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A B S T R A C T

Deep-learning-based deformable image registration (DL-DIR) has demonstrated improved accuracy compared to
time-consuming non-DL methods across various anatomical sites. However, DL-DIR is still challenging in het-
erogeneous tissue regions with large deformation. In fact, several state-of-the-art DL-DIR methods fail to capture
the large, anatomically plausible deformation when tested on head-and-neck computed tomography (CT) images.
These results allude to the possibility that such complex head-and-neck deformation may be beyond the capacity
of a single network structure or a homogeneous smoothness regularization. To address the challenge of combined
multi-scale musculoskeletal motion and soft tissue deformation in the head-and-neck region, we propose a
MUsculo-Skeleton-Aware (MUSA) framework to anatomically guide DL-DIR by leveraging the explicit multi-
resolution strategy and the inhomogeneous deformation constraints between the bony structures and soft tissue.
The proposed method decomposes the complex deformation into a bulk posture change and residual fine
deformation. It can accommodate both inter- and intra- subject registration. Our results show that the MUSA
framework can consistently improve registration accuracy and, more importantly, the plausibility of deformation
for various network architectures. The code will be publicly available at https://github.com/HengjieLiu/
DIR-MUSA.

1. Introduction

Deformable image registration (DIR) plays a crucial role in medical
image analysis, with applications in diagnosis, image-guided surgery,
and radiation therapy. DIR aims to find the anatomically accurate spatial
correspondence between a pair of fixed and moving images, represented
as a deformation field. DIR can be performed for the same subject (intra-
subject) between different time points and/or imaging modalities, or
among different subjects (inter-subject). It is typically formulated as a
regularized optimization problem that is iteratively solved for a given
image pair. The different combinations of cost functions, regularization
methods, and optimization algorithms have led to different iterative DIR
methods (Sotiras et al., 2013). These DIR methods have enabled and
improved imaging information synthesis in medical research and prac-
tice. As iterative architectures mature, their performance has plateaued

with varying usability depending on the required accuracy and problem
complexity (Li et al., 2017). Iterative DIR methods often require manual
parameter tuning on a specific dataset to achieve optimal performance,
considerably limiting their robustness and generalizability. Moreover,
iterative methods are typically computationally demanding and
time-consuming, restricting applications that require real-time outputs.

Recent advances in deep learning (DL) have offered a new perspec-
tive for solving DIR problems. Unlike conventional iterative methods
that derive the voxel-level correspondence solely based on a single pair
of images, deep-learning-based DIR (DL-DIR) methods learn the statis-
tical correspondence between images within a large training set, and
then apply this knowledge to unseen imaging pairs. Its real-time infer-
ence capability is essential for time-sensitive tasks such as motion
tracking and prediction, facilitating image guidance in surgery and in
radiation therapy. However, the absence of ground-truth deformation
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poses challenges to supervised DL-DIR. The performance of DIR has been
indirectly assessed with intensity-matching metrics and contour agree-
ment. Landmark matching can provide a more accurate evaluation when
available, yet it is often limited by sparse and site-specific labeling.
Consequently, unsupervised and weakly-supervised learning have
emerged as the most popular and effective methods for this task.
Following the success of VoxelMorph (Balakrishnan et al., 2019),
different convolutional neural network (CNN) designs, mostly U-Net
(Ronneberger et al., 2015) variants, have been proposed to tackle the
registration challenge at various anatomical sites. More recently,
Transformers have been introduced to medical image registration (Chen
et al., 2021, 2022) and demonstrated improved performance compared
to CNN baselines.

Nevertheless, obtaining accurate and anatomically plausible de-
formations for head-and-neck computed tomography (CT) registration
remains challenging. On the one hand, the large magnitude of motion
and high degrees of motion freedom in the head-and-neck region can
pose challenges for DIR methods searching for a local match. On the
other hand, the deformation is a complex superposition of musculo-
skeletal motion and soft tissue deformation, which is beyond the
descriptive capacity of a homogeneous smoothness regularization typi-
cally employed in DIR. In conventional registration approaches, hier-
archical or multiresolution strategies are commonly used to avoid local
minima and to simultaneously recover the global large deformation and
the local detailed deformation (Klein et al., 2010; Lester and Arridge,
1999). Similar ideas have been adopted by quite a few deep learning
methods, where image pyramids are built and the deformation is opti-
mized in a coarse-to-fine manner (Eppenhof et al., 2020; Hering et al.,
2021; Kang et al., 2022; Mok and Chung, 2020). However, many other
methods still rely solely on the hierarchical architecture intrinsic to the
neural networks (Hering et al., 2021), such as U-Net (Ronneberger et al.,
2015) and Swin Transformer (Liu et al., 2021). We refer to these two
approaches as explicit and implicit multiresolution methods, respec-
tively. To further address the complex and heterogeneous deformation
in the head-and-neck region, previous studies have attempted to inte-
grate anatomical or biomechanical properties into conventional regis-
tration methods. Kim et al. (2013) used a rigidity constraint on bony
structures for intra-subject cone-beam CT (CBCT) to CT registration.
More complex methods employed biomechanical models, including
finite element methods (FEM) (Al-Mayah et al., 2010; Kim et al., 2016)
and kinematic motion models (du Bois d’Aische et al., 2005a; Neylon
et al., 2014; Teske et al., 2017). Biomechanical model-based registration
offers the potential for more accurate and physically plausible de-
formations, yet it is limited by the need for precise tissue property
modeling and high computational demands. Furthermore, it is only
suitable for intra-subject registration. To this date, only a few
deep-learning-based studies have been proposed for head-and-neck CT
registration (Lei et al., 2022; Li et al., 2023b; Liang et al., 2021), while
none of them are purposefully designed to address the unique charac-
teristics of head-and-neck deformation. The head-and-neck region is also
absent from the recent Learn2Reg challenge (Hering et al., 2023), which
is by far the most comprehensive evaluation challenge in medical image
registration.

In this work, we propose a MUsculo-Skeleton-Aware (MUSA)
framework for head-and-neck CT registration. The complex deformation
in the head-and-neck region can be decomposed into musculoskeletal
motion and residual tissue deformation. However, a perfect decompo-
sition demands comprehensive and individualized biomechanical
modeling that is impractical and likely unnecessary. Alternatively, we
propose a relaxed decomposition of the deformation into a bulk posture
change and residual fine deformation, tackled by two registration net-
works sequentially. First, a posture correction network (Pos-Net) is
employed to align the posture between the fixed and moving images.
The differences in posture are predominantly caused by musculoskeletal
motion, which includes head pitching, neck flexion and extension, and
jaw movement. To achieve that, we propose a MUSA loss function,

which encourages the local affine motion within each bony structure via
increased bending energy regularization. We design it to be affine
instead of strictly rigid to work for both inter-subject and intra-subject
registration. In the second stage, a refinement network (Ref-Net)
employing a standard homogeneous smoothness constraint is used to
account for any residual fine-scale deformation. Given the distinct
characteristics of the decomposed deformations, the Pos-Net takes low-
resolution inputs, while the Ref-Net operates on full-resolution images,
forming a two-level image pyramid as the multiresolution scheme. By
leveraging this explicit multiresolution strategy and the inhomogeneous
deformation constraints between the bony structures and soft tissue, our
method achieves more anatomically realistic deformation estimation in
the head-and-neck region with improved registration accuracy and is
more interpretable. The proposed framework is compatible with most
network architectures used for image registration.

1.1. Contribution

The main contributions of this study are summarized as follows:

• We propose a two-stage head-and-neck CT registration framework
that decomposes the complex deformation into a bulk posture
change and residual fine deformation. We propose a MUSA loss using
spatially variant regularization on soft tissue and bony structures to
anatomically guide the registration during the posture correction
stage, which addresses the musculoskeletal motion and provides a
better initial alignment to ease the burden of subsequent registration.

• The proposed framework is compatible with various network archi-
tectures. We perform comprehensive experiments to demonstrate the
proposed framework can consistently achieve better registration
accuracy and, more importantly, improve the anatomical plausibility
of deformations. We demonstrate its performance on both inter- and
intra-subject registration tasks.

• We demonstrate the importance of both explicit multiresolution
strategy and anatomical guidance to ensure anatomically plausible
deformations.

• We emphasize the need for a more comprehensive evaluation of
deformable image registration, particularly focusing on deformation
plausibility.

2. Related work

In this section, we briefly review (i) the problem formulation of
deformable image registration, (ii) methods that incorporate mathe-
matical, physical, and anatomical priors for image registration, (iii)
methods for handling large motion in image registration, and (iv) head-
and-neck CT registration.

For more comprehensive reviews of medical image registration, the
readers can refer to Maintz and Viergever (1998); Sotiras et al. (2013)
for conventional methods, and Boveiri et al. (2020); Chen et al. (2023b);
Fu et al. (2020); Haskins et al. (2020) for deep-learning-based methods,
respectively.

2.1. Deformable Image registration

The goal of deformable image registration (DIR) is to find a trans-
formation ϕ that establishes the spatial correspondence between a fixed
image (If (x) or f) and a moving image (Im(x) orm). If (x) and Im(x) are n-
dimensional images defined on their own spatial domain: Ωf , Ωm⊂Rn.
The transformation ϕ can be parameterized by various methods but can
be typically represented as a dense displacement vector field (DVF) u(x):

ϕ = Id+ u(x), (1)

where Id is the identity coordinate transform and u(x) specifies the
vector offset from coordinates of If (x) to coordinates of Im(x). The
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deformed image (Im(x)∘ϕ) that aligns with the fixed image is produced
by applying ϕ to the moving image. In the rest of the paper, we use f and
m to denote If (x) and Im(x) for simplicity. The images are represented as
discrete matrices in our study.

In supervised deep learning methods, neural networks are trained to
predict the deformation (ϕ or u) directly. This requires the ground-truth
deformation, which is hard to estimate accurately in real-world appli-
cations. Common workarounds involve training on synthetic de-
formations (Eppenhof et al., 2018; Sokooti et al., 2017) or using
deformations generated by conventional registration methods (Cao
et al., 2018; Sentker et al., 2018; Yang et al., 2017). In both cases, the
registration performance is limited by the ground-truth provided, which
either lacks realistic and diverse anatomical information in synthetic
cases or is curtailed by the capabilities of conventional methods. As a
result, the research focus has shifted to unsupervised (or self-supervised)
approaches.

Alternatively, DIR can be formulated as a regularized optimization
problem, which is employed by both unsupervised deep learning
methods and conventional iterative methods:

ϕ̂ = argmin
ϕ

Lsim(f , m∘ϕ) + λR(ϕ). (2)

Lsim is the similarity metric used to quantify the spatial alignment
between the fixed image (f) and the deformed image (m∘ϕ). The
commonly used similarity metrics include mean squared error (MSE),
normalized cross-correlation (NCC), and mutual information (MI).
However, DIR is a highly underdetermined problem, requiring regula-
rization (R(ϕ)) to stabilize solutions and avoid undesired local minima.
The regularization injects prior knowledge of the deformation, such as
smoothness, to approach a more feasible solution. λ is the hyper-
parameter that controls the trade-off between image matching and
deformation regularity.

In conventional iterative methods, Eq. (2) is solved for a single image
pair, whereas in unsupervised deep learning approaches, it is optimized
over a large training set in the sense of expectation. Unsupervised
training via backpropagation was enabled by differentiable image
warping, which was first implemented in the spatial transformer
network (STN) (Jaderberg et al., 2015). de Vos et al. (2017) first used
this formulation for CNN-based 2D registration, and the VoxelMorph
paper (Balakrishnan et al., 2019) popularized this idea with a demon-
stration of 3D brain registration using a U-Net architecture
(Ronneberger et al., 2015). The majority of subsequent research used
different variations of U-Net (Hering et al., 2021; Kang et al., 2022; Kim
et al., 2021; Mok and Chung, 2020). Recently, Transformers (Liu et al.,
2021; Vaswani et al., 2017) have gained popularity in DIR (Chen et al.,
2021, 2022; Shi et al., 2022) after their success on many computer vision
tasks.

Auxiliary anatomical information, such as segmentation overlap and
landmark correspondence, can be incorporated into the loss function to
improve anatomical matching. These methods are categorized as
weakly-supervised or semi-supervised approaches. Enforcing segmen-
tation overlap using the Dice loss has been proposed to guide the
registration network anatomically (Balakrishnan et al., 2019; Hu et al.,
2018b). It has become a common component in various registration
tasks (Hering et al., 2023). However, the segmentation overlap can still
be ambiguous within the organ boundary. Additionally, the correlation
between segmentation overlap and registration accuracy can vary. Only
small and localized regions show high correlations as they approximate
point landmarks more closely (Rohlfing, 2012). On the other hand,
landmark correspondence provides a more accurate evaluation at spe-
cific anatomical points. It was exploited to improve intra-subject lung
registration (Heinrich and Hansen, 2022; Hering et al., 2021). However,
its application is mostly limited to intra-subject lung registration, as
defining landmarks densely and unambiguously in other anatomical
regions or inter-subject settings poses significant challenges.

2.2. Mathematical, physical, and anatomical priors for deformation
regularization

DIR driven by image similarity and tissue overlap does not guarantee
anatomically feasible deformations, as the algorithms are susceptible to
anatomical ambiguity, image noise, and insufficient tissue contrast
(Rohlfing, 2012). Incorporating prior information, including mathe-
matical or physical properties of the deformation as well as anatomical
knowledge, has proven critical to address this issue.

Desired mathematical or physical properties of the underlying
deformation field are commonly enforced by designing a regularization
energy function. Smoothness regularization has been universally used to
ensure a physically realistic deformation. This is typically achieved by
penalizing the first-order or second-order gradient of the deformation.
Another common regularizer is the Jacobian determinant of the defor-
mation, which can be used to preserve topology (i.e., prevent folding)
(Christensen and Johnson, 2001; Rueckert et al., 2006), and control the
volume change (Dauguet et al., 2009; Ruhaak et al., 2017). Diffeo-
morphism is also appealing as it guarantees a continuous and invertible
deformation field. Dalca et al. (2019) incorporated the
scaling-and-squaring strategy (Arsigny et al., 2006) to generate near
diffeomorphic deformation from stationary velocity fields. Furthermore,
different approaches have been explored to encourage inverse consis-
tency (Greer et al., 2021; Kim et al., 2021; Zhang, 2018).

For smoothness regularization, most studies adopt a uniform weight
across the entire deformation field, which is typically determined by
hyperparameter tuning. However, this assumption can be suboptimal as
different anatomical regions can present different levels of deformation
regularities determined by the underlying anatomical or biomechanical
properties (Chen et al., 2023b). A variety of studies have developed
regularizers that can vary in space with conventional
optimization-based schemes (e.g., Gerig et al., 2014; Kabus et al., 2006;
Pace et al., 2013; Vialard and Risser, 2014). More recently, several
deep-learning-based studies have proposed to learn spatially variant
regularization directly from data. Niethammer et al. (2019) used a
learnable Gaussian smoothing kernel map, parameterized by a neural
network, to represent varying smoothness levels. Recent studies on brain
registration introduced conditional networks or subnetworks to achieve
spatially variant regularization. These methods further support infer-
ence time adaptation, eliminating the need for hyperparameter tuning
(Chen et al., 2023a; Wang et al., 2023).

Anatomical and biomechanical information can provide further
guidance for obtaining a feasible deformation. For instance, the pres-
ence of stiff anatomical structures motivates the incorporation of rigidity
constraints in conventional methods (Loeckx et al., 2004; Ruan et al.,
2006; Staring et al., 2007). Jian et al. (2022) incorporated rigidity
constraint in deep-learning-based spine registration. More sophisticated
prior knowledge can be derived from biomechanical models, with finite
element methods (FEMs) being popular for modeling tissues with
varying material properties (Sotiras et al., 2013). Biomechanical
model-based registration has been applied to various anatomical sites (e.
g. Bharatha et al., 2001; Rajagopal et al., 2007; Sermesant et al., 2003;
Werner et al., 2009) and also multi-organ registration (Brock et al.,
2005; He et al., 2023). Recently, many deep learning methods have
incorporated deformation fields generated by biomechanical models for
supervision or regularization (e.g. Fu et al., 2021; Hu et al., 2018a; Qin
et al., 2020; Zhang, 2021).

2.3. Handling large motion in image registration

Large deformation presents a significant challenge for DIR. In con-
ventional iterative methods, multiresolution or hierarchical strategies
have become standard to avoid local minima, speed up convergence,
reduce foldings, and recover global and local motion simultaneously
(Bajcsy and Kovačič, 1989; Klein et al., 2010; Lester and Arridge, 1999;
Schnabel et al., 2001). This typically involves forming an image pyramid
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through downsampling and/or blurring, with deformation estimated
from a coarser scale and incrementally refined to higher resolutions
(Klein et al., 2010).

However, not all deep-learning-based methods adopt this strategy,
likely because the commonly used network architectures, such as U-Net
(Ronneberger et al., 2015) and Swin Transformers (Liu et al., 2021), are
considered inherently hierarchical (Hering et al., 2021), where the
network encoder generates multiresolution features by spatial down-
sampling, and the decoder restores the original resolution. We refer to
these methods as the implicit multiresolution approach. However, these
methods typically predict deformations only at the finest resolution,
which can trap optimization in local minima due to the ill-posed nature
of DIR, where many possible transformations can result in comparable
similarity matching (Mok and Chung, 2020). This issue can be further
deteriorated by the limited effective receptive field (ERF) of CNNs (Chen
et al., 2022).

Recently, more studies have integrated the explicit multiresolution
approach from conventional methods and shown improved handling of
large motions. Eppenhof et al. (2020) proposed a novel training strategy
by progressively growing the U-Net from low to high resolution. Hering
et al. (2021, 2019) proposed to sequentially deform the moving image
from coarser to finer scales to address the large motion in lungs. LapIRN
(Mok and Chung, 2020) applied Laplacian image pyramids to refine
deformation progressively via addition until the finest scale, demon-
strating strong performance across multiple registration tasks (Hering
et al., 2023). Dual-PRNet (Hu et al., 2019; Kang et al., 2022) developed a
dual-stream pyramid for feature encoding and separated the feature
learning and deformation estimation process. The deformation pre-
dicted from a coarser level was used to align the features from a higher
resolution, followed by deformation refinement in the higher resolution.

Alternatively, the cascaded-based approach, where each network
handles a small fraction of the deformation, has been explored to handle
large motion (Zhao et al., 2020). However, cascading the same network
leads to high computation costs and long inference times. More recently,
Hu et al. (2022) demonstrated that the pyramid-based and
cascaded-based methods can be combined in a recursive decomposition
framework.

Enlarging the ERF has also been proven to be helpful in handling
large motion, especially with the recent introduction of Transformers.
Chen et al. (2022) proposed a hybrid Swin Transformer (Liu et al., 2021)
and CNN architecture called TransMorph, achieving state-of-the-art
performance on several medical image registration tasks. The capacity
for long-range dependency modeling and larger ERFs enabled by the
self-attention mechanism were claimed to be a major advantage of using
Transformers over CNNs for image registration (Chen et al., 2022; Li
et al., 2023a). However, RepLKNet, proposed by Ding et al. (2022),
suggested that CNNs could also achieve larger ERFs with larger con-
volutional kernels. Jia et al. (2022) further applied this idea for image
registration using a large kernel U-Net (LK-U-Net) and demonstrated
performance comparable to TransMorph on several brain datasets.

2.4. Head-and-neck CT registration

Deformable registration of head-and-neck CT is a unique problem
due to the complex superposition of musculoskeletal motion and resid-
ual soft tissue deformation. The head pitching, neck flexion and exten-
sion, along with jaw movement, can result in large posture differences.
Rigidity constraints on the bony structures, such as the skull, mandible,

and vertebrae, can be used to guide intra-subject registration. Further-
more, biomechanical models using finite element methods and kine-
matic motion models have been proposed to model the head-and-neck
motion.

Kim et al. (2013) proposed a novel rigidity constraint based on dis-
tance preservation as an alternative to the rigidity constraint proposed
by (Staring et al., 2007), as the latter lacks the ability to separately
preserve the rigidity of multiple objects in close proximity in the
head-and-neck region. du Bois d’Aische et al. (2005b, 2005a) proposed
registering the articulated rigid bones first, then propagating the
deformation to the soft tissue using a linear elastic model. Neylon et al.
(2014) developed a GPU-based biomechanical model, where the muscle
and soft tissue structures were modeled as a mass-spring model, allow-
ing them to deform along with the articulating skeletal structure to
simulate posture changes. In Al-Mayah et al. (2010), patient-specific 3D
FEMs were developed to align CT with cone-beam CT. The model
included seven vertebrae (C1 to C7), the mandible, the larynx, the pa-
rotid glands, the tumor, and the body. Several studies used FEM to
evaluate registration accuracy in radiation therapy clinics (Kim et al.,
2016; McCulloch et al., 2019; Teske et al., 2017). Biomechanical
model-based methods can improve registration accuracy and plausibil-
ity when tissue properties and boundary conditions are well-understood.
However, accurately measuring these parameters in vivo is challenging
and also patient-specific, making the method sensitivity to inaccurate
assumptions (Chi et al., 2006; Hipwell et al., 2016). Additionally, these
methods require substantial computational resources and are generally
limited to intra-subject registration due to variability in biomechanical
properties among individuals (Sotiras et al., 2013).

Only a few deep-learning-based methods have been proposed to
address head-and-neck CT registration. Liang et al. (2021) employed 5
cascades of VoxelMorph for intra-subject head-and-neck CT registration
for auto segmentation, achieving accuracy only comparable to that of
Elastix (Klein et al., 2010). Also, cascading 5 networks can cause sig-
nificant computation and memory burdens. Lei et al. (2022) introduced
a dual feasible network for intra-subject head-and-neck CT registration,
but the specific clinical setting with small initial misalignment of target
registration error (TRE) around 4mm was inadequate to demonstrate its
effectiveness in handling large motion. Li et al. (2023b) combined
deep-learning-based feature extraction and convex optimization for
multiple CT registration tasks including a head-and-neck dataset. The
methodology of these studies remains generic and does not consider the
distinct deformation patterns or anatomical properties in head-and-neck
regions.

3. Methods

In this section, we describe the details of the proposed MUSA
framework.

3.1. MUSA loss function

A standard registration loss function (i.e., Eq. (2)) employing MSE as
similarity metric and a homogeneous smoothness regularization with
bending energy (BE) can be written as:

Loss = MSE(f ,m∘ϕ) + λ
∑

r∈Ωf

BE(ϕ(r)). (3)

Bending energy is defined as:

BE =
1
V

∫ ∫ ∫

V

∑

i=x,y,z

[(
∂2ui
∂x2

)2

+

(
∂2ui
∂y2

)2

+

(
∂2ui
∂z2

)2

+ 2
(

∂2ui
∂xy

)2

+ 2
(

∂2ui
∂yz

)2

+ 2
(

∂2ui
∂xz

)2]

dxdydz, (4)
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where ui is the component of the displacement vector u.
We select MSE as the similarity metric as it suits well for mono-modal

registration and the quantitative nature of CT images. It is also more
computationally efficient compared with other metrics. Other similarity
metrics, such as NCC, could be used as well. Bending energy is a
commonly used smoothness regularizer (Rueckert et al., 1999). It pe-
nalizes the second-order derivative of the deformation field. As an
additional advantage, it zeros out any linear component so that the
global affine registration can be integrated within the deformable
registration without increasing the loss (Chen et al., 2023b). Thus,
additional affine pre-alignment is not necessary (Ding and Niethammer,
2022; Fischer and Modersitzki, 2003).

To address the complex head-and-neck deformation, we propose a
MUsculo-Skeleton-Aware (MUSA) loss function, with increased bending
energy regularization on bony structures compared to soft tissue:

Loss = MSE(f ,m∘ϕ) + λ

(
∑

r∈S
BE(ϕ(r)) + α

∑

r∈B
BE(ϕ(r))

)

. (5)

S is the soft tissue mask and B is the bone mask, defined on the
deformed image (m ∘ ϕ) coordinate. λ controls the overall strength of
regularization, and α controls the relaxed rigidity of bony structure
relative to that of the soft tissue. Note that when α = 1, Eq. (5) reduces
to the standard loss function (i.e., Eq. (3)).

A bending energy of zero corresponds to a pure affine trans-
formation. So, the MUSA loss with a large α value encourages local affine

motion in each individual bone. On the one hand, it can be viewed as
applying an inhomogeneous or spatially variant bending energy regu-
larization on the deformation field. But instead of learning the weights
directly from data (Chen et al., 2023a; Wang et al., 2023), we adopt a
simpler but more faithful approach by assigning weights to the two
distinct tissue types in CT images based on well-understood anatomical
knowledge. The weights are determined by the hyperparameter tuning
described in Section 4.3. On the other hand, the formulation in Eq. (5) is
a relaxed version of the rigidity loss proposed by Staring et al. (2007),
where orthonormality and properness conditions are used in addition to
affine constraint to enforce rigidity. Since orthonormality and proper-
ness conditions both encourage volume preservation, they are not suit-
able for inter-subject registration. By using the affine constraint alone,
we allow the volume of bony structures to adjust in the registration
process if needed.

3.2. MUSA framework

The relaxed rigidity constraint in MUSA loss utilizes differential
regularization of bony structures and soft tissue to promote deformation
plausibility. However, the regularization can be too restrictive and will
prevent an acceptable spatial alignment between the deformed and fixed
images in the presence of large deformation. This is particularly prob-
lematic for inter-subject registration, where the deformation in soft
tissue can be substantial and the bone shapes can differ significantly
among individuals. Therefore, achieving a balance between acceptable

Fig. 1. The proposed MUSA registration framework (c) and baselines (a, b). The MUSA framework (c) employs a two-stage approach utilizing a two-level image
pyramid for explicit multiresolution setup. In the first stage, the Pos-Net takes the low-resolution image pair (mlr and flr) as inputs and is trained with the MUSA loss
calculated using bony segmentations. The first-stage deformation (ϕ1) warps the moving image (m) to a posture-corrected deformed image (m∘ϕ1) as an intermediate
state. In the second stage, Ref-Net takes the full-resolution pair (m∘ϕ1 and f) and predicts residual deformation (ϕ2), with the standard homogeneous smoothness
regularization. The final deformation is the composition of the two stages (ϕ = ϕ1∘ϕ2), and the final deformed image is (m∘ϕ). The two-stage multiresolution
baseline (b) is similar to the two-stage MUSA framework, except that both stages use homogeneous smoothness regularization. The single-stage baseline (a) directly
predicts the deformation on full-resolution image pairs with homogeneous smoothness regularization. The neural networks in the figure can adopt most architectures
designed for deep-learning-based DIR.
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intensity matching and a plausible deformation representation within a
single stage—utilizing a unified network and loss function—can be
challenging due to the complexity of deformations in the head-and-neck
region. To address this issue, we propose a two-stage decomposition
approach as our MUSA registration framework.

The entire MUSA framework is illustrated in Fig. 1 (c). We aim to
decompose the complex deformation in the head-and-neck region into
musculoskeletal motion and soft tissue deformation, leveraging both the
explicit multiresolution strategy and inhomogeneous deformation con-
straints between bony structures and soft tissue. Without depending on
the hard-to-obtain individual subject’s tissue biomechanical properties,
we propose a relaxed deformation decomposition with two stages: a
posture correction step using Pos-Net and a fine-scale refinement step
with Ref-Net. The Pos-Net is trained with MUSA loss (i.e., Eq. (5)) and
the Ref-Net is trained with the standard loss function (i.e., Eq. (3)). The
two-stage decomposition is naturally integrated with a two-level mul-
tiresolution approach. This stems from the fact that the bulk posture
change is a global motion, while the residual tissue deformation occurs
on a finer resolution scale. During the posture correction stage, MUSA
loss provides anatomical guidance by encouraging local close-to-affine
motion of the bony structures. It promotes a more plausible motion
pattern within each bony structure, and the effect can further extend to
surrounding soft tissue due to the smoothness constraint. This guides the
registration to align the posture differences of two head-and-neck im-
ages, predominantly driven by musculoskeletal motion, including head
pitching, neck flexion and extension, and jaw movement. The stringent
regularization posed by MUSA loss would prevent a perfect match be-
tween the deformed and fixed images, yet it provides a better-
conditioned intermediate registration without unrealistically deform-
ing the bony structures, which could otherwise lead the optimization
process to local minima, resulting in implausible deformations. As a
result, it significantly eases the burden of subsequent registration. In the
second stage, the Ref-Net with regular homogeneous smoothness regu-
larization is applied to account for any residual deformation, including
residual soft tissue deformation and anatomical mismatch in inter-
subject scenarios. The final deformation field is the composition of the
two deformation outputs from Pos-Net and Ref-Net.

Fig. 1 also shows the two baseline frameworks constructed to
compare with the proposed MUSA framework: (a) single-stage baseline
and (b) two-stage multiresolution baseline. Both baseline frameworks

use the standard loss function with homogeneous regularization (i.e.,
Eq. (3)). The two-stage multiresolution baseline (b) is constructed with
an identical explicit multiresolution scheme as the two-stage MUSA
approach to ensure a fair comparison, especially for architectures
lacking explicit multiresolution modeling.

3.3. Bony structure segmentation

The proposed MUSA loss relies on the segmentation of the bony
structures, which can be obtained with acceptable performance via
deep-learning-based auto segmentation. A three-stage coarse-to-fine
localization and segmentation network was used to acquire vertebrae
segmentation (Payer et al., 2020; Sekuboyina et al., 2021). We used a
shape-constrained segmentation network (Tong et al., 2019) to segment
the mandible. Following the mandible and vertebrae segmentation, a
skull mask was obtained via thresholding. Fig. 2 presents examples of
segmented bony structures used in the study. It also demonstrates the
substantial posture variance and large deformation that pose significant
challenges for head-and-neck CT registration. The bony segmentations
are only used in loss calculation during the training of Pos-Net. At
inference time, only the fixed and moving image pair is required.

3.4. Network architectures

The proposed two-stage MUSA framework is compatible with most
network architectures proposed for deep-learning-based DIR. We have
selected some representative architectures to demonstrate the effec-
tiveness and versatility of our method. We briefly introduce the selected
architectures, with implementation detailed in Section 4.4.

3.4.1. Basic U-Net-based architectures
VoxelMorph (Balakrishnan et al., 2019) is selected as a U-Net

representative. We also adopt a more recent residual U-Net design,
referred to as Res-U-Net, based on the architecture described in the
nnU-Net paper (Isensee et al., 2021), which has become a widely used
benchmark for a variety of segmentation tasks.

3.4.2. Architectures with enlarged effective receptive fields (ERFs)
We select TransMorph (Chen et al., 2022) and LK-U-Net (Jia et al.,

2022) to represent models with large effective receptive fields.

Fig. 2. Examples of head-and-neck CT images and their corresponding bone segmentations used for MUSA loss calculation. The first row presents the central slice of
the CT images in coronal views. The second row displays the bone segmentations rendered using maximum intensity projection (MIP).
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TransMorph is a hybrid Swin Transformer and CNN architecture, while
LK-U-Net is pure CNN-based.

3.4.3. Architectures with explicit multiresolution modeling
All previously described architectures rely on implicit multi-

resolution modeling of the neural network. Two architectures employ-
ing explicit multiresolution strategies have been selected: LapIRN (Mok
and Chung, 2020) and Dual-PR-Net (Hu et al., 2019; Kang et al., 2022).
They both predict the deformation on multiple scales and are optimized
in a coarse-to-fine manner. However, LapIRN refines the deformation
using an addition operator rather than a composition operator, which is
not directly compatible with deformation composition in the MUSA
framework. So, we only use it for the single-stage baseline. On the other
hand, Dual-PR-Net uses a composition operator, and thus can be applied
to all three schemes depicted in Fig. 1.

4. Experiments

4.1. Datasets and preprocessing

We evaluated the proposed MUSA framework for both inter-subject
and intra-subject registration. Given the scarcity of paired intra-
subject data, we reserved them exclusively for testing, whereas the
inter-subject dataset was partitioned into training, validation, and test
sets.

We built an inter-subject dataset from The Cancer Imaging Archive
(TCIA) (Clark et al., 2013) from seven publicly available sources,
including CPTAC-HNSC (National Cancer Institute Clinical Proteomic
Tumor Analysis Consortium, 2018), Head-Neck Cetuximab (Ang et al.,
2014; Bosch et al., 2015), HEAD-NECK-RADIOMICS-HN1 (Aerts et al.,
2014; Wee and Dekker, 2019), HNSCC (Elhalawani et al., 2017; Gross-
berg et al., 2020, 2018), HNSCC-3DCT-RT (Bejarano et al., 2019, 2018),
QIN-HEADNECK (Beichel et al., 2015; Fedorov et al., 2016), and
TCGA-HNSC (Zuley et al., 2016). Images were selected with the
following criteria: 1) the field-of-view covers intact head-and-neck
anatomy, 2) no foreign devices are present in the region of interest
(typically above the C7 vertebra). A total of 380 images were selected
and further partitioned into sets of 300, 40, and 40 images for training,
validation, and testing. For training, the fixed and moving images were
randomly paired from the training set. For validation and testing,
inter-subject images were paired multiple times to expand the sample
size. A total of 100 inter-subject pairs were generated randomly from the
40 images in validation or testing set while balancing the appearance of
each image (i.e., each image appeared 5 times in the 100 pairs).

For the intra-subject dataset, an in-house dataset consisting of 7
patients was gathered for testing only. Each patient had one planning CT
for radiation therapy and one PET attenuation correction CT from PET/
CT. The latter was acquired in a nontreatment position as opposed to the
immobilized planning CT. This results in large posture differences and
large deformation between the two CT images, which represents the
more challenging scenario of intra-subject head-and-neck CT registra-
tion (Hwang et al., 2009).

The same preprocessing pipeline was employed for both inter- and
intra-subject datasets. To ensure the head-and-neck region was centered
in the field-of-view, all images were rigidly registered to a pre-selected
template using Elastix (Klein et al., 2010). Affine pre-registration is
not needed since we use bending energy regularization, which allows
linear deformation (Ding and Niethammer, 2022; Fischer and Moder-
sitzki, 2003). Scanning beds and immobilization equipment were
masked out of the images. Image intensity values were first clipped to a
range of [-1024, 3000] Hounsfield Units (HU) and then normalized to

the range of [0,1]. All volumes were resampled to an isotropic pixel
spacing of 2 × 2 × 2 mm using trilinear interpolation. Then, the volumes
were cropped to the same matrix size of 160× 160× 192. In two-stage
multiresolution approach and two-stage MUSA approach, the first stage
used half-resolution images (4 × 4 × 4 mm) of size 80× 80× 96.

4.2. Evaluation metrics

Qualitative evaluation was performed by visually comparing the
deformed images and the deformation vector fields across all methods.
For quantitative evaluation, we used target registration error (TRE) to
quantify landmark matching accuracy and three contour matching
metrics, including Dice score, 95 percentile Hausdorff Distance (HD95 in
mm), and Average Symmetric Surface Distance (ASD in mm). Further
analysis of the deformation field was performed to evaluate deformation
regularity and plausibility.

For TRE evaluation, 13 landmarks were labeled manually: the tip of
the nose, the midpoint of the upper lip, the tip of the chin, the epiglottis,
the lower front tip of the mandible, the tip of the nasal bone, the
glabella, the external occipital protuberance (ECP), the opisthion, the
left/right styloid process, the dens of the C2 vertebra, and the spinous
process of the C7 vertebra. The landmarks were annotated by a medical
physicist trained by a radiation oncologist specializing in head-and-neck
cancer. All annotations were subsequently reviewed and approved by
the same clinical expert to ensure accuracy and consistency. The left and
right styloid processes were excluded from TRE calculation for hyper-
parameter tuning and final evaluation as they were too small to be
captured by the registration algorithm and resulted in excessively high
errors across all registration methods, as shown in Fig. 5 (a). An example
of the remaining 11 landmarks used for final evaluation is shown in
Fig. 3. The landmarks were labeled on images with 1 mm resolution, and
the final deformation field (2 mm resolution) was upsampled to 1 mm
resolution via trilinear interpolation for TRE calculation. We averaged
the TRE across the 11 landmarks for each registration pair. The mean
and standard deviation of the average TRE across the test set were
compared for different registration methods. For the contour-based
metrics, we used 25 contours, including the brainstem, the cord, the
chiasm, the left/right orbit, the left/right submandibular gland, the left/
right optic nerve, the left/right parotid gland, the left/right cochlea, the
larynx, the pharynx, the esophagus, the skull, the mandible, and cervical
vertebrae C1-C7. The first 16 are common soft tissue organs at risk

Fig. 3. An example of the 11 annotated landmarks used for target registration
error (TRE) evaluation. The landmarks are overlaid on the CT image rendered
using maximum intensity projection (MIP).
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(OARs) in head-and-neck radiation therapy, and the latter 9 are bony
structures. The contours were automatically segmented using deep
learning methods (Payer et al., 2020; Tong et al., 2019). All contours
used for evaluation were reviewed and approved by the same clinical
expert. Similar to TRE, the metrics, including Dice score, HD95, and
ASD, were averaged for each registration pair, with the mean and
standard deviation reported across the test set. For each architecture, we
compared three approaches (a, b, and c) using the one-sided Wilcoxon
signed-rank test to assess differences in quantitative metrics. We
adjusted for multiple comparisons by applying the Bonferroni correction
(Armstrong, 2014), dividing the significance level by the number of
pairwise tests conducted (three per architecture).

We further employed several metrics to investigate the regularity
and plausibility of deformation. The Jacobian determinant (|Jϕ|) of
transformation ϕ estimates the local volume changes, where |Jϕ| > 1
indicates expansion, 0< |Jϕ| < 1 indicates shrinkage, and |Jϕ| ≤ 0 in-
dicates a singularity or folding. Following the deformation regularity
assessment in Hering et al. (2023) , we calculated the percentages of
non-positive values (|Jϕ| ≤ 0, i.e., folded voxels) and the standard de-
viation of its logarithm (SDlog|Jϕ|). We also reported the median

deformation magnitude and analyzed the deformation magnitude dis-
tribution to demonstrate the capability of each method to recover the
large deformation. The Jacobian determinant metrics and median
deformation magnitude results were averaged for each image pair and
then aggregated for the entire inter- or intra-subject test set. In addition,
we examined the Jacobian determinant maps to provide an intuitive
assessment of deformation plausibility, which could reveal unrealistic
expansion or shrinkage.

To better understand the reason for performance differences between
different networks and different loss functions, we also analyzed the
effective receptive fields (ERFs) of each method. Luo et al. (2016)
introduced ERF to quantify the influence of each input voxel on the
target output voxel. Previous studies have attributed the improved
network performance to increased ERF both for CNNs (Ding et al., 2022;
Jia et al., 2022) and Transformers (Chen et al., 2022; Li et al., 2023a).
We adopted the ERF implementation in Ding et al. (2022). To calculate
the ERF, a probing point (i, j, k) is selected in the output deformation
vector u. The probing point can be placed at the center of the field or
within a specific region of interest, such as within a bony mask. The
deformation vector at the probing point u(i, j, k) is then

Fig. 4. Posture correction results obtained from Pos-Net using the proposed MUSA loss. The left and right panels demonstrate results for three example cases of inter-
and intra-subject registration, respectively. For each case, the moving image, the fixed image, the first-stage deformed image of the two-stage multiresolution baseline
(b), and the first-stage deformed image of the MUSA approach (c) are displayed. Both the central slice and the maximum intensity projection (MIP) rendering from
the coronal view are presented. Arrows in the deformed images highlight the differences between the two approaches. The TransMorph architecture was used for all
results shown.
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backpropagated to the input fixed and moving images. The resulting
gradient indicates how much each voxel of the fixed or moving image
contributes to the final deformation vector at (i, j, k). This reflects where
the network is attending to when predicting the deformation at the
probing location. L2 normalization was applied to compare ERFs across
different networks.

4.3. MUSA configuration

This section elaborates on detailed settings related to the MUSA loss
and MUSA registration framework, including mask preprocessing, res-
olution selection and hyperparameter tuning.

The bony masks used to calculate MUSA loss in Eq. (5) underwent
preprocessing with morphological erosion on the touching boundaries of
vertebra and mandible. By doing so, we ensured the proper separation of
all bony structures from one another to prevent overt coupling in motion
estimation, a known issue with the rigidity constraint in Staring et al.
(2007) (Kim et al., 2013).

The Pos-Net with MUSA loss can be trained on full- or half-resolution
images. We found that training on half-resolution images was not only
more efficient, but also yielded better and more stable posture correc-
tion results, as the bulk posture change primarily involved global coarse
deformation. Among all the network architectures evaluated in this
study, only TransMorph and Dual-PR-Net successfully sustained stable
training using full-resolution images, while all networks demonstrated
reasonable performance when trained on half-resolution images.
Further reduction in the resolution (e.g., 8 × 8 × 8 mm) proved to be
impractical, as the bone segmentations became excessively coarse.

The regularization hyperparameters (λ and α) in MUSA loss (i.e., Eq.
(5)) balance the trade-off between intensity matching and deformation
regularity. Although a two-dimensional grid search for λ and α across all
network architectures would optimize the performance, it is computa-
tionally impractical. In the posture correction stage, λ controls the
deformation regularity for soft tissue, which makes up most of the body.
In the refinement stage, λ controls the global deformation regularity.
The optimal λ should align closely with that of the two-stage multi-
resolution approach (baseline (b)). Hence, we set λ for MUSA loss to
match the optimal λ for baseline (b). The optimal λ for single-stage and
two-stage baselines was tuned independently for each architecture
considering both Dice and TRE. The detailed tuning process and results
are described in Appendix A1. Then, we fixed λ and tuned α only for
MUSA loss. The tuning was performed on three representative archi-
tectures with varying capacity, including VoxelMorph, TransMorph, and
Dual-PR-Net. The optimal α value was determined using TRE on the
validation set. The tuning process and results are detailed in Appendix
A2. We observed that all models achieved the best TRE when α equaled
1000. The degree of improvement was, however, dependent on model
capacity: VoxelMorph saw the most improvement, TransMorph showed
moderate improvement, while Dual-PR-Net showed negligible gains due
to its powerful explicit multiresolution modeling. The consistent results
across different models, despite varying capacities, can be attributed to
the inherent physical meaning of α, which characterizes the relative
rigidity of bony structures compared to soft tissue. The Dice scores were

not sensitive to α. Introducing MUSA loss only marginally improved the
observed bony Dice without affecting the Dice for unobserved soft tissue
organs. As a result, α of 1000 was universally used for all architectures. It
also demonstrated good qualitative posture correction performance, as
later shown in Fig. 4. The ERF analysis, discussed in Section 5.2.4, also
justified the selection of α = 1000.

4.4. Implementation details for the proposed and baseline methods

We adopted B-spline registration using Elastix (Klein et al., 2010) as
the conventional iterative baseline. It integrates the explicit multi-
resolution strategy with Gaussian pyramid. The parameters were
empirically optimized and demonstrated good performance on
head-and-neck CT registration (McKenzie et al., 2020).

For deep-learning-based methods, six network architectures
described in Section 3.4 were utilized: VoxelMorph, Res-U-Net, LK-U-
Net, TransMorph, Dual-PR-Net, and LapIRN. To demonstrate the effec-
tiveness of our proposed MUSA framework, we trained these networks
under three different configurations: (a) single-stage baseline, (b) two-
stage multiresolution baseline, and (c) two-stage MUSA approach, as
depicted in Fig. 1. LapIRN was only tested with single-stage baseline, as
it already had the multiresolution setup and its deformation refinement
via addition was different from the refinement via composition used in
our multiresolution scheme.

During each training epoch, 100 image pairs were randomly gener-
ated from the training set. The single-stage framework was trained for
1500 epochs on full-resolution images. The two-stage frameworks can
be trained sequentially: initially training the first network, and then
appending the second network. It is also feasible to initialize the second
network with trained weights from the single-stage models. We found
this method to be more efficient, with no detriment to the final perfor-
mance. Therefore, for all two-stage approaches, we initially trained the
first and second-stage models on half and full-resolution images,
respectively, for 1000 epochs. Subsequently, the two models were
concatenated and trained for an additional 500 epochs. During this
combined training phase, the weights of the first-stage model were fixed,
allowing only the second-stage model to update.

All the methods were implemented using PyTorch (Paszke et al.,
2019) on the same system equipped with an Intel(R) Core(TM)
i9-10900X CPU and NVIDIA Quadro RTX 8000 GPU. All architectures
employed their non-diffeomorphic versions, given that we were training
on an inter-subject dataset exhibiting substantial anatomical variances
among the images. The implementation details for different architec-
tures were as follows.

• VoxelMorph1 (Balakrishnan et al., 2019): We employed the official
implementation of VoxelMorph with default settings.

• Res-U-Net2 (Isensee et al., 2021): We replaced the 3D U-Net in
VoxelMorph with a more recent 3D residual U-Net implementation
from the nnU-Net paper (Isensee et al., 2021). The other parts were
kept the same as in VoxelMorph.

• LK-U-Net3 (Jia et al., 2022): We experimented with different large
kernel sizes (5/7/9/11/13/15). Kernel size 9 yielded the best result
on the validation set and was used for all experiments. All other
implementations were consistent with the authors’ implementation.

• TransMorph4 (Chen et al., 2022): We employed the official imple-
mentation of TransMorph with the default settings. The image size
and window size were (160,160,192) and (5,6,6) for full-resolution
training and (128,128,128) and (4,4,4) for half-resolution training.

Table 1
The number of parameters in each network architecture.
The values are in units of millions of parameters. These
counts are for a single network. For two-stage registra-
tion, the total number doubles.

Model Parameters (M)

VoxelMorph 0.33
Res-U-Net 16.67
LK-U-Net 7.81
TransMorph 46.75
Dual-PR-Net 0.49
LapIRN 0.92

1 https://github.com/voxelmorph/voxelmorph.
2 https://github.com/MIC-DKFZ/nnUNet.
3 https://github.com/xi-jia/LKU-Net.
4 https://github.com/junyuchen245/TransMorph_Transformer_for_Medical

_Image_Registration.
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Zero-padding was used for half-resolution images to ensure that the
image size was divisible by the window size.

• Dual-PR-Net5 (Hu et al., 2019; Kang et al., 2022): We implemented
the network ourselves following the description provided in the pa-
pers. Our implementation used the residual convolutions proposed in
Dual-PR-Net++ (Kang et al., 2022) but omitted the 3D correlation
layer due to its high computational demands. We observed that
adding the residual convolutions alone was sufficient to achieve top
performances in head-and-neck CT registration.

• LapIRN6 (Mok and Chung, 2020): We adhered to the official LapIRN
implementation using a three-level pyramid and sequential training
strategies. The three levels were trained for 300, 300, and 900
epochs, respectively, resulting in a total of 1500 epochs.

Table 1 lists the number of trainable parameters for each network
architecture. Table 2 compares the inference time of all methods studied
in this paper. For deep-learning-based methods, the two-stage frame-
work led to a modest increase in inference time, ranging between 16-
20%, with TransMorph as an exception at 42% due to increased input
size from padding, when compared to the single-stage approach.

4.5. Comparison with Dice loss

The bony segmentations in MUSA loss are used to encourage defor-
mation regularity in contrast to enforcing contour matching as in Dice
loss, proposed in Balakrishnan et al. (2019). To better understand this
difference and justify the contribution of MUSA loss, we performed an
addition experiment with the Dice loss baseline. Its loss function is
defined as:

Loss = MSE(f ,m∘ϕ) + λ
∑

r∈Ωf

BE(ϕ(r)) + γLseg
(
sf , sm∘ϕ

)
, (6)

where sf and sm are the segmentation masks of the fixed and moving
image, respectively, and γ is the weighting parameter for Lseg. Lseg is
calculated using Dice scores of segmentation masks:

Lseg
(
sf , sm∘ϕ

)
= 1 −

1
K
∑K

k=1
Dice

(
skf , s

k
m∘ϕ
)
. (7)

To ensure a fair comparison against MUSA loss, only bony segmen-
tations were used in the Dice loss. The networks were trained with the
same strategy as the two-stage multiresolution baseline (i.e., baseline
(b)), with only the loss function modified. The hyperparameter tuning
process for γ is detailed in Appendix B1. The final experiment was car-
ried out with the TransMorph architecture as a representative, using the
optimally tuned γ of 10− 4.

5. Results

5.1. Posture correction results

We first demonstrated the posture correction performance of Pos-Net
by comparing the first-stage results between MUSA and the two-stage
multiresolution baseline. The qualitative results of both inter- and
intra-subject registration using the TransMorph architecture are pre-
sented in Fig. 4. For the two-stage multiresolution baseline, the first-
stage network achieved reasonable intensity matching, however, there
were excessive deformations of bony structures, most evident in the
upper and lower jaw regions and occasionally in the spine areas, as
indicated by arrows in Fig. 4. This was more obvious in the inter-subject
registration, due to large variations among patient anatomies. Slight
implausible warping of bones was also observed in intra-subject cases. In
contrast, Pos-Net successfully adjusted the posture of the moving image
to more closely resemble that of the fixed image while ensuring that the
bony structures were not deformed unrealistically. In this way, it
focused on addressing the musculoskeletal motion, including head
pitching, neck flexion and extension, and jaw movement, while the re-
sidual deformation was reserved for Ref-Net in the second stage.
Although the intensity matching after Pos-Net was compromised
compared to the two-stage multiresolution baseline, the posture
correction step can assist in avoiding local minima and provide a better
intermediate alignment that eases the burden of subsequent fine-scale
registration. Fig. 4 also illustrates the limitations of both the baseline
and proposed method in handling topological changes caused by mouth
closing and opening (the second inter-subject example and the first and
the third intra-subject example), which require specialized techniques.

Table 2
Average inference time for methods compared in this study. Elastix used CPUs,
while the deep learning methods used GPU. The average inference time was
calculated based on 100 repeated runs. The forward passes of the two-stage
multiresolution and the two-stage MUSA approach are identical, therefore
they have the same inference time.

Method Single-stage (sec/pair) Two-stage (sec/pair)

Elastix 37.9 -
VoxelMorph 0.194 0.227
Res-U-Net 0.318 0.375
LK-U-Net 0.176 0.211
TransMorph 0.255 0.362
Dual-PR-Net 0.229 0.266
LapIRN 0.223 -

Table 3
The average target registration error (TRE in mm) results for different methods
on inter- and intra-subject test sets. For deep-learning-based methods, the three
columns from left to right are (a) single-stage registration, (b) two-stage multi-
resolution registration, and (c) two-stage MUSA registration, respectively.
Methods employing explicit multiresolution modeling are indicated by an un-
derline. When comparing columns a, b, and c, the best result within one row is
highlighted in bold. The superscripts denote statistical significance. The single
superscript in column (b) indicates statistical significance when comparing to
baseline (a), i.e., b vs a. The two superscripts in column (c) indicate statistical
significance when comparing to baseline (a) and (b), i.e., c vs a and c vs b,
respectively. Superscripts [ns, s1, s2, s3, s4] correspond to statistical significance
levels of α = [no significance, 0.05/3, 0.01/3, 0.001/3, 0.0001/3].

Method Inter-subject test set (N=100) Intra-subject test set (N=7)

a b c a b c

Initial 18.69 ±

7.35
- - 24.80 ±

8.04
- -

Elastix 7.99 ±

3.73
- - 3.92 ±

0.71
- -

VoxelMorph 8.78 ±

4.12
6.46 ±

2.83 s4
5.48 ±
1.95 s4,

s4

11.26 ±

5.52
6.41 ±

3.39 s1
3.81 ±
1.27 s1,

s1

Res-U-Net 6.00 ±

2.46
5.18 ±

2.06 s4
4.73 ±
1.62 s4,

s4

6.86 ±

3.29
4.29 ±

2.20 s1
2.93 ±
0.63 s1,

s1

LK-U-Net 7.20 ±

2.47
5.60 ±

2.01 s4
5.29 ±
1.76 s4,

s4

8.55 ±

3.71
4.15 ±

1.49 s1
3.30 ±
0.85 s1,

s1

TransMorph 6.62 ±

2.63
5.04 ±

1.76 s4
4.61 ±
1.32 s4,

s4

6.38 ±

2.74
3.26 ±

0.85 s1
2.64 ±
0.34 s1,

s1

Dual-PR-
Net

5.00 ±

1.51
4.91 ±

1.49 ns
4.62 ±
1.23 s4,

s4

3.56 ±

0.43
3.03 ±

0.62 ns
2.69 ±
0.37 s1,

ns

LapIRN 5.76 ±

2.49
- - 3.35 ±

0.86
- -5 https://github.com/kangmiao15/Dual-Stream-PRNet-Plus.

6 https://github.com/cwmok/LapIRN.
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5.2. Registration results

5.2.1. Quantitative results
The average target registration error (TRE) comparison across all the

frameworks and architectures is provided in Table 3. The initial TRE was
large in both inter-subject (18.7 mm) and intra-subject (24.8 mm)
datasets. The non-DL baseline Elastix performed well on the intra-
subject test set, achieving TRE slightly worse than the best-performing
DL-based methods. However, its performance declined sharply for
inter-subject registration. For DL-based architectures, we observed an
increase in model capacity based on their registration performance in
the following order: VoxelMorph < LK-U-Net < Res-U-Net ≈ Trans-
Morph < Dual-PR-Net ≈ LapIRN. For the single-stage approach, only
models incorporating explicit multiresolution modeling (i.e., Dual-PR-
Net and LapIRN) achieved reasonable TRE results, while all other ar-
chitectures (i.e., VoxelMorph, Res-U-Net, LK-U-Net, and TransMorph)
had considerably higher TRE. The two-stage multiresolution approach
and the two-stage MUSA approach reduced the TRE, with the two-stage
MUSA approach consistently delivering the best results across all ar-
chitectures. Consequently, we focus on the comparison between the two-
stage MUSA approach (c) and the two-stage multiresolution baseline (b).
The MUSA approach consistently improved TRE compared to baseline

(b) across all five tested architectures on both datasets. The effect size (i.
e., the difference in mean relative to standard deviation) decreased with
increased model capacity, with VoxelMorph showing the largest
improvement and Dual-PR-Net exhibiting only slight improvement.
Statistical testing with Bonferroni correction confirmed that the TRE
improvements on the inter-subject dataset were statistically significant,
with very small p-values (p<0.0001/3) for all five architectures. For the
intra-subject dataset, statistically significance (p<0.05/3) was observed
for the four architectures without explicit multiresolution modeling,
while Dual-PR-Net showed no significance (p>0.05/3). However, the
effect size was larger on the intra-subject dataset than inter-subject re-
sults. Fig. 5 illustrates the performance with respect to each landmark.
The left and right styloid processes had excessively high TRE across all
methods in the inter-subject dataset, as these structures were too fine to
be captured by the registration. Therefore, they were excluded from the
average TRE calculation to avoid bias.

The contour-based metrics for all the methods are presented in
Table 4, including the Dice score, HD95, and ASD. Dual-PR-Net and
LapIRN once again achieved better performance than other architec-
tures for the single-stage registration. When either of the two-stage
framework was used, the results for architectures without explicit
multiresolution modeling improved significantly. The proposed MUSA

Fig. 5. Boxplots of the target registration error (TRE) for different landmarks in inter-subject (5a) and intra-subject (5b) registration. Due to space limitations, three
representative network architectures are shown: VoxelMorph, TransMorph, and Dual-PR-Net. The letter suffixes a/b/c in the legend denote three comparison
configurations: (a) single-stage registration, (b) two-stage multiresolution registration, and (c) two-stage MUSA registration, respectively. The left and right styloid
processes had excessively high TRE across all methods in inter-subject registration, as these structures were too fine to be captured by the registration. Therefore, they
were excluded from the average TRE calculation to avoid bias.
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approach consistently achieved the best results across all architectures.
However, the improvement of Dice score and ASD was marginal and
there was no stable statistical significance across different architectures.
Interestingly, for HD95, we observed statistically significant improve-
ment in the inter-subject dataset for all five architectures. Since HD95
measures maximum discrepancies in contour alignment (excluding the
most extreme 5%), this result suggested that MUSA could reduce the
outlier errors in contour alignment, providing a more robust registra-
tion. Fig. 6 shows Dice scores for different anatomical structures.

5.2.2. Qualitative results
Fig. 7 presents the qualitative results of two representative cases

from inter-subject registration and intra-subject registration, respec-
tively. The deformed images and their corresponding deformation fields,
visualized as quiver and grid plots, are displayed for all compared
frameworks and architectures. All four single-stage methods using ar-
chitectures without explicit multiresolution modeling (i.e., VoxelMorph,
Res-U-Net, LK-U-Net, and TransMorph) exhibited obvious registration
errors in the mandible, chin, and nose areas, revealing their limitations
in handling large deformations. The severity of these errors decreased as
the model capacity increased. In contrast, Dual-PR-Net and LapIRN
produced more plausible deformed images. Elastix performed well in
intra-subject registration but degraded in inter-subject registration as
the B-spline registration exhibited excessive smoothness, making it
challenging to address complex deformation. The two-stage

multiresolution approach markedly improved the deformed images for
architectures lacking explicit multiresolution modeling, however, some
errors were still visible for architectures with low registration capacity
(e.g., VoxelMorph). The two-stage MUSA approach further improved the
registration, and the deformed images were more visually consistent
across architectures with varying capacity. The quiver and grid plots
further demonstrated that the MUSA approach generated the most
consistent deformation fields across different architectures compared to
the two baselines.

The quiver plots in Fig. 7 also revealed differences in how well each
method captured the global head rotation (pitch movement), a major
posture difference between the fixed and moving images. For the single-
stage framework, all four architectures without explicit multiresolution
modeling failed to capture the head rotation, as indicated by the absence
of deformation in the upper rear part of the head (highlighted by the
dotted ellipse in the quiver plots). The two-stage multiresolution
approach also failed to capture such deformation. On the other hand,
models with explicit multiresolution modeling (Dual-PR-Net and Lap-
IRN) better reflected the global posture change. Again, Elastix per-
formed well for the intra-subject case but fell short for the inter-subject
case. Our proposed two-stage MUSA approach effectively captured the
head rotation across all network architectures, although there were still
underestimations in the magnitude in architectures with lower capacity
(e.g., VoxelMorph and LK-U-Net). These results demonstrate that the
MUSA approach can better represent postural differences in head-and-

Table 4
Contour-based metrics for different methods on inter- and intra-subject test sets including Dice score (Dice), 95 percentile Hausdorff Distance (HD95 in mm), and
Average Symmetric Surface Distance (ASD in mm). The table organization and notations are identical to Table 3.

Dice ↑

Method Inter-subject test set (N=100) Intra-subject test set (N=7)

a b c a b c

Initial 0.250 ± 0.094 - - 0.209 ± 0.100 - -
Elastix 0.527 ± 0.074 - - 0.713 ± 0.040 - -
VoxelMorph 0.542 ± 0.063 0.661 ± 0.055 s4 0.668 ± 0.046 s4,ns 0.619 ± 0.078 0.729 ± 0.046 s1 0.742 ± 0.035 s1,ns

Res-U-Net 0.650 ± 0.044 0.700 ± 0.040 s4 0.705 ± 0.034 s4,s1 0.715 ± 0.050 0.748 ± 0.039 s1 0.755 ± 0.032 s1,ns

LK-U-Net 0.589 ± 0.047 0.677 ± 0.042 s4 0.680 ± 0.034 s4,ns 0.663 ± 0.050 0.739 ± 0.037 s1 0.743 ± 0.034 s1,ns

TransMorph 0.638 ± 0.047 0.698 ± 0.041 s4 0.703 ± 0.037 s4,ns 0.703 ± 0.047 0.754 ± 0.032 s1 0.755 ± 0.029 s1,ns

Dual-PR-Net 0.682 ± 0.043 0.692 ± 0.045 s2 0.707 ± 0.030 s4,s1 0.738 ± 0.029 0.753 ± 0.031 ns 0.755 ± 0.032 s1,ns

LapIRN 0.662 ± 0.064 - - 0.757 ± 0.034 - -

HD95 ↓

Method Inter-subject test set (N=100) Intra-subject test set (N=7)

a b c a b c

Initial 16.07 ± 4.52 - - 16.89 ± 4.37 - -
Elastix 8.72 ± 2.03 - - 5.41 ± 1.21 - -
VoxelMorph 8.34 ± 1.74 6.84 ± 1.51 s4 6.55 ± 1.26 s4,s2 6.67 ± 1.67 5.33 ± 1.20 s1 4.80 ± 1.03 s1,s1

Res-U-Net 6.69 ± 1.33 6.16 ± 1.33 s4 6.02 ± 1.22 s4,s2 5.37 ± 1.29 4.95 ± 1.24 s1 4.67 ± 0.94 s1,ns

LK-U-Net 7.40 ± 1.21 6.52 ± 1.36 s4 6.35 ± 1.23 s4,s2 6.16 ± 1.24 4.97 ± 1.09 s1 4.86 ± 1.02 s1,ns

TransMorph 6.94 ± 1.31 6.18 ± 1.28 s4 6.00 ± 1.23 s4,s3 5.32 ± 0.97 4.64 ± 0.96 s1 4.61 ± 0.90 s1,ns

Dual-PR-Net 6.43 ± 1.45 6.39 ± 1.27 ns 6.04 ± 1.19 s4,s3 4.91 ± 0.90 4.82 ± 0.95 ns 4.65 ± 0.92 s1,ns

LapIRN 7.01 ± 1.84 - - 4.71 ± 0.99 - -

ASD↓

Method Inter-subject test set (N=100) Intra-subject test set (N=7)

a b c a b c

Initial 7.96 ± 3.00 - - 8.50 ± 2.69 - -
Elastix 3.25 ± 1.07 - - 1.70 ± 0.31 - -
VoxelMorph 3.08 ± 0.89 2.32 ± 0.80 s4 2.23 ± 0.75 s4,s1 2.25 ± 0.55 1.62 ± 0.29 s1 1.50 ± 0.24 s1,s1

Res-U-Net 2.31 ± 0.80 2.04 ± 0.77 s4 2.01 ± 0.75 s4,ns 1.69 ± 0.36 1.50 ± 0.28 s1 1.43 ± 0.22 s1,ns

LK-U-Net 2.67 ± 0.75 2.18 ± 0.77 s4 2.14 ± 0.77 s4,ns 2.02 ± 0.38 1.54 ± 0.25 s1 1.51 ± 0.23 s1,ns

TransMorph 2.39 ± 0.76 2.05 ± 0.75 s4 2.01 ± 0.78 s4,ns 1.72 ± 0.26 1.43 ± 0.22 s1 1.42 ± 0.20 s1,ns

Dual-PR-Net 2.15 ± 0.78 2.12 ± 0.80 ns 1.99 ± 0.76 s4,s1 1.53 ± 0.16 1.46 ± 0.22 ns 1.43 ± 0.22 s1,ns

LapIRN 2.39 ± 0.95 - - 1.43 ± 0.23 - -
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Fig. 6. Boxplots of Dice scores for different anatomical structures. Inter-subject results are shown in (6a-1/6a-2) and intra-subject results in (6b-1/6b-2). Soft tissue
organs (6a-1/6b-1) and bony structures (6a-2/6b-2) are displayed in separate plots. Due to space limitations, three representative network architectures are shown:
VoxelMorph, TransMorph, and Dual-PR-Net. The letter suffixes a/b/c in the legend denote three comparison configurations: (a) single-stage registration, (b) two-
stage multiresolution registration, and (c) two-stage MUSA registration, respectively.
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Fig. 7. Qualitative results of (7a) inter-subject and (7b) intra-subject registration. The two-stage MUSA registration results are compared to the single-stage baseline
and the two-stage multiresolution baseline. The central slice of the coronal view is displayed due to the presence of most deformation in the superior-to-inferior (SI)
and anterior-to-posterior (AP) directions. The moving and fixed images are shown at the top, followed by the deformed images, quiver plots of the deformation field,
and grid plots of the deformation field. Arrows in the deformed images highlight the registration errors. The dotted ellipses in the quiver plots highlight the regions of
interest where discrepancies in head rotation (pitch) are evident. Specifically, red ellipses indicate failure to recover the rotational motion, while white ellipses
indicate underestimation of the motion magnitude. The last three models (i.e., Dual-PR-Net, LapIRN and Elastix) has explicit multiresolution modeling.
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Fig. 7. (continued).
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neck registration, thereby avoiding local minima driven merely by in-
tensity matching and resulting in more plausible deformations. It is
important to note that the difference between the two-stage MUSA
approach and the two-stage multiresolution baseline is not readily
apparent from the deformed images, as intensity matching is generally
achieved to a reasonable extent.

5.2.3. Plausibility of deformations
The deformation regularity metrics, including folding percentage

and SDlog|Jϕ| are reported in Table 5. By comparing MUSA with the two-
stage multiresolution baseline, we observed that the introduction of the
MUSA loss did not result in any considerable increases in foldings or
SDlog|Jϕ|. Therefore, the deformation regularity was maintained.

We also report the median value of the deformation magnitude in
Table 5. Fig. 8 further shows the histogram of the deformation magni-
tude aggregated from all testing pairs. For architectures without explicit
multiresolution modeling (i.e., VoxelMorph, Res-U-Net, LK-U-Net, and
TransMorph), the single-stage registration resulted in reduced median
magnitude and magnitude distribution shifting towards zero. This in-
dicates that the intrinsic multiresolution modeling of U-Net and Swin
Transformer was inadequate for capturing the large head-and-neck
deformation. Both two-stage approaches improved large motion esti-
mation. The two-stage MUSA approach further improved the large
deformation recovery, especially for models with lower capacity. It also
achieved more consistent deformation magnitude distribution across

different architectures, as indicated by the reduced shaded areas in
Fig. 8.

In addition to the differences in plausibility revealed by the defor-
mation quiver plot in Fig. 7, we present the Jacobian determinant maps
for the same cases in Fig. 9. The improvement in plausibility was more
pronounced in the intra-subject case (Fig. 9b). Minimal volume change
in bony structures is expected for intra-subject registration. Therefore,
the Jacobian determinants should be close to one. For architectures
without explicit multiresolution modeling, implausible values deviating
from one were observed in the skull and mandible, in both the single-
stage approach and the two-stage multiresolution approach. Dual-PR-
Net and LapIRN showed improved plausibility due to their explicit
multiresolution modeling, though LapIRN performed slightly worse
than Dual-PR-Net. The two-stage MUSA approach consistently improved
the deformation plausibility for models lacking explicit multiresolution
modeling. The Jacobian determinants were close to one across the bony
mask. However, there were still slight deviations for models with lower
capacity. The effect of the MUSA approach also extended outside the
bony structures, ensuring a more plausible Jacobian determinant map
for the entire head-and-neck region. The arrows in the lower panel of
Fig. 9b highlight the hot and cold spots representing unrealistic expan-
sion and shrinkage, which has been mitigated by the MUSA approach.
For the inter-subject case, the Jacobian determinant map was further
complicated by the volume discrepancies between two subjects. Spe-
cifically, in the presented case, the moving subject had a thicker skull.

Table 5
Deformation-based metrics of different methods on inter- and intra-subject test sets. We reported the percentage of folded voxels (% of |Jϕ| ≤ 0), the standard deviation
of the logarithm of the Jacobian determinant (SDlog|Jϕ|), and the median magnitude of deformation vectors within the body mask.

% of |Jϕ| ≤ 0

Method Inter-subject test set (N=100) Intra-subject test set (N=7)

a b c a b c

Elastix 0.0000 ± 0.0000 - - 0.0000 ± 0.0000 - -
VoxelMorph 0.0057 ± 0.0376 0.0104 ± 0.0637 0.0077 ± 0.0346 0.0004 ± 0.0010 0.1932 ± 0.3248 0.0785 ± 0.0951
Res-U-Net 0.0302 ± 0.1122 0.0493 ± 0.2028 0.0151 ± 0.0392 0.3055 ± 0.3637 0.4166 ± 0.4906 0.2904 ± 0.3541
LK-U-Net 0.0577 ± 0.2746 0.0080 ± 0.0403 0.0181 ± 0.0806 0.2831 ± 0.3296 0.2617 ± 0.3016 0.3097 ± 0.3659
TransMorph 0.0468 ± 0.1878 0.0384 ± 0.1566 0.0312 ± 0.1307 0.3413 ± 0.4191 0.0279 ± 0.0490 0.0154 ± 0.0244
Dual-PR-Net 0.0013 ± 0.0046 0.0051 ± 0.0244 0.0004 ± 0.0029 0.1321 ± 0.2006 0.0000 ± 0.0000 0.0102 ± 0.0218
LapIRN 0.1021 ± 0.2031 - - 0.5122 ± 0.6481 - -

SDlog|Jϕ |

Method Inter-subject test set (N=100) Intra-subject test set (N=7)

a b c a b c

Elastix 0.179 ± 0.076 - - 0.107 ± 0.048 - -
VoxelMorph 0.319 ± 0.151 0.386 ± 0.195 0.362 ± 0.165 0.233 ± 0.044 0.724 ± 0.627 0.524 ± 0.368
Res-U-Net 0.409 ± 0.282 0.452 ± 0.369 0.393 ± 0.190 0.881 ± 0.772 1.007 ± 0.913 0.854 ± 0.756
LK-U-Net 0.440 ± 0.407 0.382 ± 0.177 0.388 ± 0.227 0.859 ± 0.737 0.852 ± 0.696 0.891 ± 0.780
TransMorph 0.450 ± 0.354 0.464 ± 0.322 0.443 ± 0.298 0.930 ± 0.817 0.375 ± 0.211 0.308 ± 0.152
Dual-PR-Net 0.346 ± 0.102 0.372 ± 0.138 0.353 ± 0.097 0.583 ± 0.529 0.224 ± 0.039 0.288 ± 0.137
LapIRN 0.614 ± 0.444 - - 1.096 ± 1.018 - -

Median magnitude

Method Inter-subject test set (N=100) Intra-subject test set (N=7)

a b c a b c

Elastix 16.00 ± 5.12 - - 15.20 ± 3.44 - -
VoxelMorph 11.29 ± 2.90 12.11 ± 3.21 13.55 ± 3.87 10.02 ± 2.41 11.37 ± 2.59 13.26 ± 2.70
Res-U-Net 13.10 ± 3.37 13.96 ± 3.83 15.11 ± 4.17 11.89 ± 2.93 12.93 ± 2.90 14.65 ± 2.99
LK-U-Net 11.22 ± 3.20 13.37 ± 3.72 14.28 ± 4.10 9.65 ± 2.52 12.59 ± 2.66 13.93 ± 3.02
TransMorph 12.45 ± 3.03 14.02 ± 3.77 15.19 ± 4.22 11.85 ± 2.57 13.41 ± 2.69 14.97 ± 3.12
Dual-PR-Net 15.41 ± 4.16 15.89 ± 4.26 16.12 ± 4.51 14.74 ± 2.98 15.30 ± 3.28 15.72 ± 3.00
LapIRN 14.70 ± 4.08 - - 14.15 ± 2.74 - -
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Jacobian determinant values greater than one should be expected within
the skull mask. The MUSA approach yielded a more uniform and plau-
sible skull expansion, whereas the two baseline methods showed over-
estimated expansion concentrated near the frontal upper area of the
head. For cases where the inter-patient bone size difference was rela-
tively small, we observed similar Jacobian determinant patterns as in
the intra-subject case discussed before.

5.2.4. Effective receptive field analysis
Figs. 10 and 11 present the ERF comparison. The ERF maps were

rendered using maximum intensity projection (MIP) after taking the
absolute value. Fig. 10 shows the ERFs of the two first-stage networks
employed in the two-stage multiresolution baseline and two-stage
MUSA approach for three representative architectures: VoxelMorph,
TransMorph, and Dual-PR-Net. The probing point was positioned at the
center of the image. A notable expansion of ERFs for the MUSA loss
compared to the standard loss function was observed for both

Fig. 8. Histograms of the deformation magnitude for (8a) inter-subject and (8b) intra-subject registration. These histograms were generated from all deformation
vector fields in the test set, considering only deformation within the body mask. The two-stage MUSA approach using Dual-PR-Net architecture is selected as the
reference, and its histogram profile is displayed in the red dotted line with gray shadings to highlight the difference. The mean and median values of the entire
deformation magnitude distribution are shown in the top right corner of each subplot. The three rows correspond to single-stage registration, two-stage multi-
resolution approach, and two-stage MUSA approach, respectively. The last three models (i.e., Dual-PR-Net, LapIRN and Elastix) has explicit multi-
resolution modeling.
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VoxelMorph and TransMorph. This observation suggests that the pro-
posed MUSA loss can enlarge the ERF of the network, which is vital not
only for posture correction but also for encouraging a more plausible
deformation by considering more anatomical context. The Dual-PR-Net
exhibited a relatively large ERF even with the standard loss due to its
explicit multiresolution design, explaining its superior performance.

Fig. 11 shows different ERFs with different values of α in MUSA loss.
The probing point was set within the skull mask at the top of the head in
the fixed image. As α increases, the ERF expands and encompasses more

regions corresponding to the skull. The ERF extends to cover the most
part of the skull when α = 1000. This not only justifies the choice of α in
the MUSA loss, but also demonstrates that the MUSA loss successfully
introduces valid anatomical context to the registration task.

5.3. Comparison with Dice loss

The TransMorph architecture was selected to demonstrate the dif-
ference between the proposed MUSA loss and Dice loss as it was one of

Fig. 9. Jacobian determinant maps of the deformation for (9a) inter-subjection and (9b) intra-subject registration. The same cases as in Fig. 7 are presented. The
central slice of the coronal view is displayed. In the top panel, the maps are masked with the bony masks of the deformed image. In the bottom panel, the full
Jacobian determinant maps are shown with the body contour of the deformed image. Arrows highlight implausible volume changes. The last three models (i.e., Dual-
PR-Net, LapIRN and Elastix) has explicit multiresolution modeling.
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the more capable models but still showed distinct improvements from
the MUSA framework, unlike the Dual-PR-Net. The comparison of the
two-stage multiresolution baseline, the two-stage Dice loss approach,
and the proposed two-stage MUSA approach is detailed in Appendix B.2.
Table B1 summarizes the quantitative metrics including TRE and Dice.
Fig. B2 shows the qualitative results as well as the Jacobian determinant
maps. Incorporating Dice loss resulted in a slight increase in TRE. The
observed bony Dice improved notably, while the Dice for unobserved
structures remained unaffected. On the other hand, the MUSA loss

reduced the TRE but only marginally affected the Dice scores for both
observed and unobserved structures. The deformed images showed no
distinct difference. However, the deformation quiver plot and the Ja-
cobian determinant maps demonstrated that adding the Dice loss did not
resolve the implausibility issue of the two-stage multiresolution base-
line. These findings indicate that the MUSA loss and the Dice loss assist
the registration in quite different ways.

Fig. 9. (continued).
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6. Discussion

This paper presents a MUsculo-Skeleton-Aware (MUSA) framework
to anatomically guide head-and-neck CT registration. We have demon-
strated consistent improvement across various architectures in regis-
tration accuracy with respect to Target Registration Error (TRE) and
deformation plausibility.

Accurately and thoroughly evaluating deformable registration re-
mains challenging due to the unknown ground truth (Viergever et al.,
2016). We first discuss the implications and limitations of our evaluation
results in this paper. It is well known that good intensity matching does
not guarantee accurate or plausible deformations, as multiple voxels of
similar intensities can be mapped to a target voxel to achieve a

reasonable intensity match (Rohlfing, 2012; Wang et al., 2022). Alter-
natively, contour matching metrics have been widely used as surrogates
and provide clinically relevant information in applications like radiation
therapy. Although these metrics account for some anatomical informa-
tion, they do not directly assess the underlying deformation and can be
ambiguous within the contour boundary. Ideally, TRE provides an ac-
curate metric for registration evaluation. However, generating a large
number of landmarks in the head-and-neck region is labor-intensive and
also challenging due to anatomical ambiguity, particularly for
inter-subject registration. As a compromise, we used a relatively small
set of 11 landmarks in our study. We deliberately selected landmarks
that were distinct and easily recognizable to minimize annotation
variability. The MUSA framework consistently achieved TRE

Fig. 10. The effect of the proposed MUSA loss on the effective receptive fields (ERFs). VoxelMorph, TransMorph, and Dual-PR-Net are shown as examples. For each
architecture, the ERF is calculated for the first-stage networks used in the two-stage multiresolution approach (standard loss) and two-stage MUSA approach (MUSA
loss). The probing point for ERF calculation is set at the center of the deformation field. The two rows show backpropagation to the moving and the fixed images,
respectively. Maximum intensity projection (MIP) rendering along the coronal view is used for ERF visualization.

Fig. 11. ERFs corresponding to different α values in the MUSA loss (Eq. (5)) are demonstrated using VoxelMorph and TransMorph as examples. The probing point is
set within the skull mask in the fixed image located at the top of the head. The ERFs corresponding to the moving image are shown. The result is similar for the fixed
image. Maximum intensity projection (MIP) rendering along the coronal view is used for ERF visualization.
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improvements across different architectures. The effect size decreased
with increased model capacity, which was expected as more capable
models would show diminishing returns. In addition, statistical testing
on the large inter-subject test set showed statistically significant im-
provements with very low p-values, indicating that the improvement in
TRE is real and not confounded by other factors such as labeling vari-
ability. Nevertheless, labeling variability remains a limitation of the
current study. This also explains why the effect size of TRE improvement
is larger for the intra-subject dataset than for the inter-subject dataset, as
the former has smaller labeling variability due to closer anatomy and
less complex deformation. Improving and automating the labeling pro-
cess and curating a head-and-neck registration dataset with more
densely labeled landmarks will be invaluable for future studies. This
could potentially further highlight the contribution of the MUSA
framework. Currently, the relatively small effect size in TRE improve-
ment suggests that its clinical impact requires further validation.

To highlight the contribution of the proposed MUSA framework, we
employed several ways to demonstrate the improved deformation
plausibility. In addition to the commonly used deformation regularity
metrics such as folding percentage and SDlog|Jϕ|, we analyzed defor-
mation quiver plots, deformation magnitude distributions, and Jacobian
determinant maps. These results further distinguished our proposed
method from the two-stage multiresolution baseline. The MUSA
approach better recovered large deformations, faithfully captured
posture changes like head pitch, and alleviated unrealistic expansion
and shrinkage for all architectures without explicit multiresolution
modeling (i.e., VoxelMorph, Res-U-Net, LK-U-Net, and TransMorph).
Architectures with explicit multiresolution modeling (i.e., Dual-PR-Net
and LapIRN) showed better plausibility. LapIRN still showed some un-
realistic deformation in the single-stage setting. Dual-PR-Net predicted
plausible deformations in all three settings and benefited the least from
incorporating the MUSA framework. This is probably because Dual-PR-
Net has a large ERF from its multiresolution design and predicts multi-
level deformation on feature pyramids, which contain richer informa-
tion than image pyramids. Nevertheless, it is safe to conclude that the
proposed MUSA framework can be confidently integrated with appli-
cable architectures to improve registration plausibility. The plausibility
evaluation methods employed in this study are still limited as they only
reveal implausibility related to large and global deformations. Devel-
oping other evaluation metrics that can reflect implausibility on a finer
scale or of other types is of interest for future studies.

We attribute MUSA’s improvement to a divide-and-conquer strategy
that predicts the complex head-and-neck deformation by sequentially
addressing the bulk posture change and residual fine-scale deformation.
This provides a simplified yet reasonable approximation of decomposing
the head-and-neck deformation into musculoskeletal motion and resid-
ual tissue deformation, without pursuing detailed biomechanical
modeling. In the MUSA framework, the Pos-Net adopts spatially variant
regularization to account for the rigidity difference between the bony
structures and soft tissue. With more stringent regularization, the
deformed image only achieved partial matching with the fixed image,
while the bone shapes were reasonably preserved. This resulted in an
overall effect of posture alignment. The posture corrected image is much
closer to the fixed image, and residual deformation can be more robustly
addressed by the Ref-Net. In contrast, directly predicting the large and
complex deformation may cause the registration algorithm to get trap-
ped in a local minimum, especially for models with lower capacity. This
results in the implausible deformation in the single-stage and two-stage
baselines. By employing the divide-and-conquer strategy, MUSA enables

models of varying capacities to achieve more consistent and improved
registration results.

In addition, the performance gain of the MUSA framework can be
partially explained by the enlarged ERF. Simply increasing the ERF
through architectural design without considering anatomical context
may be inadequate, as evidenced by the suboptimal performance of LK-
U-Net and TransMorph in baseline settings. In MUSA loss, the increased
bending energy on bony structures introduces strong coupling of the
predicted deformations at different spatial locations within the same
bone mask. This occurs because bending energy penalizes the second-
order spatial gradient of the deformation. The bones in the head-and-
neck region are large structures, particularly the skull and the
mandible. We believe the network is enforced to expand its ERF in order
to successfully predict such long-range dependencies in the deformation.

The MUSA framework also offers a more transparent and interpret-
able understanding of the registration process. Specifically, the two-
stage decomposition provides an opportunity to identify and rectify
the problematic stage in case of unsatisfactory registration. In general,
the first stage tends to be more robust and reliable as it focuses on the
high-contrast bony structures in CT images and is also more regularized.
Residual soft tissue deformation can introduce more uncertainties due to
the pronounced elasticity of soft tissue and insufficient contrast in CT
images. Therefore, even if the second stage refinement encounters
challenges, the posture correction can still provide valuable information
and serve as a foundation for further refinement.

Although both MUSA loss and Dice loss utilize segmentation infor-
mation, they do so in fundamentally different ways, as reflected in
different behaviors on the evaluation metrics. Dice loss directly enforces
segmentation matching, which improves observed Dice scores but does
not enhance deformation plausibility or reduce TRE. In contrast, MUSA
loss explicitly regularizes the deformation within bony masks, leading to
improved deformation plausibility but only marginal gains in contour
matching metrics. This indicates that the improvement in TRE from
MUSA loss results from enhanced deformation plausibility rather than
segmentation matching due to potential information leakage. Unfortu-
nately, the improved plausibility does not translate to distinct
improvement in segmentation matching. This is not unexpected as
segmentation overlap may only weakly correlate with registration ac-
curacy and plausibility, especially for large, unlocalized structures
(Rohlfing, 2012). Further combining the MUSA framework with Dice
loss could be preferable for certain tasks, but it is beyond the scope of the
current study.

Our experiments also highlight the significance of employing an
explicit multiresolution strategy in deep-learning-based DIR for
handling large deformations. This is evident from the failure of Vox-
elMorph, Res-U-Net, LK-U-Net, and TransMorph in the single-stage
setting and their notable improvement when adopting a two-level
image pyramid with either the two-stage multiresolution or the two-
stage MUSA approach. The deformation magnitude distribution in
Fig. 8 indicates that this failure is related to underestimating large dis-
placements. In contrast, methods with explicit multiresolution settings,
including Dual-PR-Net, LapIRN, and Elastix, recovered the large defor-
mation more faithfully and resulted in more plausible registration re-
sults. In the MUSA framework, the explicit two-level multiresolution
strategy is seamlessly integrated into the two-stage decomposition, as
the bulk posture change primarily corresponds to global motions, while
the residual tissue deformation occurs at a finer resolution. Previous
studies demonstrated that large motion in brain registration could be
better addressed with models with larger ERFs through the use of either
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larger kernels in CNNs (Jia et al., 2022) or the Transformer architecture
(Chen et al., 2022). However, when applied to the more challenging task
of head-and-neck registration, these methods remain inadequate. This
indicates that the large deformation in the head-and-neck region ex-
ceeds the capacity of the implicit multiresolution modeling of U-Net and
Swin Transformer (Hering et al., 2021). Therefore, the explicit multi-
resolution strategy, including an image or feature pyramid and defor-
mation refinement from coarse to fine, might be more important than
architectural improvements and should be consistently employed for
head-and-neck registration. This is also crucial for ensuring a fair com-
parison between different network architectures in deep-learning-based
DIR.

Our method can accommodate both inter-subject and intra-subject
head-and-neck CT registration despite their different characteristics
and clinical applications. Intra-subject registration is in general a better-
defined and less complex task with straightforward applications. For
example, it is frequently used in radiation therapy for motion manage-
ment, automatic re-contouring, radiation dose accumulation, and lon-
gitudinal treatment response evaluation. Inter-subject registration is
more challenging due to significant anatomical differences among in-
dividuals and larger deformation ranges. These anatomical differences
further complicate registration evaluation and clinical interpretation.
However, inter-subject registration opens the door to broader, poten-
tially more impactful studies. Currently, it is most often used in atlas-
based segmentation (Sims et al., 2009). Emerging applications in pop-
ulation outcome analysis, such as normal tissue complication probabil-
ity (NTCP) modeling (Monti et al., 2018; Palma et al., 2019) could be of
great clinical value. Due to the scarcity of paired intra-subject datasets,
we trained our networks exclusively on the inter-patient dataset. For
testing, we used a larger inter-subject dataset and a relatively small
intra-patient dataset. We intentionally curated an intra-patient dataset
with large deformation from different patient setup protocols (Hwang
et al., 2009), which is substantially more challenging compared to
studies using the same patient setup (Lei et al., 2022). Although the
intra-subject test set is small, it provides a more controlled testing sce-
nario to highlight the contribution of MUSA (e.g., Fig 9b). Our results
also showed a greater improvement in TRE for intra-subject compared to
inter-subject test sets. This is partly due to increased landmark labeling
uncertainty in inter-subject data. Additionally, intra-subject registration
involves less tissue deformation, with musculoskeletal motion contrib-
uting more to the total deformation. Since the Pos-Net in MUSA
framework is specifically designed to address musculoskeletal motion,
the more distinct improvement on intra-subject dataset is expected.
Nevertheless, for a pure intra-subject registration task, enforcing stricter
rigidity constraints remains preferable to ensure anatomical accuracy.
Such work necessitates a large, curated intra-subject dataset for training
and is beyond the scope of the current study.

Our work has several limitations and could benefit from improve-
ments in future research. The MUSA framework is limited by its
simplified anatomical prior, focusing solely on bony structures and soft
tissue. Integrating additional biomechanical knowledge from muscle
and joint modeling in the head-and-neck region (Alizadeh et al., 2020;
Lavallee et al., 2013) can be helpful to further improve registration
accuracy and plausibility. Further improvement in bone segmentation
can help increase the performance of the proposed MUSA framework.
Differentiating between upper and lower teeth was challenging for some
patients in our study, occasionally leading to the lower teeth merging
with the skull mask (e.g., the first two patients in Fig. 2) and resulting in
unrealistic deformations. Moreover, metal artifacts caused by dental
fillings, which are prevalent in head-and-neck CT scans, can severely

degrade registration performance. The proposed method and all the
methods tested in this study face significant challenges in the presence of
metal artifacts. Addressing these artifacts is of great clinical importance
and will require specific strategies in future work, such as suppressing
artifacts before registration or incorporating metal mask information
within the registration framework. Another unsolved problem in
head-and-neck CT registration is related to topological changes caused
by mouth opening and closing. None of the presented registration
methods can correctly create or eliminate the air gap due to mouth
opening and closing when there is topological difference between the
fixed and moving images. Handling such an issue likely requires more
detailed segmentation of the oral cavity substructures, and specialized
techniques to deal with content mismatch and topological changes (e.g.,
Alderliesten et al. (2013); Nithiananthan et al. (2012)), which is beyond
the scope of the current study.

7. Conclusion

This study presents a MUsculo-Skeleton-Aware (MUSA) framework
for deep-learning-based deformable image registration, targeting the
challenging task of head-and-neck CT registration. The proposed Pos-
Net + Ref-Net framework decomposes the complex head-and-neck
deformation into a bulk posture change and residual fine deformation
and then tackles them sequentially. The efficacy of the proposed
framework has been demonstrated across various network architectures,
consistently improving both registration accuracy and deformation
plausibility. Our experiments highlight the significance of explicit
multiresolution modeling and anatomical guidance in head-and-neck CT
registration to ensure anatomically plausible deformations.
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Appendix A. Hyperparameter tuning

A.1. Tuning of the smoothness regularization weight λ

We performed independent hyperparameter tuning for all the single-stage and two-stage baselines used in our study to determine the optimal λ in
Eq. (3), considering both Dice and TRE on the validation set. The models were trained for fewer epochs for hyperparameter tuning than the final
models to conserve computational resources. However, convergence was confirmed. The single-stage models underwent training for 500 epochs. The
two-stage framework’s low-resolution component was also trained for 500 epochs. Subsequently, the weights for the low-resolution network were
frozen. We then integrated the second-stage network, initialized it with weights from the single-stage training, and performed additional training for
200 epochs. The best Dice and TRE were recorded and reported.

The tuning curves are shown in Fig. A1. Both the Dice and TRE curves exhibited relatively flat regions near the optimal value; however, the optimal
values of λ for Dice and TRE could differ by a factor of 2 to 5. In regions where the Dice plateaus, our selection criterion prioritized the TRE metric. This
is because TRE is a stronger indicator of registration accuracy, as segmentation overlap described by Dice score is an indirect surrogate of the un-
derlying deformation, which is less effective in distinguishing reasonable from poor registration (Rohlfing, 2012). For Dual-PR-Net and LapIRN, both
curves were relatively flat for λ ≤ 0.1, in which case we chose the optimal λ of 0.1, since it resulted in better deformation regularity without harming
the accuracy. The optimal λ selected for each architecture and framework is summarized in Table A1.

Fig. A1. (a) TRE and (b) Dice scores of validation data for all single-stage (solid lines) and two-stage (dotted lines) baselines used in the experiment with varying λ
values in Eq. (3).

Table A1
The optimal smoothness hyperparameter (λ) used for the baseline
models in the experiments.

Method Single-stage Two-stage

VoxelMorph 1.0 0.5
Res-U-Net 0.5 0.5
LK-U-Net 0.5 0.5
TransMorph 0.5 0.5
Dual-PR-Net 0.1 0.1
LapIRN 0.1 -
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A.2. Tuning of α in MUSA loss

For MUSA loss (i.e., Eq. (5)), we fixed λ to be the optimal value from the two-stage multiresolution baseline and tuned α independently, as
explained in Section 4.3. The tuning for α was conducted on three representative architectures with varying capacity, including VoxelMorph,
TransMorph, and Dual-PR-Net. We followed the same training strategy as the two-stage multiresolution baseline. Note that when α = 1 in MUSA
framework, it is the same as the two-stage multiresolution baseline.

Fig. A2. (a) TRE of validation data given different α values in MUSA loss (Eq. (5)) for three representative models: VoxelMorph, TransMorph, and Dual-PR-Net. (b)
Dice scores of validation data for TransMorph given different α values in MUSA loss. The three curves show Dice scores for all structures, observed bony structures,
and unobserved soft tissue organs, respectively. Note that in both figures, the leftmost point of each curve (i.e., α = 1) corresponds to the two-stage multiresolution
baseline (i.e., baseline (b)) trained with the standard loss function (Eq. (3)).

Fig. A2(a) shows the TRE outcomes on the validation dataset. All three models showed best TRE results when α = 1000. The consistent behavior of
α across different models with varying registration capacities is expected, as α is attempting to characterize the relative rigidity of bony structures
compared to soft tissue and thus should be relatively invariant. However, we observed diminishing gains with the increase of model capacity.
VoxelMorph, with the smallest capacity indicating by its worst performance at α = 1, showed the largest improvement at the optimal α value.
TransMorph demonstrated moderate improvement with the integration of MUSA loss. Dual-PR-Net showed negligible improvement. The Dice results
for TransMorph are shown in Fig. A2(b). Since we only used the bony segmentations in MUSA loss, we refer to bony segmentations as observed and the
soft tissue organs as unobserved and plot them in addition to the average Dice score of all structures. The MUSA loss only slightly improved the Dice of
observed bony structures, while the Dice for unobserved soft tissue organs were not affected by α value. As a result, the optimal α value of 1000 was
selected based on the TRE metric alone.
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Appendix B. Comparison between MUSA and Dice loss

B.1. Tuning of γ in Dice loss

For Dice loss (i.e., Eq. (6)), we similarly fixed λ to be the optimal value from the two-stage baseline and tuned γ independently. The tuning results of
γ with respect to TRE and Dice are shown in Fig. B1(a,c). An optimal γ of 10− 4 was selected for Dice loss, as it improved the Dice score of observed bony
structures without significantly compromising the unobserved Dice of soft tissue organs or TRE.

Fig. B1. TRE and Dice scores of validation data given different γ values in Dice loss and different α values in MUSA loss. (a) TRE for different γ values in Dice loss, (b)
TRE for different α values in MUSA loss, (c) Dice scores for different γ values in Dice loss, (d) Dice scores for different α values in MUSA loss. Note that the leftmost
point in each curve (i.e., γ = 0 in Dice loss or α = 1 in MUSA loss) corresponds to the two-stage baseline trained with the standard loss function (Eq. (3)).
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We also show a side-by-side comparison of the tuning curves for Dice loss and MUSA loss to facilitate the understanding of MUSA’s contribution. As
the hyperparameter γ increased, there was a notable improvement in the Dice score for observed bony structures; however, the Dice score for un-
observed soft tissue organs declined when γ exceeds 10− 4. This observation was consistent with the previous study by Balakrishnan et al. (2019).
Conversely, varying α only showed a marginal enhancement in the Dice score for bony structures up to an optimal point, beyond which the score
deteriorated, while the Dice score for unobserved structures remained stable. As for TRE, the introduction of Dice loss did not lead to any
improvement, and excessive γ values might be detrimental. On the other hand, increasing α resulted in improvement in TRE up to an optimal value.
The tuning curves revealed the fundamental differences between the Dice loss and the MUSA loss, despite that they both incorporated the bony
segmentations in the loss function.

B.2. Results of Dice loss

To demonstrate the difference between the proposed MUSA loss and Dice loss, we present the Dice loss results by a comparison with the two-stage
multiresolution baseline and the two-stage MUSA approach. The TransMorph architecture was used for all the experiments. Table B1 shows the
quantitative metrics, including TRE and Dice scores. The Dice scores were categorized into the average Dice of all structures, observed bony Dice and
unobserved soft tissue organ Dice to better understand the impact of each loss functions. Fig. B2 shows the qualitative results including the deformed
images and the deformation quiver plots. We also show the Jacobian determinant maps for plausibility analysis. The same inter- and intra-subject
cases were used as in Figs. 7 and 9. The results and their implications were described in Section 5.3.

Table B1
To demonstrate the difference between MUSA loss and Dice loss, we present a quantitative comparison between the two-stage multiresolution baseline, the two-
stage Dice loss baseline, and the two-stage MUSA approach. The average target registration error (TRE in mm) and average Dice scores (including Dice for all
structures, observed bony structures and unobserved soft tissue structures) are reported. The best result within each column is highlighted in bold. The
TransMorph architecture was used for all experiments.

Inter-subject test set (N=100)

Framework TRE (mm) ↓ Dice (all) ↑ Dice (bone) ↑ Dice (soft) ↑

2-stage multiresolution 5.04 ± 1.76 0.698 ± 0.041 0.735 ± 0.086 0.678 ± 0.037
2-stage multiresolution + Dice 5.12 ± 1.78 0.718 ± 0.027 0.797 ± 0.035 0.677 ± 0.036
2-stage MUSA 4.61 ± 1.32 0.703 ± 0.037 0.750 ± 0.068 0.674 ± 0.037

Intra-subject test set (N=7)

Framework TRE (mm) ↓ Dice (all) ↑ Dice (bone) ↑ Dice (soft) ↑

2-stage multiresolution 3.26 ± 0.85 0.754 ± 0.032 0.847 ± 0.022 0.702 ± 0.041
2-stage multiresolution + Dice 3.41 ± 0.79 0.759 ± 0.028 0.867 ± 0.011 0.699 ± 0.039
2-stage MUSA 2.64 ± 0.34 0.755 ± 0.029 0.843 ± 0.022 0.705 ± 0.038
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Fig. B2. To demonstrate the difference between MUSA loss and Dice loss, we present a comparison between the two-stage multiresolution baseline, the two-stage
Dice loss baseline, and the two-stage MUSA approach. The same cases as in Figs. 7 and 9 are shown. The qualitative registration results, similar to those in Fig. 7,
include deformed images and deformation quiver plots. Jacobian determinant maps, similar to those in Fig. 9, are also shown. The TransMorph architecture was used
for all experiments.
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