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Abstract
Along with the exponential growth of online plat-
forms and services, recommendation systems
have become essential for identifying relevant
items based on user preferences. The domain
of sequential recommendation aims to capture
evolving user preferences over time. To address
dynamic preference, various contrastive learning
methods have been proposed to target data spar-
sity, a challenge in recommendation systems due
to the limited user-item interactions. In this pa-
per, we are the first to apply the Fisher-Merging
method to Sequential Recommendation, address-
ing and resolving practical challenges associated
with it. This approach ensures robust fine-tuning
by merging the parameters of multiple models, re-
sulting in improved overall performance. Through
extensive experiments, we demonstrate the effec-
tiveness of our proposed methods, highlighting
their potential to advance the state-of-the-art in
sequential learning and recommendation systems.

1. Introduction
With the exponential growth of online platforms and ser-
vices, a significant amount of data is being generated daily.
Recommendation systems have become crucial in utilizing
this data effectively. The system aim to identify relevant
items based on user preferences and interests. As user pref-
erences evolve over time, sequential recommendation has
gained attention as a subfield in this area. We address the
problem of sequential recommendation as follows.

Let U be the set of users U = {u1, u2, · · · , u|U|}, and V be
the set of items as V = {v1, v2, · · · , v|V|}. The sequence
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Figure 1. Overview of Parameter Merging. Sharing model architec-
ture, each models differ in how the contrastive loss is constructed.
We merge models by using a weighted sum, where the weights
are determined based on the posterior distribution of each model’s
parameters, assuming a Gaussian distribution.

of user-item interaction for ui is a list with chronological
order, si = [vui

1 , vui
2 , · · · , vui

t , · · · , vui
nui

]. Here user ui ∈
U , vui

t ∈ V , and user ui interact item vui
t in time step t. The

length of sequence for user ui is nui , and our object is to
build a model predicting the item with which user is interact
in the next time step, i.e.

p
(
vui
nui

+1 = v
∣∣∣ si) . (1)

The previous methodologies typically employ similar model
structures but utilize various learning frameworks (Xie et al.,
2022; Qiu et al., 2022). Prior research has shown that en-
semble methods yield significant benefits when multiple
learning frameworks are employed (Gontijo-Lopes et al.,
2021).

We propose a practical and feasible method to ensemble
the parameters of models trained with different contrastive
learning techniques in a sequential recommendation. The
purpose of this study is to effectively aggregate the ob-
tained parameters θ in various learning frameworks and
hyperparameter settings, building on previous research and
experiments.

Assuming the posterior distribution of parameters θm for
each m-th model, Sec 3.1, we achieved more effective en-
semble results. This approach allowed us to capture the
uncertainty associated with each model’s parameter esti-
mates and leverage this information to enhance the ensem-
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ble process. By considering the posterior distributions, we
were able to account for the variability in parameter val-
ues across different models and obtain a more robust and
comprehensive ensemble outcome.

2. Related Works
Researchers have explored various ensemble methods,
including bootstrapping, bagging, and boosting, to improve
model performance (Ganaie et al., 2022; Breiman, 1996;
2001; Natekin & Knoll, 2013; Liu et al., 2014). Ovadia
et al. (Ovadia et al., 2019) demonstrated the accuracy of
ensembles even in the presence of distribution shift, while
Mustafa et al. (Mustafa et al., 2020) proposed a method
that combines fine-tuned subsets of pre-trained models
to achieve high accuracy and resilience to distribution
shift. Parameter merging is another technique to reduce
model size and computational requirements (Houlsby et al.,
2019). However, ensemble methods often require additional
training, which can be computationally expensive and
time-consuming.

2.1. Diverse Learning Framework

Wenzel et al. (2020) and Zaidi et al. (2021) investigated
the role of random hyperparamters and architectures in en-
semble. Gontijo et al. (2021) demonstrated the ensemble
effect across various training methodologies; initialization,
hyperparameter, architecture, framework, and dataset levels.
Diverse training methodologies exhibit different general-
ization capabilities, ultimately lead to uncorrelated errors.
Models tend to specialize in subdomains within the data
and highlights the crucial role of ensemble techniques in
enhancing overall performance.

2.2. Merging Methods

Model Soup Model Soup (Wortsman et al., 2022) presents
an effective approach for combining parameters without
additional training. It demonstrates research findings that
improve the performance of trained models by construct-
ing a ”recipe” composed of diverse models and averaging
their parameters. The study introduces three methods for
creating the recipe: the uniform soup, which averages the
parameter values of all models; the greedy soup, which se-
quentially adds models based on their performance ranking;
and the learned soup, which identifies the optimal model
interpolation through training. These approaches contribute
to enhancing the overall performance of the model without
the need for additional training.

Fisher Merging Within the scope of related works, pa-
rameter merging is interpreted as a process that maximizes
the joint likelihood of model parameters’ posteriors (Matena

& Raffel, 2022). Previous study (Wortsman et al., 2022)
consider averaging as a scenario where the posteriors of
these models are assumed to follow an isotropic Gaussian
distribution, and the joint likelihood is maximized accord-
ingly. To refine this approach, efforts have been made to
approximate the posterior of the model using Laplace ap-
proximation (Daxberger et al., 2021). In this case, the distri-
bution of each model is modeled by assuming the mean as
the observed, which can be interpreted as trained parameter
and the variance as the Gaussian distribution’s Fisher ma-
trix. By employing this formulation, the joint likelihood is
calculated.

2.3. Sequential Recommendation System

SASRec (Kang & McAuley, 2018) employ Transformer
layers to dynamically assign weights to previous items.
BERT4Rec (Sun et al., 2019) demonstrate an improvement
by incorporating user behavior information from both di-
rections using a bidirectional Transformer. CL4SRec (Xie
et al., 2022) employed three data augmentation techniques,
namely item cropping, item masking, and item reordering,
to create pairs for contrastive learning. DuoRec (Qiu et al.,
2022) integrated two types of contrastive loss. Firstly, it in-
corporated unsupervised augmentation using dropout-based
model-level augmentation to generate positive pairs. Sec-
ondly, it incorporated supervised positive sampling, which
involves creating pairs by considering sequences with the
same target item as positive samples.

3. Methodology
We perform model ensemble based on different types of
loss functions. BERT4Rec (Sun et al., 2019), CL4SRec
(Xie et al., 2022), and DuoRec (Qiu et al., 2022) share the
basic structure of BERT4Rec (Sun et al., 2019). However,
they differ in the sense of constructing positive pairs, a
key component of their learning framework of constrastive
learning.

Figure 1 represents the overview of parameter merging pro-
cess. By sharing the structure of the model, which is param-
eterized with diverse learning frameworks, we can leverage
ensemble methods to our advantage. Furthermore, inspired
by previous studies demonstrating the effectiveness of en-
semble models trained using various learning methods, we
apply parameter merging techniques, namely Parameter Av-
eraging and Fisher-weighted Parameter Merging, described
in Section 3.1, to combine these models.

3.1. Understanding Model Ensemble

We follow the work of Matena et al (2022). Consider a
scenario where we have models with the same structure,
model1,model2, · · · ,modelM , with corresponding parame-
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ters θ1, θ2, · · · , θM . Our objective is to find the parameter
θ∗ that maximizes the joint likelihood of the posteriors of
these parameters.

The posterior of θm can be represented as p (θ|θm). Since
obtaining this posterior directly is generally challenging,
it can employ approximation methods such as Laplace ap-
proximation to make assumptions and seek the parameter
θ∗ (MacKay, 1992; Daxberger et al., 2021). Let us interpret
the process of finding θ∗ as maximizing the joint likeli-
hood,

∑
m log p (θ | θm). Assuming that p (θ | θm) follows

a Gaussian distribution, we set the mean of this Gaussian
distribution as the observed θm and examine the procedure
for averaging parameters and Fisher merging separately,
depending on the method used to assume the variance.

Averaging Parameters Assume that the posterior
p (θ | θm) follows a Gaussian distribution N

(
θ̂m, I

)
. Here,

θ̂m represents the parameters of the trained m-th model, and
I denotes the identity matrix. In this case, the desired solu-
tion θ∗ can be obtained as the average of the parameters of
the candidate models, as shown in eq.2:

θ∗ = argmax
θ

∑
m

log p (θ | θm, I) =
1

M

∑
m

θm. (2)

Fisher Merging Let us consider the posterior p (θ | θm)

following a Gaussian distribution N
(
θ̂m, H−1

)
. Here,

θ̂m represents the parameters of the trained m-th model,
and H corresponds to the Hessian matrix of θm obtained
through the second-order Taylor expansion at the mode of
the posterior. It has been established that the Hessian matrix
in this distribution coincides with the Fisher information, but
for computational efficiency, we only utilize the diagonal
elements of the Fisher matrix (Kirkpatrick et al., 2017).

The desired solution θ∗ can be expressed as eq.3, capturing
the essence of the Fisher likelihood :

θ∗ = argmax
θ

∑
m

λm log p (θ | θm, Fm) , (3)

where Fm = ExEy∼pθ(y|x)∇θ log pθ (y|x)∇θ log pθ (y|x)T .
The closed-form solution for θ∗ can be obtained as shown
in eq.4, which directly incorporates the Fisher matrix. In
practice, we utilize an empirical estimate of the Fisher
matrix, denoted as F̂ , as shown eq.4 (Kirkpatrick et al.,
2017).

θ∗(j) =

∑
m λmF

(j)
m θ

(j)
m∑

m λmF
(j)
m

, (4)

where Fm = 1
NEy∼pθ(y|x) (∇θ log pθ (y | x))2 and j =

1, · · · , |θ|, considering as element-wise multiplication.

3.2. Applying Model Ensemble

By expressing the Fisher matrix we intend to compute in
eq.4 in terms of recommendation factors, we can decompose
it into the following components:

Exi
Ey∼pθ(y|xi) (∇θ log pθ (y | xi))

2

=
1

N

∑
i

∑
j

pθ (yj | xi) (∇θ log pθ (yj | xi))
2

=
1

|U|

|U|∑
i

|V|∑
j

pθ (vj | si) (∇θ log pθ (vj | si))2 .

(5)

There are two computational challenges associated with
the above equation. First, calculations need to be performed
for each individual sample si. Second, calculations need to
be performed for each item vj within a single sample. The
reason why these points acts as a drawback in recommenda-
tion systems is due to the large number of users and items in
the data. For instance, in the case of MovieLens-1M dataset
(Harper & Konstan, 2015), there are about 6000 users and
3500 items. However, performing Fisher matrix calculations
that require differentiation with respect to θ for each user
and item becomes a computational burden.

3.2.1. SAMPLING SEQUENCES

Batch-wise Computation To address the first challenge
of performing computations on individual samples, we rein-
terpret the equation and carry out the calculations on a batch
basis. It should be noted that pθ (vj |si) can vary for each
sample si. Therefore, we perform the sorting of pθ (vj |s) to
address this variation, where BS indicates batch size:

|U|∑
i

|V|∑
j

pθ (vj | si) (∇θ log pθ (vj | si))2

=
∑
BSk

|V|∑
j

(
BSk∑
i

pθ (vj |si)

)(
∇θ

BSk∑
i

log pθ (vj |si)

)2

.

(6)

3.2.2. SAMPLING ITEMS

To alleviate the computational burden associated with iter-
ating over all j values, which scales with |V|, we employ
a sampling-based approach within the methodology. This
sampling strategy aims to reduce the computational cost
while maintaining the representativeness of the calculations.

Random Sampling We compute the eq.3.2 by randomly
sampling j from the total number of items. This process
was performed to calculate the Fisher matrix without any
specific assumptions or prior knowledge.
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Top-k Sampling The probability which is output by the
model can be interpreted as the preference or likelihood of
the recommended items for a given sample. Based on this
interpretation, we select a set of n items that are most likely
to be of interest to the corresponding user, i.e. pθ (vj | si).
Subsequently, we compute the Fisher matrix with these
selected items as the focal points. By focusing on this
subset of items that are expected to be of highest interest,
we aim to capture the relevant information for optimizing
the model’s performance effectively.

|V|∑
j

pθ (vj | s) (∇θ log pθ (vj | s))2

≈
top-k∑
j

pθ (vj | s) (∇θ log pθ (vj | s))2 .

(7)

Model-based Sampling To select a subset of items for
further analysis, we randomly sampled items based on their
conditional probability pθ(vj |si) using a weighted random
selection process. The selection probability of each item
was determined by its associated probability stored in the
model’s output. By selecting items with higher probabilities,
we focused on a specific number of items that were more
likely to align with the user’s preferences or interests. This
allowed us to analyze and evaluate the subset of items based
on their associated probabilities obtained from the model’s
output. With N denotes the sample size, his approximation
can be represented as:

Ey∼pθ(y|x) (∇θ log pθ (y | x))2

≈ 1

N

N∑
vj∼pθ(vj |s)

(∇θ log pθ (vj | s))2 .
(8)

Calculate with target item We compute the Fisher matrix
based on the target item, disregarding other items with lim-
ited direct relevance. By employing this approach, we focus
solely on the target item and its associated information to
calculate the Fisher matrix. Our rationale behind this deci-
sion is to prioritize the target item’s impact on the model’s
optimization process, as it is directly linked to the specific
objective or task at hand. Consequently, we exclude items
with minimal direct relevance to ensure a more targeted and
meaningful computation of the Fisher matrix.

pθ
(
v∗j | s

) (
∇θ log pθ

(
v∗j | s

))2
, (9)

where v∗j is the target item.

4. Experiments
We use MovieLens-1M dataset (Harper & Konstan, 2015)
for experiments. For each user, we have sequential data

consisting of movies purchased in chronological order. We
adopt next-item prediction task (i.e. leave-one-out evalua-
tion), following previous works (Sun et al., 2019; Xie et al.,
2022; Qiu et al., 2022). The last movie is considered as the
test set, and the validation data is used to predict the preced-
ing movies. During training, we adopt a masked language
modeling approach similar to BERT (Devlin et al., 2018),
where we mask certain movies in the sequentially ordered
list and task the model with predicting them.

The evaluation method used in this study is the Normalized
Discounted Cumulative Gain at 10 (NDCG@10), which is
a ranking-based evaluation approach (He et al., 2017). It
ranks the top 10 items predicted by the model based on
their perceived preference and considers the actual ranking
of the preferred items. A higher NDCG value, closer to 1,
indicates better performance. Different NDCG values can
be obtained depending on the selection of items, such as
from the full item pool, a random set of 100 items, or the
top 100 most popular items.

4.1. Results of Model Merging

Examine the results through Table 1 and Table 2. Table 1
presents the results obtained by training models, namely
BET4Rec (Sun et al., 2019), CL4SRec (Xie et al., 2022),
and DuoRec (Qiu et al., 2022). We merge these models us-
ing Fisher methods. While Table 1 demonstrates the results
of models trained solely from scratch. Table 2 represents the
results of fine-tune setting. We train the baseline model with-
out contrastive loss for 20 epochs, which is the convergence
point of the baseline experiment without any additional con-
trastive loss, similar to BERT4Rec. Following this, each
model; BERT4Rec (Sun et al., 2019), CL4SRec (Xie et al.,
2022), DuoRec (Qiu et al., 2022), underwent fine-tuning
according to their respective methods, and the results were
merged using Fisher methods. In both conditions, we fine-
tuned addtional epoch after merging process.

Fisher merge fails to improve the performance of individual
models in baseline setting. When Fisher merge is applied
during the fine-tuning setting, it leads to improved perfor-
mance compared to individual models. This finding aligns
with previously reported phenomena (Ganaie et al., 2022)
where individual models tend to achieve higher performance
than merged model in the baseline setting. However, the
results of Fisher merge in the fine-tuning setting show com-
parable performance with the individual models in baseline
setting, while the individual recipe models of fine-tuning
setting do not exceed. Also, the results indicate that even
for models that have not been sufficiently trained such as
CL4SRec in our setting, merging parameters resulted in
comparable performance to other models, demonstrating
robustness.
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Table 1. Results of parameter merging; Fisher-merge on Baseline
Settings. The recipes used for merging were trained for the same
number of epochs. ‘POS.’ refers to the method of constructing pos-
itive pair, ‘sup’ to supervised augmentation and ‘-’ to supervised
and unsupervised augmentation in subsection 2.3

MODEL POS FULL RANDOM POPULAR

BASELINE 0.1398 0.5651 0.0482
CL4SREC 0.0955 0.043 0.0429
DUOREC SUP 0.1348 0.5575 0.044

UNSUP 0.1301 0.5592 0.0438
- 0.1382 0.5588 0.0464

FISHER 0.1289 0.5495 0.0472

Table 2. Results of parameter merging; Fisher-merge on fine-tune
Settings. The recipes used for merging were trained on baseline
model (without contrastive loss) and fine-tuned on each model.

MODEL POS FULL RANDOM POPULAR

BASELINE 0.135 0.5573 0.0426
CL4SREC 0.0585 0.0513 0.0466
DUOREC SUP 0.1346 0.5547 0.0454

UNSUP 0.1358 0.5594 0.0445
- 0.1351 0.554 0.0423

FISHER 0.1386 0.5618 0.0428

4.2. The Validity of Batch-wise Computation

We performed batch-wise computations with the aim of im-
plementing an efficient Fisher matrix calculation. Compared
to computing on individual samples, grouping samples into
batches allowed us to achieve computational efficiency.

The following Figure 4 in Appendix A.3 illustrates the
method for minimizing errors when performing calcula-
tions on a batch basis. The figure demonstrates that within
a batch containing 10 samples, denoted as si, there is a
phenomenon where the probabilities of item vj decrease in
a similar manner. By sorting the samples si based on the
probability of vj , even when grouping them into batches,
it is possible to minimize the error described by the eq.6.
Furthermore, the figure illustrates the rationale behind top-k
sampling. For the top-k items, the probabilities hold mean-
ingful information, whereas for the remaining items, the
probabilities are nearly zero or close to it.

4.3. Effect of Sampling Methods and Size

To investigate the effect of sampling methods, we conduct
experiments by varying the number of sampled samples and
the sampling techniques employed. Specifically, we con-
sider three sample sizes: n = 10, n = 30 and n = 50, and
four different sampling methods: random sampling, top-k
sampling, model-based sampling, and calculate with target

item. The results of these experiments can be observed in
Table 3. The table provides insights into the performance
of each sampling method under different sample sizes, al-
lowing us to analyze their respective effects on the task at
hand. Note that this result is calculated on batched data. To
examine the results of parameter merging, we conducted
experiments in fine-tuning setting, explained in 2.

The experiments revealed effective ensemble results, par-
ticularly showcasing the robust performance of CL4SRec
(Xie et al., 2022). Despite having significantly lower per-
formance compared to other models during the parameter
merging process, the model with poor performance exhib-
ited robust performance in the Fisher merge results. Regard-
ing the sampling methods, top-k sampling demonstrated the
best performance. This can be attributed to the concentra-
tion of probabilities assigned to specific items by the model,
effectively approximating the Fisher criterion sought in the
evaluation. Also, the model-based sampling method exhibits
a more pronounced improvement in performance as the sam-
pling size increases compared to other models. We interpret
these results as being rooted in the direct interpretation of
the equation defined for Fisher merging. Interestingly, de-
spite the fact that calculating Fisher matrix on target item
has a single sample, the method demonstrated sampling
effectiveness by achieving good performance even with a
small sample size. These findings shed light on the interpre-
tation of experimental results in the context of deep learning
research.

Figure 2. Measured Time Consumed for Each Sampling Method
and Size. We sample items from MovieLens-1M dataset. Time is
measured in batch-wise setting, where batch size is 256.

4.4. Computational Cost

Figure 2 demonstrates computational cost in terms of time
consumed during calculating Fisher matrix for single model.
The concept of parameter merging involves additional com-
putation on the existing parameters. Therefore, it is im-
portant to ensure efficiency in this process. To achieve
efficiency, considerations such as calculating the Fisher ma-
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Table 3. Effect of Sampling Method and Sampling Size. We merge models in settings of Table 2, the fine-tune setting. We merged models
with 4 sampling methods; random sampling, top-k sampling, model-based sampling, and calculate on target item, on 3 different sampling
size; n=10, n=30 and n=50. Bold represents the best variant in each evaluation setting, and underlines indicates the second best variation.

SAMPLE SIZE FULL RANDOM POPULAR

NDCG10 NDCG20 NDCG10 NDCG20 NDCG10 NDCG20

BASELINE 0.135 0.1601 0.5573 0.5786 0.0426 0.0706
CL4SREC 0.0585 0.0751 0.0513 0.043 0.0466 0.0701

DUOREC (SUP.) 0.1346 0.1591 0.5547 0.58 0.0454 0.068
DUOREC (UNSUP.) 0.1358 0.1609 0.5594 0.5782 0.0445 0.0742

DUOREC (SUP.&UNSUP.) 0.1351 0.1599 0.554 0.5732 0.0423 0.0724

RANDOM SAMPLING 10 0.1379 0.1638 0.5606 0.5825 0.0457 0.0691
30 0.1366 0.1624 0.5584 0.58 0.0477 0.0726
50 0.1386 0.1636 0.5598 0.5813 0.0419 0.0419

TOP-K SAMPLING 10 0.1364 0.1624 0.5602 0.5817 0.0446 0.0689
30 0.1373 0.1616 0.5637 0.5835 0.0457 0.0708
50 0.1387 0.1635 0.5592 0.5807 0.0424 0.0672

MODEL-BASED SAMPLING 10 0.1358 0.1619 0.5564 0.5782 0.044 0.0696
30 0.1385 0.1646 0.5579 0.5784 0.0446 0.0689
50 0.138 0.1632 0.5605 0.5814 0.0465 0.0719

CALCULATE ON TARGET ITEM 1 0.1386 0.1628 0.5618 0.5806 0.0428 0.0725

trix in batch units and performing sampling are necessary.
It is observed that, except for the calculation on the target
item, the computational complexity increases linearly with
the sampling size. As for the calculation on the target item,
the sampling size remains fixed at 1 since each sequence
has a single target item. Thus, our research is significant as
it approximates the Fisher matrix calculation with a much
smaller number of items (around 3000) compared to calcu-
lating it on the entire item set.

Figure 3. Visualization for Weights of Merged Models. Based on
the plane containing 64-dimension parameters of three model, we
visualised its weight, 100 samples from each posteriors and merged
parameters

4.5. Visualization of Merged Weights

We present a visual illustration to aid in the intuitive under-
standing of the merged weights. Figure 3 represents the fine-
tuning setting of 2, where the three centroids correspond to
the weights of individual models. The plane visualized in
3 encompasses these three weights. The scattered points,
projected onto the plane, depict 100 samples drawn from
N (θm, Fm). It is observed that the baseline weight exhibits
the largest variance. This can be attributed to the exper-
imental setup where the baseline is pre-trained and then
fine-tuned with CL4SRec (Xie et al., 2022) and DuoRec
(Qiu et al., 2022). The weights obtained through uniform
merging are represented as the average of the three centroid
points, while the weights obtained through Fisher merg-
ing take into account the variances of these recipe weights.
It can be seen that the weights obtained through Fisher
merging considered posterior and variance with Laplace
approximation and provides nice initial point for fine-tune.

5. Conclusion
We apply ensemble technique, Fisher merging, for sequen-
tial models, enabling robust fine-tuning through parameter
merging. Our experimental results demonstrate the effec-
tiveness of these proposed methods in improving recommen-
dation performance. These contributions have the potential
to advance the field of sequential learning and recommenda-
tion systems, offering valuable insights for future research
and practical applications.
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A. Appendix
A.1. Motivation : Error Inconsistency

Table 4. Effect of Constructing Pair of Contrastive Loss (%). We observe that models with divergent training methodologies exhibit
distinct generalization behavior, resulting in highly uncorrelated errors.

SIMILAR DISSSIMILAR

CL4SREC (XIE ET AL., 2022) 8.05 < 11.41
DUOREC (QIU ET AL., 2022) 8.67 < 11.18

Previous research (Gontijo-Lopes et al., 2021; Yosinski et al., 2015) demonstrated the increased effectiveness of ensemble
methods as error inconsistency grows. Building upon the existing research discourse, we conducted the current experiment.
In this study, we analyze the impact of Fisher merging in the context of sequential recommendation systems, attributing its
effectiveness to the selection of recipe models trained using different frameworks .

In our experiments, we employ a model based on the BERT4Rec (Sun et al., 2019) architecture as our baseline. To enhance
the performance of the model, we apply various data augmentation techniques to enable contrastive learning.

To analyze the effects of contrastive loss, we divide the training frameworks into two categories: similar and dissimilar. The
similar learning frameworks are trained using the same loss function but with slight variations such as different seeds and
hyperparameters, indicating the relationship among models trained with small changes. On the other hand, the dissimilar
learning frameworks involve different data augmentation techniques, resulting in variations in the construction of positive
and negative pairs for contrastive loss (Wang & Isola, 2020).

Error inconsistency (Geirhos et al., 2020) refers to the percentage of data where two models have different classification
results, with one model making correct predictions while the other model makes incorrect predictions. Since we are not
dealing with classification, we considered a model to have made a correct prediction if the value of NDCG@10 is above 0.5.

By comparing the error inconsistency between similar framework and dissimilar framework, we observe the effectiveness
of contrastive loss. An observation that can be inferred from Table 4 is that the constructing positive pair for contrastive
loss significantly affects the similarity of the samples that the models predict accurately. As the method for constructing
positive pair varies, the models demonstrate a considerable difference in their ability to predict samples correctly. This
finding highlights the sensitivity of the models to the specific construction of the contrastive loss, which in turn impacts their
predictive performance.

A.2. Robustness of Fisher Merging; Recipe Selection

We compared two different recipe selection in Table 5; Fisher merged parameters with least performance model and Fisher
merged parameters without the model. In our experimental setup, CL4SRec did not exhibit superior performance compared to
other models, considering the chosen hyperparameter settings and other factors. Therefore, we aim to leverage the elements
of the recipe to demonstrate the robustness effect of Fisher merge. Our findings confirm that by removing underperforming
models as individual components and applying Fisher merge, the resulting ensemble demonstrates robustness.

Table 5. Ablation Study of Results of parameter merging; Fisher-merge on fine-tune Settings. The recipes used for merging were trained
on baseline model (without contrastive loss) and fine-tuned on each model. Ablation Study illustrates the situation of recipe without the
model with least performance.

MODEL POS FULL RANDOM POPULAR

BASELINE 0.135 0.5573 0.0426
(CL4SREC) (0.0585) (0.0513) (0.0466)

DUOREC SUP 0.1346 0.5547 0.0454
UNSUP 0.1358 0.5594 0.0445

- 0.1351 0.554 0.0423

FISHER (WITH) 0.1386 0.5618 0.0428
FISHER (W.O.) 0.1373 0.5603 0.0487
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A.3. Visualization of Sorted Probability

The figure displays the sorted probabilities of the top 50 items for 10 sequences, where single line represents single sequence.
The cumulative probability values for sample sizes of 10, 30, and 50 are 0.381, 0.569, and 0.658, respectively. With the
exception of a few largest ones, the majority of probabilities approximate 0.

Figure 4. Sorted Probability pθ (vj |si).
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