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Abstract
This paper considers the learning of logical
(Boolean) functions with focus on the general-
ization on the unseen (GOTU) setting, a strong
case of out-of-distribution generalization. This
is motivated by the fact that the rich combina-
torial nature of data in certain reasoning tasks
(e.g., arithmetic/logic) makes representative data
sampling challenging, and learning successfully
under GOTU gives a first vignette of an ‘extrap-
olating’ or ‘reasoning’ learner. We then study
how different network architectures trained by
(S)GD perform under GOTU and provide both
theoretical and experimental evidence that for a
class of network models including instances of
Transformers, random features models, and diag-
onal linear networks, a min-degree-interpolator is
learned on the unseen. We also provide evidence
that other instances with larger learning rates or
mean-field networks reach leaky min-degree so-
lutions. These findings lead to two implications:
(1) we provide an explanation to the length gener-
alization problem (e.g., Anil et al. 2022); (2) we
introduce a curriculum learning algorithm called
Degree-Curriculum that learns monomials more
efficiently by incrementing supports.

1. Introduction
Neural networks trained by stochastic gradient descent
(SGD) have proved to be a powerful learning paradigm
when there is enough representative data about the distri-
bution to be learned, specifically in applications involving
images or text where there is also a good understanding of
the relevant architectures.

There is now an increasing interest in tackling tasks in-
volving more ‘reasoning’ components, which depart from
classical perception tasks of images and texts. While such
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tasks remain vaguely defined, a list that we consider here
under this class is given by: (1) arithmetic and algebra (Sax-
ton et al., 2019; Lewkowycz et al., 2022), (2) synthetic tasks
such as PVR (Zhang et al., 2021) and LEGO (Zhang et al.,
2022), (3) visual reasoning such as CLEVR (Johnson et al.,
2017), (4) physical reasoning such as Phyre (Bakhtin et al.,
2019), (5) algorithmic data such as CLRS (Veličković et al.,
2022) and reasoning on graphs (Mahdavi et al., 2022).

One common trademark of these tasks is that the input
space is usually of discrete/combinatorial nature, and conse-
quently, the data may not necessarily lay on a low dimen-
sional manifold that is well sampled. In various cases, the
input space may even have a variable length. This combi-
natorial nature is already present in text, but it is further
amplified in, say, arithmetic since most symbol combina-
tions could a priori represent a valid input (in contrast to
text). Further, the target function in such tasks may rely on
a large composition of logical steps or mathematical opera-
tions that require to be jointly learned. Therefore, in such
reasoning tasks, the setting with abundant representative
data seems less prominent. This motivates us to focus on a
strong out-of-distribution (OOD) generalization setting.

For instance, when learning arithmetic or logic functions on
a training set with a bounded length or bounded number of
truth assignments, how would the neural network generalize
on more general input assignments (this is a case of length
generalization)? When training a neural network to learn a
Boolean formula, such as a voting scheme on data from a
polarized cohort of voters, how does the network generalize
to an unpolarized cohort?

We thus consider the problem of learning functions with
a holdout domain where part of the distribution support is
barely/never seen at training, and with target functions that
are Boolean to capture the discrete and combinatorial nature
of various reasoning tasks (e.g., arithmetic, decision trees,
logical circuits). Learning successfully under holdout gives
a first vignette that the learner is operating with a certain
amount of ‘reasoning’ or ‘extrapolation’ since memorization
is voided on the unseen domain.

1.1. Our main contributions

1. We lay down some basic principles of stronger gener-
alization requirements that rely on the ‘generalization
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on the unseen (GOTU)’ performance metric, defined
as a strong case of OOD generalization (Section 2),
setting a benchmark for ‘extrapolating’ or ‘reasoning’
solutions on the considered tasks.

2. We study how standard neural network architectures
trained by (S)GD perform on the GOTU metric, in
particular, which solutions are learned on the unseen
domain for such architectures:
(i) we prove two theoretical results showing that for
a class of network models including random features
model (Theorem 3.8) and deep diagonal linear net-
works (Theorem 3.11), a min-degree-interpolator (MD
interpolator) is learned on the unseen;
(ii) we show experimental results (Section 4) support-
ing that Transformers tend to also have the min-degree
bias (MD bias) towards min-degree solutions.

The MD interpolator is defined as the interpolator of
minimal degree-profile, i.e., the Boolean function inter-
polating the training data and having a Fourier-Walsh
transform whose energy concentrates on basis elements
of lowest possible degree. Connections to algebraic
geometry are given in Appendix C in order to character-
ize how MD interpolators can be constructed from the
‘vanishing ideal’ of the seen data. We also point out that
very large learning rates or other architectures (such as
mean-field networks) can exhibit leaky MD bias (i.e.,
assigning larger mass on higher-degree monomials);
see Appendix B.2.

3. Using these, we obtain two additional results:
(i) we provide a formal explanation (Theorem 5.1) to
the ‘length generalization problem’ discussed in (Anil
et al., 2022) (for the case of bounded weight vectors,
also related to (Zhang et al., 2022));
(ii) we turn the min-degree bias into an asset to ac-
celerate learning by introducing a curriculum learning
algorithm called ‘Degree-Curriculum’ (Algorithm 1),
which successively increases the input complexity with
respect to Hamming weights in order to incrementally
learn the monomials support (see Section 5.2).

2. Generalization on the Unseen
The classical setting of statistical learning theory requires
the control of three error pillars for the generalization of
a learning model: (1) the approximation error (depending
on the properties/richness of the model class), (2) the esti-
mation error (depending on the properties/richness of the
training set), (3) the optimization error (depending on the
properties/richness of the training algorithm).

In some of the recent deep learning applications for com-
puter vision and natural language processing, the richness of
the training set, the size of the model and its alignment with

the data, as well as the computational power, make the three
pillars well controlled. The recent success of large language
models (LLM) and scaling laws are perfect examples of this
phenomenon (Alabdulmohsin et al., 2022).

As mentioned in the introduction, the type of data occurring
in reasoning tasks is slightly different due to the richness and
combinatorial nature of the data. To better cope with this
challenge, we propose in this paper to depart from the classi-
cal generalization objectives described with the three pillars.
We focus instead upfront on distribution shift and, more
specifically, a strong case of OOD generalization where part
of the distribution domain is almost/completely unseen at
training but used at testing (in particular, prohibiting any
memorization scheme).

Of course, on the unseen domain, all bets are off for gen-
eralization: one cannot hope for an algorithm trained on a
given data domain to perform well on a larger data domain
without any incentive to do so. Yet various algorithms will
have various implicit biases on the unseen and thus produce
various solutions on the unseen. Understanding this ‘bias on
the unseen’ for different network architectures and Boolean
target functions is the objective of this paper.

We start by redefining the generalization error when the
train and test distribution are not necessarily the same.
Definition 2.1. Let X1, . . . , Xm be samples drawn i.i.d.
under µ1 and labeled by a target function f , and let f̃
be the function learned by a learning algorithm. The al-
gorithm has (µ1, µ2,m, ϵ)-generalization (for loss ℓ) if
EXm∼µ⊗m

1 ,Xm+1∼µ2
[ℓ(f̃Xm(Xm+1), f(Xm+1))] ≤ ϵ. In

other words, the algorithm is trained under distribution µ1

and tested under distribution µ2, producing ϵ-test-loss with
sample complexity m.

Now we focus on a special case of interest, a strong case
where we essentially see all the data on some part of the
domain but miss another part. Naturally, we will next study
a ‘soft version’ of this metric, where both in-distribution
and out-of-distribution generalization are considered, but
this strong case is already rich and insightful.
Definition 2.2 (Generalization on the Unseen). Consider
a given sample space Ω. During training, part of Ω is not
sampled, and we call this the unseen domain (or the holdout
set) U . At testing, however, we sample from the full set
Ω. This represents a special case of the previous definition
where µ1 = µ|Ω\U and µ2 = µ|Ω for some µ.

We now further specify the setting: we assume that the
training error is 0 on the training set Ω \ U , e.g., seeing all
the samples in Ω \ U , and define the generalization on the
unseen (GOTU) for an algorithm f̃ and target function f as

GOTU(f, f̃ ,U) = EX∼UU [ℓ(f̃Ω\U (X), f(X))], (1)

where ∼U U indicates uniform sampling from U . Notice
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we only sample on U at testing because we assumed zero
training error and considered the whole Ω\U as the training
set.

A few remarks are in order:

• GOTU is a special case of OOD and distribution shift
setting that is extremal in the sense that it completely
gives access to part of the distribution domain and com-
pletely omits the complement. Since we consider rich
enough models to interpolate the data, the ‘statistical’
and ‘approximation’ pillars of the learning problem
are removed (there may still be randomness used by
the learning algorithm, thus statistical analysis may
still be relevant). The problem thus turns into a pure
optimization problem where the central object of study
is the implicit bias of the learning algorithm on the
unseen. Note that this is not exactly the same implicit
bias as studied in the setting of overparametrized mod-
els (Soudry et al., 2017; Gunasekar et al., 2017; 2018b;
Arora et al., 2019; Razin & Cohen, 2020; Chizat &
Bach, 2020; Moroshko et al., 2020) as here we have
the distribution shift and investigate the behavior of the
equivalence class of interpolators on the unseen U .

• In some experiments, we replace the ‘perfect’ training
data on the seen domain with a ‘large’ sampling on the
seen domain. We defined the GOTU in the extreme
case to simplify the number of parameters to track
and to allow for cleaner theorem statements, but there
could also be a sampling rate on Ω \ U ; this is left for
future research. Also, we assume a uniform prior here
because this is a natural first case for arithmetic/logic
tasks, but this could also be relaxed.

• We will consider different subsets U in the applications.
We are sometimes interested in U’s for which the data
invariances or equivariances could give hope to learn.
This is further specified with the next definition.

Definition 2.3. A function f : Ω → R is (1) G-invariant or
invariant under the group action G on Ω if f(gx) = f(x) for
all g ∈ G, x ∈ Ω; (2) Gi,o-equivariant or equivariant under
the action Gi,o if f(gi(x)) = go(f(x)) for all (gi, go) ∈
Gi,o and x ∈ Ω.

As stated earlier, we cannot expect algorithms to gen-
eralize on the unseen domain by themselves. However,
we can hope that certain training algorithms will catch
invariances/equivariances and thus extrapolate. For ex-
ample consider the parity function on d bits defined as
f(x1, . . . , xd) = x1x2 · · ·xd. This function is permutation-
invariant (group G = Sd). In particular, if one uses a
model favoring permutation symmetries, one may not have
to see all inputs that are permutation equivalent. There has
been a series of works designing layers/architectures that

are equivalent under a prespecified family of actions (e.g.,
all permutations) (Ravanbakhsh et al., 2017; Zaheer et al.,
2017; Hartford et al., 2018). More recently, (Zhou et al.,
2020) proposes a method to learn invariances in a multi-task
setting using meta-learning. An example of an equivari-
ant Boolean function would be the majority function on
{+1,−1}d, d odd, with the action of global bit flipping
on the input and the output (since the majority is reversed
if all the bits are flipped). Thus a holdout on vectors of
dual-weight could again be handled by a model having such
an equivariance. Note that we are also interested in cases
where these equi/in-variances are not present in the target, to
understand what solutions neural nets favor on the unseen.

3. Results
We consider f : Ω → R with Ω = {±1}d. We introduce
some preliminary material on Boolean functions in the next
part and then state our results.

3.1. Preliminaries

Fourier-Walsh transform. Any function f : {±1}d →
R can be expressed as f(x) =

∑
T∈[d] f̂(T )χT (x), where

χT (x) =
∏

i∈T xi are the monomials and f̂(T ) =
EX∼U{±1}d [χT (X)f(X)] are the coefficients. For ex-
ample, the majority function on 3 bits can be written as
Maj(x1, x2, x3) =

1
2 (x1 + x2 + x3 − x1x2x3).

Unseen domain and vanishing ideals. We now introduce
the unseen domain U . First, consider the canonical holdout,
when a bit is frozen during training, e.g., xi = 1 and U =
{x ∈ {±1}d : xi = −1}. In this case, one can see that any
function of the form f(x)+(1−xi)∆(x) (∆(x) is arbitrary)
is an equivalent interpolator on the training data. For general
unseen domain U ⊆ Ω = {±1}n, there exist polynomials
v1(x), · · · , vk(x) such that x ∈ Ω\U ⇐⇒ v1(x) = . . . =
vk(x) = 0 (see Appendix C). Consequently, all solutions
of the form f(x) + ∆1(x)v1(x) + · · · + ∆k(x)vk(x) are
equivalent at training. This is the quotient space of f under
the vanishing ideal defined by Ω \ U . We refer to Appendix
C for more details on this relation to algebraic geometry.

We now define measures of complexity relevant to us.

Definition 3.1 (Degree). For a function f : {±1}d → R,
the degree deg(f) refers to the maximum degree of the
monomials present in the Fourier-Walsh transform of f .

Definition 3.2 (Degree profile). For f : {±1}d → R, we
define the degree-profile of f , DegP(f) ∈ Rd+1 such that
DegP(f)i =

∑
T⊆[d],|T |=d+1−i f̂(T )

2 for 1 ≤ i ≤ d + 1.
Furthermore, we consider lexicographic ordering on these
vectors, i.e., DegP(f) < DegP(g) iff ∃i DegP(f)i <
DegP(g)i and DegP(f)j = DegP(g)j 1 ≤ j < i.
For example, the degree-profile of Maj(x1, x2, x3) is
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(1/4, 0, 3/4, 0), while its degree is 3.

Note that the degree-profile is a stronger notion of degree,
i.e., deg(f) < deg(g) =⇒ DegP(f) < DegP(g).
Definition 3.3 (Min-degree interpolators). Consider a target
function f and unseen domain U . The set of interpolators
is defined as Fint(f,U) = {g : {±1}d → R | g(x) =
f(x),∀x ∈ Uc}, where Uc := Ω \ U is the seen domain.
We call an interpolator a min-degree interpolator (MD inter-
polator) of (f,U) (or of {x, f(x)}x∈Uc) if it is an element
of Fint(f,U) that minimizes the degree-profile with respect
to the lexicographic order. This means that no part of the
Fourier-Walsh expansion of the interpolator could be re-
placed with a lower-degree alternative and still interpolate.

For example, consider the case of ‘canonical holdout’ where
we always have x1 = 1 at training, i.e., U = {x ∈ {±1}d :
x1 = −1}, and target function x1x2 + x1x3x4. Here, both
x1x2 + x3x4 and x2 + x3x4 are of degree 2 but only x2 +
x3x4 is an MD interpolator since x1x2 in the first function
is replaceable with the lower-degree x2. Further, note that
there may be multiple interpolators having minimal max-
degree rather than degree-profile. For example, consider
the unseen domain induced by xi = xj and target f(x) =
xi + xj . Then 2xi and xi + xj are both interpolators with
minimal max-degree, but only xi+xj is an interpolator with
a minimal degree-profile. In fact, the MD interpolator is
always unique (if f1 and f2 are interpolators with the same
degree-profile, then f1+f2

2 is an interpolator with a smaller
degree-profile unless f1 = f2.)

3.2. Main theoretical results

We show that certain models have a min-degree implicit
bias on the unseen. We start by giving another example.

3.2.1. RESULT PREVIEW FROM AN EXAMPLE

Consider trying to learn the majority target function on 3
voters x1, x2, x3 having the following data distribution: vot-
ers 1 and 2 never vote both negatively, i.e., (x1, x2) is never
(−1,−1) in the training data. Now train a neural network
to learn the target on such a training data distribution (with
only 3 variables, one will quickly see all sequences satisfy-
ing the required condition; this is to simplify the example, in
our results, we consider higher dimensional versions of such
examples). Since we always have (x1, x2) ̸= (−1,−1), it
must be the case that (1−x1)(1−x2) = 0 (this ensures that
either x1 or x2 must be equal to 1). Thus, the functions f(x)
or f(x) + ∆(x)(1− x1)(1− x2) (for any arbitrary ∆) are
equivalent on the training data. One can thus wonder which
∆ function will a neural network trained by (S)GD converge
to. There is no reason to expect that it will converge to
∆ = 0; so can we characterize which ∆ will occur?

Our main results show that —(i) provably for random fea-

tures model or diagonal linear networks in the linear case
(two architectures that we can analyze rigorously), and (ii)
empirically for Transformers — (S)GD will converge to a ∆
that makes f(x)+∆(x)(1−x1)(1−x2) having the lowest
‘degree-profile’ (see Definition 3.2), which in the above ma-
jority example is obtained as follows: first expand the target
in the basis of multivariate monomials, Maj(x1, x2, x3) =
(x1 + x2 + x3 − x1x2x3)/2, then find ∆(x) that makes
(x1+x2+x3−x1x2x3)/2+∆(x)(1−x1)(1−x2) having
the least ℓ2 mass on the highest degree monomials, i.e., in
this case, ∆(x) = x3/2, giving (x1+x2+x3−x1x2x3)/2+
∆(x)(1−x1)(1−x2) = (x1+x2+2x3−x1x3−x2x3)/2
which is degree 2 rather than 3 (see Figure 10 for numerical
experiments). This paper describes what are the general
mathematical concepts behind this specific example: (i)
Fourier-Walsh Boolean analysis, (ii) the notion of vanishing
ideal, and (iii) minimal degree-profile interpolators and the
implicit bias of neural networks towards them.

3.2.2. GENERAL CASE

Our first result is on learning sparse Boolean functions with
the random features model.
Definition 3.4. We consider a P -dimensional latent func-
tion h : {±1}P → R embedded in ambient dimension d.
More precisely, we consider learning f : {±1}d → R
such that f(x) = h(xi1 , . . . , xiP ). We further denote
I = {i1, . . . , iP } and xI = (xi1 , . . . , xiP ). We also as-
sume that some specific combinations of xI are not present
in the training samples, i.e., xI /∈ U∗ ⊂ {±1}P and define
the unseen domain as U = {x ∈ {±1}d | xI ∈ U∗}.

Note that considering sparse functions enables us to define
the unseen domain properly and differentiate between the
unseen domain (where there are minimal structures) and
unseen data (for example when there is uniform sampling).

Our first result is for the random features (RF) model
(Rahimi & Recht, 2007). The RF model was initially intro-
duced to approximate kernels and enhance the time com-
plexity of kernel methods (Rahimi & Recht, 2007). RF
models can also be viewed as approximations of neural net-
works in the NTK regime (Jacot et al., 2018; Ghorbani et al.,
2019; Mei & Montanari, 2022). In this paper, we take the
latter view on them as well, with the following formulation.
Definition 3.5 (Random features model). Consider x ∈
Rd as the input; we define random features model with N
random features as

fRF(x; a,w, b) =
1√
N

N∑
i=1

aiσ(⟨wi, x⟩+ bi), (2)

where ai ∈ R are the trainable parameters, σ is the activa-
tion function, and wi, bi ∼ N (0, 1

d )
⊗d ⊗ N (0, 1

d ) are the
random weights and biases. We use ϕi(x) := σ(⟨wi, x⟩+bi)
as a shorthand notation for the i-th feature.

4



Generalization on the Unseen, Logic Reasoning and Degree Curriculum

The following activation property strengthens the condition
presented in (Abbe et al., 2022c).
Definition 3.6 (Strongly expressive). We call a continuous
activation function σ : R → R strongly expressive up to
P if (A1) σ satisfies upper bound Eg∼N (0,2)[σ(g)

4] < ∞;
and (A2) ∀T ⊆ [d], |T | ≤ P Ew,b[ϕ̂w,b(T )

2] = Ωd(d
−|T |),

where ϕ̂w,b(T ) := Ex[σ(⟨w, x⟩ + b)χT (x)] is the Fourier
coefficient of T in the random feature created by w, b.

As will be proven in Lemma A.1, property (A1) implies
E[ϕ̂w,b(T )

2] = O(d−|T |) for |T | = Od(1). Therefore, the
second condition (A2) is ensuring that the model is able to
strongly express degree k ≤ P monomials.

We note that ϕ̂w,b(T )
2 has been studied in (Abbe et al.,

2022c) as the initial alignment (INAL) between monomial
χT (x) and ϕw,b(x). Indeed, based on Lemma A.2. of (Abbe
et al., 2022c), the following conditions give us a family of
strongly expressive activation functions.
Lemma 3.7. Any continuous polynomially-bounded func-
tion σ such that its first P coefficients in the Hermite expan-
sion are non-zero is strongly expressive up to P .

For example, polynomial activation functions such as (1 +
x)k are strongly expressive up to k.
Theorem 3.8. Let f : {±1}d → R be a P = Od(1)-sparse
function to be learned in the GOTU setting (Definition 3.4)
by a random features model with parameters (N, σ, a, b, w)
(Definition 3.5) with a strongly expressive activation func-
tion. As N diverges, the random features model can inter-
polate the training data with high probability. Furthermore,
defining fd,N

RF (U) to be the interpolating solution minimiz-
ing ∥a∥2 (i.e., the solution reached by gradient descent/flow
starting from a = 0 under ℓ2 loss), we have w.h.p.

fd,N
RF (U) N→∞→ MinDegInterp(f,U) + ϵd (3)

where MinDegInterp(f,U) is the min-degree interpolator
on the training data {x, f(x)}x∈Uc and ϵd is a function on
P variables that tends pointwise to 0 as d diverges. (We
refer to the above as a ‘min-degree bias’ or ‘MD bias’.)

Proof Sketch. In Lemma A.1, we show that random fea-
tures generated by a strongly expressive σ have in general
a decaying degree-profile with Ew,b[ϕ̂w,b(T )

2] = Θ(d−|T |)
for |T | ≤ P . We then investigate the interpolators in the
Fourier-Walsh basis and show that the minimality condition
of ∥a∥2 is equivalent to learning the minimal degree-profile
interpolator since high-degree monomials are less expressed
in the features and consequently larger ∥a∥’s are required to
capture them. The full proof relies on concentration results
and Boolean Fourier analysis and is given in Appendix A.
Remark 3.9 (Other activation functions). Note that The-
orem 3.8 does not hold for any arbitrary activation func-
tion. For example, if σ(z) = z2, one can easily see that

Ew,b[ϕ̂w,b(x)({i})2],Ew,b[ϕ̂w,b(x)({i, j})2] ∈ Θd(d
−2),

and hence degree 1 monomials have no priority over degree
2 monomials. An important case is the ReLU activation.
Results of (Abbe et al., 2022c) show that for the ReLU
activation and |T | ≤ P , we have

Ew,b[ϕ̂w,b(T )
2] =

{
Ω(d−|T |) |T | even or |T | = 1

Ω(d−|T |−1) otherwise
.

(4)
Consequently, the min-degree bias still exists, but in a
weaker form. For further discussion and experiments on
ReLU activation refer to Appendix A.

In the experiments, we show that having the sparsity assump-
tion may not be necessary in some cases, and the min-degree
bias can be observed for small values of d and N as well.
Furthermore, we show that the min-degree bias goes beyond
the random features and NTK models; see Section 4.

We next move to a theorem on deep diagonal linear neu-
ral networks where we will be able to analyze non-linear
dynamics for gradient flow. Note that in the case of lin-
ear functions, replacing a degree-1 variable xk with the
degree-0 variable 1 is the only case of lower degree bias.
In other words, we consider the case that unseen data is
U = {x | xk = −1} (referred to canonical holdout in
(Abbe et al., 2022a)). We show that diagonal linear neu-
ral networks learn the min-degree interpolator with a leak-
age factor that vanishes as their initialization scale is small
enough or as their depth is large enough. We now define
diagonal linear neural networks with bias.

Definition 3.10 (Diagonal linear neural network with bias).
We define a diagonal linear neural network (DLNN) with
bias as an extension of diagonal neural networks, where
there is only one parameter for bias at the last layer. I.e.,

θ = (b, w
(1)
1 , . . . , w

(1)
d , . . . , w

(L)
1 , . . . , w

(L)
d ),

fNN(x1, . . . , xd; θ) = b+

d∑
i=1

(
L∏

l=1

w
(l)
i

)
xi,

where θ, d, and L represent the model’s parameters, input
dimension, and depth, respectively.

Theorem 3.11. Let f : {±1}d → R be a linear function,
i.e., f(x1, · · · , xd) = f̂(∅) +

∑d
i=1 f̂({i})xi. Consider

learning this function using gradient flow on a diagonal
neural network (where depth L ≥ 2) while the k-th compo-
nent is frozen at training (the canonical holdout setting with
U = {x ∈ {±1}d | xk = −1}). For any ϵ > 0, there exists
an αmax (increasing with L) such that if all the model’s
parameters are initialized i.i.d. under the uniform distri-
bution U(−α, α) for any 0 < α ≤ min{αmax,

1
2}, then,

with probability 1, the training loss converges to 0, and the
coefficient of the learned function fNN on the high-degree
monomial xk is less than ϵ, i.e., f̂NN({k}) ≤ ϵ.
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Proof Sketch. We prove this theorem by analyzing the trajec-
tory of gradient flow on the parameters. Primarily, we show
the convergence of the model. Note that f̂NN({k}) ≤ ϵ is
equivalent to xk being ignored by the neural network, i.e.,
the frozen variable xk not contributing to the bias learned
by the neural network. We pursue the proof in two steps. As
the first step, we show there exists a time Tϵ such that the
bias is almost learned by the bias parameter and the rest of
the parameters and the role of xk = 1 are still small (note
that this point is close to a saddle). For the second step, we
show that the contribution of xk = 1 to the bias will not
change much throughout the training process.
Remark 3.12. Note that with the assumptions of Theorem
3.11, the generalization error of the model becomes1

GOTU(f, fdiag,U = {x : xk = −1}) = 4Infk(f)+O(ϵ),

where Infk(f) = f̂({k})2 is the Boolean influence of the
k-th bit (O’Donnell, 2014). This confirms the empirical ob-
servations of (Abbe et al., 2022a) on fully connected linear
neural networks. Indeed, we expect our proof to generalize
to fully connected linear neural networks. Assuming small
enough initialization, one can show that the bias parameter
of the last layer would learn the bias of the target function
while the rest of the parameters do not move much, which is
the first step of the proof. The second step, showing that the
contribution to the bias remains almost the same after this
point, requires more precise analysis since the network’s
learning of weights and biases are closely coupled.

4. Experiments
In this section, we present our experimental results on the
min-degree bias of neural networks.2 We have used four
architectures for our experiments: a multi-layer perceptron
(MLP) with 4 hidden layers, the random features model
(Definition 3.5), Transformers (Vaswani et al., 2017), and 2-
layer neural network with mean-field parametrization (Mei
et al., 2018). By doing this, we consider a spectrum of mod-
els covering lazy regimes, active/feature learning regimes,
and models of practical interest. For the Transformer, ±1
bits are first encoded using an encoding layer and then
passed to the Transformer; while for the rest of the architec-
tures, binary vectors are directly used as the input.

For each experiment, we generate all binary sequences in
Uc = {±1}d \ U for training.3 We then train models un-
der the ℓ2 loss. We employ Adam (Kingma & Ba, 2014)
optimizer for the Transformer model and mini-batch SGD
for the rest of the architectures. We also use moderate

1The factor 4 is removed if we consider the half-quadratic loss
and GOTU on the full space.

2Code: https://github.com/aryol/GOTU
3In practice, one can generate a large enough number of sam-

ples so that the function is learned well on the training distribution.

learning rates as learning rate can affect the results (refer
to Appendix B.2). During training, we evaluate the coeffi-
cients of the function learned by the neural network using
f̂NN(T ) = Ex∼U{±1}d [χT (x)fNN(x)] to understand which
interpolating solution has been learned by the model. More-
over, each experiment is repeated 10 times and averaged
results are reported. For more information on the setup
of experiments, hyperparameter sensitivity analysis, and
additional experiments refer to Appendix B.

Here, we consider the following 3 functions and unseen
domains on input dimension 15. Dimension 15 is used as a
large dimension where the training data can be generated ex-
plicitly but has otherwise no specific meaning (Appendix B
provides other instances). The first function is an example
of degree-2 where the unseen domain induces a degree-1
MD interpolator. The second example is the classic degree-
2 parity or XOR function. The third example is such that
the function is symmetric under cyclic permutations while
its MD interpolator is not, in order to test whether certain
models would favor symmetric interpolators. We consider
other examples such as the majority function in Appendix B.
Let:

1. f1(x) = x0x1 − 1.25x1x2 + 1.5x2x0 and U1 =
{x0x1x2 = −1}. In this case, we have x0x1 = x2,
x1x2 = x0, and x2x0 = x1 at training, hence the MD
interpolator is f̃1(x) = x2 − 1.25x0 + 1.5x1.

2. f2(x) = x0x1 and U2 = {(x0, x1) = (−1,−1)}.
Note that the MD interpolator is f̃2(x) = x1 + x0 − 1
for the seen domain.

3. f3(x) = x0x1x2+x1x2x3+· · ·+x13x14x0+x14x0x1

and U3 = {(x0, x1, x2) = (−1,−1,−1)}. In this
case, the MD interpolator is given by f̃3(x) = (x0x1+
x1x2 + x2x0 − x0 − x1 − x2 + 1) + x1x2x3 + · · ·+
x13x14x0 + x14x0x1.

We generally obtain that the Transformer exhibits a strong
MD bias. The solutions learned by the Transformer for
f1, f2, f3 are shown in Figure 1. It can be seen that these
are very close to the MD interpolator in all cases. The
other models, however, display a ‘leaky’ MD bias where
higher degree monomials are still captured along with the
lower degree ones. Particularly, Figure 2 shows a mean-field
model and an MLP having such leaky MD biases. Note that
the RF model in Figure 2 has a small leakage as well, simply
caused by the ambient dimension being d = 15 and not
diverging as in Theorem 3.8. In Appendix B.2, we discuss
the effect that large learning rates may increase the leakage.

5. Further Implications
We now discuss some of the consequences of the min-degree
bias. First, we explain why the MD bias makes some length
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Figure 1. Target functions f1, f2, and f3 learned by the Transformer (model details in Appendix B). Note that in all of the cases the
Transformer model learns a solution very close to the min-degree interpolator. More precisely, the coefficients of x0x1, x1x2, x2x0 in the
left plot (f1), the coefficient of x0x1 in the middle plot (f2), and the coefficient of x0x1x2 in the right plot (f3) are close to zero.
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Figure 2. f2(x0, . . . , x14) = x0x1 learned by the RF, MLP, and mean-field models while samples satisfying (x0, x1) = (−1,−1) are
withheld during training. Consequently, x0x1 (solid orange line) is replaceable by x0 + x1 − 1 (dashed lines). The MLP and mean-field
models learn a leaky min-degree interpolator with the x0x1 coefficient bounded away from 0. The RF model learns the min-degree
interpolator with a small leakage since the ambient dimension is d = 15; this leakage disappears as d increases as stated in Theorem 3.8.

generalization problems difficult. Second, we show how to
turn the MD bias into a strategy for curriculum learning and
enable an improved sample complexity.

5.1. Length generalization

Several recent works on the reasoning of neural networks
evaluate whether neural networks are able to generalize
when the length of the problem is increased, and it is often
found that neural networks struggle with length generaliza-
tion (Zhang et al., 2022; Anil et al., 2022). For example,
consider learning the parity problem parity(x1, . . . , xd) =
x1x2 · · ·xd on xi = ±1. Two variants of this task can be
considered: (1) the number of bits, d, is increased during
test, and (2) d is the same during training and test; how-
ever, during training, only samples with a bounded num-
ber of −1’s are observed, i.e., the radius r Hamming ball
Br := {x ∈ {±1}d | #−1(x) ≤ r} (note that +1 is the
identity element in this setting). Anil et al. (2022) show that
both of these variants capture the notion and difficulty of

length generalization.4 Here, we focus on the latter variant
which falls under our GOTU setting.

Theorem 5.1. Consider a Boolean function f : {±1}d →
R. Then (i) there exists a unique function fr : {±1}d → R
such that ∀x ∈ Br, fr(x) = f(x) and deg(fr) ≤ r; (ii)
when f is a parity function (monomial) of degree k ≤ d, the
ℓ2-test-loss of the MD interpolator is larger than

(
k−1
r

)2
.

We defer the proof to Appendix A. Now consider learning
the parity function x1x2 · · ·xd where training samples have
r or less −1 coordinates, i.e., training samples belong to Br.
Using the previous theorem, there is a degree r alternative to
x1x2 · · ·xd. Note that when such a low-degree alternative
exists, assuming the min-degree bias, the model will learn
this alternative instead of the full function of degree d. This
explains why in this case neural networks cannot generalize
when the length is increased. We conduct an experiment
to evaluate this, where we learn the full parity function on

4We train our model directly on the parity function; whereas
(Anil et al., 2022) uses large language models and fine-tunes parity
tasks on them. In this sense, our approach is closer to (Zhang et al.,
2022) which also trains models on their synthetic task.
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Figure 3. Learning full parity function in dimension d = 15 in the
length generalization setting with inputs in B6, B7, B8, B9, B10

and B15 (full space) respectively, with an MLP (model details in
Appendix B). X-axis: degree-profile component, Y-axis: degree-
profile value, i.e.,

∑
T :|T |=x f̂NN(T )

2. As the length of training
samples is decreased, the coefficient of the full parity gets smaller
and the coefficients of low-degree monomials get larger.

15 bits using the MLP model trained on different lengths.
Figure 3 shows that we learn more of lower degree terms
and less of the full parity term as we train on shorter lengths.

5.2. Curriculum learning

The bias of neural networks towards min-degree solutions
can also be utilized to boost the learning via a curriculum
learning (Bengio et al., 2009) algorithm. We propose to
train models by increasing the ‘complexity’ of training
samples with respect to the input Hamming weight, i.e.,
Br1 ⊆ Br2 ⊆ . . . ⊆ Brk where Br is the Hamming ball of
radius r. Training a model on samples included in Br with
r < d produces biased inputs compared to the uniform dis-
tribution. It has been shown that learning parities with GD
on biased inputs is easier for various architectures (Malach
et al., 2021; Daniely & Malach, 2020). In particular, the
biasedness of the input distribution can be viewed as con-
verting a monomial on non-centered inputs to a staircase on
centered inputs as discussed in (Abbe et al., 2021). More-
over, (Abbe et al., 2022b) shows that the sample complexity
for learning staircases is significantly reduced compared
to that of monomials of matching degree. In particular, a
layer-wise analysis shows that the hidden neurons in the first
layer detect the support of a parity function under biased
inputs, allowing for the fitting of the target function with the
second layer if enough neuron diversity is available. One
can thus attempt to bootstrap this approach and progres-
sively climb the support (and degree) of the target function
by training successively the network on increasing balls.
We now develop this approach into a general curriculum

3000 5000 7000 9000 11000
Number of training samples

10 2

10 1

100

Te
st

 lo
ss

Curriculum
No Curriculum

Figure 4. Generalization loss on the 16-parity function for differ-
ent numbers of samples with and without the Degree-Curriculum
Algorithm.

algorithm.

Algorithm 1 Degree-Curriculum algorithm

Input: Training samples S = {(xi, yi)}mi=1; Curriculum
Br1 ⊂ Br2 ⊂ . . . ⊂ Brk = Bd; Loss threshold ϵ
for i = 1 to k do

Sri := {(x, y) ∈ S|x ∈ Bri} (samples in Bri )
initialize train loss = 1 + ϵ.
while train loss > ϵ do

train model with SGD on Sri

update train loss
end while

end for

Note that at the i-th step of Algorithm 1, all the training
samples belong to Bri . Thus, for models obeying the MD
bias on the unseen, the model learns the MD interpolator
of degree at most ri. Further, if the sampling set S is such
that B(ri) ∩ S contains enough degree ri elements, the
MD interpolator is of degree ri — see Theorem 5.1. If one
then takes ri = ri−1 + 1, the new MD interpolator has
monomials at step i− 1 that are contained in those at step i,
as in the learning of a merged staircase function (Abbe et al.,
2022b) (and a lower leap function more generally if one
takes a leap in the curriculum degrees). Thus, for a parity
target, the Degree-Curriculum algorithm learns the support
sets incrementally as for the implicit staircase function.

We evaluate the Degree-Curriculum algorithm on learning
full parity function x0x1 · · ·x15 with an MLP. More pre-
cisely, for the same training set and hyperparameters, we
once train the MLP with normal SGD and once with the
proposed Degree-Curriculum algorithm. We choose curricu-
lum B4, B8, B12, B16 and loss threshold ϵ = 0.001. The
results are depicted in Figure 4 (also see Figure 11 for the
same experiment in dimension 30).

In Algorithm 1, it is assumed that the training set is given
with the random access model. We can also consider a vari-
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ant with the query access model, where at step i, training
samples are queried directly from Bri (or some distribution).
In the former case, the probability of a sample belonging to
Br is small for small values of r (e.g., r = od(d)). We thus
expect the Degree-Curriculum algorithm under the query
access model to be more efficient in that regard. In a concur-
rent work (Cornacchia & Mossel, 2023), the benefit of using
a query model with a biased sample distribution before a
denser distribution to learn parities is also investigated. Par-
ticularly, an improvement in the number of GD iterations
has been proved using 1-step gradient arguments.

Note that in the Boolean setting and for the parity functions,
+1 is the identity element. Thus, the number of −1’s used in
the Degree-Curriculum algorithm can also be viewed as the
length of the inputs. Interestingly, some works in the natural
processing domain have used the length of the sentences
(possibly along with other properties) to design their curricu-
lum strategy (Spitkovsky et al., 2010; Zaremba & Sutskever,
2014; Kocmi & Bojar, 2017; Platanios et al., 2019). Finally,
we can naturally extend the Degree-Curriculum algorithm
to non-Boolean settings using the same principle as above:
Build curriculum sets {B̃i} of ‘increased complexity’ in
order to have a path of learned functions on support sets
{S(i)} that are as tightly nested as possible (e.g., staircases
or low-leap functions (Abbe et al., 2022b)), with the target
function at last.

6. Related Literature
Given the deployment of machine learning models in the
real world, out-of-distribution generalization is a critical
aspect of machine learning that has been extensively studied
both in theory (Ben-David et al., 2006; Mansour et al., 2009;
Redko et al., 2020) and in practice (Gulrajani & Lopez-Paz,
2020; Miller et al., 2021; Wiles et al., 2022). Our work
considers an extreme case of distribution shift in which
part of the domain is entirely unseen during the training,
and thus OOD generalization is only possible if the target
function has special structures (e.g., being compositional
or having in/equi-variances) and the model captures those
structures. OOD generalization and the ability to extrapolate
have also been used as proxies for measuring the reasoning
capabilities of neural networks (Saxton et al., 2019; Zhang
et al., 2021; Csordás et al., 2021; Zhang et al., 2022) as
these models are prone to memorization of training samples
(Carlini et al., 2019; Feldman & Zhang, 2020; Kandpal et al.,
2022; Carlini et al., 2022; Zhang et al., 2021) or learning
undesirable shortcuts (Zhang et al., 2022). A special case is
length generalization (Zaremba & Sutskever, 2014; Lake &
Baroni, 2018; Hupkes et al., 2020; Zhang et al., 2022; Anil
et al., 2022), i.e., generalization to the input lengths beyond
what is seen during the training. In this paper, we provided
an explanation for the length generalization problem in the
simple instance of parity functions (Anil et al., 2022).

It has been shown that training with gradient descent im-
poses particular implicit regularization on the solutions
found by the models such as sparsity (Moroshko et al.,
2020), norm minimization (Bartlett et al., 2021), and mar-
gin maximization (in linear classification setting) (Soudry
et al., 2017). This implicit regularization (or implicit bias)
of neural networks trained with gradient-based algorithms
has been used to explain the generalization of (often over-
parametrized) models (Bartlett et al., 2021). These results
depend on the optimizer (Gunasekar et al., 2018a) and model
(Gunasekar et al., 2018b) and are usually proven for simple
models such as linear models (Soudry et al., 2017; Yun et al.,
2020; Jacot et al., 2021) including diagonal linear neural
networks (Gunasekar et al., 2018b; Moroshko et al., 2020)
as studied in this paper. Our result for the random feature
model builds upon the implicit bias toward solutions with
minimum norm (Bartlett et al., 2021). Related to us is also
the spectral bias (Xu et al., 2019; Rahaman et al., 2019)
stating that neural networks, when learning a function in
continuous settings, capture the lower frequency compo-
nents faster (note that degree in Boolean functions plays a
similar role to the frequency). In this paper, we develop a
related insight in the Boolean setting by introducing the no-
tion of degree-profile and showing the min-degree implicit
bias for several models theoretically and empirically.

7. Conclusions and Future Directions
In this paper, we put forward the concept of generaliza-
tion on the unseen (GOTU) and considered the learning of
Boolean functions. We showed that various network archi-
tectures have a bias toward the min-degree interpolator, with
theoretical results for the RF and DLNN, and experimental
results for Transformers. We also found empirically that for
large learning rates or for other models such as mean-field
networks, a leaky version of the MD bias takes place.

We showed that the MD bias can be utilized in a curriculum
learning algorithm where the training takes place on sets of
increasing complexity. We also demonstrated that the MD
bias can impede the learning of symmetric solutions and
can make length generalization difficult.

The min-degree bias is a form of Occam’s razor chosen by
GD-trained neural nets, where the ‘simplicity’ is measured
by the ‘degree-profile’. However, this might not be a desir-
able form of razor for various reasoning tasks. We believe
that other forms promoting symmetries, compositionality,
or more generally minimum description length (MDL) may
often be more suitable. The next natural steps are thus to cor-
rect this min-degree bias. We propose here some directions
to pursue: (1) architecture design promoting symmetries or
compositionality, (2) hyperparameter tuning (e.g., learning
rates, scale), (3) data augmentation and multitasking, (4)
MDL-like regularization at training.
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A. Proofs
A.1. Proofs for the random features model

We start by proving a lemma showing that for strongly expressive activation functions each random feature is low-degree in
the sense that the high-degree monomials have small coefficients in the Fourier-Walsh expansion of the random features.

Lemma A.1 (Random features are low-degree). Consider random features generated by an activation function that is
strongly expressive up to P = Od(1), i.e., ϕw,b(x) = σ(⟨w, x⟩+ b) where wi, b ∼ N (0, 1

d ) are the random weights and
bias. We have the following additional properties:

A3. ∀T ⊆ [d] Ew,b[ϕ̂w,b(T )
2] exists and Ew,b[ϕ̂w,b(T )

2] = Θ(d−|T |) for |T | ≤ P ;

A4. Ew,b[ϕ̂w,b(T )ϕ̂w,b(T
′)] = 0 for T ̸= T ′; and

A5. Ew,b[ϕ̂w,b(T )
2] = 0 ⇐⇒ ϕ̂w,b(T ) = 0 ∀ w, b,

where ϕ̂w,b(T ) is the coefficient of monomial T in random feature ϕw,b(x).

Proof. For property (A3), consider all subsets of [d] = {1, . . . , d} with size k ≤ P : T1, T2, . . . , T(dk)
. Note that due to the

symmetry, we have Ew,b[ϕ̂(T1)
2] = · · · = Ew,b[ϕ̂(T(dk)

)2]. Moreover, we have

(
n

k

)
Ew,b[ϕ̂(Ti)

2] =

(dk)∑
i=1

Ew,b[ϕ̂(Ti)
2] = Ew,b[

(dk)∑
i=1

ϕ̂(Ti)
2] ≤ Ew,b[

∑
T⊆[d]

ϕ̂(T )2] = Ew,b[Ex[ϕ(x)
2]] (5)

= Ex[Ew,b[σ(⟨w, x⟩+ b)2]] = Eg∼N (0, d+1
d )[σ(g)

2], (6)

where in Equation 5 we used Parseval’s identity. By assumption (A1) on the function we know that Eg∼N (0,2)[σ(g)
4] is

finite. Thus, Eg∼N (0,2)[σ(g)
2]2 is also finite and consequently Eg∼N (0, d+1

d )[σ(g)
2]2 can be upper bounded independently of

d, which proves the existence part. Furthermore, Ew,b[ϕ̂(Ti)
2] = Od(

(
d
k

)−1
) = Od(d

−k), where we used k ≤ P = Od(1).
Now by property (A2), we can conclude that Ew,b[ϕ̂w,b(T )

2] = Θ(d−|T |) for |T | ≤ P .

For property (A4), assuming T ̸= T ′ take i ∈ T∆T ′. Without loss of generality suppose i ∈ T, i /∈ T ′. For weight vector
w, we flip the sign of the i-th coordinate and denote the resulting vector by w−i. Now note that Ex[σ(⟨w, x⟩+ b)χT (x)] =

−Ex[σ(⟨w−i, x⟩ + b)χT (x)] and Ex[σ(⟨w, x⟩ + b)χT ′(x)] = Ex[σ(⟨w−i, x⟩ + b)χT ′(x)]. Hence, ϕ̂w,b(T )ϕ̂w,b(T
′) =

−ϕ̂w−i,b(T )ϕ̂w−i,b(T
′) and Ew,b[ϕ̂w,b(T )ϕ̂w,b(T

′)] = 0.

Note that the last property is a consequence of the continuity assumption on the activation function.

Now we can prove Theorem 3.8.

Proof of Theorem 3.8. First, recall the set of all interpolating solutions on the training set Uc as

Fint(ftarget,U) = {f : {±1}d → R | f(x) = ftarget(x) ∀x ∈ Uc}.

Note that a solution given by a1, . . . , aN is interpolating if and only if 1√
N

∑N
i=1 aiϕi(x) ∈ Fint.

Moreover, we study the features and solutions in the Fourier-Walsh basis. First, we index all possible monomials, i.e.,
{T1, T2, . . . , T2d} = 2{1,2,3,...,d} and χTi(x) =

∏
j∈Ti

xj . Further, we define the coefficient of monomial Tj in the

i-th feature as ϕ̂i(Tj) := Ex[ϕi(x)χTj (x)] and F ∈ R2d×N as the matrix of features in the Fourier expansion, i.e.,
Fi,j =

1√
N
ϕ̂j(Ti). Using this notation, a corresponds to an interpolating solution if and only if

∃g ∈ Fint Fa = ĝ, (7)
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where ĝ represents function g in the Fourier-Walsh basis. Furthermore, note that

(FFT )i,j =

N∑
k=1

(
1√
N

ϕ̂k(Ti))(
1√
N

ϕ̂k(Tj)) =
1

N

N∑
k=1

ϕ̂k(Ti)ϕ̂k(Tj). (8)

Note that weights and biases of the features are sampled i.i.d., therefore, as N → ∞, (FFT )i,j converges to
N (Ew[ϕ̂w(Ti)ϕ̂w(Tj)], N

−1Varw[ϕ̂w(Ti)ϕ̂w(Tj)]) in distribution, due to the central limit theorem (CLT). Note that for
the CLT to hold, the variances have to be finite which holds because of property (A1). More specifically, Eg∼N (0,2)[σ(g)

4]
is finite, and hence, Eg∼N (0, d+1

d )[σ(g)
4] is finite. Moreover,

∞ > Eg∼N (0, d+1
d )[σ(g)

4] = Ew,b[Ex[σ(⟨w, x⟩+ b)4]] ≥ Ew,b[Ex[σ(⟨w, x⟩+ b)2]2] (9)

= Ew,b[(
∑
T⊆[d]

ϕ̂w,b(T )
2)2] ≥ Ew,b[ϕ̂w,b(Ti)

2ϕ̂w,b(Tj)
2] ∀i, j, (10)

where we used Parseval’s identity from Equation (9) to Equation (10). We define Φ ∈ R2d×2d as a shorthand notation as

Φi,j = Ew,b[ϕ̂w,b(Ti)ϕ̂w,b(Tj)] =

{
0 i ̸= j

E[ϕ̂w,b(Ti)
2] i = j

, (11)

where we have used properties (A3) and (A4).

A.1.1. EXISTENCE OF INTERPOLATING SOLUTIONS

Now, we show that an interpolating solution exists with high probability. Particularly, take any interpolator g that only
depends on the latent variables xi1 , . . . , xiP and we show that ĝ is in the image of F w.h.p. and hence being an interpolating
solution given Equation (7). Consider monomials such as T for which ∀w, b ϕ̂w,b(T ) = 0. Due to properties (A2) and (A5),
we know that such T ’s satisfy deg(T ) > P , hence their corresponding rows are both zero in F and in ĝ. We remove these
rows from F and ĝ and call the new ones F̃ and ˜̂g. We also remove corresponding rows and columns from Φ and denote the
new matrix by Φ̃.

Note Fa = ĝ ⇐⇒ F̃ a = ˜̂g, therefore to prove that ĝ ∈ Image(F ) its enough to show that F̃ is full row-rank, or
equivalently, F̃ F̃T is full rank. Note that F̃ F̃T converges to Φ̃ almost surely. Note that Φ̃ is a diagonal matrix such that all
elements on the diagonal are positive as all zero-entries of the diagonal are already removed by property (A5). Therefore Φ̃
is full rank and F̃ F̃T becomes full rank almost surely as N → ∞. This concludes the proof of the existence of interpolators.

A.1.2. LEARNING THE MIN DEGREE-PROFILE INTERPOLATING SOLUTION

Now, we investigate the interpolating solution found by the model. Note that we are interested in the interpolating solution
with the minimum norm ∥a∥2 (which is the solution found by GD starting from a = 0). Consider an interpolating solution
g ∈ Fint. The interpolator g is found by the model if and only if Fa = ĝ, where ĝ is the Fourier expansion of g written in
the vector form. Moreover, note that the a satisfying Fa = ĝ with the minimum norm ∥a∥2 is a∗g = F †ĝ, where F † is the
Moore-Penrose pseudo-inverse. Therefore, we have

∥aRF∥22 = min
g∈Fint,ĝ∈Im(F )

∥F †ĝ∥22 =⇒ gRF = arg min
g∈Fint,ĝ∈Im(F )

∥F †ĝ∥22. (12)

Now note that we have

∥F †ĝ∥22 = ∥FT (FFT )†ĝ∥22 = ĝT (FFT )†FFT (FFT )†ĝ (13)

We know that FFT almost surely converges to Φ, which is a diagonal matrix. Moreover, by property (A5), we know that
the zero elements on the diagonal of Φ correspond to zero rows of F , and hence zero entries of g since g ∈ Im(F ). Thus,
we can say that (FFT )† and ∥F †ĝ∥2 converge to Φ† and gTΦ†g as N → ∞ w.h.p. Furthermore, since g ∈ Im(F ), zero
entries on diagonal Φ (or Φ†) correspond to zero entries of g, thus, we also have

gRF = arg min
g∈Fint,ĝ∈Im(F )

∥F †ĝ∥22
N→∞(a.s.)−−−−−−−→ arg min

g∈Fint,ĝ∈Im(F )
gTΦ†g. (14)
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Also note that
gTΦ†g =

∑
T⊆[d]:Ew,b[ϕ̂(T )2] ̸=0

ĝ(T )2Ew,b[ϕ̂(T )
2]−1. (15)

We now focus on interpolators minimizing the quantity introduced in Equation (15). First, note that these interpolators do not
have any monomials having a variable other than latent variables {xi1 , . . . , xip}, i.e., all of the learned monomials would be in
2{xi1

,...,xip}. To see this, consider an interpolating solution g containing such monomials, T1, . . . , Tm ̸⊆ IP = {i1, . . . , iP }.
For simplicity, we use the notation x = (xIP , x[d]\IP ) to differentiate between latent variables and the rest of the bits. Now
define

gI((xIP , x[d]\IP )) := 2−(d−P )
∑

x[d]\IP ∈{±1}d−P

g(x). (16)

Note that gI((xIP , x[d]\IP )) is independent of x[d]\IP . Therefore gI(x) = g(x) for all the training samples. Moreover, note
that

ĝI(T ) =

{
ĝ(T ) T ⊆ IP

0 o.w.
, (17)

which shows that gIΦ†gI < gΦ†g unless g = gI . Note that if Ew,b[ϕ̂(T )
2] = 0 for some T , then ĝ(T ) = 0, since we are

considering the solution learned by the RF model and ĝ ∈ Im(F ). In sum, the function learned by the RF model converges
to an interpolator that only contains the latent coordinates, as N → ∞ w.h.p. Note that E[ϕ̂w,b(T )

2] is the same for all T of
the same size due to symmetry, we denote this shared quantity by ϕ̂|T |,d. Now, we revisit Equation (15), for the functions
defined on latent coordinates IP , we have

gTΦ†g =
∑

T⊆[d]:Ew,b[ϕ̂(T )2] ̸=0

ĝ(T )2Ew,b[ϕ̂w,b(T )
2]−1 (18)

=
∑
T⊆IP

ĝ(T )2Ew,b[ϕ̂w,b(T )
2]−1 =

P∑
i=0

(
∑

T⊆IP :|T |=i

ĝ(T )2)ϕ̂−1
|T |,d. (19)

Note that since σ is strongly expressive up to P , we have ϕ̂−1
k,d = Θ(dk). Putting this along Equation (19) shows that the

solution of the RF model converges to MinDegInterp + ϵd almost surely as N → ∞, where ϵd is a vanishing function
(w.r.t. d) on the latent coordinates, which concludes the proof.

A.1.3. RF MODEL WITH RELU ACTIVATION

In this part, we study the random features model equipped with the ReLU activation function. Here, we mostly rely on the
results of (Abbe et al., 2022c). First, following proposition B.1 of (Abbe et al., 2022c), we note that for every odd k ≥ 3, the
coefficient of k-th Hermite polynomial in the Hermite expansion of ReLU is zero. On the other hand, this coefficient is
non-zero for k = 1 and any even k. Consequently, following Lemma A.2 of (Abbe et al., 2022c), for monomials χT and
|T | ≤ P = Od(1) we have

Ew,b[Ex[ReLU(⟨w, x⟩+ b)χT (x)]
2] = Ew,b[ϕ̂w,b,ReLU(T )] =

{
Ω(d−|T |) |T | even or |T | = 1

Ω(d−(|T |+1)) o.w.
, (20)

where ϕ̂w,b,ReLU(T ) is the coefficient of monomial T in random feature created by the weights and bias w, b and the ReLU
activation. Informally, Equation (20) indicates that odd monomials with degrees larger than one are not strongly expressed
in the random features when ReLU is used as the activation function. Nonetheless, note that as in Lemma A.1, we can
still deduce that Ew,b[ϕ̂w,b,ReLU(T )] = O(d−|T |) for |T | ≤ P = Od(1). This upper bound along with the lower bounds
obtained in Equation (20) and the minimization problem of Equation (19) indicate that the random features model with
ReLU activation would replace degree 2 or 2k + 1 monomials with lower degree monomials if possible. However, it might
not replace degree 2k+2 monomials with degree 2k+1 monomials for k ≥ 1. We further illustrate this with an experiment.

We consider learning f3(x0, . . . , x14) = x0x1x2 + x0x3x4x5 under the unseen domain U = {x ∈ {±1}14|x0 = −1}.
Note that in this case, the min-degree interpolator is x1x2 + x3x4x5. However, for the ReLU activation, we know that
x3x4x5 would not necessarily be preferred to x0x3x4x5 since the deg(x3x4x5) = 3 is odd. In Figure 5, we compare the
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solution learned by the RF model with ReLU and polynomial activation (here (1 + x)6). It can be seen that the polynomial
activation learns the MD interpolator, whereas the RF with the ReLU activation function only learns the lower-degree
monomial for the odd monomial and not for the even one.
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Figure 5. Target function f3(x0, . . . , x14) = x0x1x2 + x0x3x4x5 being learned by random features models under U = {x0 = −1}.
The RF model with strongly expressive activation (here (1 + x)6) learns the min-degree interpolator (right), while the min-degree bias of
the RF model with ReLU activation depends on the degree of monomials being even or odd (left). More precisely, the RF model does not
prefer degree 2k + 1 monomial to degree 2k + 2 monomial for k ≥ 1. Note that for the RF with ReLU activation (left), the coefficients
of x3x4x5 and x0x3x4x5 are equal and hence overlap.

A.2. Proof for diagonal linear neural networks Theorem 3.11

Here, we present the proof of Theorem 3.11.

Proof. We denote parameters at time t by θ(t). Also, we consider the training under half ℓ2 loss, to simply remove the 2
factor from gradients. Consider the (half) ℓ2 loss function for a training sample x, we have

L(θ(t), x, f) =
1

2
(fNN(x)− f(x))

2 (21)

=
1

2

((
b− f̂(∅)

)
+

d∑
i=1

(
L∏

l=1

w
(l)
i − f̂({i})

)
xi

)2

. (22)

Moreover, we know every component of the training sample is sampled from Rad( 12 ), except the frozen bit which is set to
xk = 1. We denote this uniform distribution by Ud−1

−k . Given this, the expected loss of the training set can be calculated as
follows

EUd−1
−k

[L(θ(t), x, f)] =
1

2
EUd−1

−k

((b− f̂(∅)
)
+

d∑
i=1

(
L∏

l=1

w
(l)
i − f̂({i})

)
xi

)2


=
1

2
EUd−1

−k


((b+ L∏

l=1

w
(l)
k )− (f̂(∅) + f̂({k}))

)
+

d∑
i ̸=k

(
L∏

l=1

w
(l)
i − f̂({i})

)
xi

2


=
1

2

(
(b+

L∏
l=1

w
(l)
k )− (f̂(∅) + f̂({k}))

)2

+
1

2

d∑
i̸=k

(
L∏

l=1

w
(l)
i − f̂({i})

)2

, (23)

where we have used Parseval’s theorem (O’Donnell, 2014) to get the last equation. For simplicity, we define B := f̂(∅) +
f̂({k}) and BNN := b+

∏L
l=1 w

(l)
k as the total bias of the target function and the neural network respectively. We know the

gradient flow (GF) of the parameters of the neural network is given by

θ̇ = −∇θEUd−1
−k

[L(θ(t), x, f)]. (24)
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Therefore, using (23), we can derive the gradient flow for each of the parameters as below

ḃ = −∇bEUd−1
−k

[L(θ(t), x, f)] = −(b+

L∏
l=1

w
(l)
k ) + (f̂(∅) + f̂({k})) = −(BNN −B), (25)

ẇ
(l)
k = −∇

w
(l)
k

EUd−1
−k

[L(θ(t), x, f)] = −((b+

L∏
j=1

w
(j)
k ) + (f̂(∅) + f̂({k})))

L∏
j ̸=l

w
(j)
k (26)

= −
L∏
j ̸=l

w
(j)
k (BNN −B),

∀i ̸= k, ẇ
(l)
i = −∇

w
(l)
i
EUd−1

−k
[L(θ(t), x, f)] = −

 L∏
j=1

w
(j)
i − f̂({i})

 L∏
j ̸=l

w
(j)
i . (27)

Using the above, we can derive the balancedness property of the neural network, i.e.,

d

dt
(w

(l)
k )2 = 2w

(l)
k ẇ

(l)
k = −2

L∏
j=1

w
(j)
k (BNN −B) = 2w

(l′)
k ẇ

(l′)
k =

d

dt
(w

(l′)
k )2, (28)

∀i ̸= k,
d

dt
(w

(l)
i )2 = 2w

(l)
i ẇ

(l)
i = −2

 L∏
j=1

w
(j)
i − f̂({i})

 L∏
j=1

w
(j)
i = 2w

(l′)
i ẇ

(l′)
i =

d

dt
(w

(l′)
i )2. (29)

Therefore, ∀i (w
(l)
i )2 − (w

(l′)
i )2 is constant during training. Using this property, we can show that most of the model’s

parameters are always bounded away from 0 during training. To see this, fix an index i ∈ [d]. Let j∗i = argminj∈[L]|w
(j)
i (0)|.

Furthermore, define
ci := min

j ̸=j∗i ∈[L]
(w

(j)
i (0))2 − (w

(j∗i )
i (0))2 ≥ 0. (30)

Since the model parameters are initialized randomly using the uniform distribution, we can say that ci > 0 with probability
1. Now, due to the balancedness property, we know that

∀j ̸= j∗i , (w
(j)
i (t))2 − (w

(j∗i )
i (t))2 = (w

(j)
i (0))2 − (w

(j∗i )
i (0))2 ≥ ci =⇒ (w

(j)
i (t))2 ≥ ci + (w

(j∗i )
i (t))2 ≥ ci. (31)

Now we are able to show the convergence of the model. To begin with, note that

d

dt
(

L∏
l=1

w
(l)
k ) =

L∑
l=1

ẇ
(l)
k

∏
j ̸=l

w
(j)
k = −

 L∑
l=1

(

L∏
j ̸=l

w
(j)
k )2

 (BNN −B), (32)

∀i ̸= k,
d

dt
(

L∏
l=1

w
(l)
i ) =

L∑
l=1

ẇ
(l)
i

∏
j ̸=l

w
(j)
i = −

 L∑
l=1

(

L∏
j ̸=l

w
(j)
i )2

( L∏
l=1

w
(l)
i − f̂({i})

)
. (33)

Now, first, we consider an index i ̸= k. We have

d

dt

(
L∏

l=1

w
(l)
i − f̂({i})

)2

= 2

(
L∏

l=1

w
(l)
i − f̂({i})

)
d

dt

(
L∏

l=1

w
(l)
i − f̂({i})

)

= −2

 L∑
l=1

(

L∏
j ̸=l

w
(j)
i )2

( L∏
l=1

w
(l)
i − f̂({i})

)2

. (34)

Now using (31), we can say  L∑
l=1

(

L∏
j ̸=l

w
(j)
i )2

 ≥ (

L∏
j ̸=j∗i

w
(j)
i )2 ≥ cL−1

i > 0. (35)

17



Generalization on the Unseen, Logic Reasoning and Degree Curriculum

Therefore, we have

d

dt

(
L∏

l=1

w
(l)
i − f̂({i})

)2

= −2

 L∑
l=1

(

L∏
j ̸=l

w
(j)
i )2

( L∏
l=1

w
(l)
i − f̂({i})

)2

≤ −2cL−1
i

(
L∏

l=1

w
(l)
i − f̂({i})

)2

, (36)

which shows (
L∏

l=1

w
(l)
i (t)− f̂({i})

)2

≤

(
L∏

l=1

w
(l)
i (0)− f̂({i})

)2

e−2cL−1
i t; (37)

in other words,
(∏L

l=1 w
(l)
i − f̂({i})

)2
goes to 0 exponentially fast in time, t. Finally, we make the same analysis for

(BNN −B)2. We have

d

dt
(BNN −B)2 =

d

dt

(
(b+

L∏
l=1

w
(l)
k )−B)

)2

= 2

(
(b+

L∏
l=1

w
(l)
k )−B)

)
d

dt

(
b+

L∏
l=1

w
(l)
k

)

= 2

(
(b+

L∏
l=1

w
(l)
k )−B)

)−(BNN −B)−

 L∑
l=1

(

L∏
j ̸=l

w
(j)
k )2

 (BNN −B)


= −2(BNN −B)2

1 +

 L∑
l=1

(

L∏
j ̸=l

w
(j)
k )2

 ≤ −2(BNN −B)2.

The last equation shows that
(BNN(t)−B)2 ≤ (BNN(0)−B)2e−2t, (38)

i.e., (BNN(t)−B)2 converges to 0 exponentially fast in t as well. Equations (23), (37), and (38) show that

L(θ(t), x, f) ≤ L(θ(0), x, f)e−ct, (39)

where c = 2min(1,min({ci}i ̸=k)
L−1); hence, loss converges to zero exponentially fast in time (however, it is still

initialization-dependent).

As shown in (38), the bias of neural network, converges like (BNN(t) − B)2 ≤ (BNN(0) − B)2e−2t. We denote

R := |f̂(∅) + f̂({k})|+ 1 > |BNN(0)−B|. Now notice that if t ≥ Tϵ :=
log 64R2

ϵ2

2 , then we have

(BNN(t)−B)2 ≤ (BNN(0)−B)2e−2t ≤ R2e− log 64R2

ϵ2 =
ϵ2

64
. (40)

We now show the growth of
∏L

l=1 w
(l)
k is comparatively slower, and therefore, it will not capture the bias fast enough and

will remain small during the entire training process. More precisely, we first bound
∏L

l=1 w
(l)
k at the beginning of training

(t ≤ Tϵ). We define m = argmaxl∈[L]|w
(l)
k (0)|. Again, by balancedness property, we know it will remain the largest during

training, i.e.,

|w(i)
k | =

√
(w

(i)
k )2 ≤

√
(w

(m)
k )2 ≤ |w(m)

k |. (41)

Now note that

d

dt
(w

(m)
k )2 = −2

L∏
j=1

w
(j)
k (BNN(t)−B) ≤ 2|

L∏
j=1

w
(j)
k (BNN(t)−B)|

≤ 2|w(m)
k |L|BNN(t)−B|

≤ 2((w
(m)
k )2)

L
2 |BNN(0)−B| = 2((w

(m)
k )2)

L
2 R, (42)

where in the last line we used the fact that (BNN(t)−B)2 is decreasing. Now, we provide a bound for |w(m)
k |. First, we

consider the case that L = 2. In this case, we have

d

dt
(w

(m)
k )2 ≤ 2((w

(m)
k )2)R =⇒ (w

(m)
k (t))2 ≤ (w

(m)
k (0))2e2Rt, (43)
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where we used Gronwall’s lemma in the last equation. It also shows

L∏
l=1

w
(l)
k (t) ≤ w

(m)
k (t)L = w

(m)
k (t)2 ≤ (w

(m)
k (0))2e2Rt. (44)

Now, we consider the case that L > 2. In this case, we also have (this could be considered as an extension of Gronwall’s
lemma, note that w(m)

k > 0)

d

dt
(w

(m)
k )2 ≤ 2((w

(m)
k )2)

L
2 R =⇒ (45)

d

dt
((w

(m)
k )2)1−

L
2 = −(

L

2
− 1)((w

(m)
k )2)−

L
2
d

dt
(w

(m)
k )2 ≥ −(L− 2)R, (46)

using the above we have

(w
(m)
k (t)2)1−

L
2 − (w

(m)
k (0)2)1−

L
2 =

∫ t

0

d

dt
(w

(m)
k (t)2)1−

L
2 ≥ −(L− 2)Rt =⇒ (47)

w
(m)
k (t)2 ≤ 1

(|w(m)
k (0)|2−L − (L− 2)Rt)

1
L
2

−1

t <
|w(m)

k (0)|2−L

(L− 2)R
, (48)

hence, we have

L∏
l=1

w
(l)
k (t) ≤ (w

(m)
k (t)2)

L
2 ≤ 1

(|w(m)
k (0)|2−L − (L− 2)Rt)

L
L−2

t <
|w(m)

k (0)|2−L

(L− 2)R
. (49)

Now we consider each of these bounds at t = Tϵ. First, for L = 2, we have

L∏
l=1

w
(l)
k (t) ≤ (w

(m)
k (0))2e2Rt = (w

(m)
k (0))2e2RTϵ , (50)

which is upper bounded by ϵ
8 if (w(m)

k (0))2 ≤ α2 ≤ α2
max = ϵ

8e2RTϵ
. Now, we consider the bound for deeper networks,

L > 2, at time t = Tϵ. We want to bound
∏L

l=1 w
(l)
k (t) by ϵ

8 . Using (49) this will happen if we have

1

(|w(m)
k (0)|2−L − (L− 2)RTϵ)

L
L−2

≤ ϵ

8
⇐⇒ (L− 2)RTϵ + (

8

ϵ
)

L−2
L ≤ |w(m)

k (0)|2−L, (51)

which will happen if |w(m)
k (0)| ≤ αmax := ((L− 2)RTϵ + ( 8ϵ )

L−2
L )

1
2−L .

So we proved for small enough initializations, there exists a time, Tϵ, where

|b(Tϵ) +

L∏
l=1

w
(l)
k (Tϵ)−B| ≤ ϵ

8
, (52)

|
L∏

l=1

w
(l)
k (Tϵ)| ≤

ϵ

8
, (53)

|b(Tϵ)−B| ≤ |b(Tϵ) +

L∏
l=1

w
(l)
k (Tϵ)−B|+ |

L∏
l=1

w
(l)
k (Tϵ)| ≤

2ϵ

8
. (54)

We now show that this picture will not change much during the rest of the training process. To see this, note that |BNN(t)−B|
is always decreasing over time and is continuous. Therefore, BNN(t) − B cannot change the sign (since changing the
sign means that the variable had become equal to 0 at some time, which is contrary to the fact that its absolute value is
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decreasing). Considering equations (25) and (32) we can conclude that both b(t)−B and
∏L

l=1 w
(l)
k (t) are either increasing

or decreasing during the whole training. First, consider both of them is increasing. For t > Tϵ, we have

|
L∏

l=1

w
(l)
k (t) + b(t)−B| ≤ |

L∏
l=1

w
(l)
k (Tϵ) + b(Tϵ)−B| ≤ ϵ

8
=⇒ (55)

−ϵ

8
≤

L∏
l=1

w
(l)
k (Tϵ) ≤

L∏
l=1

w
(l)
k (t) ≤ ϵ

8
− (b(t)−B) ≤ ϵ

8
− (b(Tϵ)−B) ≤ 3ϵ

8
=⇒ |

L∏
l=1

w
(l)
k (t)| ≤ 3ϵ

8
, (56)

|b(t)−B| ≤ |
L∏

l=1

w
(l)
k (t) + b(t)−B|+ |

L∏
l=1

w
(l)
k (t)| ≤ 4ϵ

8
. (57)

The case for both functions being decreasing is also similar. This shows that fNN({k}) < ϵ during the entire training. Now
we can study GOTU loss for t ≥ Tϵ using Parseval’s theorem as follows:

GOTU(f, fNN, {xk = −1}) =

((b−
L∏

l=1

w
(l)
k )− (f̂(∅)− f̂({k})))2 +

d∑
i̸=k

(

L∏
l=1

w
(l)
i − f̂({i}))2

 (58)

=

(
((b−B)−

L∏
l=1

w
(l)
k + 2f̂({k}))2 +O(e−ct)

)
(59)

= 4f̂({k})2 +Ot(e
−ct) +Oϵ(ϵ), (60)

which proves the theorem. Note that if we consider half ℓ2 loss for the entire population Ω the loss becomes f̂({k})2 +
Ot(e

−ct) +Oϵ(ϵ).

Remark A.2 (Initialization of bias variable). Note that the analysis is independent of the initialization of the bias variable (as
long as it satisfies a simple bound such as |b(0)| ≤ 1

2 ).
Remark A.3 (Effect of depth). The current theorem proves that the low-degree solution is learned when the initialization
scale is small enough. To see the effect of depth, we prove that αmax found in this proof is increasing by depth, L. In
other words, if we have deeper networks, we can use larger initializations and still have the generalization error close to the
Boolean influence.

Proof for Remark A.3. Consider L ≥ 3. We know that αmax := ((L− 2)RTϵ + ( 8ϵ )
L−2
L )

1
2−L . For simplicity define

P := RTϵ, (61)

Q :=
8

ϵ
> e3 (we assume this), (62)

g(x) := (xP +Q
x

x+2 )
−1
x . (63)

Now note that αmax = g(L− 2). Therefore, we need to prove g(x) is increasing for x ≥ 1. To see this, note that

d

dx

x

x+ 2
=

2

(x+ 2)2
, (64)

d

dx
Q

x
x+2 = Q

x
x+2 (lnQ)

2

(x+ 2)2
, (65)

d

dx
ln(xP +Q

x
x+2 ) =

P +Q
x

x+2 (lnQ) 2
(x+2)2

xP +Q
x

x+2
, (66)

d

dx

− ln(xP +Q
x

x+2 )

x
=

−x
P+Q

x
x+2 (lnQ) 2

(x+2)2

xP+Q
x

x+2
+ ln(xP +Q

x
x+2 )

x2
. (67)
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Therefore, d
dx

− ln(xP+Q
x

x+2 )
x ≥ 0, iff

ln(xP +Q
x

x+2 ) ≥ x
P +Q

x
x+2 (lnQ) 2

(x+2)2

xP +Q
x

x+2
⇐⇒ (xP +Q

x
x+2 ) ln(xP +Q

x
x+2 ) ≥ xP +Q

x
x+2 (lnQ)

2x

(x+ 2)2
,

(68)

which holds because

xP ln(xP +Q
x

x+2 ) ≥ xP ln(Q
1
3 ) ≥ xP, (69)

Q
x

x+2 ln(xP +Q
x

x+2 ) ≥ Q
x

x+2 ln(Q)
x

x+ 2
≥ Q

x
x+2 (lnQ)

2x

(x+ 2)2
. (70)

Therefore, exp(− ln(xP+Q
x

x+2 )
x ) = g(x) is increasing. Finally, we have to compare αmax for depths 2 and 3. Note that for

depth two αmax(2) =
√

ϵ
8e

−RTϵ =
√

1
Qe−P while for depth three, we have αmax(3) =

1
P+ 3

√
Q

. Therefore, we have

1

αmax(2)
= eP

√
Q ≥ (P + 1)

√
Q ≥ P + 3

√
Q =

1

αmax(3)
,

which gives the desired result.

A.3. Proof for Theorem 5.1

Proof. First, we prove the existence and uniqueness of such low-degree interpolators. Afterward, we consider it explicitly
for parity functions.

Note that we know there are no r + 1 bits which are all equal to −1 in Br. Therefore, for any r + 1 indices, we have
(xi1 − 1) · · · (xir+1 − 1) = 0. Consequently, each xi1 · · ·xir+1 can be replaced by a degree r polynomial. Now consider
the Fourier-Walsh expansion of f(x). By applying the previous identity, one can replace all monomials in the Fourier-Walsh
expansion of f(x) with degree r (or less) alternatives, while the value of the function on Br does not change.

Now we prove the uniqueness. Consider all monomials χT (x) where |T | ≤ r. There are in total
(
d
0

)
+
(
d
1

)
+ · · ·+

(
d
r

)
= |Br|

of such monomials and consider all functions given by these monomials fa(x) =
∑|Br|

i=1 aiχTi(x). Note that for each
xj ∈ Br 1 ≤ j ≤ |Br|, fa(xj) =

∑|Br|
i=1 aiχTi

(xj). In other words, fa(xj) is a linear combination of ai’s, i.e.,
(fa(x1), . . . , f(x|Br|))

T = M(a1, . . . , a|Br|)
T , where Mi,j = χTj

(xi). Now note that we have proven that any function
can be written in this way, i.e., rank(M) = |Br| showing that dim(ker(M)) = 0 and hence the uniqueness.

Now, we particularly study the case of monomials. Without loss of generality, consider degree k > r monomial
parityk(x) := x1x2 · · ·xk. We claim that

fr(x) := 1 +
∑

1≤i≤k

(xi − 1) +
∑

1≤i<j≤k

(xi − 1)(xj − 1) + · · ·+
∑

1≤i1<i2<···<ir≤k

(xi1 − 1) · · · (xir − 1)

= 1 +
∑

T⊆[k]:|T |=1

∏
i∈T

(xi − 1) + · · ·+
∑

T⊆[k]:|T |=r

∏
i∈T

(xi − 1) (71)

is the the unique low-degree equivalent of parityk on Br, i.e., parityk(x) = fr(x) ∀x ∈ Br. To see this, take any x ∈ Br.
Define s(x) as the number of −1 bits in x1, · · · , xk, i.e., s(x) := |{xi = −1|1 ≤ i ≤ k}|. Note that 0 ≤ s(x) ≤ k and
parityk(x) = (−1)s(x). Furthermore, we have

∀1 ≤ i ≤ r
∑

T⊆[k]:|T |=i

∏
j∈T

(xj − 1) = (−2)i
(
s(x)

i

)
. (72)

Therefore,

fr(x) = 1 +
∑

T⊆[k]:|T |=1

∏
i∈T

(xi − 1) + · · ·+
∑

T⊆[k]:|T |=r

∏
i∈T

(xi − 1) (73)

= 1 + (−2)1
(
s(x)

1

)
+ · · ·+ (−2)i

(
s(x)

i

)
+ · · ·+ (−2)r

(
s(x)

r

)
= (1− 2)s = (−1)s(x) = parityk(x), (74)
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where we used the fact that s(x) ≤ r. Now we consider the constant term (i.e., bias) of fr(x). Indeed notice that the
constant in fr(x) is given by

f̂r(∅) = 1−
(
k

1

)
+

(
k

2

)
− · · ·+ (−1)r

(
k

r

)
. (75)

It can easily be proven that the above constant is equal to (−1)r
(
k−1
r

)
by induction on r. Note that it is clear for r = 1 and

the induction step from r to r + 1 is given by

1−
(
k

1

)
+ · · ·+ (−1)r

(
k

r

)
+ (−1)r+1

(
k

r + 1

)
= (−1)r

(
k − 1

r

)
+ (−1)r+1

(
k

r + 1

)
(76)

= (−1)r+1(

(
k

r + 1

)
−
(
k − 1

r

)
) = (−1)r+1

(
k − 1

r + 1

)
. (77)

Therefore, by Parseval’s identity we have

Ex[(parityk(x)− fr(x))
2] > f̂r(∅)2 =

(
k − 1

r + 1

)2

, (78)

which proves the lower bound. Note that we ignored other Fourier-Walsh coefficients for the lower bound above.

B. Experiment details and additional experiments
B.1. Experiment details

B.1.1. ARCHITECTURES

We use MLP, Transformer (Vaswani et al., 2017), mean-field (Mei et al., 2018) and random features model (Definition 3.5)
for experiments. Here, we describe them in detail.

• MLP. The MLP model is a fully connected network consisting of 4 hidden layers of sizes 512, 1024, 512, 64. The
ReLU activation function is used for all layers except the output layer. Moreover, the standard initialization of PyTorch
has been followed, i.e., the weights of each layer are initialized with U( −1√

dimin
, 1√

dimin
) where dimin is the input

dimension of the layer.

• Transformer. We have employed the encoder part of Transformer networks which are widely used in computer
vision (Dosovitskiy et al., 2020) and language modeling (Raffel et al., 2019). First, all binary ±1 bits are encoded
into a 256-dimensional vector using a shared embedding layer. Afterward, the embedded input is passed through 12
transformer layers. Finally, a linear layer is used to compute the output of the model. Moreover, the size of MLP
hidden layers is set to 256, and 6 heads are used for the self-attention blocks.

• Mean-field. We also use a two-layer neural network in the mean-field parametrization. More precisely, following (Abbe
et al., 2022b), fMF(x) =

1
N

∑N
i=1 aiσ(⟨wi, x⟩+ bi), where ai ∼ U(−1, 1) and wi, bi ∼ U(−1√

d
, 1√

d
)⊗d⊗U(−1√

d
, 1√

d
).

We use ReLU as the activation function and set the number of neurons to N = 216. Note that with this formulation,
one has to take large values for the learning rate, e.g., 100 or 1000.

• Random features model. Following Definition 3.5, we have used fRF =
∑N

i=1 aiσ(⟨wi, x⟩+bi) as the parametrization
of the RF model. Moreover, we initialize ai = 0 and wi, bi ∼ N (0, 1

d )
⊗d ⊗N (0, 1

d ) where d is the input dimension.
We also use N = 213 random features for our experiments. We have used the ReLU activation function for almost all
of the experiments. We have only used polynomial activation (1 + x)6 for the experiment comparing RF models with
the ReLU activation and polynomial activation (Figure 5).

B.1.2. PROCEDURE

The implementation of experiments has been done using the PyTorch framework (Paszke et al., 2019). Additionally, the
experiments were executed on NVIDIA A100 GPUs and the experiments took around 60 GPU hours in total (excluding the
selection of hyperparameters). Now we discuss the training procedures.
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Length generalization and main experiments. We first explain the experiments of the main experiment section and also
experiments for the length generalization. For each function f : {±1}d → R and unseen domain U , we generate all binary
vectors in Uc = {±1}d \ U for the training set. Consequently, we usually take small values of d for the experiments. Our
main motivation for doing so is to eliminate the randomness generated by the sampling of training examples and also to
assume the in-distribution generalization. Nonetheless, we believe the min-degree bias still holds when training examples
are sampled randomly as is illustrated in the experiments included in this appendix.

We then train our models. For the Transformer, we have used Adam (Kingma & Ba, 2014) optimizer with batch size 256.
For the RF models, we have used mini-batch SGD with a batch size of 256. Also, for the rest of the architectures, SGD
with batch size 64 has been used. We did not observe any significant difference in the results of experiments by varying the
batch sizes. We generally selected the learning rates per model (and task) by the stability of the training and the speed of
convergence. We have included more details about the learning rate in Appendix B.2. We also set the number of training
epochs large enough that the loss of models is always less than 10−2. We also note that Transformers usually learn the target
function in a few epochs, reaching a loss of the order of 10−4. After that, the training becomes unstable in some instances.
Indeed note that Transformers are usually trained with learning rate schedulers. However, we did not use any learning
rate schedulers for simplicity and instead opted for early stopping to avoid unstable phases of training. Note that our main
objective is to demonstrate the min-degree bias of neural networks and not to optimize any performance metric. As a result,
we did not focus on hyperparameter tuning in these experiments. Generally, hyperparameters used for our experiments are
available in our code.

Finally, we track the coefficient of different monomials, i.e., f̂NN(T ) = Ex[χT (x)fNN(x)] during the training. We have
also repeated each experiment for 10 different seeds and reported the averages. Particularly, we have also drawn 95%-CI in
Figures 4, 6, and 11, but we did not draw CI for other experiments to keep the plots more readable.

Curriculum learning experiments. In contrast to other experiments, there is no unseen domain in these experiments.
Also here we draw a fixed number of samples uniformly from {±1}d. We train the MLP model with the same training set,
learning rate, and batch size, once with normal mini-batch SGD and once with Degree-Curriculum (Algorithm 1). Therefore,
everything between the Degree-Curriculum algorithm and the normal training is the same. We use Adam optimizer for these
experiments as we found it to be faster than plain SGD. Moreover, we selected the learning rate based on the results of the
normal training and then used the same learning rate for the Degree-Curriculum algorithm to have a fair comparison. Finally,
we compare the average generalization loss between the two algorithms.

B.2. Sensitivity to learning rate

We noticed that the min-degree bias of some architectures such as MLPs depends on the learning rate. More precisely,
we observed that smaller learning rates promote the min-degree bias and larger learning rates increase the leakage of the
models. Here, we demonstrate the effect of the learning rate with an example. Consider learning f2(x0, . . . , x14) = x0x1

under unseen domain U2 = {(x0, x1) = (−1,−1)}. In this case, the min-degree interpolator is x0 + x1 − 1. Nonetheless,
any α(x0x1) + (1− α)(x0 + x1 − 1) is also a valid interpolator where α shows the leakage of the interpolator. We tried
learning f2 under U2 with an MLP and varied the learning rate; the results are depicted in Figure 6.
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Figure 6. Leakage of the interpolators learned by the MLP model trained with different learning rates. Larger learning rates weaken the
min-degree bias and lead to higher leaks.
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It can be seen that larger learning rates cause higher leaks in the models. We note that training becomes more unstable
with larger learning rates to the point that the model cannot be trained with learning rates larger than 0.2. Also notice that
α < 0.5 in all cases, hence, the min-degree alternatives are still dominant. In general, in our experiments, we tried to select
moderate values for the learning rate to ensure that the optimization process is stable. Nonetheless, we never used learning
rate below 10−5 for Adam and we usually set learning rate between 10−4 to 10−3 for SGD. Exact hyperparameters for
different experiments are available in our code.

B.3. Additional experiments

Here, we complete the experiments presented in Section 4 and also provide an additional experiment for the Degree-
Curriculum. First, we report results of other architectures on (f1,U1) = (x0x1 − 1.25x1x2 + 1.5x1x2, {x0x1x2 = −1})
and (f3,U3) = (x0x1x2 + · · ·+x13x14x0 +x14x0x1, {(x0, x1, x2) = (−1,−1,−1)}). Figures 7 and 8 present the results
for function f1 and f3 respectively. In consistency with our results in Section 4, we can see the MLP and mean-field models
learn leaky min-degree solutions, while the leakage for the random features model is negligible.
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Figure 7. f1(x0, . . . , x14) = x0x1 − 1.25x1x2 + 1.5x1x2 learned by RF, MLP, and mean-field models under unseen domain
U1{x0x1x2 = −1}. In this case, the MD interpolator is x2 − 1.25x0 + 1.5x0. The solid lines and dashed lines present the co-
efficients of the original function and the coefficients of the MD interpolator respectively. The plots indicate that the mean-field model and
MLP model both learn leaky MD interpolators. The RF model has a smaller leak which is caused by the ambient dimension d = 15 being
small.
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Figure 8. f3(x0, . . . , x14) = x0x1x2 + · · ·+x13x14x0 +x14x0x1 learned by RF, MLP, and mean-field models while samples satisfying
(x0, x1, x2) = (−1,−1,−1) are not seen during training. In this case, x0x1x2 (orange solid line) is replaceable by x0x1 + x1x2 +
x2x0 − x0 − x1 − x2 +1 (dashed lines). It can be seen that the RF model learns the MD interpolator, while both the MLP and mean-field
models learn the MD interpolator with a leakage.

Next, we try the second experiment of the paper in a larger ambient dimension to see if the ambient dimension has
an effect on the leakage of the models. More specifically, we use ambient dimension d = 40 and consider learning
f2(x0, x1, . . . , x39) = x0x1 under unseen domain {(x0, x1) = (−1,−1)}. In this case, the MD interpolator is again
x0 + x1 − 1. For this experiment, we can not generate all 239 elements of Uc, thus, we only use 215 samples uniformly
drawn from Uc. We also use the same number of samples for the estimation of Fourier-Walsh coefficients. The results are
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depicted in Figure 9. For the random features model, it can be seen that the leakage is reduced compared to Figure 2 where
the ambient dimension is 15. On the other hand, the leakage of other models has remained the same, which shows that the
sparsity and ambient dimension do not affect them. This is indeed consistent with our expectations as we know models such
as the mean-field are able to perform feature-learning and learn the support of sparse Boolean functions (Abbe et al., 2022b).
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Figure 9. f2(x0, x1, . . . , x39) = x0x1 learned by the RF, Transformer, MLP, and mean-field models while training samples satisfy
(x0, x1) ̸= (−1,−1). Consequently, x0x1 (solid orange line) is replaceable by x0 + x1 − 1 (dashed lines). The Transformer, MLP, and
mean-field models learn leaky solutions and the leakage is very similar to Figure 2 where the ambient dimension is 15. In contrast, the
leak of the RF model is decreased in comparison to Figure 2.

Further, we consider the majority function on 3 bits embedded in a 40-dimensional ambient space, i.e., f4(x0, x1, . . . , x39) =
Maj(x0, x1, x2) = 1

2 (x0 + x1 + x2 − x0x1x2) under the unseen domain U4 = {x ∈ {±1}d|(x0, x1) = (−1,−1)}.
Note that in this case x0x1x2 can be replaced with x0x2 + x1x2 − x2 which leads to MD interpolator being equal to
1
2 (x0+x1+2x2−x0x2−x1x2). Similar to the previous experiments, we trained the RF, MLP, mean-field, and Transformer
on this instance. For this example, we do not generate the whole Uc, and instead, we use 215 samples. This number is still
large enough that gives the generalization on the seen domain. The results of this experiment are presented in Figure 10.
Note that in this case, the original target function is more symmetric than the MD interpolator. Nonetheless, none of the
models are able to recover the more symmetric function.

Lastly, we present the curriculum experiment for the full parity function in dimension 30, i.e., f(x0, . . . , x29) = x0x1 · · ·x29,
in Figure 11 to complete the experiment presented in Figure 4. Similar to the experiment presented in Figure 4, for the same
training set and hyperparameters, we once train the MLP with normal SGD and once with the proposed Degree-Curriculum
algorithm with curriculum B1 ⊂ B2 ⊂ · · · ⊂ B29 ⊂ B30 (leap 1 curriculum) and loss threshold ϵ = 0.001. It can be seen
that the curriculum method can reduce the sample complexity of the task.
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Figure 10. f4(x0, x1, . . . , x39) = Maj(x0, x1, x2) =
1
2
(x0 + x1 + x2 − x0x1x2) learned by the RF, Transformer, MLP, and mean-field

models while samples satisfying (x0, x1) = (−1,−1) are excluded from training. In this case, x0x1x2 (orange solid line) is replaceable
by x0x2 + x1x2 − x2. As expected, the RF learns the MD interpolator, while other models have leakage.

C. Vanishing ideals
In this section, we discuss the connection between unseen domains in Boolean settings and algebraic geometry and vanishing
ideals. We refer interested readers to (Dummit & Foote, 2004) for broader coverage of this topic. First, we recall some
basic properties of rings and fields. A ring is a set with two binary operations, the addition + and the multiplication ∗
where ∗ may not have an inverse. A field is a ring such that all nonzero elements have an inverse. For example, Z with
addition and multiplication is a ring but not a field. Whereas R and C are examples of fields. Here we will mostly work with
polynomial rings with d variables. Note that R[x1, x2, x3, · · · , xd] is of special interest to us since any Boolean function
f : {±1}d → R can be represented by a polynomial p(x) ∈ R[x1, x2, x3, · · · , xd] thanks to its Fourier-Walsh expansion.
Particularly, we focus on polynomial rings R = K[x1, x2, · · ·xd] where K is a field. We start by recalling a few definitions.

Definition C.1 (Ideal). Let R be a commutative ring. I ⊆ R is an ideal if

• (I,+) is a group, and

• for all r ∈ R and i ∈ I we have ri ∈ I .

Having defined ideals, note that ideals can be generated from a G ⊆ R.

Definition C.2. Consider a commutative ring R and let G ⊆ R. The ideal generated by G denoted by ⟨G⟩ is the smallest
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Figure 11. Test loss on the full parity function in dimension 30 for different training set sizes with and without the Degree-Curriculum
algorithm. We note that the MLP model trained without curriculum was not able to learn the full parity function in dimension 30 for the
given sample sizes (and even up to 105 samples), in contrast to the same model trained with Degree-Curriculum.

ideal that contains G. Particularly, if G = {g1, g2, · · · , gn} is finite, we have

⟨G⟩ = ⟨g1, g2, · · · , gn⟩ = {
n∑

i=1

rigi|∀r1, r2, . . . , rn ∈ R}. (79)

For example, for R = R[x1, x2], we have ⟨x1 − 1, x1x2 + 5⟩ = {p(x1 − 1) + q(x1x2 + 5)|p, q ∈ R[x1, x2]}. Another
important notion is the notion of quotients, which is similar to the modulo operator. The following definition will make it
more rigorous.

Definition C.3 (Quotient). Let R be a commutative ring and I an ideal of R. Quotient R/I is defined as elements of the
form r + I with r ∈ R such that r + I = r′ + I if r − r′ ∈ I . Furthermore, for any for r + I, r′ + I ∈ R/I , addition +
and multiplication · for R/I are defined as

• (r + I) + (r′ + I) = r + r′ + I , and

• (r + I) · (r′ + I) = rr′ + I .

Also, for r′ ∈ R/I , any element r ∈ R satisfying r′ = r + I is called a representative of r′. R/I as defined above is indeed
a ring.

Consider the following ideal IΩ = ⟨x2
1 − 1, x2

2 − 1, · · · , x2
d − 1⟩ of R[x1, x2, x3, · · · , xd] for Boolean functions. Note

that for each binary bit xi we have x2
i − 1 = 0. Therefore, the Fourier-Walsh transform is a bijection between

R[x1, x2, x3, · · · , xd]/IΩ and the set of Boolean functions.

Now we are ready to define vanishing ideals. Given a set of points S ⊆ Kd where K is a field, we are interested in the set
of polynomials that are zero on S. In the case of generalization on the unseen domain U ⊆ Ω, we are interested in the
functions that vanish on Uc = Ω \ U , as they are 0 on the training set and give a class of interpolators on Ω.

Definition C.4 (Vanishing ideals). For a field K and S ⊆ Kd, vanishing ideal I(S) of S is defined as

I(S) := {f ∈ K[x1, . . . , xd]|f(x) = 0 for all x ∈ S}.

Note that IΩ is indeed the vanishing ideal of Ω, i.e., I(Ω) = IΩ = ⟨x2
1 − 1, x2

2 − 1, · · · , x2
d − 1⟩. Furthermore, for

any S ⊆ {±1}d, we have IΩ ⊆ I(S) and thus I(S) can be written as I(S) = ⟨v1, v2, · · · , vn⟩ + IΩ for some n ∈ N
and Boolean functions vi. For example, consider canonical holdout U = {x ∈ {±1}d|x1 = −1}; in this case we get
I(Uc) = ⟨x1 − 1⟩+ IΩ. We could also do an ‘inverse operation’: given an ideal or set of functions, find all the points which
are zero under the elements of the ideal.
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Definition C.5. For a field K and G ⊆ R = K[x1, . . . , xd], and I = ⟨G⟩, we define V (G) = V (I) as

V (G) = V (I) = {x ∈ Kd|f(x) = 0 for all f ∈ I}.

Therefore, operations V and I give us a way to transfer some algebraic properties to geometric properties. What we defined
could be seen as part of the theory of classical algebraic geometry. In algebraic geometry, we are interested in the following
type of sets S:

Definition C.6. A set S ⊆ Kd is called an affine variety, if there exists some ideal I such that V (I) = S.

In our case, all the S are affine varieties as they are finite. For more details about algebraic geometry, please refer to (Cox
et al., 2013).

Now given an S ⊆ Ω, the following lemma gives us a recipe to find I(S).

Lemma C.7. For S and W two affine varieties, we have that I(S ∪W ) = I(S)∩ I(W ). Also, for x = (i1, i2, · · · id) ∈ Kd,
we have that I(x) = mx = ⟨x1 − i1, x2 − i2, · · ·xd − id⟩, where mx is a maximal ideal.

Since in our case S is finite, one can apply this lemma a multitude of times to find I(S). Moreover, this ideal only vanishes
on the elements of S and not on any other element in Ω \ S.

Example C.8. Suppose we work with d = 2, and we only allow the set V := {(−1,−1), (1, 1)}. We will have that
I(V ) := ⟨x1 + 1, x2 + 1⟩ ∩ ⟨x1 − 1, x2 − 1⟩. By doing the calculations or using an algebra program (e.g., SageMath) we
find that

I(V ) := ⟨x1 − x2⟩+ IΩ.

So in general, for a certain S ⊆ Ω, we would like to express, I(S) as ⟨v1, . . . vn⟩+ IΩ for some desirable Boolean functions
v1, v2, v3, . . . , vn. In fact, there are known algorithms that find a basis for an ideal (Möller & Buchberger, 1982).

Before relating what we have defined to unseen domains, note that in our case the conditions only depend on a subset of
the variables. Without loss of generality, suppose our conditions only depend on the first k coordinates. Mathematically,
that means U = Uk × {−1, 1}d−k, where Uk ⊆ {−1, 1}k. Hence, we have Uc = Uc

k × {−1, 1}d−k. The following lemma
allows us to calculate I(Uc) based on I(Uc

k).

Lemma C.9. Suppose Uc = Uc
k×{−1, 1}d−k for some Uc

k ⊆ {−1, 1}k, if I(Uc
k) = ⟨v1, v2, · · · , vn⟩+⟨x2

1−1, · · ·+x2
k−1⟩

for Boolean functions v1, v2, · · · , vn, we have

I(Uc) = ⟨v1, v2, · · · , vn⟩+ IΩ.

Now having defined the vanishing ideals and quotients, we explain how they relate to our setting. In our setting, we are given
U ⊂ Ω = {−1, 1}d representing the unseen domain, and a Boolean function f that we wish to learn, which could be seen as
an element of R = R[x1, . . . , xd]. As we finish training, we will converge to a solution fsol which is an interpolator of f on
Uc. This means that f − fsol vanishes on Uc and so f − fsol ∈ I(Uc). Hence, f + I(Uc) = fsol + I(Uc), which means that
fsol is a representative of the class f + I(Uc) in the ring R/I(Uc). Here we are interested in the minimum degree-profile
interpolator, and our goal is to classify given a f and U , the minimum degree-profile representatives of f + I(Uc) in the
ring R/I(Uc). This gives us an overview of how our settings can be related to algebraic notions.

C.1. Minimum degree-profile interpolators

We are generally interested to find the minimum degree-profile interpolators. One way to do this is as follows: given a
Boolean function f : {−1, 1}d → R which we suppose depends only on variables x1, . . . , xP for some integer P and
an unseen set U ⊆ Ω, we find Boolean functions v1, . . . , vn which only depend on the variables x1, . . . , xP such that
I(Ω \ U) = ⟨v1, v2, . . . , vn⟩+ IΩ. We know that minimum degree interpolator fMDI is of the form

fMDI = f + g1v1 + . . . gnvn,

for some Boolean functions g1, . . . , gn. Now note that if we look at the equation above through the lens of Fourier-Walsh
expansion, we realize that coefficients of fMDI are linear combinations of Fourier coefficients of g1, . . . , gn. One can
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utilize this structure to minimize the elements of the degree-profile one by one since each element of the degree-profile
is a quadratic expression in Fourier coefficients of g1, . . . , gn. Therefore, one can solve these second-degree optimization
problems to calculate the unique MD interpolator.

The process presented above is quite long, but there are some cases for which it is easier to find the minimum degree-profile
interpolator. We will present some examples below.

Example C.10 (Generalized canonical holdout). Given a point in {−1, 1}k i.e., i = (i1, · · · , ik) ∈ {−1,−1}k, for
U = ({−1, 1}k \ {i})×{−1, 1}d−k and for any Boolean function f , the minimum degree-profile interpolator can be found
as follows: we first notice that I(Ω \ U) = ⟨x1 − i1, · · · , xk − ik⟩ + IΩ. And so given f , the minimum degree-profile
interpolator corresponds to fMDI(x1, · · ·xk, xk+1, · · ·xd) = f(i1, · · · ik, xk+1, · · ·xd).

Example C.11. For U = {(−1,−1), (1, 1)} × {−1, 1}d−2 and for any Boolean function f , the MD interpolator can be
computed by noticing that I(Ω \ U) = ⟨x1 + x2⟩+ IΩ. Hence, given an f and in order to find the MD interpolator one
should replace any x1 found by 1

2 (x1 − x2) and all x2 by 1
2 (x2 − x1).

Here is another case where it is easy to find the MD interpolator. We further present a proof for why it is the MD interpolator
in this case.

Lemma C.12. Let i = (i1, · · · ik) ∈ {−1, 1}k be any point. For any Boolean function f and U = i×{−1, 1}d−k, we have
that f has a minimum degree-profile interpolator given by replacing all x1x2 · · ·xk found by another function g′(x1, . . . , xk)
which can be determined.

This is an expected result, we provide nonetheless a formal proof.

Proof. We have I = I(Ω \ U) = ⟨(x1 − i1)(x2 − i2) · · · (xk − ik)⟩+ IΩ. By expanding (x1 − i1)(x2 − i2) · · · (xk − ik),
we get an expression of the form

x1x2 · · ·xk + g(x1, x2, . . . , xk)

with g(x1, x2, . . . , xk) containing all the possible monomials consisting of x1, . . . , xk of degree strictly less than k with
coefficients being 1 or −1. Consider the polynomial fMDI, by replacing all the x1x2 · · ·xkp(xk+1, · · ·xd) that appears in f
by −g(x1, x2, · · · , xk)p(xk+1, · · ·xd). We claim that fMDI is the minimum degree-profile interpolator. In fact, suppose
that this is not the case, so there exists a polynomial q such that

(fMDI + q(x1 − i1)(x2 − i2) · · · (xk − ik)) modulo IΩ

is not equal to and has a lower degree-profile than fMDI. For this to happen, we need at least one monomial of fMDI to be
(partly) replaced by the same degree or lower degree alternatives. Among all such monomials, we consider the highest degree
one, χM =

∏
i∈M xi. We assume that M = T ∪R such that T ⊆ [k] and R ∩ [k] = ∅. Note that monomials that contained

x1x2 · · ·xk are already replaced, hence, T ̸= [k]. We write q in the form of q(x) = s(x1, . . . , xk)χR + q′(x) where q′(x)
does not contain any monomial of the form χRχT ′ for T ′ ⊆ [k]. Note that by our assumption q(x)(x1 − i1) · · · (xk − ik),
and thus, s(x1, . . . , xk)χR(x1 − i1) · · · (xk − ik) must have generated βχM , for some β ̸= 0. Note that χM is the
highest degree monomial (partly) replaced by q. Thus, χ[k]∪R, is not be generated by q, otherwise the degree-profile
would have been increased. In other words, s(x1, . . . , xk)χR(x1 − i1) · · · (xk − ik) must have generated βχM (β ̸= 0)
and not χ[k]∪R. We now show that such thing is impossible and reach a contradiction. Assume that s(x1, . . . , xk) =∑

U⊆[k] αUχU . Notice we can remove the χR part from the question. Thus, we can consider the equivalent statement that
s(x1, . . . , xk)(x1 − i1) · · · (xk − ik) does not generate x1 · · ·xk while it generates βχT . Now we compute the coefficients
of χT and χ[k] = x1 · · ·xk in s(x1, . . . , xk)(x1 − i1) · · · (xk − ik). We have

s(x)(x1 − i1) · · · (xk − ik) = s(x)(
∑

V⊆[k]

(−1)k−|V |χV

∏
n∈[k]\V

in)

= (
∑
U⊆[k]

αUχU )(
∑

V⊆[k]

(−1)k−|V |χV

∏
n∈[k]\V

in)

= (
∑
U⊆[k]

αU (−1)|U |
∏
n∈U

in)χ[k] + · · ·+ (
∑
U⊆[k]

αU (−1)k−|U∆T |
∏

n∈[k]\(T∆U)

in)χM + · · · ,

(80)
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and the coefficient of χM is
∑

U⊆[k] αU (−1)k−|U∆T |∏
n∈[k]\(T∆U) in = β. Using [k] \ (U∆T ) = U∆([k] \ T ), we have

β =
∑
U⊆[k]

αU (−1)k−|U∆T |
∏

n∈[k]\(T∆U)

in =
∑
U⊆[k]

αU (−1)k−|U |−|T |
∏

n∈([k]\T )∆U

in (81)

= ((−1)k−|T |
∏

n∈[k]\T

in)(
∑
U⊆[k]

αU (−1)|U |
∏
n∈U

in) = 0, (82)

thus, β = 0 which is a contradiction, showing that it is not possible to reduce the degree-profile.
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