
WaterSeeker: Pioneering Efficient Detection of Watermarked Segments in Large
Documents

Leyi Pan1*, Aiwei Liu1, Yijian Lu1, Zitian Gao2, Yichen Di1,
Shiyu Huang3, Lijie Wen1†, Irwin King4, Philip S. Yu5

1Tsinghua University 2The University of Sydney 3Zhipu AI
4The Chinese University of Hong Kong 5University of Illinois at Chicago

panly24@mails.tsinghua.edu.cn, liuaw20@mails.tsinghua.edu.cn, wenlj@tsinghua.edu.cn

Abstract

Watermarking algorithms for large language models (LLMs)
have attained high accuracy in detecting LLM-generated text.
However, existing methods primarily focus on distinguishing
fully watermarked text from non-watermarked text, overlook-
ing real-world scenarios where LLMs generate only small
sections within large documents. In this scenario, balancing
time complexity and detection performance poses significant
challenges. This paper presents WaterSeeker, a novel approach
to efficiently detect and locate watermarked segments amid
extensive natural text. It first applies an efficient anomaly
extraction method to preliminarily locate suspicious water-
marked regions. Following this, it conducts a local traversal
and performs full-text detection for more precise verification.
Theoretical analysis and experimental results demonstrate that
WaterSeeker achieves a superior balance between detection
accuracy and computational efficiency. Moreover, its localiza-
tion capability lays the foundation for building interpretable
AI detection systems.

1 Introduction
As large language models (LLMs) generate high-quality text,
they address practical challenges but also raise concerns such
as misinformation (Megı́as et al. 2022; Chen and Shu 2024)
and copyright infringement (Rillig et al. 2023). LLM water-
marking technology has emerged to tackle these issues by
embedding specific information (watermarks) during text gen-
eration, allowing for accurate detection through specialized
algorithms. Current watermark detection methods (Kirchen-
bauer et al. 2023; Zhao et al. 2024; Liu et al. 2024; Aaronson
and Kirchner 2022; Lu et al. 2024; Lee et al. 2023; Hu et al.
2024; Wu et al. 2023) first calculate watermark scores for in-
dividual tokens through single token detection, then compute
statistics across the entire document for classification. While
these full-text detection methods effectively distinguish be-
tween fully watermarked and non-watermarked texts, they
fail in real-world scenarios where LLMs generate only brief
segments within longer documents, due to dilution effects, as
shown in Figure 1. To the best of our knowledge, the Win-
Max algorithm (Kirchenbauer et al. 2024) is the only work

*Work was done during the intern at Zhipu AI.
†Corresponding author

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

addressing this limitation by examining all possible window
sizes and selecting the maximum statistical score across all
windows as the final detection result, but suffers from high
time complexity.

To address these issues, we propose a novel and general wa-
termark detection method called WaterSeeker. WaterSeeker
follows a ”first locate, then detect” approach, as shown in Fig-
ure 1. It initially employs a low-complexity anomaly points
extraction algorithm to identify suspected watermark regions,
narrowing the detection target from a long text to a small seg-
ment encompassing the ground truth segment. Next, a local
traversal is performed on the localization result, conducting
full-text watermark detection within each window and com-
paring the highest confidence result to a threshold for the
final determination. Theoretical analysis suggests that this
coarse-to-fine process has the potential to achieve optimal
detection performance while maintaining the lowest possible
complexity for solving this problem.

In the experiment, we compared the effectiveness and time
complexity of WaterSeeker with baseline methods for detect-
ing watermarked segments in large documents. WaterSeeker
significantly outperformed the baselines in balancing time
complexity and detection performance. Moreover, it demon-
strates good adaptability to different watermark strengths,
segment lengths, and document lengths, while achieving ro-
bust performance against text edit attacks. In summary, the
contributions of this work are as follows:

• We comprehensively define a new scenario: detecting
watermarked segments in large documents. This includes
specifying algorithm inputs/outputs, evaluation metrics,
and how to create test datasets.

• We propose WaterSeeker, a general watermark detection
method that effectively identifies watermarked segments
in large documents, tackling the issues caused by dilution
effects.

• WaterSeeker outperforms baselines in achieving a superior
balance between time complexity and detection effective-
ness.

• Further experiments demonstrate that WaterSeeker ex-
hibits strong adaptability across various watermark
strengths, segment lengths, and document lengths, while
also being robust against text editing attacks.

…The winter of 1956 brought unprecedented challenges to polar expeditions worldwide.

Multiple teams found themselves battling against nature's harshest elements, testing the

limits of human endurance. The explorers made their way through the mountain

pass, ... By nightfall, it had become clear that their supplies were completely

depleted. The expedition leader maintained hope, but in his journal,…

The explorers made their way through

the mountain pass, ... By nightfall, it

had become clear that their supplies

were completely depleted.

Fully Watermarked Text

+

Watermarked Segment in Large Document

Single Token Detection Single Token Detection

Statistic Computation

Full-text Detection

Z-score, Mean Score, Gamma
Transformation…

Watermarked Non-Watermarked

WaterSeeker

Score List

Computation
Anomaly

Extraction

Locate

Detect

Local Traversal

Statistic

Computation

Watermarked

Figure 1: While full-text detection methods effectively differentiate between fully watermarked and non-watermarked texts, they
often struggle with watermarked segment detection due to the dilution effect. To address this, WaterSeeker employs a ”first
locate, then detect” strategy, which narrows the detection range before conducting local traversal for further verification.

2 Related Work
2.1 Watermarking Algorithms
Currently, mainstream LLM watermarking methods involve
modifying the inference phase by altering logits or influenc-
ing token sampling (Liu et al. 2023; Pan et al. 2024).

The KGW family (Kirchenbauer et al. 2023; Zhao et al.
2024; Hu et al. 2024; Liu et al. 2024; Wu et al. 2023) cate-
gorizes vocabulary into green and red lists, biasing towards
green tokens during generation. The bias value is typically
determined by the parameter δ, which reflects the watermark
strength. For these methods, single token detection deter-
mines whether each token belongs to the green list, while
full-text detection involves calculating the z-score of green
tokens across the entire document; exceeding a threshold
indicates watermarking. Details of the KGW algorithm are
as follows:

(1) Watermarking. In watermarked text generation, the pro-
cess for the t-th token begins by hashing preceding tokens
with a secret key, creating a red-green vocabulary partition
where green tokens comprise a fraction γ. Green token logits
are then incrementally increased by δ, which can be expressed
as follows:

l′t(y) =

{
lt(y), y ∈ Rt

lt(y) + δ, y ∈ Gt
(1)

This subtle modification results in watermarked text exhibit-
ing a higher frequency of green tokens compared to non-
watermarked text.

(2) Detection. Detecting a KGW watermark entails com-
puting red-green partitions for each position using preceding
tokens and the hash function, then calculating the green token
proportion using the z-score:

z =
|s|G − γN√
γ(1− γ)N

(2)

, where |s|G represents the total count of green tokens in the
whole text of length N .

The Aar family(Aaronson and Kirchner 2022; Christ,
Gunn, and Zamir 2024; Kuditipudi et al. 2024) uses pseudo-
random sequences to guide token sampling. It generates a
pseudo-random vector u ∼ Uniform([0, 1])|V | based on pre-
vious tokens and selects the token i maximizing u

1/pi

i , where
p is the LLM’s probability vector. Watermark strength is con-
trolled by sampling temperature. In these methods, single
token detection calculates the correlation value between each
token and u, while full-text detection applies gamma trans-
formation to derive the detection confidence. Details of the
Aar algorithm are as follows:
(1) Watermarking. When generating the t-th token, it first
involves hashing the preceding tokens using a secret key to

obtain a pseudo vector ut ∼ Uniform([0, 1])|V |. The t-th
token is determined by

argmax
y

ut(y)
1/pt(y), (3)

where p is the probability vector produced by LLM at the
t-th step. Let’s perform equivalent transformations on it:

y = argmax
y

ut(y)
1/pt(y) (4)

= argmax
y

1

pt(y)
log ut(y) (5)

= argmin
y

1

pt(y)
log

1

ut(y)
(6)

= argmin
y

log
1

pt(y)
+ log log

1

ut(y)
(7)

= argmax
y

log pt(y)− log log
1

ut(y)
(8)

Given that the probabilistic output pt of an LLM is derived
from the logits lt through a softmax transformation, and
when we additionally consider the sampling temperature T ,
Equation 8 becomes equivalent to:

argmax
y

lt(y)

T
+Gt(y), (9)

where lt is the logits produced by the LLM, and Gt is the
Gumbel noise: Gt(y) ∼ Gumbel(0, 1). The Gumbel(0, 1)
distribution is defined as follows: if u ∼ Uniform(0, 1), then
− log(− log(u)) follows a Gumbel(0, 1) distribution.

It is evident that the temperature T can be utilized to ex-
ert control over the watermark strength. As the value of T
increases, the influence of Gumbel noise on the sampling
process becomes more pronounced, consequently resulting
in a stronger watermark.

(2) Detection. Detecting an Aar watermark involves calculat-
ing the correlation value between the pseudo vector ut and
the corresponding token yt in the text to be examined. The
correlation value can be expressed as:

log
1

1− ut(yt)
. (10)

For the entire text, the statistic value can be expressed as:

p-value = Γ

(
N∑
t=1

log

(
1

1− ut(yt)

)
, N, loc = 0, scale = 1

)
,

(11)
where Γ is the Gamma Transformation function that converts
the sum of correlation values to a p-value.

2.2 Limitations of Full-text Detection Methods.
Despite the high accuracy of watermarking algorithms for dis-
tinguishing between fully watermarked and non-watermarked
text, their performance fall sharply when detecting water-
marked segments within large documents. A few studies
have mentioned copy-paste attack (Kirchenbauer et al. 2024;
Yoo, Ahn, and Kwak 2023; Wang et al. 2024), which involves

mixing a portion of watermarked text with non-watermarked
content, similar to our scenario. Yoo, Ahn, and Kwak (2023)
and Wang et al. (2024) evaluated their methods’ robustness
against copy-paste attacks by combining 10% to 50% water-
marked text with non-watermarked text. However, as they
did not develop specific detection mechanisms for this situa-
tion, their findings showed that their methods were not robust
against this type of attack.

Among existing studies, only WinMax (Kirchenbauer et al.
2024) specifically addresses watermarked segment detection
by examining all possible window sizes to find the high-
est local statistics. However, its high time complexity limits
practical application. To address this limitation, we propose
WaterSeeker, a novel method that employs a ”first locate then
detect” strategy to achieve efficient detection of watermarked
segments in large documents.

3 Problem Formulation
Definition. Given a text of length N containing m
watermarked segments at position [(s1, e1), ...(sm, em)],
the objective is to determine the presence and loca-
tion of the watermarked segment. The detection algo-
rithm outputs: {‘has watermark’: True/False, ‘indices’:
[(s′1, e

′
1), ..., (s

′
m′ , e′m′)]}.

Evaluation. A watermark is considered successfully detected
if: (1) output.has watermark = True. (2) The overall Inter-
section over Union (IoU) between the detected segments
(s′i, e

′
i)|m

′

i=1 and the ground truth segments (s, e)|mi=1 is posi-
tive, indicating no complete false detection:

IoU =
Lintersection

Lunion
> 0. (12)

Based on these criteria, we evaluate the classification per-
formance using False Positive Rate (FPR), False Negative
Rate (FNR) and F1 Score, as well as the localization perfor-
mance using average IoU between detected and ground truth
segments.

4 Baseline Methods
Full-text Detection. As explained in Section 1, involves
calculate watermark scores for individual tokens and compute
statistics across the entire documents for classification.
WinMax (Kirchenbauer et al. 2024) involves iterating
through all possible window sizes, and for each window size,
the entire text is traversed to compute statistics for each lo-
cal window, taking the maximum score for final results. The
detection process can be described by the following formula:

score = max
1≤w≤N

max
1≤i≤N−w+1

F (xi:i+w−1), (13)

where w is the length of the local window, x represents
the text tokens, and F is the statistical function. The time
complexity is evidently O(N2). We also introduce a Win-
Max variant where window size increases by intervals > 1,
reducing complexity to O(N2/interval).
Fix-Length Sliding Window (FLSW) is a self-constructed
method that uses a fixed-length window to traverse the text.
The text is flagged as watermarked if any statistic score within

Figure 2: Expected z-score and the corresponding threshold
z∗ across various W , α = 10−6, γ = 0.5, γ1 = 0.75.

the local windows exceeds the threshold. The pseudocode for
all baselines can be found at Appendix A.

5 Proposed Method: WaterSeeker
5.1 Theoretical Basis: Gold Index is the Best
This section provides the theoretical foundation of Wa-
terSeeker, showing that using actual start and end indices
(gold index) for watermark detection achieves the highest ex-
pected detection rate. We analyze using KGW (Kirchenbauer
et al. 2023) as a case study. Assuming γ1 > γ is the propor-
tion of green tokens in the watermarked part, the watermark
segment has a length L, and the statistical function F is the
z-score computation. Let’s analyze the effect of window size
W on this statistic:

(1) When W < L:

E[zW] =
Wγ1 − γW√
γ(1− γ)W

=
√
W · γ1 − γ√

γ(1− γ)
. (14)

(2) When W > L:

E[zW] =
Lγ1 + (W − L)γ − γW√

γ(1− γ)W
=

L(γ1 − γ)√
γ(1− γ)W

. (15)

From this, we can conclude that when W = L, the z-
score reaches its maximum. During detection, we aim to
maximize positive case z-scores while maintaining false pos-
itive rate below a target threshold α. For a window of size
W , the number of green tokens follows B(W,γ), which
approximates to N(Wγ,Wγ(1 − γ)) for large W . This
yields z ∼ N(0, 1), and the threshold z∗ is derived as:
z∗ = Φ(−1)(1 − α), which is a constant value for differ-
ent W . The simulation result using real data are shown in
Figure 2.

5.2 Suspicious Region Localization
Based on the theoretical analysis, WaterSeeker employs a
coarse-to-fine process to gradually approximate the gold in-
dex. In the coarse step, a localization algorithm identifies

suspicious regions and narrows detection to a small segment
containing the ground truth, while maintaining minimal devi-
ation. This step involves three sub-steps:
(1) Score List Computation: Similar to existing methods,
watermark scores for individual tokens are calculated through
single token detection. Then, a small sliding window (i.e.
W = 50) is used to traverse the text to compute average
scores within the window, serving as a smoothing operation.
This results in a score list s of length N −W + 1, where si
represents the average watermark intensity from text token
xi to xi +W .
(2) Anomaly Extraction: We design an anomaly extraction
algorithm inspired by previous work in the field of style
change detection (Zangerle et al. 2021) and intrinsic pla-
giarism detection (Manzoor et al. 2023). The mean score
(smean) and top-k mean (stop-k-mean) are calculated. Outliers
are determined by:

score > smean +
(stop-k-mean − smean)

2
. (16)

This is non-trivial because it ensures that the extracted
suspicious watermarked regions likely cover the actual seg-
ments, with starting and ending deviations within a window
size: when the sliding window falls entirely within the water-
marked segment, the scores stabilize near stop-k-mean; when the
window falls completely outside, the scores stabilize below
smean. Consequently, the extracted abnormal segment’s start
and end points (s′ and e′) generally satisfy s′ ∈ (s −W, s)
and e′ ∈ (e, e + W). Moreover, the use of stop-k-mean en-
sures good adaptability to various watermark strengths. The
corresponding experiment results can be found at Section
6.5.
(3) Fragment Connection: Adjacent outliers are connected
with a predefined tolerance threshold, and segments shorter
than a minimum length are filtered out, producing a list of
segment indices.

5.3 Local Traverse Detection
After obtaining the coarse localization results, a fine-grained
detection is performed by traversing segments within the
predicted ranges. For each (s′, e′) pair in the localization
results, the algorithm examines segments with start points
in [s′, s′ + W) and end points in (e′ − W, e′]. Based on
the previous analysis, these ranges likely contain the true
watermarked indices. Full-text detection is performed on
these segments, and the most significant statistic is compared
against a threshold. The complete WaterSeeker algorithm is
presented in Algorithm 1.

5.4 Time Complexity Analysis
Time Complexity of WaterSeeker. WaterSeeker consists of
two main components: (1) Suspicious Region Localization
with O(N) complexity, where N is the text length, and (2)
Local Traverse Detection with O(W 2) complexity, where
W is the window size. The total complexity is O(N +W 2).
In practice, W 2 is typically kept lower than N , as a slightly
larger window (i.e., W = 50, detailed in Appendix C) suf-
fices for a smooth and low-noise representation of the sur-

Algorithm 1: WaterSeeker Algorithm

1: procedure LOCALIZATION(tokens)
2: scores = SlidingWindow(tokens)
3: threshold = smean +

(stop-k-mean−smean)
2

4: return ConnectOutliers(scores¿threshold)
5: end procedure
6: procedure DETECTION(tokens, segs)
7: detected = []
8: for (s′, e′) in segs do
9: best = −∞, idx = None

10: for s ∈ [s′, s′ +W), e ∈ (e′ −W, e′] do
11: score=WatermarkScore(tokens[s:e])
12: if score > best then
13: best = score
14: idx = (s, e)
15: end if
16: end for
17: if best > threshold then
18: detected.append(idx)
19: end if
20: end for
21: return bool(detected), detected
22: end procedure
23: procedure WATERSEEKER(tokens)
24: return Detection(tokens, Localization(tokens))
25: end procedure

Table 1: Results of full-text detection methods.

Dataset FPR↓ FNR↓ F1↑
KGW-Llama 0.000 0.983 0.033
KGW-Mistral 0.000 0.993 0.013
Aar-Llama 0.000 0.980 0.039
Aar-Mistral 0.000 0.980 0.039

rounding watermark intensity. Thus, the overall time com-
plexity of WaterSeeker is O(N).
Lower Bound Complexity for the Problem. To detect water-
marked segments in a long text, any algorithm must examine
each token in the text at least once. This requirement estab-
lishes a lower bound of Ω(N) for the time complexity of the
problem, as at least one full pass through the text is necessary.
Consequently, the WaterSeeker algorithm achieves a time
complexity that matches the theoretical lower bound of the
problem.

6 Experiment
6.1 Experiment Settings
Watermarking Methods and Language Models: We se-
lected two representative watermarking algorithms, KGW
(Kirchenbauer et al. 2023) and Aar (Aaronson and Kirch-
ner 2022), each at three strength levels. KGW’s strength
was set by the δ parameter (2.0=strong, 1.5=medium,
1.0=weak), while Aar’s strength used the temperature param-
eter (0.5=strong, 0.4=medium, 0.3=weak). We used Llama-2-

7b (Touvron et al. 2023) and Mistral-7b (Jiang et al. 2024) as
generation models.
Dataset Construction: The first 30 tokens of each entry in
the C4 dataset (Raffel et al. 2020) were used for prompts.
Watermarked segments of random length (100 to 400 to-
kens) were then generated using randomly selected water-
mark strengths. For positive examples, one such segment
was randomly inserted into each 10,000-token Wikipedia
passage (Foundation 2022). While most experiments used
single-segment insertion, we also conducted experiments
with multiple watermarked segments inserted into the same
passage, with results reported in Table 4. Negative examples
consist of unmodified 10,000-token Wikipedia corpus. Based
on this procedure, four datasets were created, each contain-
ing 300 positive and 300 negative examples: KGW-Llama,
KGW-Mistral, Aar-Llama, and Aar-Mistral.
Baselines: As introduced in Section 4, we selected Full-text
Detection and WinMax (Kirchenbauer et al. 2024) with vary-
ing window size intervals, along with the Fixed-Length Slid-
ing Window method using W of 100, 200, 300, and 400.
Hyper-parameters: The parameters related to WaterSeeker
are as follows: W = 50, k = 20, with a tolerance for frag-
ment connection set to 100. The threshold selection within
the specified window is detailed in Appendix B. Notably,
careful threshold selection is crucial for maintaining an ac-
ceptable false positive rate, as traversing long texts is prone
to accumulating false positives.

6.2 Results of Full-text Detection
Table 1 shows that full-text detection methods perform poorly
across all four datasets, with an F1 score of less than 0.1. This
indicates that full-text detection methods are totally ineffec-
tive for detecting watermarked segments in large documents.

6.3 WaterSeeker Compared with WinMax

Main Experiment. From the data in Table 2 and Table 3,
we can compare the detection and localization capabilities of
WinMax with different window size intervals (1, 50, 100, 200)
and WaterSeeker for watermarked segments, as well as the
time costs for processing individual samples. WaterSeeker’s
detection and localization performance is only slightly behind
that of WinMax-1, while achieving a time savings of 1000
times. Given that WinMax evaluates all possible windows
to ensure it reaches the gold index, it represents the upper
bound of detection performance. However, as the window
interval sizes for WinMax increase, the processing time de-
creases linearly with the interval size, yet it remains higher
than that of WaterSeeker, while its detection and localization
performance falls below that of WaterSeeker.
Balancing Performance and Time Cost. To clearly compare
the balance between detection performance and time cost
for WinMax and WaterSeeker, we collected additional data
points for WinMax, as shown in Figure 3(a). Points further
to the bottom right in the figure indicate a superior balance.
It is evident that WaterSeeker is positioned clearly below
and to the right of the curve formed by the WinMax data

Table 2: We evaluated the detection performance of WaterSeeker against various methods, including Full-text Detection, WinMax
(Kirchenbauer et al. 2024), and FLSW. Results in this table utilized the Llama-2-7b model. The metrics reported include false
positive rate (FPR), false negative rate (FNR), F1 score, average Intersection over Union (IoU) between detected and ground
truth segments, and processing time per sample. Best performances are highlighted in bold, while the second-best are underlined.

Method KGW Aar
FPR↓ FNR↓ F1↑ IoU↑ Time(s)↓ FPR↓ FNR↓ F1↑ IoU↑ Time(s)↓

WinMax-1 0.017 0.193 0.885 0.713 1632.11 0.017 0.277 0.831 0.616 3615.42
WinMax-50 0.017 0.220 0.868 0.672 34.31 0.007 0.307 0.816 0.577 72.13
WinMax-100 0.013 0.237 0.859 0.632 17.16 0.003 0.330 0.800 0.554 35.34
WinMax-200 0.010 0.273 0.834 0.547 9.12 0.003 0.363 0.776 0.486 18.38

WaterSeeker 0.017 0.213 0.872 0.675 1.75 0.010 0.300 0.819 0.578 0.41
FLSW-100 0.003 0.383 0.761 0.451 1.76 0.003 0.440 0.716 0.403 1.31
FLSW-200 0.003 0.300 0.822 0.487 1.76 0.000 0.380 0.765 0.411 1.29
FLSW-300 0.007 0.340 0.792 0.383 1.76 0.000 0.413 0.739 0.306 1.29
FLSW-400 0.003 0.407 0.743 0.275 1.75 0.000 0.443 0.715 0.228 1.27

Table 3: We evaluated the detection performance of WaterSeeker against various methods, including Full-text Detection, WinMax
(Kirchenbauer et al. 2024), and FLSW. Results in this table utilized Mistral-7b as the generation model. The metrics reported
include false positive rate (FPR), false negative rate (FNR), F1 score, average Intersection over Union (IoU) between detected
and ground truth segments, and processing time per sample. Best performances are highlighted in bold, while the second-best are
underlined.

Method KGW Aar
FPR↓ FNR↓ F1↑ IoU↑ Time(s)↓ FPR↓ FNR↓ F1↑ IoU↑ Time(s)↓

WinMax-1 0.010 0.243 0.857 0.641 1632.11 0.013 0.297 0.819 0.588 3615.42
WinMax-50 0.007 0.270 0.841 0.613 34.31 0.007 0.320 0.806 0.560 72.13
WinMax-100 0.003 0.283 0.833 0.588 17.16 0.007 0.333 0.797 0.531 35.34
WinMax-200 0.003 0.340 0.794 0.511 9.12 0.003 0.347 0.789 0.501 18.38

WaterSeeker 0.010 0.253 0.850 0.634 1.75 0.010 0.300 0.819 0.563 0.41
FLSW-100 0.000 0.463 0.698 0.393 1.76 0.000 0.473 0.690 0.367 1.31
FLSW-200 0.000 0.373 0.770 0.426 1.76 0.003 0.387 0.759 0.412 1.29
FLSW-300 0.003 0.437 0.719 0.331 1.76 0.003 0.387 0.759 0.334 1.29
FLSW-400 0.003 0.540 0.629 0.218 1.75 0.007 0.440 0.715 0.249 1.27

points, demonstrating a better balance between detection
performance and time cost.

Robustness against Varying Text Lengths. To further vali-
date the robustness of watermark detection algorithms against
varying document lengths (mixing ratios), we tested Wa-
terSeeker and WinMax at N = 500, 2000, 5000, and 10000,
measuring the detection F1 score and time cost, as illustrated
in Figure 3(b), (c). Both WaterSeeker and WinMax exhibit
stable detection performance with changes in N . However,
WinMax’s time cost increases at a higher rate than that of Wa-
terSeeker, indicating its impracticality for large documents.
WinMax’s Limitations for Multiple Segments. As shown
in Equation 13, when multiple watermarked segments are
inserted within the same document, WinMax cannot function
properly. In contrast, WaterSeeker is able to adapt to this
situation. The detection and localization performance for
multiple watermarked segments can be found in the Table 4,
comparing performance of WaterSeeker and FLSW.

6.4 WaterSeeker Compared with FLSW
Main Experiment. As shown in Table 2 and Table 3, al-
though the time cost of FLSW is comparable to that of Wa-
terSeeker, its detection performance is significantly inferior.
This difference is due to FLSW’s fixed-length nature, which
restricts its capability to utilize the gold index for detecting
watermarked segments of varying lengths.
Multiple Segments Detection. Table 4 presents the detection
and localization results for documents containing three wa-
termarked segments. The experimental setup mirrors that of
the main experiment, utilizing Llama-2-7b as the generation
model. The results indicate that as the number of inserted seg-
ments increases, it becomes easier to detect a watermarked
segment (all methods show improved F1 scores). However,
the Intersection over Union (IoU) did not exhibit significant
changes. Notably, WaterSeeker continues to outperform the
FLSW algorithm across all four configurations, consistent
with the main experiment that included only one segment per

(a) Balancing detection performance and

time cost: WinMax vs. WaterSeeker.

(b) Detection performance comparison across

different methods with varying text lengths.

(c) Time cost comparison across different

methods with varying text lengths.

Figure 3: A detailed comparison of WinMax and WaterSeeker regarding their detection performance and time cost, as well as
their performance across varying text lengths.

Table 4: Comparison of detection and localization performance between WaterSeeker and FLSW with multiple segment insertion
(one document containing three watermarked segments), including the time cost for processing each sample.

Method KGW Aar
FPR↓ FNR↓ F1↑ IoU↑ Time(s) ↓ FPR↓ FNR↓ F1↑ IoU↑ Time(s) ↓

FLSW-100 0.000 0.177 0.903 0.433 1.76 0.013 0.147 0.914 0.434 1.31
FLSW-200 0.000 0.110 0.941 0.475 1.75 0.007 0.093 0.948 0.461 1.29
FLSW-300 0.003 0.130 0.929 0.399 1.76 0.007 0.120 0.933 0.369 1.29
FLSW-400 0.003 0.153 0.916 0.314 1.76 0.003 0.150 0.917 0.288 1.27

WaterSeeker 0.010 0.057 0.966 0.649 1.89 0.010 0.057 0.966 0.542 0.83

sample.
Further Analysis of Fix-length Nature. To better illustrate
FLSW’s inability to adapt to watermarked segments of vary-
ing lengths, we selected two types of extreme examples from
the main experiment dataset. As shown in Table 5, for seg-
ments with strong watermark intensity but short length, using
larger window sizes such as FLSW-300 or FLSW-400 leads
to the inclusion of many non-watermarked segments, which
dilutes the watermark intensity and results in a significant
drop in performance. Conversely, for segments with weak
watermark intensity but longer length, using smaller window
sizes like FLSW-100 or FLSW-200 results in an insufficient
number of watermark tokens for detection, preventing the ac-
cumulation of intensity and adversely affecting the detection
results.

6.5 Ablation Study
We analyze the effectiveness of the two stages of WaterSeeker
through an ablation study.
Stage 1: Suspicious Region Localization. This stage aims
to narrow down the detection target from a large document
to a smaller region. The goal is to achieve high coverage of
the ground truth segments while maintaining the start and
end offsets within a specified window size. This ensures

Table 5: Performance of WaterSeeker and FLSW in two types
of examples: segments with strong watermark intensity but
short length (length ≤ 150, KGW δ = 2.0), and segments
with weak watermark intensity but long length (length≥ 350,
KGW δ = 1.0).

TPR IoU
Strong but Short

FLSW-300 0.000 0.000
FLSW-400 0.000 0.000
WaterSeeker 0.667 0.572

Weak but Long
FLSW-100 0.375 0.150
FLSW-200 0.625 0.447
WaterSeeker 0.813 0.642

that subsequent local traversals can access the gold index.
As shown in Table 6, Step 1 achieves an average coverage
exceeding 0.9, with average start and end offsets remaining
below W across various watermark algorithms and strengths,
demonstrating good adaptability.

Stage 2: Local Traverse Detection. Local Traverse Detec-

Table 6: This table shows the contributions of the first stage
of WaterSeeker: Suspicious Segment Localization. It lists
the average coverage of localization results compared to
ground truth segments for various watermark algorithms and
strengths, along with the average offsets of the detected in-
dices.

Strength Avg. Cov. Avg. Off.

KGW
δ = 2.0 0.989 0.34W
δ = 1.5 0.964 0.35W
δ = 1.0 0.950 0.43W

Aar
temp = 0.5 0.945 0.13W
temp = 0.4 0.948 0.12W
temp = 0.3 0.920 0.10W

Table 7: Comparison of detection performance with and with-
out Local Traverse Detection.

Settings KGW Aar
F1 IoU F1 IoU

w. Traversal 0.872 0.675 0.819 0.578
w/o Traversal 0.817 0.576 0.765 0.509

tion performs a localized iteration based on the segments
from Stage 1, allowing for more refined verification within
the window. Table 7 shows that across different watermarking
algorithms, Local Traverse consistently enhances detection
F1 score and average IoU compared to directly applying
detection with the localization results, making it an indis-
pensable component of WaterSeeker.

6.6 Robustness against Text Edit Attacks

In this section, we further examine WaterSeeker’s robustness
against text edit attacks, as watermarked segments gener-
ated by LLMs may be altered before integration into non-
watermarked documents.

Figure 4 illustrates the detection robustness of Wa-
terSeeker, WinMax and FLSW against random word dele-
tion (ratio=0.3) and substitution attacks (ratio=0.3, utilizing
WordNet (Fellbaum 1998) for synonym sets). The figure also
contrasts these results with those obtained under no attack,
along with the associated time costs. In this experiment, the
KGW watermarking algorithm was employed, and Llama-
2-7b is utilized as generation model. Since text editing can
weaken the strength of the watermark, the watermark frag-
ment intensity was set to a strong level under the ”No attack”
condition, specifically δ = 2.0.

It can be observed from the figure that WaterSeeker
achieves strong robustness against word deletion and word
substitution attacks, with an F1 score exceeding 0.9. Com-
pared with other baselines, only WinMax-1 perform slightly
better than WaterSeeker, but at a significant cost in terms of
time.

Figure 4: Robustness of WinMax, FLSW, and WaterSeeker
against text edit attacks. The detection F1 score is reported
for no attack, random word deletion attack (ratio = 0.3), and
random word substitution attack (ratio = 0.3), along with the
time cost for processing one sample.

7 Conclusion

This work introduces a new scenario for detecting water-
marked segments in large documents and establishes corre-
sponding evaluation metrics. We identified the limitations of
full-text detection methods in this context and proposed a
“first locate, then detect” watermark detection algorithm that
utilizes a coarse-to-fine strategy. We validated the detection
performance and time complexity of our algorithm through a
series of analyses and experiments, demonstrating its ability
to effectively balance both aspects. Future research could ex-
plore more advanced locating methods based on this concept
to potentially yield improved detection results.

Limitations

While our method has demonstrated effectiveness in detect-
ing watermarked segments within large documents, there
are still some limitations that need to be addressed in future
work. First, from an evaluation perspective, due to resource
constraints, we only conducted experiments on Llama-2-7B
and Mistral-7B models. The effectiveness of our method
on larger and more powerful models remains to be further
verified. Second, WaterSeeker’s performance may decrease
with very short or weak watermarks. Enhancing the sensitiv-
ity of WaterSeeker to detect shorter and weaker watermarks
is an area for future improvement, which may involve re-
fining the anomaly extraction algorithms or incorporating
additional contextual analysis. Lastly, parameter selection, in-
cluding threshold settings to control false positives, is crucial
and can be challenging in different environments. Stricter
threshold controls can reduce the detection rate, necessitating
adjustments based on the specific requirements of the actual
settings.

Acknowledgments
This work is primarily supported by the Key Research and
Development Program of China (No. 2024YFB3309702).

We would like to express our gratitude to the anonymous
AAAI 2025 Workshop PDLM reviewers (Reviewer haMz,
h57D, Kyvu) and Area Chair bYE9 for their valuable feed-
back and suggestions that helped improve this paper.

References
Aaronson, S.; and Kirchner, H. 2022. Watermarking GPT out-
puts. https://www.scottaaronson.com/talks/watermark.ppt.
Chen, C.; and Shu, K. 2024. Can LLM-Generated Misinfor-
mation Be Detected? In The Twelfth International Conference
on Learning Representations.
Christ, M.; Gunn, S.; and Zamir, O. 2024. Undetectable
watermarks for language models. In The Thirty Seventh
Annual Conference on Learning Theory, 1125–1139. PMLR.
Fellbaum, C. 1998. WordNet: An electronic lexical database.
MIT press.
Foundation, W. 2022. Wikimedia Downloads.
Hu, Z.; Chen, L.; Wu, X.; Wu, Y.; Zhang, H.; and Huang,
H. 2024. Unbiased Watermark for Large Language Mod-
els. In The Twelfth International Conference on Learning
Representations.
Jiang, A. Q.; Sablayrolles, A.; Roux, A.; Mensch, A.; Savary,
B.; Bamford, C.; Chaplot, D. S.; Casas, D. d. l.; Hanna, E. B.;
Bressand, F.; et al. 2024. Mixtral of experts. arXiv preprint
arXiv:2401.04088.
Kirchenbauer, J.; Geiping, J.; Wen, Y.; Katz, J.; Miers, I.;
and Goldstein, T. 2023. A Watermark for Large Language
Models. In Krause, A.; Brunskill, E.; Cho, K.; Engelhardt,
B.; Sabato, S.; and Scarlett, J., eds., International Conference
on Machine Learning, ICML 2023, 23-29 July 2023, Hon-
olulu, Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, 17061–17084. PMLR.
Kirchenbauer, J.; Geiping, J.; Wen, Y.; Shu, M.; Saifullah, K.;
Kong, K.; Fernando, K.; Saha, A.; Goldblum, M.; and Gold-
stein, T. 2024. On the Reliability of Watermarks for Large
Language Models. In The Twelfth International Conference
on Learning Representations.
Kuditipudi, R.; Thickstun, J.; Hashimoto, T.; and Liang, P.
2024. Robust Distortion-free Watermarks for Language Mod-
els. Transactions on Machine Learning Research.
Lee, T.; Hong, S.; Ahn, J.; Hong, I.; Lee, H.; Yun, S.; Shin,
J.; and Kim, G. 2023. Who Wrote this Code? Watermarking
for Code Generation. arXiv preprint arXiv:2305.15060.
Liu, A.; Pan, L.; Hu, X.; Meng, S.; and Wen, L. 2024. A
Semantic Invariant Robust Watermark for Large Language
Models. In The Twelfth International Conference on Learning
Representations.
Liu, A.; Pan, L.; Lu, Y.; Li, J.; Hu, X.; Wen, L.; King, I.; and
Yu, P. S. 2023. A survey of text watermarking in the era of
large language models. arXiv preprint arXiv:2312.07913.
Lu, Y.; Liu, A.; Yu, D.; Li, J.; and King, I. 2024. An Entropy-
based Text Watermarking Detection Method. In Ku, L.-W.;

Martins, A.; and Srikumar, V., eds., Proceedings of the 62nd
Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), 11724–11735. Bangkok,
Thailand: Association for Computational Linguistics.
Manzoor, M. F.; Farooq, M. S.; Haseeb, M.; Farooq, U.;
Khalid, S.; and Abid, A. 2023. Exploring the Landscape of In-
trinsic Plagiarism Detection: Benchmarks, Techniques, Evo-
lution, and Challenges. IEEE Access, 11: 140519–140545.
Megı́as, D.; Kuribayashi, M.; Rosales, A.; Cabaj, K.; and
Mazurczyk, W. 2022. Architecture of a fake news detection
system combining digital watermarking, signal processing,
and machine learning. Journal of Wireless Mobile Networks,
Ubiquitous Computing, and Dependable Applications, 13(1):
33–55.
Pan, L.; Liu, A.; He, Z.; Gao, Z.; Zhao, X.; Lu, Y.; Zhou,
B.; Liu, S.; Hu, X.; Wen, L.; et al. 2024. MarkLLM: An
Open-Source Toolkit for LLM Watermarking. arXiv preprint
arXiv:2405.10051.
Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.;
Matena, M.; Zhou, Y.; Li, W.; and Liu, P. J. 2020. Exploring
the limits of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research, 21(1):
5485–5551.
Rillig, M. C.; Ågerstrand, M.; Bi, M.; Gould, K. A.; and
Sauerland, U. 2023. Risks and benefits of large language
models for the environment. Environmental Science & Tech-
nology, 57(9): 3464–3466.
Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux,
M.-A.; Lacroix, T.; Rozière, B.; Goyal, N.; Hambro, E.;
Azhar, F.; et al. 2023. Llama: Open and efficient founda-
tion language models. arXiv preprint arXiv:2302.13971.
Wang, L.; Yang, W.; Chen, D.; Zhou, H.; Lin, Y.; Meng, F.;
Zhou, J.; and Sun, X. 2024. Towards Codable Watermarking
for Injecting Multi-Bits Information to LLMs. In The Twelfth
International Conference on Learning Representations.
Wu, Y.; Hu, Z.; Zhang, H.; and Huang, H. 2023. DiPmark:
A Stealthy, Efficient and Resilient Watermark for Large Lan-
guage Models. arXiv preprint arXiv:2310.07710.
Yoo, K.; Ahn, W.; and Kwak, N. 2023. Advancing Beyond
Identification: Multi-bit Watermark for Language Models.
arXiv preprint arXiv:2308.00221.
Zangerle, E.; Mayerl, M.; Potthast, M.; and Stein, B. 2021.
Overview of the style change detection task at pan.
Zhao, X.; Ananth, P. V.; Li, L.; and Wang, Y.-X. 2024. Prov-
able Robust Watermarking for AI-Generated Text. In The
Twelfth International Conference on Learning Representa-
tions.

A Pseudocode of Detection Baselines
Pseudocode of WinMax and FLSW could be found in Algorithm 2 and 3, respectively.

Algorithm 2: WinMax Algorithm

1: procedure WINMAXDETECTION(tokens, interval, threshold)
2: hasWatermark← False, indices← []
3: maxStat← -∞, bestIndex← None
4: for W ∈ [1, len(tokens)], step=interval do
5: for i in 0 to len(tokens)−W do
6: stat←WatermarkScore(tokens[i : i+W])
7: if stat > maxStat then
8: maxStat← stat
9: bestIndex← (i, i+W)

10: end if
11: end for
12: end for
13: if maxStat > threshold then
14: hasWatermark← True
15: indices.append(bestIndex)
16: end if
17: return hasWatermark, indices
18: end procedure

Algorithm 3: FLSW Algorithm

1: procedure FLSWDETECTION(tokens, W , threshold)
2: hasWatermark← False
3: indices← []
4: for i in 0 to len(tokens)−W do
5: stat←WatermarkScore(tokens[i : i+W])
6: if stat > threshold then
7: hasWatermark← True
8: indices.append((i, i+W))
9: end if

10: end for
11: indices← ConnectFragments(indices)
12: return hasWatermark, indices
13: end procedure

B Detail of Threshold Selection Within the Specified Window
A key role of threshold selection is to control the false positive rate. In this context, the task involves detecting watermark
fragments within long texts, which requires traversing extensive content and can lead to an accumulation of false positives.
Therefore, managing the false positive rate within the detection window is crucial in this scenario. In the experiment, we set the
target false positive rate α within the detection window to 10−6.

B.1 Rationale for setting α to 10−6

Table 8: Simulated FPR of WaterSeeker using 10,000 samples for each watermarking method. The targeted false positive rate
within the detection window is set to 10−6.

Watermarking Method Simulated FPR

KGW 0.0054
Aar 0.0042

WaterSeeker, WinMax, and FLSW all involve employing sliding windows for text traversal and conduct full-text detection
within each window. As these windows overlap, they cannot be treated as independent, making it challenging to derive a
theoretical upper bound for the document-level FPR from the target FPR within each window. Given this, we utilize large-
scale data simulation to demonstrate that, with a target false positive rate of 10−6 within each window, our proposed method
WaterSeeker maintains an acceptable false positive rate.

For the KGW method, we set γ = 0.5 in our experiments, meaning each token in non-watermarked text has a 0.5 probability of
being green and 0.5 probability of being red. In the simulation, we generate 10,000 samples, each containing 10,000 tokens, with
each token having a 0.5 probability of being 1 and 0.5 probability of being 0. For the Aar method, each token in non-watermarked
text corresponds to ui ∼ Uniform[0, 1]. In the simulation, we again generate 10,000 samples, each containing 10,000 tokens,
with each token randomly assigned a floating-point number from [0, 1].

We then apply WaterSeeker to detect watermarked segments within these samples, setting the target false positive rate within
the detection window to 10−6. The large-scale simulation results in Table 8 demonstrate that WaterSeeker maintains a false
positive rate of approximately 0.005, which is considered acceptable. For scenarios requiring more stringent FPR control, the
target false positive rate can be adjusted downward. However, this inevitably compromises the detection rate, highlighting a key
challenge in watermarked segment detection within large documents.

B.2 Setting the threshold to achieve a target false positive rate α

KGW. For KGW, as analyzed in Section 5.1, when the window size is large, we can approximate using the Central Limit
Theorem, resulting in z∗ = Φ−1(1− α). When α = 10−6, this gives z ≈ 4.75. However, when the window size W is small, the
approximation to a normal distribution using the Central Limit Theorem may lead to significant deviations. Therefore, we will
use the binomial distribution for precise calculations. x ∼ B(W,γ) describes the number of green tokens in a window of size W
follows a binomial distribution, therefore:

z =
x− γW√
Wγ(1− γ)

.

To find P (z ≥ z∗):

P (z ≥ z∗) = P

(
x− γW√
Wγ(1− γ)

≥ z∗

)
.

Expanding this, we have:

P (z ≥ z∗) =

W∑
k=0

(
W

k

)
γk(1− γ)W−kI

{
k − γW√
Wγ(1− γ)

≥ z∗

}
.

This is the exact expression for P (z ≥ z∗) without any approximations.
We can further simplify:

P (z ≥ z∗) =

W∑
k=0

(
W

k

)
γk(1− γ)W−kI

{
k ≥ γW + z∗

√
W (1− γ)

}
.

We need to find an appropriate z∗ such that P (z ≥ z∗) < α. This function does not have a direct analytical solution, so we
can increment z∗ in steps of 0.01 until the probability exceeds α. The final value of z∗ is dependent on W , and we pre-compute
these values during experiments and store them in a dictionary. In experiments, for detected segments with a length of 200 or
more, we directly apply the Central Limit Theorem approximation, setting z = 4.75. For segments shorter than 200, we use the
binomial distribution and retrieve the corresponding threshold from the pre-computed dictionary.

Aar. For Aar, recall the p-value calculation formula:

p-value = Γ(S,W, loc = 0, scale = 1), (17)

where S =
∑W

i=1 log(
1

1−ui
), and W is the window size. For non-watermarked text, ui ∼ Uniform([0, 1]). Consequently, S

follows a Gamma distribution: S ∼ Gamma(W, 1), where W is the shape parameter and 1 is the scale parameter. Equation 17 is
equivalent to:

p-value = 1− GammaCDF(S,W, 1), (18)

where GammaCDF is the cumulative distribution function of the Gamma distribution with shape parameter W and scale
parameter 1. To achieve a false positive rate of α, we need to set a threshold p∗ such that: P (p-value < p∗) = α. Given
the definition of p-value, this is equivalent to: P (1 − GammaCDF(S,W, 1) < p∗) = α, which can be rewritten as: P (S >

GammaInv(1−p∗,W, 1)) = α, where GammaInv is the inverse of the Gamma CDF. Since S follows a Gamma(W, 1) distribution
for non-watermarked text, we can express this as:

1− GammaCDF(GammaInv(1− p∗,W, 1),W, 1) = α. (19)

Solving this equation for p∗, we get p∗ = α, which is also a constant value for different W .

C Impact of Window Size on Watermark Intensity Calculation
The first step in WaterSeeker is score list computation. In this step, selecting an appropriate window size W for calculating mean
scores is crucial. A small W introduces excessive noise, while a large W reduces granularity and increases computational time
due to the need to examine W 2 windows during local traversal. Therefore, we aim to determine an appropriate window size that
is relatively small while still providing a sufficiently smooth representation of watermark intensity throughout the text.

We present a case study comparing watermark intensity calculations using window sizes W = 1, 10, 30, and 50. The analysis
encompasses the ground truth segment and 500 tokens on either side. Figures 5 and 6 illustrate the results for the KGW and
Aar algorithms, respectively. The intensity curves reveal that small window sizes, particularly W ≤ 10, introduce significant
fluctuations. While W = 30 exhibits reduced noise, it still presents instabilities, as shown in Figure 6c (the ground truth segment
part). Overall, W = 50 demonstrates the least noise. Consequently, we adopt W = 50 for our main experiments.

(a) W = 1

(b) W = 10

(c) W = 30

(d) W = 50

Figure 5: Case study: Impact of varying window sizes on watermark intensity calculation in the KGW algorithm.

(a) W = 1

(b) W = 10

(c) W = 30

(d) W = 50

Figure 6: Case study: Impact of varying window sizes on watermark intensity calculation in the Aar algorithm.

