PGE-Aug relies on a permutation equivariant and orthogonal invariant set encoding to process
each eigenspace separate. Lets revisit their separately definitions and theorem:

Definition 4 (O(p)-invariant universal representation [53]). Let f :
⋃∞

n=0 Rn×p →
⋃∞

n=0 Rn. Given
an input V ∈ Rn×p, f outputs a vector f(V) ∈ Rn. The function f is said to be an O(p)-invariant
universal representation if given V, V ′ ∈ Rn×p and P ∈ Sn, the following two conditions are
equivalent:

(i) f(V) = Pf(V ′);

(ii) ∃Q ∈ O(p), such that V = PV ′Q.

24

Definition 5 (Universal set representation [53]). Let X be a non-empty set. A function f : 2X → R
is said to be a universal set representation if ∀X1, X2 ∈ 2X , f(X1) = f(X2) if and only if the two
sets X1 and X2 are equal.

Proposition 3.5 (Zhou et al. [53]) For each p = 1, 2, . . ., let fp be an O(p)-invariant universal
representation function. Further let g : 2R

3 → R be a universal set representation. Then the following
function

r(G,XG) = GNN
(
AG, concat

[
XG, g

(
{concat[µj1n, λj1n, fµj

(Vj)]}Kj=1

)])
(8)

is a universal representation. Here n = |V (G)|, ((λ1, µ1), . . . , (λK , µK)) is the spectrum of G, and
Vj ∈ Rn×µj are the µj mutually orthogonal normalized eigenvectors of LG corresponding to λj . We
denote 1n an all-1 vector of shape n× 1. GNN is a maximally expressive MPNN.

Then Zhou et al. [53] propose the following graph neural network:

Definition 3.6 (Vanilla OGE-Aug). Let fp be an O(p)-invariant universal representation, for each
p = 1, 2, . . ., and g : 2R

3 → R be a universal set representation. Define Z : G →
⋃∞

n=1 Rn as

Z(G) = g
({

concat
[
µj1|V (G)|, λj1|V (G)|, fµj

(Vj)
]}K

j=1

)
, (5)

in which the notations follow Proposition 3.5. For G ∈ G, Z(G) is called a vanilla orthogonal
group equivariant augmentation, or Vanilla OGE-Aug on G.

We will show that architectures of the form of Proposition 3.5 and specifically Vanilla OGE-Aug are
incomplete on simple spectrum graphs, contradicting the claim in Proposition 3.5 such a representation
is universal.

Consider the point clouds proposed by Ma et al. [29]:

U1 = [u11, u12] =

(
1 −1 1 −1
2 3 4 5

)⊤

, (9)

U2 = [u21, u22] =

(
−1 1 1 −1
2 3 4 5

)⊤

. (10)

Suppose the first column eigenvector of U1 and U2 corresponds to eigenvalue
λ1 = 1, the second column eigenvector of U1 and U2 corresponds to eigenvalue
λ2 = 2, and other eigenvectors not shown corresponds to eigenvalue 0 (so we
safely ignore them). Then the Laplacian matrices corresponding to U1 and U2 are:

L1 = λ1u11u
⊤
11 + λ2u12u

⊤
12 =

 9 11 17 19
11 19 23 31
17 23 33 39
19 31 39 51

 , (11)

L2 = λ1u21u
⊤
21 + λ2u22u

⊤
22 =

 9 11 15 21
11 19 25 29
15 25 33 39
21 29 39 51

 . (12)

We will now demonstrate the model in Proposition 3.5 will be unable to distinguish U1 and U@,
regardless of the choice of the GNN.

First, consider an arbitrary O(1)−invariant representation f : Rn → Rn. We will show that f(U1)
and f(U2) are identical.

By the permutation equivariance and O(1) invariance:

f(u11) = f(−u11) = f(P11u11) = P11f(u11) (13)

25

where P11 is any permutation that satisfies P11u11 = −u11. Therefore P11 can be chosen to be
σ1 ≜ (1 2) (3 4) or σ2 ≜ (1 4) (2 3) .

By Equation 13, and since equality is a transitive relation, it holds that f(u11)(i) = f(u11)(j) for
any i and j in the same orbit under the group < σ1, σ2 >, the group generated by σ1 and σ2. It is
easy to check any pair (i, j) ∈ {1, 2, 3, 4}2 can be transposed under a group element in the generated
group. Therefore, f(u11) is a constant function. Analogous arguments yield f(u21) is also constant.

Note that for P12 ≜ (1 2)(3 4), it holds that

f(u11) =︸︷︷︸
f(u11) is constant

Pf(u11) =︸︷︷︸
perm. equivariance

f(Pu11) = f(u21)

Therefore, f(u11) = f(u21). Moreover, the second eigenvectors, u12 and u22 of U1 and U2, respec-
tively, are identical therefore clearly f(u12) = f(u22).

This analysis naturally extends to a proper eigendecomposition (orthonormal eigenvectors of a graph
as proposed by Ma et al. [29] in the proof of their Corollary 3.5 [29].

Therefore, as any universal, invariant set representation is the same on both U1 and U2, the input to
the network will be identical per its definition, and thus for their corresponding graphs G1 and G2

and identical node features XG1 and XG2 , respectively it holds that

r(G1, XG1) = r(G2, XG2)

yet G1 and G2 are non-isomorphic, thus Vanilla OGE-Aug is incomplete.

A.4 Proof for equiEPNN strictly more expressive

Corollary 1. equiEPNN (see Section 3.3) can separate U and V after 2 iterations. Thus equiEPNN
is strictly stronger than EPNN.

Proof. We show that after a single iteration, the equivariant update step can yield new matrices
U (t), V (t), t = 1 which have no zeros. We can choose the update function UPDATE(1,2) such that
UPDATE(1,2)(v5 ⊙ v5, v1 ⊙ v1, v5 ⊙ v1) ≜ (1, 1, 0, 0, 0, 0, 0) and for all other values we define it
as 0⃗.

After a single iteration U (1) and V (1) will be

U (1)T =

(
z0 z1 z2 z3 z0 02 02 02 z0 z1 z2 z3
z0 z1 z2 z3 z0 z1 z2 z3 02 02 02 02
02 02 02 02 z0 z1 z3 z2 z0 z2 z1 z3

)

V (1)T =

(
z0 z1 z2 z3 z0 02 02 02 z0 z1 z2 z3
z0 z1 z2 z3 z0 z1 z2 z3 02 02 02 02
02 02 02 02 z1 z0 z2 z3 z2 z0 z3 z1

)

Since there exists a column (the fifth column) such that all its entries are non-zero in both U (1)T and
V (1)T , from Theorem 2, we know that a single iteration of EPNN, and hence also of equiEPNN, can
separate U (1)T , V (1)T . In conclusion, two iterations of equiEPNN are sufficient for separation.

A.5 Proof of Incompleteness of Equivariant EPNN

The purpose of this section is to show that equivariant EPNN is also not complete on simple
spectrum graphs. To show this, we will construct a counter-example of a pair X,Y which are not
isomorphic with respect to the joint action of permutations and sign multiplications, and yet cannot
be distinguished by equiEPNN. We note that the columns of X,Y are not orthonormal, and they do
have automorphisms.

26

For X,Y ∈ Rn×K , we will say that X ≡ Y , if there is some permutation matrix P such that
PX = Y . We will say that s ∈ {−1, 1}K is an isomorphism between X and Y , if Xdiag(s) ≡ Y .
Here diag(s) is the K ×K diagonal matrix with s on the diagonal. An automorphism of X is an
isomorphism from X to X .

As a first step to construct our counter example, we consider the subgroup H ≤ {−1, 1}3 defined by
H = {s ∈ {−1, 1}3 | s1 · s2 · s3 = 1}.

Let T be the 4× 3 matrix whose rows are the four elements of H , namely

T =

 1 1 1
1 −1 −1
−1 −1 1
−1 1 −1


Note that Aut(T) = H due to H having a group structure.

Next, we build the matrix X to consist of four different copies of T . Each copy will be not a 4× 3
but a 4× 6 matrix, where three of the columns are the columns of T , and the rest are zero columns.
Moreover, any two copies of T will only have one non-zero column in common.

To do this, we choose four index sets in {1, 2, . . . , 6}, who have this intersection pattern, namely
I1 = {1, 2, 3}, I2 = {3, 4, 5}, I3 = {2, 4, 6}, I4 = {1, 5, 6}.

One can verify that indeed |Ij ∩ Ik| = 1 for all j ̸= k. We then define the matrix T [Ij] to be the
4× 6 matrix as described previously. For example

T [I2] =

0 0 1 1 1 0
0 0 1 −1 −1 0
0 0 −1 −1 1 0
0 0 −1 1 −1 0


We define X to be the block matrix

X =

T [I1]T [I2]
T [I3]
T [I4]

 ∈ R16×6

or explicitly

X =



1 1 1 0 0 0
1 −1 −1 0 0 0

−1 −1 1 0 0 0
−1 1 −1 0 0 0
0 0 1 1 1 0
0 0 1 −1 −1 0
0 0 −1 −1 1 0
0 0 −1 1 −1 0
0 1 0 1 0 1
0 1 0 −1 0 −1
0 −1 0 −1 0 1
0 −1 0 1 0 −1
1 0 0 0 1 1
1 0 0 0 −1 −1

−1 0 0 0 −1 1
−1 0 0 0 1 −1


We define Y similarly, but we elementwise multiply the rows of T [I1] by the sign vector

q = [−1, 1, 1, 1, 1, 1]

to obtain

Y =

T [I1]diag(q)T [I2]
T [I3]
T [I4]

 ∈ R16×6.

This is our counterexample. We claim

27

Theorem 4. (Incompleteness of Equivariant EPNN) There exist X,Y ∈ R16×6 such that the
following statements hold:

1. X and Y are not isomorphic under the group action of S16 × {−1, 1}6.

2. Equivariant EPNN cannot separate X and Y after any number of iterations.

Therefore, Equivariant EPNN is incomplete on simple spectrum graphs.

Proof. Remark: X,Y are not isomorphic. By considering the zero patterns of X and Y , one
sees that if s ∈ {−1, 1}6 is an isomorphism mapping X to Y , then s satisfies PTT [I1]diag(s) =
T [I1]diag(q), for some permutation matrix P (acting on the rows of T [I1]), and s must also define
an automorphism of T [Ij] for j = 2, 3, 4. Since each T [Ij]’s rows (padded with zeros) form a group,
its only automorphisms are elementwise multiplications of its rows by its group elements, which
implies

∏
i∈Ij

si = 1. From these three automorphism conditions, we deduce:

s3 · s4 · s5 = 1

s2 · s4 · s6 = 1

s1 · s5 · s6 = 1

Multiplying these three equations with each other we deduce that

s1 · s2 · s3 = 1.

Now, if this holds, then s cannot satisfy PTT [I1]diag(s) = T [I1]diag(q) because the product of the
first three entries of any row of PTT [I1]diag(s) is 1, while the product of the first three entries of
any row of T [I1]diag(q) is −1.

X and Y cannot be separated by equiEPNN

We prove by induction that for any number of layers in an equiEPNN, the hidden states for nodes
within the same partition Bk are identical, and this holds for both graph structures X and Y . This
equivalence prevents the network from separating them.

We introduce useful definitions:

Definition 6 (Block Structure and Neighborhoods). We partition the n = 16 nodes (rows) into
4 disjoint blocks Bk for k = 1, . . . , 4 (e.g., B1 = {1, . . . , 4}, B2 = {5, . . . , 8}, etc.). The 4 × 6

matrix of initial equivariant features for block Bk is B(0)
k ≜ X[Bk, :] = T [Ik]. The non-zero feature

indices for this block are Ik. For a node i ∈ Bk, we define its neighbors: Nintra(i) ≜ Bk and
Ninter(i) ≜ {1, . . . , n} \Bk.

Definition 7 (Invariant Node Neighborhood). The message from a neighbor j to a node i of X is a
tuple containing the neighbor’s invariant features and an invariant computed from their equivariant
features, (h(l)j , x

(l)
i ⊙ x

(l)
j). The Invariant Node Neighborhood of a node i at layer l is the multiset of

invariant features I(l)
i ≜ I(l)

i,intra ∪ I(l)
i,inter, where

• I(l)
i,intra = {(h(l)j , x

(l)
i ⊙ x

(l)
j) | j ∈ Nintra(i)}

• I(l)
i,inter = {(h(l)j , x

(l)
i ⊙ x

(l)
j) | j ∈ Ninter(i)}

where {·} denotes a multi-set. The update rule combines the node’s own invariant state h(l)i with
aggregations of the messages from its neighborhoods:

h
(l+1)
i = ϕh(h

(l)
i ,AGG(I(l)

i))

where AGG is a permutation-invariant aggregation function (e.g., sum or mean).

Definition 8 (Equivariant Node Neighborhood). The Equivariant Node Neighborhood of a node i at
layer l is defined by E(l)

i ≜ E(l)
i,intra ∪ E(l)

i,inter, where

28

• Intra-block Neighborhood E(l)
i,intra = {ϕv(h(l)i , h

(l)
j , x

(l)
i , x

(l)
j)⊙ x

(l)
j | j ∈ Nintra(i)}

• Inter-block Neighborhood E(l)
i,inter = {ϕv(h(l)i , h

(l)
j , x

(l)
i , x

(l)
j)⊙ x

(l)
j | j ∈ Ninter(i)}

where {·} denotes a multi-set. Also, define the messages arriving to a node i ∈ Bp from a different
block Bk (k ̸= p) at layer l by E(l)

i,k = {ϕv(h(l)i , h
(l)
j , x

(l)
i , x

(l)
j)⊙ x

(l)
j | j ∈ Bk}.

The equivariant feature is updated by summing over both neighborhoods:

x
(l+1)
i = x

(l)
i +

∑
m∈E(l)

i,intra

m+
∑

m∈E(l)
i,inter

m

Proof outline:

1. We show that the blocks of X and Y are a particular case of a generalized block structure.

2. We analyze the mechanics of equiEPNN when processing these generalized X and Y to prove
that the invariant node neighborhoods of corresponding nodes in X and Y are equivalent.
This is the base of our induction.

3. We show that the equivariant update step maintains this generalized block structure for both
X and Y . The equivariant update maintaining the generalized block pattern of X and Y is
the induction step of the proof.

4. Since an equivariant update maintains the generalized block structure of X and Y , and the
subsequent invariant node neighborhoods of corresponding points in generalized X and Y
are identical, by the base of induction, equiEPNN will output the same readout for both
X and Y after arbitrarily many refinement iterations (the hidden states are equivalent as
multisets for both point clouds).

Base Case (Generalized Block Pattern and Invariant Update)

Generalized Block Pattern The initial invariant features h(0)i = x
(0)
i ⊙ x

(0)
i are identical for all

i ∈ Bk, as they equal the indicator vector for the partition Ik. We consider a generalized case, where
the initial equivariant features for block Bk (with non-zero columns Ik) form a matrix B(0)

k where
B

(0)
k [:, Ik] is:

B
(0)
k [:, Ik] =


s
(0)
k,1 s

(0)
k,2 s

(0)
k,3

−s(0)k,1 −s(0)k,2 s
(0)
k,3

s
(0)
k,1 −s(0)k,2 −s(0)k,3

−s(0)k,1 s
(0)
k,2 −s(0)k,3


In our counterexample X , the scalars sk,j ≡ 1 for all k, j. For Y , s1,1 = −1 (from block k = 1,
column j = 1) and all other sk,j ≡ 1. We consider this generalized case because we will show that
after an equivariant aggregation, this will be the format of the blocks. These are called generalized X
and Y with a single scalar choice defining them, as the generalized Y is equivalent to generalized X
up to a negation first row of the first block of X . We refer to these generalized X and Y as simply X
and Y in the remainder of the proof.

These initial hidden states h(0)i are identical for both point clouds X and Y , due to the invariance
of squaring to sign changes. Additionally, h(0)i = h

(0)
j for i, j ∈ Bk and h(0)i ̸= h

(0)
j for j /∈ Bk,

due to the unique sparsity pattern of each block. This completes the first step of the outline. We
now proceed to the second step of the outline, where we prove that an invariant update maintains the
equivalence of the hidden states within each block.

Invariant Update We formally define the aggregation steps for a node i ∈ Bk at layer l by splitting
our analysis of its neighborhood into intra-block neighbors Nintra(i) and inter-block neighbors
Ninter(i). For any two nodes i, j ∈ Bk, we show their invariant neighborhoods yield identical
aggregations.

29

• Intra-block: A message from a neighbor m ∈ Bk is (h(l)m , x
(l)
i ⊙ x

(l)
m). By the inductive

hypothesis, h(l)m is constant for all m ∈ Bk. The set of vectors {x(l)m | m ∈ Bk} forms a
group under the Hadamard product (up to scalar multiples). By the group closure property,
the multiset of products {x(l)i ⊙x(l)m | m ∈ Nintra(i)} is simply a permutation of {x(l)j ⊙x(l)m |
m ∈ Nintra(j)} for any i, j ∈ Bk. Therefore, any permutation-invariant aggregation over
I(l)
i,intra and I(l)

j,intra is identical.

• Inter-block: The graph is constructed such that for any k ̸= p, |Ik∩Ip| = 1. The inter-block
neighborhood for a node in Bk consists of nodes from the other three blocks. Consider a
neighbor m ∈ Bp. The product x(l)i ⊙ x

(l)
m is non-zero only at the single index j = Ik ∩ Ip.

Due to this structure, the resulting multiset of invariants from block Bp is of the form
{αjej , αjej ,−αjej ,−αjej} (where ej is the standard basis vector and αj is some scalar),
which is identical for all i ∈ Bk.

Since both neighborhood aggregations are identical, and h(l)i = h
(l)
j for i, j ∈ Bk, the update yields

h
(l+1)
i = h

(l+1)
j for both X and Y .

Inductive Step

Assume at layer l, for any partition Bk, h(l)i = h
(l)
j for all i, j ∈ Bk, and the equivariant feature

matrix B(l)
k ≜ X[Bk, :]

(l) maintains the scaled pattern structure.

Equivariant Update The update for the equivariant features x(l+1)
i combines the original features

x
(l)
i with aggregations from intra-block and inter-block neighbors.

Intra-block Aggregation: The aggregation of messages within a block Bk can be compactly
expressed via summation and Hadamard products. The message function ϕv produces scalar weights
for each interaction. Since the invariant features h(l) are constant within the block, these weights
depend only on the structural relationship between nodes i and j. Due to the graph’s symmetries,
there are only four unique interaction types within a block, resulting in four learned scalar vectors,
with scalar dimension weights in each feature dimension in RK . Since only Ik are the indices
with non-zero features, we focus on their aggregation, and the rest of the inputs along other feature
dimensions will be aggregated to 0, therefore we denote by a, b, c, d ∈ R3 the reduction into the
feature indices in Ik. These form a symmetric weight matrix (in the node dimension) we denote by

Φ
(l)
k =

a b c d
b a d c
c d a b
d c b a

 ∈ R4×4×3

This operation, which we denote by ⋆, scales the columns of the feature matrix B(l)
k while preserving

their sign-pattern structure:

Φ
(l)
k ⋆ B

(l)
k [:, Ik] =


a⊙B

(l)
k [1, Ik] + b⊙B

(l)
k [2, Ik] + c⊙B

(l)
k [3, Ik] + d⊙B

(l)
k [4, Ik]

b⊙B
(l)
k [1, Ik] + a⊙B

(l)
k [2, Ik] + d⊙B

(l)
k [3, Ik] + c⊙B

(l)
k [4, Ik]

c⊙B
(l)
k [1, Ik] + d⊙B

(l)
k [2, Ik] + a⊙B

(l)
k [3, Ik] + b⊙B

(l)
k [4, Ik]

d⊙B
(l)
k [1, Ik] + c⊙B

(l)
k [2, Ik] + b⊙B

(l)
k [3, Ik] + a⊙B

(l)
k [4, Ik]

 ∈ R4×3

(14)

=

 α β γ
−α −β γ
α −β −γ
−α β −γ

 (15)

where the entries of the resulting matrix (in the Ik columns) are denoted by the scalars α, β, γ. These
scalars are the result of applying the learned weights a, b, c, d (which are vectors) to the corresponding

30

columns of B(l)
k . Specifically, they are defined as:

α = s
(l)
k,1(ai1 − bi1 + ci1 − di1)

β = s
(l)
k,2(ai2 − bi2 − ci2 + di2)

γ = s
(l)
k,3(ai3 + bi3 − ci3 − di3)

where aj is the j-th component of a, etc. and i1, i2, i3 ∈ Ik. This operation preserves the fundamen
tal sign-pattern structure of each column, merely updating its overall scaling factor.

Inter-block Aggregation: Let i ∈ Bp be a node index in block p, and let k ̸= p be a different block
index. Consider the equivariant node neighborhood E(l)

i,k . We first focus on the inter-block aggregation
of X and proceed to discuss that of Y . Consider the contribution of the equivariant message passing
to the features of node i from block Bk. There are 3 possible cases:

Case 1: Aggregation of E(l)
i,k along dimension d = Ik ∩ Ip. Along this single feature index d,

the only non-zero information in the product is x(l)i [d] · x(l)j [d] ∈ R for j ∈ Bk. This scalar, apart
from the hidden states (which are constant within blocks), is the only structural value that determines
ϕv(h

(l)
i , h

(l)
j , x

(l)
i , x

(l)
j). This ϕv in turn determines the feature-wise weighing of x(l)j . It follows that

for any node s ∈ Bp, the sum of E(l)
s,k in the feature dimension d precisely equals that of i up to

sign(x
(l)
i [d] · x(l)s [d]). Because x(l)s [d] follows the generalized block pattern for Bp, the aggregation

into dimension d also follows this pattern.

Case 2: Aggregation of E(l)
i,k along feature indices in Ik \ Ip. From Case 1, ϕv is determined by

the sign of the product in dimension d. This results in two possible weight vectors, say a⃗ and b⃗. The
set of messages is

E(l)
i,k(X) = {a⃗⊙ xj1 , a⃗⊙ xj2 , b⃗⊙ xj3 , b⃗⊙ xj4} (16)

where xj1 , xj2 are (w.l.o.g) the points with a positive scalar product with xi in dimension d, and
xj3 , xj4 are those with a negative product. By construction of T , the points xj1 , xj2 satisfy xj1(m) =
−xj2(m) for each m ∈ Ik \ Ip. An analogous result holds for xj3 , xj4 . Therefore, summing all
points in E(l)

i,k yields zeros in feature entries Ik \ Ip.

Case 3: Aggregation of E(l)
i,k along remaining indices. In all other indices, {1, 2, . . . , 6}\(Ip∪Ik),

the features of xj (for j ∈ Bk) are 0. Thus, it trivially holds that after aggregating E(l)
i,k , the resulting

vector entries in those dimensions will also be 0.

We now address the inter-block update of Y in comparison with that of X . The only structural
difference is the negated first column in block B1 of Y . This affects aggregation for i ∈ B1 and for
i ∈ B4 (since I1 ∩ I4 = {1}). The sign of x(l)i [1] · x(l)j [1] is flipped. This means the roles of a⃗ and b⃗
are swapped. For i ∈ B1:

E(l)
i,k(Y) = {⃗b⊙ yj1 , b⃗⊙ yj2 , a⃗⊙ yj3 , a⃗⊙ yj4} (17)

The sum is thus negated. This occurs only along the first column of the first block. For i ∈ B4, the
aggregation from B1 is:

AGG(Ei,1(X)) = AGG({a⃗⊙ xj1 , a⃗⊙ xj2 , b⃗⊙ xj3 , b⃗⊙ xj4}) (18)

= AGG({a⃗⊙ e1 ⊙ xj1 , a⃗⊙ e1 ⊙ xj2 , b⃗⊙−e1 ⊙ xj3 , b⃗⊙−e1 ⊙ xj4}) (19)

= AGG({⃗b⊙−e1 ⊙ yj1 , b⃗⊙−e1 ⊙ yj2 , a⃗⊙ e1 ⊙ yj3 , a⃗⊙ e1 ⊙ yj4}) (20)

= AGG({⃗b⊙ yj1 , b⃗⊙ yj2 , a⃗⊙ yj3 , a⃗⊙ yj4}) = AGG(Ei,1(Y)) (21)

for some a⃗, b⃗ ∈ R6. The equality holds. Therefore, the equivariant aggregation of Y is equivalent to
that of X , except in the first column of the first block, where it is negated. The aggregations for both
X and Y maintain the generalized block pattern.

31

In conclusion of the inter-block aggregation, each xi ∈ Bk will be added with an equivariant feature
of the form c(l) ⊙ xi (where c(l) is a shared column vector), and yi will be added with c(l) ⊙ yi.

Full Update: The new feature matrix B(l+1)
k is the sum of the original features and the intra- and

inter-block aggregations. This process preserves the essential column structure. The update can be
expressed as:

B
(l+1)
k = (I +Φ

(l)
k)B

(l)
k + c(l) ⊙B

(l)
k (22)

where c(l) is a column vector. This operation simply updates the scalar multiples of each column. For
example, the sum of the original features and the intra-block aggregation (for the Ik columns) results
in:

(I +Φ
(l)
k)B

(l)
k [:, Ik] =


s
(l)
k,1 + α s

(l)
k,2 + β s

(l)
k,3 + γ

−(s
(l)
k,1 + α) −(s

(l)
k,2 + β) s

(l)
k,3 + γ

s
(l)
k,1 + α −(s

(l)
k,2 + β) −(s

(l)
k,3 + γ)

−(s
(l)
k,1 + α) s

(l)
k,2 + β −(s

(l)
k,3 + γ)


By Equation 22, the equivariant features remain in the generalized block form.

In conclusion, at each layer, invariant features remain uniform within partitions, and equivariant
features update symmetrically. Since the representations are structurally identical (up to the s1,1 sign
flip, which is preserved) for both graphs, they are indistinguishable.

X and Y can be extended to a proper eigendecomposition

To form a complete basis of 16 eigenvectors, we construct the remaining 10 orthogonal vectors,
X̃ ∈ R16×10. Define the local orthogonal basis for R4 (along the rows of the matrix):abc

1

 ≜

1 −1 1 −1
1 −1 −1 1
1 1 −1 −1
1 1 1 1

 (23)

Let 0 ∈ R4 be the zero vector. We construct the matrix X̃T ∈ R10×16 as a block matrix (where each
block a,b, . . . is a 1× 4 row vector):

X̃T ≜



a −a 0 0
b 0 −a 0
c 0 0 −a
0 b −b 0
0 c 0 −b
0 0 c −c
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


(24)

The rows of X̃T (columns of X̃) are orthogonal to each other and to the columns of X . Thus, after
scaling, Xfull = [X, X̃] ∈ R16×16 forms an orthonormal basis. The block structure is maintained
within the first 6 rows of X̃T . An analogous proof to Part 2 shows that these do not contribute
new information to the hidden states, other than their block membership. The "all-ones" vectors
(last 4 rows) are constant on each block and do not pass messages between blocks. This means the
invariant and equivariant aggregation remain analogous to Part 2 when processing the full matrix
Xfull = [X, X̃]. The hidden states only depend on the structural relations defined by X . Therefore,
for an analogous matrix Ỹ (with its first row a replaced by −a to maintain orthogonality with Y),
equiEPNN will yield the same output on [Y, Ỹ] and [X, X̃], which form valid eigendecompositions
for an equal simple spectrum. In conclusion, equiEPNN cannot separate X and Y .

32

B Experiments

B.1 Dataset statistics

We surveyed popular graph datasets and documented their graph spectral properties. The results
are shown in Table 5. We find that the MNIST Superpixel [34] dataset is almost homogeneously
composed of graphs with a simple spectrum, and we find that (96.9%) of the graphs in this dataset
have a full row without zeros, implying that EPNN is complete on almost all graphs.

Other datasets, such as MUTAG, ENZYMES, PROTEINS and ZINC [18, 36], contain a substantial
amount of graphs with eigenvalue multiplicity 2 and 3. Despite this, the number of eigenspaces of
dimensions 2 and 3 is very few per graph, averaging at around 1 per graph. On datasets with highly
symmetric graphs, such as ENZYMES and PROTEINS, the graphs do not meet the sparsity condition
of Theorem 2, thus EPNN will not necessarily faithfully learn the graph structure. This exemplifies
the need for more expressive models that are complete on graphs with higher maximal eigenvalue
multiplicity and sparse eigenvectors.

Table 5: Graph Statistics Analysis Across Different Datasets (Eigenvalue Tolerance: 10−4)

Dataset Name MUTAG ENZYMES PROTEINS MNIST ZINC
Dataset Overview
Number of Graphs 188 600 1,113 60,000 10,000

Eigenvalue Characteristics
Graphs with Distinct Eigenvalues 41.5% (78) 34.8% (209) 22.1% (246) 99.9% (59,950) 40.7% (4,072)
Graphs with Multiplicity 2 Eigenvalues 58.5% (110) 65.2% (391) 77.9% (867) – 59.3% (5,928)
Graphs with Multiplicity 3 Eigenvalues 19.1% (36) 46.2% (277) 57.9% (644) – 26.2% (2,617)
Avg. Number of Multiplicity 2 Eigenvalues 0.74 1.01 1.24 – –
Avg. Number of Multiplicity 3 Eigenvalues 0.26 0.58 0.71 – –

Eigenvector Properties
Average Ratio of Zeros 1.67 4.28 6.39 0.31 2.52
Average Number of Zeros 31.13 172.93 817.20 23.16 61.04
Graphs with a Full Row 75.0% (141) 35.8% (215) 37.1% (413) 96.9% (58,077) 64.5% (6,447)
Graphs with ≤1 Zero per Eigenvector 0.0% (0) 6.3% (38) 5.0% (56) 20.2% (12,085) 4.3% (430)
Graphs with Total Zeros < Vertices 29.8% (56) 16.3% (98) 14.3% (159) 89.9% (53,873) 13.0% (1,295)
Graphs Meeting Any Condition 75.0% (141) 35.8% (215) 37.1% (413) 96.9% (58,077) 64.5% (6,447)

We surveyed the graph spectra of popular datasets to verify the need for more expressive architectures
based on graph properties. We now further specify the meaning of each row of Table 5 in Table B.1.

B.2 MNIST Superpixel

Below, in Tables 7, 8 and B.2, we list the experiment configurations and hyperparameters of the
MNIST experiment.

As a toy experiment to examine the potential benefit of using equiEPNN, We implemented equiEPNN
via a modification of the EGNN architecture [40] and EPNN with the same architecture, but without
the eigenvector update step. For precise hyperparameter configuration, see the Appendix.

In our first experiment, we applied the proposed method on a classical task of handwritten digit
classification in the MNIST dataset [23]. While almost trivial by today’s standards, we use this
example to verify the theoretical claims regarding expressivity on simple spectrum graphs. Our
experimental setup employed both EPNN (coordinate updates disabled) and equiEPNN (coordinate
updates enabled) as our models exclusively on the superpixel-based graph representation from the
MNISTSuperpixels dataset. In this approach, each 28 × 28 image was converted into a graph
where vertices correspond to superpixels and edges represent their spatial adjacency relations, each
image was represented as a different graph. We tested our models with different positional encoding
dimensions of k = 3, 8, 16 to evaluate performance across varying levels of spectral information.

For details configutions see Tanbes 7, 8, and 9.

B.2.1 Ablation

We examined the performance of both methods on the MNIST Superpixel datasets, where the task
is classification of handwritten digits. We found that equiEPNN outperforms EPNN, with the same

33

Eigenvalue Characteristics
Graphs with Distinct Eigenvalues Graphs where all eigenvalues have multiplic-

ity 1, meaning each eigenvalue appears ex-
actly once in the spectrum

Graphs with Multiplicity 2 Eigenvalues Graphs that have at least one eigenvalue that
appears exactly twice in the spectrum

Graphs with Multiplicity 3 Eigenvalues Graphs that have at least one eigenvalue that
appears exactly three times in the spectrum

Avg. Number of Multiplicity 2 Eigenvalues The average number of eigenbasis that have
multiplicity exactly 2

Avg. Number of Multiplicity 3 Eigenvalues The average number of eigenbasis that have
multiplicity exactly 3

Eigenvector Properties
Average Ratio of Zeros The average proportion of zero entries found

in the eigenvectors across all analyzed graphs
Average Number of Zeros The average count of zero entries in the eigen-

vectors across all analyzed graphs
Graphs with a Full Row Graphs that have at least one eigenvector with

no zero entries (i.e., a "full row" in the eigen-
vector matrix)

Graphs with ≤ 1 Zero per Eigenvector Graphs where each eigenvector has at most
one zero entry

Graphs with Total Zeros < Vertices Graphs where the total number of zero entries
across all eigenvectors is less than the number
of vertices in the graph

Graphs Meeting Any Condition Graphs that satisfy at least one of the specified
eigenvector properties listed above

Table 6: Explanation of Surveyed Graph Spectral Properties

Table 7: MNIST Superpixel Experiment Configuration

Parameter Default Value Description
k_values [3, 8, 16] List of k values for positional encoding dimensions
epochs 30 Number of training epochs
batch_size 32 Training batch size
data_dir ’data’ Data directory path
device ’cuda’ Computing device (CUDA if available)
early_stopping 10 Early stopping patience
output_dir ’results’ Output directory for results
coord_update_options [True, False] Coordinate update configurations
random_seed 42 Random seed for reproducibility

34

Table 8: MNIST Superpixel Network Hyperparameters

Parameter Default Value Description
num_features 1 Input node features (MNIST characteristic)
num_classes 10 Output classes (MNIST digits 0-9)
hidden_dim 64 Hidden layer dimension
num_layers 3 Number of EGNN layers
pos_enc_dim k Positional encoding dimension (varies: 3, 8, 16)
dropout 0.2 Dropout rate
lr 0.0005 Learning rate
weight_decay 1e-5 Weight decay for regularization
norm_features True Normalize node features
norm_coords True Normalize coordinates
coord_weights_clamp 1.0 Clamping value for coordinate weights
with_pos_enc True Use positional encoding
with_proj False Use edge projectors
with_virtual_node False Use virtual node
update_coords True/False Coordinate update flag (both tested)

Table 9: MNIST Superpixel Training Configuration

Parameter Value Description
Optimizer Adam Optimization algorithm
Loss Function NLL Loss Negative log-likelihood loss
Scheduler ReduceLROnPlateau Learning rate scheduler
LR Reduction Factor 0.5 Factor for LR reduction
LR Patience 5 Scheduler patience
Min LR 1e-6 Minimum learning rate
Gradient Clipping 1.0 Maximum gradient norm
Early Stopping Patience 10 Training patience

number of model parameters and hyperparameter instantiations, in the setting with few known
eigenvectors. With a sufficient number of eigenvectors EPNN and equiEPNN achieve comparable
results, as expected, since they are both complete on almost all graphs in MNIST Superpixel. (see
k=8 and k=16 in Table 10.)

B.3 Realizable Expressivity

The BREC [48] dataset is a graph expressivity benchmark consisting of highly symmetric graphs
that high-order GNNs struggle at distinguishing, which was used by [52] to check the expressivity of
EPNN. We implemented EPNN and equiEPNN via the popular EGNN [40] framework and obtained
statistically identical results shown in Table 12.

B.4 Eigenvector Canonicalization

We specify the problem setup for eigenvector canonicalization and our proposed method.

Table 10: Ablation study on MNIST Superpixel [34]. Accuracy percentage comparison with deviation
over 3 trials, for different values of K for EPNN and equiEPNN.

k EPNN EquiEPNN
3 48.45 ± 1.2 % 60.95 ± 0.9 %
8 85.55 ± 2.1 % 83.56 ± 2.5 %
16 90.13 ± 2.3 % 91.37 ± 2.2 %

35

Table 11: Network Hyperparameters for Eigenvector canonicalization

Parameter Default Value Description
num_layers 5 Number of message passing layers
emb_dim 128 Embedding dimension
in_dim 128 Input feature dimension
proj_dim 10 Projection dimension
coords_weight 3.0 Coordinate update weight
activation relu Activation function
norm layer Normalization type
aggr sum Aggregation function
residual False Use residual connections
edge_attr_dim 20 Edge feature dimension (2 × k_projectors)

Table 12: Empirical performance of different GNNs on BREC (in percentages.) (Using k=3 spectral
features, results of non-EPNN models from [52])

Model WL class Basic Reg Ext CFI Total
Graphormer SPD-WL 26.7 10.0 41.0 10.0 19.8

NGNN SWL 98.3 34.3 59.0 0 41.5
ESAN GSWL 96.7 34.3 100.0 15.0 55.2
PPGN 3-WL 100.0 35.7 100.0 23.0 58.2
EPNN EPWL 100.0 35.7 100.0 4.0 53.5

Equi-EPNN N/A 100.0 35.7 100.0 4.0 53.5

Definition 9 (Eigenvecor Canonicalization). A canonicalization of an eigenvector v ∈ Rn is a
map ϕ : Rn → Rn such that for every s ∈ O(1) ≃ {−1, 1}, it holds that ϕ(sv) = ϕ(v) and is
permutation equivariant, that is for every permutation σ, ϕ(σv) = σϕ(v).

We now define the following eigenvector canonicalization map via the steps

1. For given eigenvectors V ∈ Rn×k corresponding to distinct eigenvalues, we run equiEPNN
for T iterations, to obtain the equivariant output V (T)

2. We sum over the columns to obtain a matrix S = diag(s1, s2, . . . , sk) where si ≜
sign(

∑n
j=1 V

(T)(i, j)) ∈ {−1,+1}.

3. Canonicalize the eigenvectors via SV.

This defines an eigenvector canonicalization map ψ : Rn×k → Rn×k where ψ(V) = SV for the
S(V) defined above. This map is naturally permutation equivariant, and it is easy to check that it is
sign invariant.

As this maps canonicalized the original eigenvectors via aggregating global graph information that
depends on the entire graph eigendecomposition and not each eigenvector separately, we obtain a
map that practically achieves perfect canonicalization on ZINC [18].

See Tables 11 and 13 for experiment configurations.

Table 13: Eigenvector Canonicalization Configuration

Parameter Default Value Description
subset_size 100 Number of ZINC graphs to test
k_projectors 10 Number of top eigenvalue projectors to use
num_workers 4 Number of workers for data loading
device CUDA/CPU Computing device (CUDA if available)
precision float64 Default tensor precision

36

C Further Related Work

C.1 Expressive Power and the Weisfeiler-Lehman Hierarchy

The expressive power of GNNs is commonly evaluated via the Weisfeiler-Lehman (WL) test, with
standard Message Passing Neural Networks (MPNNs) being upper-bounded by the 1-WL test [49, 35].
This has motivated the development of more powerful models aligned with higher-order k-WL tests
[32]. The WL hierarchy and its variants have been clarified in tutorials by [16, 37]. Other works have
moved beyond the binary isomorphism objective to develop more continuous, fine-grained measures
of expressivity based on graphons and tree distances [6]. Our work diverges from these combinatorial
frameworks by proposing a hierarchy based on eigenvalue multiplicity, a natural concept in spectral
graph theory. We demonstrate that even SGNNs considered powerful in the WL hierarchy (EPNN)
can fail on spectrally-defined graph classes, revealing limitations not captured by combinatorial tests.

C.2 Higher-Order and Subgraph GNNs

To overcome the 1-WL barrier, a prominent line of research has focused on architectures that process
higher-order structures. Subgraph GNNs, which represent a graph as an equivariant collection of
its subgraphs, have proven to be a particularly powerful paradigm [26]. A significant challenge has
been the computational complexity of these models. Recent work by [3] introduces a flexible and
scalable framework for Subgraph GNNs using graph products and coarsening to manage complexity.
This line of research, including work by [10], has also explored novel methods to boost expressivity
by leveraging high-order derivatives of a base GNN model, drawing deep connections between this
calculus-based approach and the WL hierarchy. Our work provides a complementary perspective by
showing that even highly expressive architectural paradigms can have fundamental blind spots, such
as the inability to distinguish certain graphs with simple spectra.

C.3 Spectral GNNs and Universality

Spectral GNNs define graph convolutions via spectral filters. Early work improved filter expressivity
by moving from polynomials to complex rational functions, as in CayleyNets [24]. A key theoretical
result from [47] established that linear spectral GNNs can achieve universal approximation on graphs
with a simple spectrum. However, this universality relies on a crucial assumption: the use of a
randomly sampled, non-equivariant node signal. This setting is distinct from the standard GNN
expressivity analysis, which assumes permutation-equivariant operations on graph structure. Our
work investigates the expressivity of permutation-equivariant SGNNs, such as EPNN, under the
same simple spectrum condition. We prove that, in this more standard setting, these models are
fundamentally incomplete. We construct explicit counterexamples of non-isomorphic graphs with
simple spectra that EPNN cannot distinguish, revealing a critical limitation that was not apparent
from prior analyses.

C.4 Equivariant Design and Generalization

A core principle in modern GNN theory is designing architectures that respect the symmetries of
graph data, i.e., permutation invariance and equivariance [46]. This has led to principled methods
for handling spectral features, such as the sign and basis ambiguities of eigenvectors. Models like
SignNet and BasisNet are designed to be invariant to these symmetries by processing eigenspaces
independently [27]. Work by [21] has analyzed the implicit bias of such equivariant networks,
showing that gradient descent favors solutions with specific structural properties in the Fourier
domain. Other work has explored probabilistic frameworks for breaking symmetries when necessary
[22]. Our work builds on these principles; we show that even a principled equivariant architecture
like EPNN is incomplete, and our proposed solution, equiEPNN, is directly inspired by equivariant
network designs.

C.5 Unified Theories and GNN Limitations

One recent research direction is to move towards a more holistic understanding of GNNs by connecting
expressivity, generalization, and universality. Work by [39] proposes a unified framework using
pseudometrics based on optimal transport to derive both universal approximation theorems and

37

generalization bounds for MPNNs on attributed graphs. Concurrently, critical work has highlighted
the practical limitations of GNNs. For instance, [4] demonstrated that GNNs can ‘overfit’ the graph
structure, using it even when it is detrimental to the task. This suggests that theoretical expressivity
does not automatically translate to better performance. Our paper contributes to this line of inquiry
by identifying a novel and unexpected failure mode for a class of GNNs that are already considered
highly expressive. This reinforces the notion that expressivity is not monolithic and that different
architectures have distinct failure modes.

38

	Introduction
	Related work
	Spectral invariant GNNs
	Spectral canonicalization methods
	Expressivity on simple spectrum graphs

	Problem statement
	Spectral graph decomposition
	EPNN
	Equivariant EPNN

	On the incompleteness of spectral graph neural networks
	EPNN is incomplete
	When is EPNN complete?
	Unique node identification via EPNN
	equiEPNN is strictly more expressive than EPNN
	Incompleteness of spectral GNNs

	Experiments
	Dataset statistics
	Eigenvector canonicalization
	Benchmarks: ZINC and MNIST

	Future Work
	Proofs
	Proof of Incompleteness of EPNN
	Extension to orthonormal counterexamples
	Proofs for implications for real-world GNNs
	Proof for equiEPNN strictly more expressive
	Proof of Incompleteness of Equivariant EPNN

	Experiments
	Dataset statistics
	MNIST Superpixel
	Realizable Expressivity
	Eigenvector Canonicalization

	Further Related Work
	Expressive Power and the Weisfeiler-Lehman Hierarchy
	Higher-Order and Subgraph GNNs
	Spectral GNNs and Universality
	Equivariant Design and Generalization
	Unified Theories and GNN Limitations

