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ABSTRACT

In this paper, we propose energy-based sample adaptation at test time for domain
generalization. Where previous works adapt their models to target domains, we
adapt the unseen target samples to source-trained models. To this end, we design a
discriminative energy-based model, which is trained on source domains to jointly
model the conditional distribution for classification and data distribution for sample
adaptation. The model is optimized to simultaneously learn a classifier and an
energy function. To adapt target samples to source distributions, we iteratively
update the samples by energy minimization with stochastic gradient Langevin
dynamics. Moreover, to preserve the categorical information in the sample during
adaptation, we introduce a categorical latent variable into the energy-based model.
The latent variable is learned from the original sample before adaptation by varia-
tional inference and fixed as a condition to guide the sample update. Experiments
on six benchmarks for classification of images and microblog threads demonstrate
the effectiveness of our proposal.

1 INTRODUCTION

Deep neural networks are vulnerable to domain shifts and suffer from lack of generalization on test
samples that do not resemble the ones in the training distribution (Recht et al., 2019; Zhou et al.,
2021; Krueger et al., 2021; Shen et al., 2022). To deal with the domain shifts, domain generalization
has been proposed (Muandet et al., 2013; Gulrajani & Lopez-Paz, 2020; Cha et al., 2021). Domain
generalization strives to learn a model exclusively on source domains in order to generalize well on
unseen target domains. The major challenge stems from the large domain shifts and the unavailability
of any target domain data during training.

To address the problem, domain invariant learning has been widely studied, e.g., (Motiian et al.,
2017; Zhao et al., 2020; Nguyen et al., 2021), based on the assumption that invariant representations
obtained on source domains are also valid for unseen target domains. However, since the target
data is inaccessible during training, it is likely an “adaptivity gap” (Dubey et al., 2021) exists
between representations from the source and target domains. Therefore, recent works try to adapt the
classification model with target samples at test time by further fine-tuning model parameters (Sun
et al., 2020; Wang et al., 2021) or by introducing an extra network module for adaptation (Dubey
et al., 2021). Rather than adapting the model to target domains, Xiao et al. (2022) adapt the classifier
for each sample at test time. Nevertheless, a single sample would not be able to adjust the whole
model due to the large number of model parameters and the limited information contained in the
sample. This makes it challenging for their method to handle large domain gaps. Instead, we propose
to adapt each target sample to the source distributions, which does not require any fine-tuning or
parameter updates of the source model.

In this paper, we propose energy-based test sample adaptation for domain generalization. The method
is motivated by the fact that energy-based models (Hinton, 2002; LeCun et al., 2006) flexibly model
complex data distributions and allow for efficient sampling from the modeled distribution by Langevin
dynamics (Du & Mordatch, 2019; Welling & Teh, 2011). Specifically, we define a new discriminative
energy-based model as the composition of a classifier and a neural-network-based energy function in
the data space, which are trained simultaneously on the source domains. The trained model iteratively

∗Currently with United Imaging Healthcare, Co., Ltd., China.

1



Published as a conference paper at ICLR 2023

updates the representation of each target sample by gradient descent of energy minimization through
Langevin dynamics, which eventually adapts the sample to the source data distribution. The adapted
target samples are then predicted by the classifier that is simultaneously trained in the discriminative
energy-based model. For both efficient energy minimization and classification, we deploy the energy
functions on the input feature space rather than the raw images.

Since Langevin dynamics tends to draw samples randomly from the distribution modeled by the
energy function, it cannot guarantee category equivalence. To maintain the category information
of the target samples during adaptation and promote better classification performance, we further
introduce a categorical latent variable in our energy-based model. Our model learns the latent variable
to explicitly carry categorical information by variational inference in the classification model. We
utilize the latent variable as conditional categorical attributes like in compositional generation (Du
et al., 2020a; Nie et al., 2021) to guide the sample adaptation to preserve the categorical information
of the original sample. At inference time, we simply ensemble the predictions obtained by adapting
the unseen target sample to each source domain as the final domain generalization result.

We conduct experiments on six benchmarks for classification of images and microblog threads to
demonstrate the promise and effectiveness of our method for domain generalization1.

2 METHODOLOGY

In domain generalization, we are provided source and target domains as non-overlapping distributions
on the joint space X × Y , where X and Y denote the input and label space, respectively. Given a
dataset with S source domains Ds=

{
Di
s

}S
i=1

and T target domains Dt=
{
Di
t

}T
i=1

, a model is trained
only on Ds and required to generalize well on Dt. Following the multi-source domain generalization
setting (Li et al., 2017; Zhou et al., 2021), we assume there are multiple source domains with the
same label space to mimic good domain shifts during training.

In this work, we propose energy-based test sample adaptation, which adapts target samples to source
distributions to tackle the domain gap between target and source data. The rationale behind our model
is that adapting the target samples to the source data distributions is able to improve the prediction of
the target data with source models by reducing the domain shifts, as shown in Figure 1 (left). Since
the target data is never seen during training, we mimic domain shifts during the training stage to learn
the sample adaptation procedure. By doing so, the model acquires the ability to adapt each target
sample to the source distribution at inference time. In this section, we first provide a preliminary on
energy-based models and then present our energy-based test sample adaptation.

2.1 ENERGY-BASED MODEL PRELIMINARY

Energy-based models (LeCun et al., 2006) represent any probability distribution p(x) for x ∈ RD

as pθ(x) =
exp(−Eθ(x))

Zθ
, where Eθ(x) : RD → R is known as the energy function that maps each

input sample to a scalar and Zθ =
∫
exp(−Eθ(x))dx denotes the partition function. However, Zθ

is usually intractable since it computes the integration over the entire input space of x. Thus, we
cannot train the parameter θ of the energy-based model by directly maximizing the log-likelihood
log pθ(x) = −Eθ(x)− logZθ. Nevertheless, the log-likelihood has the derivative (Du & Mordatch,
2019; Song & Kingma, 2021) :

∂log pθ(x)

∂θ
= Epd(x)

[
− ∂Eθ(x)

∂θ

]
+ Epθ(x)

[∂Eθ(x)
∂θ

]
, (1)

where the first expectation term is taken over the data distribution pd(x) and the second one is over
the model distribution pθ(x).

The objective function in eq. (1) encourages the model to assign low energy to the sample from the
real data distribution while assigning high energy to those from the model distribution. To do so,
we need to draw samples from pθ(x), which is challenging and usually approximated by MCMC
methods (Hinton, 2002). An effective MCMC method used in recent works (Du & Mordatch, 2019;
Nijkamp et al., 2019; Xiao et al., 2021b; Grathwohl et al., 2020) is Stochastic Gradient Langevin

1 Code available: https://github.com/zzzx1224/EBTSA-ICLR2023.
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Figure 1: Illustration of the proposed energy-based model. It aims to adapt the target samples to
the source distributions, which can be more accurately classified by the source domain classifier (left).
With Langevin dynamics, each target sample is adapted iteratively to the source data distributions,
which are represented as the gradient colors from green to red (right). Best viewed in color.

Dynamics (Welling & Teh, 2011), which simulates samples by

xi+1 = xi − λ

2

∂Eθ(x
i)

∂xi
+ ϵ, s.t., ϵ ∼ N (0, λ) (2)

where λ denotes the step-size and x0 is drawn from the initial distribution p0(x), which is usually a
uniform distribution (Du & Mordatch, 2019; Grathwohl et al., 2020).

Actually, maximizing log pθ(x) is equivalent to minimizing the KL divergence DKL(pd(x)||pθ(x))
(Song & Kingma, 2021), which is alternatively achieved in (Hinton, 2002) by minimizing contrastive
divergence:

DKL(pd(x)||pθ(x))− DKL(qθ(x)||pθ(x)), (3)

where qθ(x) =
∏t
θ pd(x), representing t sequential MCMC transitions starting from p(x) (Du et al.,

2021a) and minimizing eq. (3) is achieved by minimizing:

Epd(x)[Eθ(x)]− Estop_grad(qθ(x))[Eθ(x)] + Eqθ(x)[Estop_grad(θ)(x)] + Eqθ(x)[logqθ(x)]. (4)

Eq. (4) avoids drawing samples from the model distribution pθ(x), which often requires an exponen-
tially long time for MCMC sampling (Du et al., 2021a). Intuitively, qθ(x) is closer to pθ(x) than
pd(x), which guarantees that DKL(pd(x)||pθ(x)) ≥ DKL(qθ(x)||pθ(x)) and eq. (3) can only be zero
when pθ(x) = pd(x).

2.2 ENERGY-BASED TEST SAMPLE ADAPTATION

We propose energy-based test sample adaption to tackle the domain gap between source and target
data distributions. This is inspired by the fact that Langevin dynamics simulates samples of the
distribution expressed by the energy-based model through gradient-based updates, with no restriction
on the sample initialization if the sampling steps are sufficient (Welling & Teh, 2011; Du & Mordatch,
2019). We leverage this property to conduct test sample adaptation with Langevin dynamics by
setting the target sample as the initialization and updating it iteratively. With the energy-based model
of the source data distribution, as shown in Figure 1 (right), target samples are gradually updated
towards the source domain and with sufficient update steps, the target sample will eventually be
adapted to the source distribution.

Discriminative energy-based model. We propose the discriminative energy-based model pθ,ϕ(x,y)
on the source domain, which is constructed by a classification model and an energy function in
the data space. Note that x denotes the feature representations of the input image I , where x is
generated by a neural network backbone x=fψ(I). Different from the regular energy-based models
that generate data samples from uniform noise, our goal is to promote the discriminative task, i.e., the
conditional distribution p(y|x), which is preferred to be jointly modeled with the feature distributions
p(x) of the input data. Thus, the proposed energy-based model is defined on the joint space of
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X × Y to consider both the classification task and the energy function. Formally, the discriminative
energy-based model of a source domain is formulated as:

pθ,ϕ(x,y) = pϕ(y|x)
exp(−Eθ(x))

Zθ,ϕ
, (5)

where pϕ(y|x) denotes the classification model and Eθ(x) is an energy function, which is nowadays
implemented with neural networks. Eq. (5) enables the energy-based model to jointly model the
feature distribution of input data and the conditional distribution on the source domains. An unseen
target sample xt is iteratively adapted to the distribution of the source domain Ds by Langevin
dynamics update with the energy function Eθ(x) and predicted by the classification model pϕ(y|x).
The model parameters θ and ϕ can be jointly optimized following eq. (3) by minimizing:

DKL(pd(x,y)||pθ,ϕ(x,y))− DKL(qθ,ϕ(x,y)||pθ,ϕ(x,y)), (6)

which is derived as:

L =− Epd(x,y)
[
log pϕ(y|x)

]
+ Epd(x,y)

[
Eθ(x)

]
− Estop_grad(qθ,ϕ(x,y))

[
Eθ(x)

]
+ Eqθ,ϕ(x,y)

[
Estop_grad(θ)(x)− log pstop_grad(ϕ)(y|x)

]
,

(7)

where pd(x,y) denotes the real data distribution and qθ,ϕ(x,y) =
∏t
θ p(x,y) denotes t sequential

MCMC samplings from the distribution expressed by the energy-based model similar to eq. (4) (Du
et al., 2021a). We provide the detailed derivation in Appendix A.

In eq. (7), the first term encourages to learn a discriminative classifier on the source domain. The
second and third terms train the energy function to model the data distribution of the source domain by
assigning low energy on the real samples and high energy on the samples from the model distribution.
Different from the first three terms that directly supervise the model parameters θ and ϕ, the last term
stops the gradients of the energy function Eθ and classifier ϕ while back-propagating the gradients to
the adapted samples qθ,ϕ(x,y). Because of the stop-gradient, this term does not optimize the energy
or log-likelihood of a given sample, but rather increases the probability of such samples with low
energy and high log-likelihood under the modeled distribution.

Essentially, the last term trains the model θ to provide a variation for each sample that encourages
its adapted version to be both discriminative on the source domain classifier and low energy on
the energy function. Intuitively, it supervises the model to learn the ability to preserve categorical
information during adaptation and find a faster way to minimize the energy.

Label-preserving adaptation with categorical latent variable. Since the ultimate goal is to correctly
classify target domain samples, it is necessary to maintain the categorical information in the target
sample during the iterative adaptation process. Eq. (7) contains a supervision term that encourages
the adapted target samples to be discriminative for the source classification models. However, as the
energy function Eθ operates only in the X space and the sampling process of Langevin dynamics
tends to result in random samples from the sampled distribution that are independent of the starting
point, there is no categorical information considered during the adaptation procedure.

To achieve label-preserving adaptation, we introduce a categorical latent variable z into the energy
function to guide the adaptation of target samples to preserve the category information. With the
latent variable, the energy function Eθ is defined in the joint space of X × Z . The categorical
information contained in z will be explicitly incorporated into the iterative adaptation. To do so, we
define the energy-based model with the categorical latent variable as:

pθ,ϕ(x,y) =

∫
pθ,ϕ(x,y, z)dz =

∫
pϕ(y|z,x)pϕ(z|x)

exp(−Eθ(x|z))
Zθ,ϕ

dz, (8)

where ϕ denotes the parameters of the classification model that predicts z and y and Eθ denotes the
energy function that models the distribution of x considering the information of latent variable z. z is
trained to contain sufficient categorical information of x and serves as the conditional attributes that
guide the adapted samples x preserving the categorical information. Once obtained from the original
input feature representations x, z is fixed and taken as the input of the energy function together with
the updated x in each iteration. Intuitively, when x is updated from the target domain to the source
domain via Langevin dynamics, z helps it preserve the classification information contained in the
original x, without introducing additional information.
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Figure 2: Overall process of the proposed sample adaptation by discriminative energy-based
model. In each iteration, we train the classification model ϕi and energy function Eθi of one source
domain Di. Ii and Ij denote the images from domains Di and Dj , respectively. Ii denotes one
batch of images, which generate the center features di. The energy function Eθi is trained by using
xi as positive samples and adapted samples qθi(xi) generated by xj from other domains as negative
samples. The adaptation is achieved by Langevin dynamics of Eθi . During inference, the target
samples are adapted by Langevin dynamics of the energy function Eθ of each source domain and
then predicted by eq. (11).

To learn the latent variable z with more categorical information, we estimate z by variational inference
and design a variational posterior qϕ(z|dx), where dx is the average representation of samples from
the same category as x on the source domain. Therefore, qϕ(z|dx) can be treated as a probabilistic
prototypical representation of a class. By incorporating qϕ(z|dx) into eq. (8), we obtain the lower
bound of the log-likelihood:
log pθ,ϕ(x,y) ≥ Eqϕ [log pϕ(y|z,x)− Eθ(x, z)− log Zθ,ϕ] + DKL[qϕ(z|dx)||pϕ(z|x)]. (9)

Note that in eq. (9), the categorical latent variable z is incorporated into both the classification model
pϕ(y|z,x) and the energy function Eθ(x|z). The energy function contains both data information
and categorical information. During the Langevin dynamics update for sample adaptation, the latent
variable provides categorical information in each iteration, which enables the adapted target samples
to be discriminative.

By incorporating eq. (9) into eq. (6), we derive the objective function with the categorical latent
variable as:

Lf = Epd(x,y)
[
Eqϕ(z)[−log pϕ(y|z,x)] + DKL[qϕ(z|dx)||pϕ(z|x)]

]
+ Eqϕ(z)

[
Epd(x)[Eθ(x|z)]

− Estop_grad(qθ(x))[Eθ(x, z)]
]
+ Eqθ(x)

[
Eqstop_grad(ϕ)(z)

[
Estop_grad(θ)(x, z)

− log pstop_grad(ϕ)(y|z,x)
]
− DKL[qstop_grad(ϕ)(z|dx)||pstop_grad(ϕ)(z|x)]

]
,

(10)
where pd(x) and qθ(x) denote the data distribution and the t sequential MCMC samplings from
the energy-based distribution of the source domain Ds. Similar to eq. (7), the first term trains the
classification model on the source data. The second term trains the energy function to model the
source data distribution. The last term is conducted on the adapted samples to supervise the adaptation
procedure. The complete derivation is provided in Appendix A. An illustration of our model is shown
in Figure 2. We also provide the complete algorithm in Appendix B.

Ensemble inference. Since the target data is inaccessible during training, we train the specific
parameters θ and ϕ to model each source distribution by adapting the samples from other source
domains to the current source distribution. In each iteration, we train the energy-based model θi
of one randomly selected source domain Di

s. The adapted samples generated by samples xj ,xk

from the other source domains Dj
s, D

k
s are used as the negative samples while xi as the positive

samples to train the energy-based model. During inference, the target sample is adapted to each
source distribution with the specific energy function and predicted by the specific classifier. After
that, we combine the predictions of all source domain models to obtain the final prediction:

p(yt) =
1

S

S∑
i=1

1

N

N∑
n=1

pϕi(y|zn,x) zn ∼ p(zn|xt),x ∼ pθi(x). (11)

Here ϕi and θi denote the domain specific classification model and energy function of domain Di
s.

Note that since the labels of the xt are unknown, dxt in eq. (10) is not available during inference.
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Table 1: Benefit of energy-based test sample adaptation. Experiments on PACS using a ResNet-18
averaged over five runs. Optimized by eq. (7), our model improves after adaptation. With the latent
variable (eq. 10) performance improves further, both before and after adaptation.

Adaptation Photo Art-painting Cartoon Sketch Mean

Without latent variable (eq. 7) ✗ 94.73 ±0.22 78.66 ±0.59 78.24 ±0.71 78.34 ±0.62 82.49 ±0.26

✓ 94.59 ±0.16 80.45 ±0.52 79.98 ±0.51 79.23 ±0.32 83.51 ±0.30

With latent variable (eq. 10) ✗ 95.12 ±0.41 79.79 ±0.64 79.15 ±0.37 79.28 ±0.82 83.33 ±0.43

✓ 96.05 ±0.37 82.28 ±0.31 81.55 ±0.65 79.81 ±0.41 84.92 ±0.59

Therefore, we draw zn from the prior distribution p(zn|xt), where xt is the original target sample
without any adaptation. With fixed zn, x ∼ pθi(x) are drawn by Langevin dynamics as in eq. (2)
with the target samples xt as the initialization sample. pθi(x) denotes the distributions modeled by
the energy function Eθi(x|zn). Moreover, to be efficient, the feature extractor ψ for obtaining feature
representations x is shared by all source domains and only the energy functions and classifiers are
domain specific. We deploy the energy-based model on feature representations for lighter neural
networks of the domain-specific energy functions and classification models.

3 EXPERIMENTS

Datasets. We conduct our experiments on five widely used datasets for domain generalization, PACS
(Li et al., 2017), Office-Home (Venkateswara et al., 2017), DomainNet (Peng et al., 2019), and
Rotated MNIST and Fashion-MNIST. Since we conduct the energy-based distribution on the
feature space, our method can also handle other data formats. Therefore, we also evaluate the method
on PHEME (Zubiaga et al., 2016), a dataset for natural language processing.

PACS consists of 9,991 images of seven classes from four domains, i.e., photo, art-painting, cartoon,
and sketch. We use the same training and validation split as (Li et al., 2017) and follow their “leave-
one-out” protocol. Office-Home also contains four domains, i.e., art, clipart, product, and real-world,
which totally have 15,500 images of 65 categories. DomainNet is more challenging since it has
six domains i.e., clipart, infograph, painting, quickdraw, real, sketch, with 586,575 examples of
345 classes. We use the same experimental protocol as PACS. We utilize the Rotated MNIST and
Fashion-MNIST datasets by following the settings in Piratla et al. (Piratla et al., 2020). The images
are rotated from 0◦ to 90◦ in intervals of 15◦, covering seven domains. We use the domains with
rotation angles from 15◦ to 75◦ as the source domains, and images rotated by 0◦ and 90◦ as the target
domains. PHEME is a dataset for rumour detection. There are a total of 5,802 tweets labeled as
rumourous or non-rumourous from 5 different events, i.e., Charlie Hebdo, Ferguson, German Wings,
Ottawa Shooting, and Sydney Siege. Same as PACS, we evaluate our methods on PHEME also by the
“leave-one-out” protocol.

Implementation details. We evaluate on PACS and Office-Home with both a ResNet-18 and ResNet-
50 (He et al., 2016) and on DomainNet with a ResNet-50. The backbones are pretrained on ImageNet
(Deng et al., 2009). On PHEME we conduct the experiments based on a pretrained DistilBERT
(Sanh et al., 2019), following (Wright & Augenstein, 2020). To increase the number of sampling
steps and sample diversity of the energy functions, we introduce a replay buffer B that stores the past
updated samples from the modeled distribution (Du & Mordatch, 2019). The details of the models
and hyperparameters are provided in Appendix C.

Benefit of energy-based test sample adaptation. We first investigate the effectiveness of our
energy-based test sample adaptation in Table 1. Before adaptation, we evaluate the target samples
directly by the classification model of each source domain and ensemble the predictions. After the
adaptation to the source distributions, the performance of the target samples improves, especially
on the art-painting and cartoon domains, demonstrating the benefit of the iterative adaptation by
our energy-based model. The results of models with latent variable, i.e., trained by eq. (10), are
shown in the last two rows. With the latent variable, the performance is improved both before and
after adaptation, which shows the benefit of incorporating the latent variable into the classification
model. The performance improvement after adaptation is also more prominent than without the latent
variable, demonstrating the effectiveness of incorporating the latent variable into the energy function.
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Source: photo
Target: art-painting
Category: house

Source: cartoon
Target: art-painting
Category: person

Source: sketch
Target: art-painting

Category: guitar

(a) (b) (c)

Probability on house:
0.02% 99.7%

Probability on person:
46.0% 86.7%

Probability on guitar:
1.9% 84.8%

Figure 3: Iterative adaptation of target samples. We adapt the samples from the target domain
(art-painting) to different source domains (photo, cartoon, and sketch in (a), (b), (c)). Each subfigure
shows the adaptation of one target sample. The adaptation procedure of the target samples is
represented by the gradient color from green to red. In each figure, the target sample has the same
label as the source data, but is mispredicted due to domain shifts. During adaptation, the target
samples gradually approach the source distributions and eventually get correct predictions.

Effectiveness of iterative test sample adaptation by Langevin dynamics. We visualize the iterative
adaptation of the target samples in Figure 3. In each subfigure, the target and source samples have
the same label. The visualization shows that the target samples gradually approach the source data
distributions during the iterative adaptation by Langevin dynamics. After adaptation, the predictions
of the target samples on the source domain classifier also become more accurate. For instance, in
Figure 3 (a), the target sample of the house category is predicted incorrectly, with a probability
of house being only 0.02%. After adaptation, the probability becomes 99.7%, which is predicted
correctly. More visualizations, including several failure cases, are provided in Appendix D.

Number of Langevin dynamics updating steps

Figure 4: Adaptation with different Langevin
dynamics steps. As the number of steps increases,
energy decreases while accuracy increases. When
the number of steps is too large, the accuracy with-
out z or with p(z|x) drops slightly while the accu-
racy with q(z|dx) is more stable and better.

Adaptation with different Langevin dynam-
ics steps. We also investigate the effect of the
Langevin dynamics step numbers during adap-
tation. Figure 4 shows the variety of the aver-
age energy and accuracy of the target samples
adapted to the source distributions with different
updating steps. The experiments are conducted
on PACS with ResNet-18. The target domain is
art-painting. With the step numbers less than
80, the average energy decreases consistently
while the accuracy increases along with the in-
creased number of updating steps, showing that
the target samples are getting closer to the source
distributions. When the step numbers are too
large, the accuracy will decrease as the number
of steps increases. We attribute this to zt hav-
ing imperfect categorical information, since it
is approximated during inference from a single
target sample xt only. In this case, the label
information would not be well preserved in xt
during the Langevin dynamics update, which causes an accuracy drop with a large number of updates.
To demonstrate this, we conduct the experiment by replacing p(zt) with qϕ(z|dx) during inference.
dx is the class center of the same class as xt. Therefore, qϕ(z|dx) contains categorical information
that is closer to the ground truth label. We regard this as the oracle model. As expected, the oracle
model performs better as the number of steps increases and reaches stability after 100 steps. We also
show the results without z. We can see the performance and stability are both worse, which again
demonstrates that z helps preserve label information in the target samples during adaptation. More-
over, the energy without conditioning on z is higher. The reason can be that without conditioning on
z, there is no guidance of categorical information during sample adaptation. In this case, the sample
can be adapted randomly by the energy-based model, regardless of the categorical information. This
can lead to the conflict to adapt the target features to different categories of the source data, slowing
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Table 2: Comparisons on image and text datasets. Our method achieves the best mean accuracy for
all datasets, independent of the backbone. Larger adaptation steps (i.e., 50) lead to better performance.

PACS Office-Home DomainNet PHEME
ResNet-18 ResNet-50 ResNet-18 ResNet-50 ResNet-50 DistilBERT

Iwasawa & Matsuo (2021) 81.40 85.10 57.00 68.30 - -
Zhou et al. (2020a) 82.83 84.90 65.63 67.66 - -
Gulrajani & Lopez-Paz (2020) - 85.50 - 66.50 40.90 -
Wang et al. (2021) 83.09 86.23 64.13 67.99 - 75.8 ±0.23

Dubey et al. (2021) - - 68.90 43.90 -
Xiao et al. (2022) 84.15 87.51 66.02 71.07 - 76.1 ±0.21

This paper w/o adaptation 83.33 ±0.43 86.05 ±0.37 65.01 ±0.47 70.44 ±0.25 42.90 ±0.34 75.4 ±0.13

This paper w/ adaptation (10 steps) 84.25 ±0.48 87.05 ±0.26 65.73 ±0.32 71.13 ±0.43 43.75 ±0.49 76.0 ±0.16

This paper w/ adaptation (20 steps) 84.92 ±0.59 87.70 ±0.28 66.31 ±0.21 72.07 ±0.38 44.66 ±0.51 76.5 ±0.18

This paper w/ adaptation (50 steps) 85.10 ±0.33 88.12 ±0.25 66.75 ±0.21 72.25 ±0.32 44.98 ±0.43 76.9 ±0.16

down the decline of the energy. We provide more analyses of zt in Appendix E. In addition, the
training and test time cost is also larger as the step number increases, the comparisons and analyses
are also provided in Appendix E.

Comparisons. PACS, Office-Home, and DomainNet are three widely used benchmarks in domain
generalization. We conduct experiments on PACS and Office-Home based on both ResNet-18 and
ResNet-50 and experiments on DomainNet based on ResNet-50. As shown in Table 2, our method
achieves competitive and even the best overall performance in most cases. Moreover, our method
performs better than most of the recent test-time adaptation methods (Iwasawa & Matsuo, 2021; Wang
et al., 2021; Dubey et al., 2021), which fine-tunes the model at test time with batches of target samples.
By contrast, we strictly follow the setting of domain generalization. We only use the source data
to train the classification and energy-based models during training. At test time, we do our sample
adaptation and make predictions on each individual target sample by just the source-trained models.
Our method is more data efficient at test time, avoiding the problem of data collection per target
domain in real-world applications. Despite the data efficiency during inference, our method is still
comparable and sometimes better, especially on datasets with more categories, e.g., Office-Home and
DomainNet. Compared with the recent work by Xiao et al. (2022), our method is at least competitive
and often better. To show the generality of our method, we also conduct experiments on the natural
language processing dataset PHEME. The dataset is a binary classification task for rumour detection.
The results in Table 2 show similar conclusions as the image datasets.

Table 2 also demonstrates the effectiveness of our sample adaptation. For each dataset and backbone,
the proposed method achieves a good improvement after adaptation by the proposed discriminative
energy-based model. For fairness, the results without adaptation are also obtained by ensemble
predictions of the source-domain-specific classifiers. Moreover, larger steps (i.e., 50) lead to better
performance. The improvements of adaptation with 50 steps are slight. Considering the trade-off of
computational efficiency and performance, we set the step number as 20 in our paper. We provide
detailed comparisons, results on rotated MNIST and Fashion-MNIST datasets, as well as more
experiments on the latent variable, corruption datasets, and analyses of the ensemble inference
method in Appendix E.

4 RELATED WORK

Domain generalization. One of the predominant methods is domain invariant learning (Muandet
et al., 2013; Ghifary et al., 2016; Motiian et al., 2017; Seo et al., 2020; Zhao et al., 2020; Xiao et al.,
2021a; Mahajan et al., 2021; Nguyen et al., 2021; Phung et al., 2021; Shi et al., 2022). Muandet et al.
(2013) and Ghifary et al. (2016) learn domain invariant representations by matching the moments of
features across source domains. Li et al. (Li et al., 2018b) further improved the model by learning
conditional-invariant features. Recently, Mahajan et al. (2021) introduced causal matching to model
within-class variations for generalization. Shi et al. (2022) provided a gradient matching to encourage
consistent gradient directions across domains. Arjovsky et al. (2019) and Ahuja et al. (2021) proposed
invariant risk minimization to learn an invariant classifier. Another widely used methodology is
domain augmentation (Shankar et al., 2018; Volpi et al., 2018; Qiao et al., 2020; Zhou et al., 2020a;b;
Yao et al., 2022), which generates more source domain data to simulate domain shifts during training.
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Zhou et al. (2020b) proposed a data augmentation on the feature space by mixing the feature statistics
of instances from different domains. Meta-learning-based methods have also been studied for domain
generalization (Li et al., 2018a; Balaji et al., 2018; Dou et al., 2019; Du et al., 2021b; Bui et al., 2021;
Du et al., 2021c). Li et al. (2018a) introduced the model agnostic meta-learning (Finn et al., 2017)
into domain generalization. Du et al. (2020b) proposed the meta-variational information bottleneck
for domain-invariant learning.

Test-time adaptation and source-free adaptation. Recently, adaptive methods have been proposed
to better match the source-trained model and the target data at test time (Sun et al., 2020; Li et al.,
2020; D’Innocente et al., 2019; Pandey et al., 2021; Iwasawa & Matsuo, 2021; Dubey et al., 2021;
Zhang et al., 2021). Test-time adaptation (Sun et al., 2020; Wang et al., 2021; Liu et al., 2021; Zhou &
Levine, 2021) fine-tunes (part of) a network trained on source domains by batches of target samples.
Xiao et al. (2022) proposed single-sample generalization that adapts a model to each target sample
under a meta-learning framework. There are also some source-free domain adaptation methods (Liang
et al., 2020; Yang et al., 2021; Dong et al., 2021; Liang et al., 2021) that adapt the source-trained
model on only the target data. These methods follow the domain adaptation settings to fine-tune the
source-trained model by the entire target set. By contrast, we do sample adaptation at test time but
strictly follow the domain generalization settings. In our method, no target sample is available during
the training of the models. At test time, each target sample is adapted to the source domains and
predicted by the source-trained model individually, without fine-tuning the models.

Energy-based model. The energy-based model is a classical learning framework (Ackley et al., 1985;
Hinton, 2002; Hinton et al., 2006; LeCun et al., 2006). Recently, (Xie et al., 2016; Nijkamp et al.,
2019; 2020; Du & Mordatch, 2019; Du et al., 2021a; Xie et al., 2022) further extend the energy-based
model to high-dimensional data using contrastive divergence and Stochastic Gradient Langevin
dynamics. Wang et al. (2023) utilize the energy-based model for effective self-supervised pretraining
of vision models. Different from most of these works that model the data distributions, some recent
works model the joint distributions (Grathwohl et al., 2020; Xiao et al., 2021b). In our work, we
define the joint distribution of data and label to promote the classification of unseen target samples
in domain generalization. We further incorporate a latent variable to incorporate the categorical
information into the Langevin dynamics procedure. Energy-based models for various tasks have been
proposed, e.g., image generation (Du et al., 2020a; Nie et al., 2021), out-of-distribution detection (Liu
et al., 2020), and anomaly detection (Dehaene et al., 2020; Wang et al., 2022). Some methods also
utilize energy-based models for domain adaptation (Zou et al., 2021; Xie et al., 2021; Kurmi et al.,
2021). Different from these methods, we focus on domain generalization and utilize the energy-based
model to express the source domain distributions without any target data during training.

5 CONCLUSION AND DISCUSSIONS

In this paper, we propose a discriminative energy-based model to adapt the target samples to the
source data distributions for domain generalization. The energy-based model is designed on the joint
space of input, output, and a latent variable, which is constructed by a domain specific classification
model and an energy function. With the trained energy-based model, the target samples are adapted
to the source distributions through Langevin dynamics and then predicted by the classification model.
Since we aim to prompt the classification of the target samples, the model is trained to achieve
label-preserving adaptation by incorporating the categorical latent variable. We evaluate the method
on six image and text benchmarks. The results demonstrate its effectiveness and generality. We have
not tested our approach beyond image and text classification tasks, but since our sample adaptation is
conducted on the feature space, it should be possible to extend the method to other complex tasks
based on feature representations.

Compared with recent model adaptation methods, our method does not need to adjust the model
parameters at test time, which requires batches of target samples to provide sufficient target infor-
mation. This is more data efficient and challenging at test time, therefore the training procedure is
more involved with complex optimization objectives. One limitation of our proposed method is the
iterative adaptation requirement for each target sample, which introduces an extra time cost at both
training and test time. The problem can be mitigated by speeding up the energy minimization with
optimization techniques during Langevin dynamics, e.g., Nesterov momentum (Nesterov, 1983), or
by exploring one-step methods for sample adaptation. We leave these explorations for future work.
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A DERIVATIONS

Derivation of energy-based sample adaptation. Recall our discriminative energy-based model

pθ,ϕ(x,y) = pϕ(y|x)
exp(−Eθ(x))

Zθ,ϕ
, (12)

where Zθ,ϕ =
∫
pϕ(y|x)exp(−Eθ(x))dxdy is the partition function. ϕ and θ denote the parameters

of the classifier and energy function, respectively. To jointly train the parameters, we minimize the
contrastive divergence proposed by Hinton (2002):

L = DKL[pd(x,y)||pθ,ϕ(x,y)]− DKL[qθ,ϕ(x,y)||pθ,ϕ(x,y)], (13)

where pd(x,y) denotes the real data distribution and qθ,ϕ(x,y) =
∏t
θ p(x,y) denotes t sequential

MCMC samplings from the distribution expressed by the energy-based model (Du et al., 2021a). The
gradient of the first term with respect to θ and ϕ is

∇θ,ϕDKL[pd(x,y)||pθ,ϕ(x,y)] = ∇θ,ϕEpd(x,y)
[
log

pd(x,y)

pθ,ϕ(x,y)

]
= Epd(x,y)

[
∇θ,ϕlog pd(x,y)−∇θ,ϕlog pθ,ϕ(x,y)

]
= Epd(x,y)

[
−∇θ,ϕlog pθ,ϕ(x,y)

]
,

(14)

while the gradient of the second term is

∇θ,ϕDKL[qθ,ϕ(x,y)||pθ,ϕ(x,y)]

=∇θ,ϕEqθ,ϕ(x,y)
[
log

qθ,ϕ(x,y)

pθ,ϕ(x,y)

]
=∇θ,ϕqθ,ϕ(x,y)∇qθ,ϕDKL[qθ,ϕ(x,y)||pθ,ϕ(x,y)] + Eqθ,ϕ(x,y)

[
−∇θ,ϕlog pθ,ϕ(x,y)

]
.

(15)

Combining eq. (14) and eq. (15), we have the overall gradient as:

∇θ,ϕLall =− (Epd(x,y)
[
∇θ,ϕlog pθ,ϕ(x,y)

]
− Eqθ,ϕ(x,y)

[
∇θ,ϕlog pθ,ϕ(x,y)

]
+∇θ,ϕqθ,ϕ(x,y)∇qθ,ϕDKL[qθ,ϕ(x,y)||pθ,ϕ(x,y)]).

(16)

For the first two terms, the gradient can be further derived to

Epd(x,y)
[
∇θ,ϕlog pθ,ϕ(x,y)

]
− Eqθ,ϕ(x,y)

[
∇θ,ϕlog pθ,ϕ(x,y)

]
=Epd(x,y)

[
∇θ,ϕ(log pϕ(y|x)− Eθ(x)− log Zθ,ϕ)

]
−Eqθ,ϕ(x,y)

[
∇θ,ϕ(log pϕ(y|x)− Eθ(x)− log Zθ,ϕ)

]
.

(17)

Moreover, ∇θ,ϕlog Zθ,ϕ can be written as the expectation Epθ,ϕ(x,y)[∇ϕlog pϕ(y|x) −∇θEθ(x)]
(Song & Kingma, 2021; Xiao et al., 2021b), which is therefore canceled out in eq. (17) (Hinton,
2002). We then have the loss function for the first two terms as

L1 = Epd(x,y)
[
Eθ(x)− log pϕ(y|x)

]
− Eqθ,ϕ(x,y)

[
Eθ(x)− log pϕ(y|x)

]
. (18)

Furthermore, we have the loss function

L2 = Eqθ,ϕ(x,y)
[
log

qθ,ϕ(x,y)

pstop_grad(θ,ϕ)(x,y)

]
= − Eqθ,ϕ(x,y)

[
logpstop_grad(ϕ)(y|x)− Estop_grad(θ)(x)− logZstop_grad(θ,ϕ)

]
+ Eqθ,ϕ(x,y)

[
logqθ,ϕ(x,y)

]
,

(19)

which has the same gradient as the last term in eq. (16) (Du et al., 2021a). The stop_grad here means
that we do not backpropagate the gradients to update the parameters by the corresponding forward
functions. Thus, these parameters can be treated as constants.

Since the gradient of θ and ϕ is stopped in log Zstop_grad(θ,ϕ), we treat it as a constant independent
of qθ,ϕ(x,y) and therefore remove it from the eq. (19). In addition, the term Eqθ,ϕ(x,y)

[
log pϕ(y|x)

]
in eq. (18) encourages wrong prediction of the updated samples from qθ,ϕ(x,y), which goes against

15



Published as a conference paper at ICLR 2023

our goal of promoting classification by adapting target samples. The term Eqθ,ϕ(x,y)
[
logqθ,ϕ(x,y)

]
in eq. (19) can be treated as a negative entropy of qθ,ϕ(x,y), which is always negative and hard to
estimate. Therefore, we remove these two terms in the final loss function by applying an upper bound
of the combination of eq. (18) and eq. (19) as:

L =− Epd(x,y)
[
log pϕ(y|x)

]
+ Epd(x,y)

[
Eθ(x)

]
− Estop_grad(qθ,ϕ(x,y))

[
Eθ(x)

]
+ Eqθ,ϕ(x,y)

[
Estop_grad(θ)(x)− log pstop_grad(ϕ)(y|x)

]
.

(20)

Energy-based sample adaptation with categorical latent variable. To keep the categori-
cal information during sample adaptation, we introduce a categorical latent variable z into
our discriminative energy-based model, which is defined as pθ,ϕ(x,y) =

∫
pθ,ϕ(x,y, z)dz =∫

pϕ(y|z,x)pϕ(z|x) exp(−Eθ(x|z))
Zθ,ϕ

dz. We optimize the parameters θ and ϕ also by the contrastive
divergence DKL[pd(x,y)||pθ,ϕ(x,y)]− DKL[qθ,ϕ(x,y)||pθ,ϕ(x,y)], which has similar gradient as
eq. (14) and eq. (15). The latent variable z is estimated by variational inference, leading to a lower
bound of log pθ,ϕ(x,y) ≥ Eqϕ(z)[log pϕ(y|z,x)−Eθ(x|z)− log Zθ,ϕ] +DKL[qϕ(z|dx)||pϕ(z|x)].
We obtain the final loss function of the contrastive divergence in a similar way as eq. (20) by estimat-
ing the gradient and remove the terms that are hard to estimate or conflict with our final goal. The
final objective function is:

Lf = Epd(x,y)
[
Eqϕ(z)[−log pϕ(y|z,x)] + DKL[qϕ(z|dx)||pϕ(z|x)]

]
+ Eqϕ(z)

[
Epd(x)[Eθ(x|z)]

− Estop_grad(qθ(x))[Eθ(x, z)]
]
+ Eqθ(x)

[
Eqstop_grad(ϕ)(z)

[
Estop_grad(θ)(x, z)

− log pstop_grad(ϕ)(y|z,x)
]
− DKL[qstop_grad(ϕ)(z|dx)||pstop_grad(ϕ)(z|x)]

]
.

(21)

B ALGORITHM

We provide the detailed training and test algorithm of our energy-based sample adaptation in Algo-
rithm 1.

C DATASETS AND IMPLEMENTATION DETAILS

Model. To be efficient, we train a shared backbone for all source domains while a domain-specific
classifier and a neural-network-based energy function for each source domain. The feature extractor
backbone is a basic Residual Network without the final fully connected layer (classifier). Both the
prior distribution pϕ(z|x) and posterior distribution qϕ(z|dx) of the latent variable z are generated by
a neural network ϕ that consists of four fully connected layers with ReLU activation, which outputs
the mean and variance of the distribution. The last layer of ϕ outputs both the mean and standard
derivation of the distribution pϕ(z|x) and qϕ(z|dx) for further Monte Carlo sampling. The dimension
of z is the same as the feature representations x, e.g., 512 for ResNet-18 and 2048 for ResNet-50. dx

is obtained by the center features of the batch of samples that have the same categories as the current
sample x in each iteration.

Deployed on feature representations, the energy function consists of three fully connected layers with
two dropout layers. The latent variable z is incorporated into the energy function by concatenating
with the feature representation x. The input dimension is doubled of the output feature of the
backbone, i.e., 1024 for ResNet-18 and 4096 for ResNet-50. We use the swish function as activation
in the energy functions (Du et al., 2021a). The final output of the EBM is a scalar, which is processed
by a sigmoid function following Du et al. (2021a) to bound the energy to the region [0, 1] and improve
the stability during training. During training, we introduce a replay buffer B to store the past updated
samples from the modeled distribution (Du & Mordatch, 2019). By sampling from B with 50%
probability, we can initialize the negative samples with either the sample features from other source
domains or the past Langevin dynamics procedure. This can increase the number of sampling steps
and the sample diversity.

Training details and hyperparameters. We evaluate on PACS with both a ResNet-18 and ResNet-50
pretrained on ImageNet. We use Adam optimization and train for 10,000 iterations with a batch size
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Algorithm 1 Energy-based sample adaptation
TRAINING TIME
Require: Source domains Ds=

{
Di
s

}S
i=1

each with joint distribution pdis(I,y) of input image and label.
Require: Learning rate µ; iteration numbers M ; step numbers K and step size λ of the energy function.
Initialize pretrained backbone ψ; ϕi, θi,Bi = ∅ for each source domain Di

s.
for iter in M do

for Di
s in Ds do

Sample datapoints {(Ii,yi)} ∼ pdis(I,y); {(I
j ,yj)} ∼ {p

d
j
s
(I,y)}j ̸=i or B with 50% probability.

Feature representations xi = fψ(I
i),xj = fψ(I

j)
for k in K do

xjk ← xjk−1 −∇xEθi(x
j
k−1|z

j) + ω, zj ∼ qϕi(zj |dxj ), ω ∼ N (0, σ).
end for
qθi(x)← xjk, pd(x)← pdis(x

i).
(ψ, ϕi)← (ψ, ϕi)− λ∇ψ,ϕiLf (pd(x)) θi ← θi − λ∇θiLf (pd(x), qθi(x)).
Bi ← Bi ∪ xjk

end for
end for

TEST TIME
Require: Target images It from the target domain; trained backbone ψ; and domain-specific model ϕi, θi for
each source domain in

{
Di
s

}S
i=1

.
Input feature representations xt = fψ(It).
for i in {1, . . . , S} do

for k in K do
xt,k ← xt,k−1 −∇xEθi(xt,k−1|zt) + ω, zt ∼ pϕi(zt|xt), ω ∼ N (0, σ).

end for
yit = pϕi(yt|xt,k, zt)

end for
return yt =

1
S

∑S
i=1 y

i
t.

Table 3: Implementation details of our method per dataset and backbone.

Dataset Backbone Backbone learning rate Step size Number of steps

PACS ResNet-18 0.00005 50 20
ResNet-50 0.00001 50 20

Office-Home ResNet-18 0.00001 100 20
ResNet-50 0.00001 100 20

Rotated MNIST ResNet-18 0.00005 50 20

Fashion-MNIST ResNet-18 0.00005 50 20

PHEME DistilBERT 0.00003 40 20

of 128. We set the learning rate to 0.00005 for ResNet-18, 0.00001 for ResNet-50, and 0.0001 for the
energy-based model and classification model. We use 20 steps of Langevin dynamics sampling to
adapt the target samples to source distributions, with a step size of 50. We set the number of Monte
Carlo sampling N in eq. (11) as 10 for PACS. Most of the experimental settings on Office-Home are
the same as on PACS. The learning rate of the backbone is set to 0.00001 for both ResNet-18 and
ResNet-50. The number of Monte Carlo sampling is 5. For fair comparison, we evaluate the rotated
MNIST and Fashion-MNIST with ResNet-18, following (Piratla et al., 2020). The other settings are
also the same as PACS. On PHEME we conduct the experiments based on a pretrained DistilBERT.
We set the learning rate as 0.00003 and use 20 steps of Langevin dynamics with a step size of 20.

We train all models on an NVIDIA Tesla V100 GPU for 10,000 iterations. The learning rates of the
backbone are different for different datasets as shown in Table 3. The learning rates of the domain-
specific classifiers and energy functions are both set to 0.0001 for all datasets. For each source
domain, we randomly select 128 samples as a batch to train the backbone and classification model.
We also select 128 samples from the other source domains together with the current domain samples
to train the domain-specific energy function. We use a replay buffer with 500 feature representations
and apply spectral normalization on all weights of the energy function (Du & Mordatch, 2019). We
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Source domain: photo Source domain: cartoon Source domain: sketch

Source samples
Target samples
Target samples
after adaptation

Figure 5: Benefit of energy-based test sample adaptation. Different shapes denote different classes.
From left to right: adaptation to the source domains photo, cartoon, and sketch of samples from the
target domain art-painting. After adaptation, the target samples ( ) are more close to the source
data ( ) than before ( ), demonstrating the effectiveness of our method. Best viewed in color.

use random noise with standard deviation λ = 0.001 and clip the gradients to have individual value
magnitude of less than 0.01 similar to (Du & Mordatch, 2019). The step size and number of steps for
Langevin dynamics are different for different datasets as shown in Table 3.

D VISUALIZATIONS

More visualizations of the adaptation procedure. To further show the effectiveness of the iterative
adaptation of target samples, we provide more visualizations on PACS. Figure 5 visualizes the
source domain features and the target domain features both before and after the adaptation to each
individual source domain. Figure 6 visualizes more iterative adaptation procedure of the target
samples. Subfigures in different rows show the adaptation of samples from different target domains
to source domains. Similar with the visualizations in the main paper, the target samples gradually
approach the source data distributions during the iterative adaptation. Therefore, the predictions of
the target samples on the source domain classifier become more accurate after adaptation.

Failure cases. We also provide some failure cases on PACS in Figure 7 to gain more insights in
our method. Our method is confused with samples that have objects of different categories (first
row) and multiple objects or complex background (last three rows). A possible reason is that there is
noisy information contained in the latent variable of these samples, leading to adaptation without a
clear direction, which behaves as wrong adaptation directions, e.g., visualization in row 1 column
4, or unstable updates with fluctuations in small regions, e.g., visualizations in row 2 column 3 and
row 3 column 4. Obtaining the latent variable with more accurate and clear categorical information
can be one solution for these failure cases. We can also solve the problem by achieving more stable
adaptations with optimization techniques like Nesterov momentum (Nesterov, 1983). Moreover,
although failing in these cases, the adaptation of the target sample to some source domains still
improves the performance, e.g., the adaptation of the photo sample (row 1 column 2) and cartoon
sample (row 3 column 3) to the art-painting domain and the adaptation of the sketch sample (row 4
column 4) to the cartoon domain, which further demonstrate the effectiveness of our iterative sample
adaptation through the energy-based model. The results motivate another solution for these failure
cases, which is to learn to select the best source domain, or top-n source domains for adaptation and
prediction of each target sample. We leave these explorations for future work.

E MORE EXPERIMENTAL RESULTS

Analyses and discussions of the categorical latent variables. In the proposed method, the
categorical latent representation for the test sample will have high fidelity to the correct class. This
is guaranteed by the training procedure of our method. As shown in the training objective function
(eq. 10), we minimize the KL divergence to encourage the prior pϕ(z|x) to be close to the variational
posterior qϕ(z|dx). dx is essentially the class prototype containing the categorical information.
By doing so, we train the inference model pϕ(z|x) to learn to extract categorical information from
a single sample. Moreover, we also supervise the sample adaptation procedures by the predicted
log-likelihood of the adapted samples (the last term in eq. (10)). The supervision is inherent in the
objective function of our discriminative energy-based model as in the derivation of eq. (7) and eq.
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Source: art-painting
Target: photo
Category: dog

Source: cartoon
Target: photo

Category: giraffe

Source: sketch
Target: photo
Category: guitar

Probability on dog:
18.3% 87.0%

Probability on giraffe:
24.5% 89.3%

Probability on guitar:
17.9% 100%

Source: photo
Target: art-painting

Category: horse

Source: cartoon
Target: art-painting

Category: giraffe

Source: sketch
Target: art-painting
Category: house

Probability on horse:
16.5% 84.7%

Probability on giraffe:
2.6% 89.1%

Probability on house:
16.1% 82.2%

Source: art-painting
Target: cartoon
Category: elephant

Source: photo
Target: cartoon
Category: horse

Source: sketch
Target: cartoon
Category: person

Probability on elephant :
33.6% 67.8%

Probability on horse:
6.5% 77.8%

Probability on person:
12.2% 92.6%

Source: photo
Target: sketch
Category: dog

Source: art-painting
Target: sketch

Category: horse

Source: cartoon
Target: sketch
Category: guitar

Probability on dog:
8.7% 100%

Probability on horse:
33.2% 90.6%

Probability on guitar:
37.7% 84.9%

Figure 6: More visualizations of the iterative adaptation on PACS. We visualize the adaptation
of samples from different target domains to source domains on PACS. Each subfigure shows the
adaptation of one target sample to one source domain. The adaptation procedure of the target samples
is represented by the gradient color from green to red. In each figure, the target sample has the
same label as the source data, but is mispredicted due to domain shifts. During adaptation, the target
samples gradually approach the source distributions and eventually get correct predictions.

(10). Due to this supervision, the model is trained to learn to adapt out-of-distribution samples to the
source distribution while being able to maintain the correct categorical information conditioned on z
Although trained only on source domains, the ability can be generalized to the target domain since
it is trained by mimicking different domain shifts during training. To further show that z captures
the categorical information in x, we visualized the features xt and latent variables zt of the target
samples in Figure 8, which shows that zt actually captures the categorical information. Moreover, zt
is more discriminative than xt as shown in the figure. Although zt is approximated by only xt during
inference.
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Label: guitar
Prediction: person

Label: dog
Prediction: horse

Label: person
Prediction: dog

Label: person
Prediction: guitar

Source: art-painting

Probability on guitar:
8.3% 57.5%

Source: cartoon Source: sketch

Probability on guitar:
5.4% 24.5%

Probability on guitar:
4.7% 14.1%

Probability on dog:
0.01% 10.3%

Probability on dog:
0.01% 0.01%

Probability on dog:
0.01% 7.5%

Probability on person:
3.1% 71.4%

Probability on person:
3.7% 3.6%

Probability on person:
0.8% 0.1%

Probability on person:
5.8% 10.3%

Probability on person:
12.3% 17.1%

Probability on person:
21.8% 56.1%

Source: photo Source: cartoon Source: sketch

Source: photo Source: art-painting Source: sketch

Source: photo Source: art-painting Source: cartoon

Figure 7: Failure case visualizations of our method on PACS. The visualization settings are the
same as Figure 6. Our method makes wrong predictions on samples with complex background or
multiple objects. However, our method still achieves good adaptation of these target samples to some
source domains, which shows its effectiveness.

Moreover, the categorical latent variable benefits the correctness of the model in the case that the
target samples are adapted to previously unexplored regions with very large numbers of steps. Our
optimization objective is to minimize the energy to adapt the sample, therefore it is possible that the
energy of the target samples is lower than the source data after very large numbers of steps. In this
case, the adapted samples could arrive in previously unexplored regions due to the limit of source data.
This can further be demonstrated in Figure 4, where the performance of the adapted samples drops
after large numbers of steps, reaching a low energy value. Additionally, in the unexplored regions,
the classifier could not be well trained, which might also be a reason for causing the performance
drop. This is also one reason that we set the number of steps as a small value, e.g., 20 and 50. The
categorical latent variable benefits the correctness of the model in such cases as also can be found in
Figure 4. The oracle model shows almost no performance degradation even with small energy values
after adaptation. The model with the latent variable p(z|x) is also more robust to the step numbers
and energy values than the model without z. These results show the role of the latent variable in
preserving the categorical information during adaptation and somewhat correcting prediction after
adaptation.

With the categorical latent variable z, it is natural to make the final prediction directly by pϕ(y|z)
without the sample adaptation procedure. However, here we would like to clarify that it is sub-optimal.
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Visualizations of 𝐱! Visualizations of 𝐳!

Figure 8: Visualizations of the target features xt and categorical latent variables zt. We use
art-painting on PACS as the target domain. Different colors denote different categories. zt is obtained
by pϕ(zt|xt). Most data points of zt are clustered according to their labels, demonstrating that zt
can capture the categorical information.

Table 4: Analyses on the categorical latent variable. As expected, prediction on the adapted target
samples x performs better than prediction directly on the categorical latent variable z.

(a) Overall comparisons on PACS and Office-Home.

PACS Office-Home
ResNet-18 ResNet-50 ResNet-18 ResNet-50

predict directly on z 82.46 ±0.34 85.95 ±0.33 64.49 ±0.25 70.60 ±0.53

predict on adapted target samples x 84.92 ±0.59 87.70 ±0.28 66.31 ±0.21 72.07 ±0.38

(b) Detailed comparisons on PACS.

Photo Art-painting Cartoon Sketch Mean

Predict directly on z
No adaptation 94,22 ±0.25 79.52 ±0.21 80.46 ±0.43 75.63 ±0.68 82.46 ±0.34

Predict on z with model adaptation (Tent)
Adaptation with 1 sample per step 80.49 ±0.27 44.14 ±0.38 51.49 ±0.44 30.28 ±0.66 51.60 ±0.37

Adaptation with 16 samples per step 93.65 ±0.33 80.20 ±0.24 76.90 ±0.52 68.49 ±0.72 79.81 ±0.31

Adaptation with 64 samples per step 96.04 ±0.33 81.91 ±0.37 80.81 ±0.64 76.33 ±0.65 83.77 ±0.41

Adaptation with 128 samples per step 97.25 ±0.24 84.91 ±0.31 81.12 ±0.47 76.80 ±0.83 85.02 ±0.49

Predict on adapted target samples x with our method
Adaptation with 1 sample x 96.05 ±0.37 82.28 ±0.31 81.55 ±0.65 79.81 ±0.41 84.92 ±0.59

The latent variable is dedicated to preserving the categorical information in x during adaptation. It
still contains the domain information of the target samples. Therefore, it is not optimal to directly
make predictions on the latent variable z due to the domain shifts between the z and the source-
trained classifiers. By contrast, the proposed method moves the target features close to the source
distributions to address domain shifts while preserving the categorical information during adaptation.
To show how it works by direct prediction on z, we provide the experimental results of making
predictions only from z in Table 4. As expected it is worse than predictions on the adapted target
features x, demonstrating the analysis we provided above.

To show the advantages of our method, we also combine the prediction of the latent variable z with
model adaptation methods. We use the online adaptation proposed by Wang et al. (2021), where all
target samples are utilized to adapt the source-trained models in an online manner. The model keeps
updating step by step. In each step, the model is adapted to one batch of target samples. As shown
in Table 4b, with large numbers of target samples per step, e.g., 128, the adaptation with Tent is
competitive. However, when the number of samples for online adaptation is small, e.g., 1 and 16, the
performance of the adapted model even drops, especially for single sample adaptation. By contrast,
our method adapts each target sample to the source distribution. All target samples are adapted and
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Table 5: Training cost of the proposed method. Compared with ERM, our method has about 20%
more parameters, most of which come from the energy functions of source domains. Similar to test
time, the time cost of training increases along with the number of steps of the energy-based model.

Parameters Adaptation steps 10000 iterations training time

ERM 11.18M - 6.2 h

This paper 13.73M

20 7.9 h
40 9.4 h
60 10.6 h
80 12.1 h

100 14.0 h

Table 6: Comparisons on PACS. Our method achieves best mean accuracy with a ResNet-18
backbone and is competitive with ResNet-50.

Backbone Method Photo Art-painting Cartoon Sketch Mean

ResNet-18

Dou et al. (2019) 94.99 80.29 77.17 71.69 81.04
Iwasawa & Matsuo (2021) - - - - 81.40
Zhao et al. (2020) 96.65 80.70 76.40 71.77 81.46
Wang et al. (2021) 95.49 81.55 77.67 77.64 83.09
Zhou et al. (2020b) 96.10 84.10 78.80 75.90 83.70
Xiao et al. (2022) 95.87 82.02 79.73 78.96 84.15
This paper 96.05 ±0.37 82.28 ±0.31 81.55 ±0.65 79.81 ±0.41 84.92 ±0.59

ResNet-50

Dou et al. (2019) 95.01 82.89 80.49 72.29 82.67
Dubey et al. (2021) - - - - 84.50
Iwasawa & Matsuo (2021) - - - - 85.10
Zhao et al. (2020) 98.25 87.51 79.31 76.30 85.34
Gulrajani & Lopez-Paz (2020) 97.20 84.70 80.80 79.30 85.50
Wang et al. (2021) 97.96 86.30 82.53 78.11 86.23
Seo et al. (2020) 95.99 87.04 80.62 82.90 86.64
Xiao et al. (2022) 97.88 88.09 83.83 80.21 87.51
This paper 97.67 ±0.14 88.00 ±0.29 84.75 ±0.39 80.40 ±0.38 87.70 ±0.28

predicted equally and individually. The overall performance of our method is comparable to Tent
with 128 samples per adaptation step.

Time cost with different adaptation steps. As the number of steps increases, both the training and
test time cost consistently increases for all target domains. Without adaptation, the test time cost for
one test batch is about 0.05 second. The 20-step adaptation will take about 0.1 extra second. This
number will increase to 0.25 second with 50 steps. The test time increases by more than 0.5 seconds
for 100 iterations, which is ten times that without adaptation and might limit the application of the
proposal. The training time cost is more than two times that for ERM for 100 iterations as shown in
Table 5. Since the extra time cost is mainly caused by the iterative adaptation, potential solutions can
be speeding up the Langevin dynamics with some optimization techniques like Nesterov momentum
(Nesterov, 1983), or exploring some one-step methods for the target sample adaptation. In other
experiments on PACS in the paper we use 20 steps for all target domains considering both the overall
performance and the time cost.

Detailed comparisons. We provide the detailed performance of each target domain on PACS
(Table 6), Office-Home (Table 7), and PHEME (Table 8). On PACS, our method achieves competitive
results on each target domain and the best overall performance with both ResNet-18 and ResNet-50
as the backbone. Moreover, our method performs better than most of the recent model adaptation
methods (Wang et al., 2021; Dubey et al., 2021; Iwasawa & Matsuo, 2021; Xiao et al., 2022). The
conclusion on Office-Home and PHEME is similar to that on PACS. We achieve competitive and
even better performance on each target domain.

Results on single source domain generalization. To show the ability of our method of handling
corruption distribution shifts and single source domain generalization, we conduct some experiments
on CIFAR-10-C and ImageNet-C. We train the model on original data and evaluate it on the data
with 15 types of corruption.
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Table 7: Comparisons on Office-Home. Our method achieves the best mean accuracy using both a
ResNet-18 and ResNet-50 backbone.

Backbone Method Art Clipart Product Real World Mean

ResNet-18

Iwasawa & Matsuo (2021) 47.00 46.80 68.00 66.10 57.00
Wang et al. (2021) 56.45 52.06 73.19 74.82 64.13
Xiao et al. (2022)] 59.39 53.94 74.68 76.07 66.02
This paper 60.08 ±0.33 53.93 ±0.34 74.50 ±0.39 76.74 ±0.24 66.31 ±0.21

ResNet-50

Gulrajani & Lopez-Paz (2020) 61.30 52.40 75.80 76.60 66.50
Wang et al. (2021) 62.12 56.65 75.61 77.58 67.99
Dubey et al. (2021) - - - - 68.90
Xiao et al. (2022) 67.21 57.97 78.61 80.47 71.07
This paper 69.33 ±0.14 58.37 ±0.30 79.29 ±0.32 81.26 ±0.26 72.07 ±0.38

Table 8: Generalization beyond image data. Rumour detection on the PHEME microblog dataset.
Our method achieves the best overall performance and is competitive in each domain.

Charlie Hebdo Ferguson German Wings Ottawa Shooting Sydney Siege Mean

ERM Baseline 79.4 ±0.25 77.1 ±0.36 75.7 ±0.12 68.2 ±0.48 75.0 ±0.28 75.1 ±0.29

Wang et al. (2021) 80.1 ±0.18 76.9 ±0.56 74.7 ±0.52 72.0 ±0.48 75.4 ±0.34 75.8 ±0.23

Xiao et al. (2022) 81.0 ±0.52 77.2 ±0.25 75.7 ±0.31 70.0 ±0.46 76.5 ±0.22 76.1 ±0.21

This paper 81.8 ±0.43 77.8 ±0.37 75.3 ±0.14 71.9 ±0.28 75.6 ±0.15 76.5 ±0.18

Table 9: Experiments on single-source domain generalization. The model is trained on original
data and evaluated on 15 different types of corruption. Our method is competitive with Sun et al.
(2020), Rusak et al. (2020) and Hendrycks et al. (2020), and is outperformed by Wang et al. (2021).
Mimicking good domain shifts during training is important for our method.

Method CIFAR-10-C ImageNet-C
Yun et al. (2019) 31.1 -
Guo et al. (2019) 25.8 -
Hendrycks et al. (2020) 17.4 51.7
Rusak et al. (2020) - 50.2
Sun et al. (2020) 17.5 -
Wang et al. (2021) 14.3 44.0
This paper (noisy data as negative samples) 21.5 55.8
This paper (corrupted data as negative samples) 17.0 51.1

Since our method needs to mimic distribution shifts to train the discriminative energy-based model
during training, for the single source domain setting, we generate the negative samples by adding
random noise to the image and features of the clean data. We also use the other 4 corruption types
(not contained in the evaluation corruption types) as the negative samples during training, which
we regard as “corrupted data as negative samples”. Note that these corrupted data are only used
as negative samples to train the energy-based model. As shown in Table 9, by mimicking better
domain shifts during training, our method achieves competitive results with Sun et al. (2020). We
also compare our method with some data-augmentation-based methods (e.g., Mixup (Guo et al.,
2019), CutMix (Yun et al., 2019) and AugMix (Hendrycks et al., 2020)), our sample adaptation is
also competitive with these methods. The proposed method performs worse with a single source
domain, although we generate extra negative samples to mimic the domain shifts. The reason can be
that the randomly generated domain shifts do not well simulate the domain shift at test time.

Analyses for ensemble prediction. We conduct several experiments on PACS to analyze the
ensemble inference in our method. We first provide the results of each source-domain-specific
classifier before and after sample adaptation. As shown in Table 10, Although the performance before
and after adaptation to different source domains are different due to domain shifts, the proposed
sample adaptation to most of the source domains performs better. Moreover, the ensemble inference
further improves the overall performance of both without and with sample adaptation, where the
results with sample adaptation are still better, as expected.

We also try different aggregation methods to make the final predictions. The results are provided
in Table 11. The best results in Table 10 are comparable, but it is difficult to find the best source
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Table 10: Sample adaptation to each source domain on PACS. The experiments are conducted
on ResNet-18. Due to the domain shifts between the target domain and different source domains,
the performance before and after adaptation are different. The results with sample adaptation to
most of the source domains are better than those without adaptation. The ensemble inference further
improves the overall performance, where the results with sample adaptation are still better than that
without adaptation.

(a) Photo

Art-painting Cartoon Sketch Ensemble

w/o adaptation 95.79 ±0.23 95.03 ±0.27 95.05 ±0.42 95.12 ±0.41

w/ adaptation 95.81 ±0.27 94.69 ±0.21 95.99 ±0.45 96.05 ±0.37

(b) Art-painting

Photo Cartoon Sketch Ensemble

w/o adaptation 78.52 ±0.43 79.68 ±0.37 79.83 ±0.52 79.79 ±0.64

w/ adaptation 81.49 ±0.33 82.19 ±0.35 80.81 ±0.43 82.28 ±0.31

(c) Cartoon

Photo Art-painting Sketch Ensemble

w/o adaptation 79.05 ±0.33 78.93 ±0.41 78.80 ±0.55 79.15 ±0.37

w/ adaptation 81.09 ±0.38 80.44 ±0.31 80.32 ±0.71 81.55 ±0.65

(d) Sketch

Photo Art-painting Cartoon Ensemble

w/o adaptation 78.32 ±0.56 76.98 ±0.73 76.16 ±0.82 79.28 ±0.82

w/ adaptation 79.72 ±0.43 79.69 ±0.67 79.77 ±0.45 79.81 ±0.41

Table 11: Analyses of different aggregation methods for the predictions. The experiments are
conducted on PACS using ResNet-18. The results with different aggregation methods are similar
while ensemble inference performs slightly better.

Aggregation methods Photo Art-painting Cartoon Sketch Mean

Adaptation to the closest source domain 95.41 ±0.28 79.86 ±0.41 79.67 ±0.44 78,97 ±0.72 83.48 ±0.43

Weighted average of adaptation to different source domains 95.93 ±0.33 82.18 ±0.37 81.24 ±0.52 79.54 ±0.77 84.76 ±0.55

Most confident prediction after adaptation 95.77 ±0.25 81.93 ±0.31 80.67 ±0.65 79.25 ±0.62 84.41 ±0.32

Ensemble (This paper) 96.05 ±0.37 82.28 ±0.31 81.55 ±0.65 79.81 ±0.41 84.92 ±0.59

domain for adaptation before obtaining the results. We tried to find the closest source domain of each
target sample by the cosine similarity of feature representations and the predicted confidence. We
also tried to aggregate the predictions by weighted average according to the Cosine similarity. With
cosine similarity, the weighted averaged results are comparable to the common ensemble method
we used in the paper, but the results of adaptation to the closest source domain are not so good. The
reason can be that the cosine measure is not able to estimate the domain relationships, showing
that it is difficult to reliably estimate the relationships between source and single target samples.
The results obtained by using the most confident adaptation are also not as good as the ensemble
method, although comparable. The reason can be that ensemble methods introduce uncertainty into
the predictions, which is more robust.

Benefit for larger domain gaps. To show the benefit of our proposal for domain generalization
scenarios with large gaps, we conduct experiments on rotated MNIST and Fashion MNIST. The
results are shown in Figure 9. The models are trained on source domains with rotation angles from
15◦ to 75◦, 30◦ to 60◦, and 30◦ to 45◦, and always tested on target domains with angles of 0◦ and
90◦. As the number of domains seen during training decreases the domain gap between source and
target increases, and the performance gaps between our method and others becomes more pronounced.
Notably, when comparing our method with the recent test-time adaptation of Xiao et al. (2022), which
adapts a model to each target sample, shows adapting target samples better handles larger domain
gaps than adapting the model.
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Figure 9: Benefit for larger domain gaps. We train on different source set distributions and evaluate
on target sets with rotation angles of 0◦ and 90◦. As the domain gap between source and target sets
increases, our method performs better than alternatives.
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