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ABSTRACT

The rapid emergence of new generative models poses significant challenges to
static attribution frameworks, which often confidently misattribute images from
unknown sources to known ones and struggle to adapt stably to new models. To
address these limitations, we propose Quasi-Orthogonal Representation Attribu-
tion (QORA), a unified framework for sustainable open-world generative model
attribution. QORA consists of two core modules. The Progressive Orthogonal
Learning Module (POLM) employs Stiefel manifold optimization to construct a
quasi-orthogonal feature space that reduces redundancy while maintaining a sta-
ble attribution subspace for open-world settings. The Fingerprint Disentangle-
ment and Enhancement Module (FDEM) leverages classifier-guided attention and
multi-auxiliary contrastive learning to disentangle and amplify model-specific fin-
gerprints. To enable continual learning, QORA integrates exemplar replay with
feature-similarity-based classifier initialization, achieving lightweight incremental
updates for new models while avoiding catastrophic forgetting. Extensive exper-
iments demonstrate that QORA achieves state-of-the-art closed-set accuracy and
strong open-set robustness across GAN and diffusion benchmarks, while main-
taining stable performance during incremental learning, highlighting its superior
scalability and applicability in evolving environments.

1 INTRODUCTION

Generative Al has made remarkable progress in image quality, diversity, and controllability, with
applications spanning from entertainment to production. Yet these capabilities also raise serious
security concerns, as maliciously crafted synthetic images are exploited to spread misinformation,
fabricate events, and manipulate public opinion, threatening the integrity of the digital ecosystem.
To mitigate risks, leading Al companies have pledged to embed watermarks into generated content
(Bartz & Hu), but such active solutions lack universality. This has driven research into passive
methods that detect Al-generated content (Wang et al.,2020b; |2023b;|Ojha et al.,[2023), though they
generally fail to identify the specific source model—information critical for responsibility tracing
and accountability.

To address this, the task of generative model attribution has been developed to passively trace the
source generator. Early reconstruction-based methods (Albright et al.,[2019) exploited cross-model
reconstruction errors but were limited to GANs. Fingerprint-based approaches later demonstrated
distinct model-specific traces (Yu et al.,2019b; |[Marra et al.||2019a), enabling multi-class attribution
(Yang et al., 2021} |Bui et al.}[2022), while MAID (Zhu et al., 2025) extended attribution to diffusion
models. These methods, however, are closed-world and often misattribute images from unseen gen-
erators to the nearest known model. Open-world attribution addresses this limitation by combining
attribution with rejection of unknown classes, using strategies such as patch-based contrastive learn-
ing (Yang et al., [2022)), rejection-aware classifiers (Wang et al., [2023a)), metric learning (Fang et al.,
2023b), feature augmentation (Yang et al.| 2023)), Siamese verification (Abady et al.| [2024), foren-
sic self-descriptions (Nguyen et al., [2025), and frequency-domain masking (Zhang et al., [2025).
Despite these advances, most methods are trained on limited data, are sensitive to irrelevant con-
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Figure 1: Overview of the SOW-GMA task, which requires the attribution system incrementally
incorporates new generative models while maintaining accurate attribution for known sources and
reliably rejecting unknown ones, ensuring long-term scalability in dynamic real-world scenarios.

tent or texture, and require full retraining to accommodate new models. As large-scale pretrained
Vision—Language Models (VLMs) can produce robust, content-agnostic features, OCC-CLIP (Liu
et al.,|2024) adapts CLIP for few-shot attribution, while Cioni et al. (Cioni et al.,[2025) analyze their
feature layers for generalization. These approaches, however, typically use embeddings directly and
do not optimize VLMs specifically for model attribution task or filter out irrelevant information.

Moreover, the rapid emergence of new generative models further underscores the need for sustain-
able open-world attribution, as illustrated in Fig.[T} Current solutions suffer from high computational
cost, memory overhead, and catastrophic forgetting during incremental updates (Li et al., 2024a).
A practical framework must therefore support accurate attribution of known generators, reliable
rejection of unknowns, and efficient adaptation to new models without full retraining.

To this end, we propose Quasi-Orthogonal Representation Attribution (QORA), a scalable frame-
work for the Sustainable Open-World Generative Model Attribution (SOW-GMA) task. Built on the
CLIP-ViT L/14 backbone, QORA extracts mid-level features containing generative fingerprints and
fine-tunes them via LoRA for artifact sensitivity. It introduces the Progressive Orthogonal Learn-
ing Module (POLM) to reduce feature redundancy and construct a stable artigact space for the
open-world generators, and the Fingerprint Disentanglement and Enhancement Module (FDEM) to
isolate and amplify fingerprint-specific signals for closed-set attribution. During incremental learn-
ing, QORA freezes most parameters and expands only lightweight classifiers with exemplar replay,
enabling efficient adaptation with minimal overhead. The main contributions can be summarized as
follows:

* We propose QORA, a practical and scalable framework for SOW-GMA task, which jointly
supports accurate closed-set attribution, reliable open-set rejection, and efficient incremen-
tal learning for real-world deployment.

* We design a synergistic dual-module architecture, in which POLM construct a stable ar-
tigact space for open-world generators, and FDEM decouples and amplifies closed-set
model-specific fingerprints.

* We first introduce Stiefel manifold optimization into generative model attribution. By con-
straining the encoder weights to yield maximally independent feature dimensions that better
capture subtle generative fingerprints.

2 RELATED WORKS

Artifacts in AI-Generated Images. Al-generated images contain visually subtle but detectable
artifacts that differ across architectures and can be exploited for attribution. Early studies empha-
sized frequency-domain traces, such as irregular mid-high-frequency patterns in GAN outputs (Du-
rall et al.l 2020), leading to classifiers based on frequency domains (Frank et al., 2020; Jeong
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et al., 2022c). However, these methods generalize poorly to diffusion models, whose artifacts are
less frequency-pronounced. Recent works shift focus to spatial-domain cues, leveraging shallow-
layer textures (Liu et al., 2020; [Zhong et al., 2023), residual modeling (Sinitsa & Fried, |2024),
or diffusion-specific reconstruction artifacts (Zhong et al., 2025; [Wang et al., [2023b)). Pretrained
VLMs (Ojha et al., 2023; |Sha et al., 2023} Zhu et al.l [2023) further improve generalization by ex-
tracting robust, content-invariant features. Our approach builds on this line by exploiting mid-level
VLM features to extract stable spatial-domain fingerprints.

Generative Model Attribution. Attribution methods aim to identify the source generator of syn-
thetic images. Active approaches embed watermarks but lack generality, while passive approaches
exploit model-specific fingerprints. Recent closed-world methods adopt multi-class classifica-
tion (Yang et al., 2021} |Bui et al., 2022) or reconstruction errors (Albright & McCloskeyl 2019;
Zhu et al., [2025)), but fail to generalize to unseen models. Open-world attribution extends to novel
classes through strategies such as transformation-pretrained contrastive learning (Yang et al.l|2022),
Transformer-based localization (Wang et al., [2023a), metric learning (Fang et al., 2023a), feature-
space augmentation (Yang et al., [2023)), similarity verification (Abady et all 2024), and spectral
masking (Zhang et al.| [2025). Despite these advances, most methods require retraining to handle
new models and often struggle to suppress irrelevant content. Our work addresses these limitations
by introducing quasi-orthogonal projection to suppress redundancy and construct a stable artifact
space, while disentangling fingerprints to achieve sustainable attribution in the open world.

Category-Incremental Learning for Attribution. The continual emergence of new generators
renders static attribution impractical. Category-Incremental Learning (CIL) (Wang et al., 2024} Ji
et al., 2023) expands recognition capacity without full historical data, with prior work exploring
contrastive learning (Pan et al., 2023), adapters (Gao et al., 2024), or regeneration-based updates (L1
et al.| 2024b). For GAN detection, incremental and adapter-based frameworks (Marra et al.,[2019b;
Tang et al.||2025)) alleviate semantic drift. In attribution, however, most solutions remain costly or in-
flexible. We propose a unified framework that combines open-world rejection with class-incremental
expansion, using a compact exemplar memory and feature-similarity-based classifier initialization
to achieve scalable, sustainable attribution.

3 PROBLEM DEFINITION

The SOW-GMA task is designed for a realistic and dynamic setting where generative models contin-
uously emerge. The objective is to build an attribution framework supporting open-set recognition

and sustainable incremental learning. Training proceeds over sessions t = 0,1,...,7, where the
model receives a labeled dataset
L N, L
Dy = {(xtmyt}i)}i:tp Yii € Cy, (1)

where z,, is a generated image and v, ; its source model label, together with a memory buffer

DM C Uf;é DL that stores exemplars from past sessions. The cumulative known classes are
K_ ||t oL

Ct =Uimo G

In addition to labeled data, a continuously growing unlabeled data pool DY = {z;}™, is also
available, whose classes CF’ may include both known C/ and novel unknown classes C}¥ C CY\CKE.

The goal of SOW-GMA is to learn a continually adaptive feature extractor ¢(-) that:

1. attributes generated images from known models to C[,
2. rejects generated images from novel unknown models C}Y as out-of-distribution,

3. incorporates new model classes through lightweight updates with limited memory DM.

4 METHOD

To address the SOW-GMA task, we propose QORA (Fig.[2), which uses the CLIP-ViT L/14 encoder
pretrained on large-scale image—text data to reduce attribution biases. Features are extracted from
the 12-th transformer block, and fine-tuned with LoRA for attribution alignment. These features
are further processed by POLM and FDEM, POLM enhances open-world attribution generalization,
while FDEM strengthens fingerprint discriminability.
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Figure 2: Overview of the proposed QORA framework. CLS tokens are first extracted from a pre-
trained CLIP-ViT backbone with LoRA-based fine-tuning. These tokens are transformed by POLM
to construct a stable quasi-orthogonal feature space. The FDEM then disentangles and amplifies
model-specific fingerprints. After training, class prototypes are obtained by averaging the attribu-
tion features produced by FDEM for each category.

4.1 POLM

POLM integrates an orthogonally constrained encoder with a dimension-wise normalized classifier
to project pretrained features into a quasi-orthogonal subspace. This space reduces redundancy
and amplifies subtle artifact cues, providing a stable foundation for fingerprint disentanglement,
enhancement, and sustainable incremental attribution.

Specifically, POLM maps the CLS token f.; € R? from the ViT encoder into quasi-orthogonal
representations via an N-layer orthogonally-constrained MLP:

(0 =, £ = ReLU (LN (WD) £, = £, 2

where I = 1,2,..., N, WY € R4 denotes the weight of the [-th layer in the encoder, and LN(-)
and ReLU(+) denote layer normalization and activation. To ensure strict orthogonality, we constrain
W, to lie on the Stiefel manifold (Stiefel, |1935)):

Maq={W, e R™ | W, - W, =1,} (3)

Therefore, this constraint can be reformulated as a Riemannian optimization problem:
1 = 4
Worg}\zlld,d L(Wo) Liotal “4)

where L, denotes the overall loss function of QORA. Meanwhile, to efficiently update W, on the
manifold, we compute a skew-symmetric matrix A = Vy LW.| — W, (VL) ", where Vi L is
the gradient of the loss. The weight matrix W/, is then updated using the Cayley transform (Li et al.,
2020):

W = (1+ gA)_1 (17 gA) W, )

where 7 is the learning rate. This update guarantees that W/ remains orthogonal and ensures numer-
ical stability throughout training.

In contrast to conventional classifiers that apply class-wise normalization to category vectors, we
impose feature-dimension-wise normalization on the classifier weight matrix Wy, € R4
ch [:a ]]

Weelty gl + ————
sl g

vjel,d (6)

4
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Figure 3: Architecture of FDEM. FDEM disentangles and amplifies generative fingerprints from
quasi-orthogonal features produced by POLM. A lightweight MLP projects these features into an
attribution space, while classifier weights are used to produce three auxiliary features. Along with
class prototypes, these features supervise the attribution learning through contrastive losses.

which balances energy distribution among feature channels, mitigating dominance by high-response
channels. This design significantly prevents overfitting to known model categories while enhancing
open-set rejection robustness.

4.2 FDEM

FDEM enhances the quasi-orthogonal features from POLM by constructing an attribution subspace
that leverages class-specific channel importance to isolate and strengthen generative fingerprints.
As shown in Fig. [3| given a sample with feature f! and label y; (denoted as f, and %), the attention
vectors for the ground-truth class y and the top-1 misclassified class ¢ are computed as

fo fo ]
a, = Softmax <®wy|> , a, = Softmax <|> , (7
T

p
where ® denotes element-wise multiplication and 7 is a temperature parameter.

These attention maps quantify the channel contributions to correct and confusing predictions.
Guided by them, we obtain three disentangled representations:

£p/r/m = Normalize(fo ® ap/r/n), a, =1—a,y, )

where f, emphasizes discriminative fingerprints, f. suppresses irrelevant noise, and f,, captures
misleading fingerprint artifacts.

Thus, FDEM projects f, into an attribution space f,, using a lightweight MLP and optimizes it with
a multi-negative contrastive loss:

exp(sim(f,, f,)/7)
exp(sim(fa, £)/7) + 32 rc 45, £11 U (£}, 40) exp(sim(f,, f)/7)’

ﬁpur = - 10g 9

where f,,, f,., and f,, denote enhanced fingerprints, residuals, and confusing artifacts, respectively,
{fJ},, 4y, are fingerprints from other classes, sim(-, -) is cosine similarity, and 7 is a temperature.
This formulation aligns f, with clean fingerprints while pushing it away from noise, confusions, and
unrelated classes.

To further enforce class-level structure, we adopt a prototype-guided loss:

exp f pyl/T) 1 9
roto — T + i q 10
Lpro 2 K oxp (£ pp/r)  K(E-1) j%k: (P) - Pr) (10)

where f! is the normalized attribution feature of sample i, py is the prototype of class k, N is
the number of samples, and K is the number of known classes. The first term enforces intra-class
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compactness, and the second prevents prototype overlap. Prototypes are updated by exponential
moving average:

pr < (1-Npp + AfF (11)

where fF is the batch-wise mean attribution feature of class k, and A € (0,1) is the momentum
factor.

Finally, the total training objective with the classifier cross-entropy loss Lcg from POLM is

Etotal = ECE + Epur + Lproto (12)

During inference, attribution is performed by comparing f, to stored prototypes py.

4.3 SUSTAINABLE INCREMENTAL LEARNING

To integrate new generator classes while preserving performance on previously learned ones, we
adopt a memory-efficient incremental learning strategy. In each session ¢, 20 samples per past class
are stored in a replay buffer DM, covering C%,_;. This buffer is then combined with the current

session’s labeled data DF of class set CF to form the updated buffer DM

During incremental updates, the CLIP-ViT backbone, LoRA parameters, and the POLM encoder
are kept frozen. Only the POLM classifier and the MLP in FDEM are updated. Class-wise mean
features are first computed for both previously learned classes k € C{:,_; in DM, and new classes

n € CLin DF:
— 1 — 1
fF = oA S £ fr= oI S K (13)
D £, ,€DM, | tv”'fo,ieDL

t,n
where D% and Dfm denote the sets of samples belonging to class k and n, respectively.

For each new class n, the nearest previously known class k* is identified by

Ko=arg min |f7 — 5], (14)

°€ 0:t—1
and the classifier weight for class n is initialized as

Wy, ¢ Wi (15)

Following initialization, incremental training is carried out using the same total 1loss Lo, as in the
initial training phase. After training, updated prototypes are retained for future attribution.

5 EXPERIMENT

In this section, we provide a comprehensive evaluation of the proposed QORA framework. We first
outline the experimental setups. Then we assess static open-world attribution followed by exten-
sive ablation studies. Finally, we evaluate QORA in a five-session incremental learning scenario,
demonstrating its ability of sustainable.

5.1 EXPERIMENTAL SETUPS

Datasets. We evaluate QORA on two static open-world attribution benchmarks: OSMA (Yang
et all 2023)), a GAN-based dataset covering 53 GANs with diverse seeds and architectures, and
Genlmage (Cioni et al., 2025), a diffusion-based benchmark with ImageNet classes and models
from eight diffusion generators. To simulate the continuous emergence of generators, we construct
a sustainable open-world benchmark from these datasets. As detailed in in Appendix [A] it includes
one real-image class and 23 generator classes split into five sessions, each introducing four new seen
classes while the unseen set comprises remaining models.

Evaluation Metrics. Following established protocols (Yang et al., 2023} |Cioni et al., 2025), we
evaluate QORA with three metrics: classification accuracy (Acc.) for closed-set attribution of seen
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RepMix 8898 6193  57.92
POSE 7000 67.00 5335
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Figure 4: QORA outperforms baselines on MAID 7723 5698 45.16
OSMA and GenImage in both closed- and open- QORA 9851 85.63  84.74
set metrics, highlighting strong generalization.

Table 2: Performance comparison on OSMA. Results are averaged over five splits. The highest
score for each metric is shown in bold, and the second-best score is underlined.

Method Ace(%) Unseen Seed Unseen Arch. Unseen Data
AUC(%) OSCR(%) AUC(%) OSCR(%) AUC(%) OSCR(%)

PRNU 55.27 69.20 49.16 70.02 49.49 67.68 48.57
Yu et al. 85.71 53.14 50.99 69.04 64.17 78.79 72.20
DCT-CNN  86.16 55.46 52.68 72.56 67.43 72.87 67.57
DNA-Det 93.56 61.46 59.34 80.93 76.45 66.14 63.27
RepMix 93.69 54.70 53.26 72.86 70.49 78.69 76.02
POSE 94.81 68.15 67.25 84.17 81.62 88.24 85.64
Cioni etal. 97.29 54.15 54.00 78.78 78.12 90.60 89.52
MAID 82.30 51.06 46.02 60.40 52.81 59.04 52.01
QORA 98.68 62.56 62.23 81.34 80.66 80.68 80.08

generators, AUC for open-set detection of unseen generators, and OSCR for jointly assessing attri-
bution accuracy and rejection quality in open-world conditions.

Baseline Methods. We compare QORA against representative attribution baselines spanning both
closed- and open-world settings, including PRNU (Marra et al., 2019a), Yu ef al. (Yu et al.)
2019a), DCT-CNN (Frank et al.| [2020), DNA-Det (Yang et al., 2022), RepMix (Bui et al., [2022),
POSE (Yang et al.| |2023), Cioni et al. (Cioni et al.,|2025)), and MAID (Zhu et al., 2025)).

Implementation Details. We fine-tune CLIP-ViT L/14 with LoRA with a rank of 16 per adapter, use
a one-layer MLP as the POLM encoder, and update FDEM prototypes with a momentum coefficient
A of 0.995. Models are trained for 30 epochs on one-quarter of the training data per class using
Adam with cosine annealing, where the initial learning rate is set to 1 x 10~*. All experiments are
implemented in PyTorch 2.0 and run on an NVIDIA RTX 3090.

5.2 EVALUATION OF OPEN-SET MODEL ATTRIBUTION

We evaluate QORA against baselines on OSMA and Genlmage benchmarks, with overall results
summarized in Fig.[d] QORA consistently surpasses prior methods in both closed-set and open-set
performance, showing strong generalization across architectures.

Comparison with SOTA on GAN-generated images. OSMA evaluates three settings: unseen
seeds, unseen architectures, and unseen training data. Strong performance on the first two indi-
cates sensitivity to model-intrinsic fingerprints, while lower performance on unseen data suggests
reduced reliance on content semantics. MAID’s results were obtained by retraining its open-source
implementation under the standard protocol, whereas other baselines are reported from the official
OSMA benchmark (Yang et al.l [2023). As shown in Table@], QORA achieves a closed-set attribu-
tion accuracy of 98.68%, surpassing the previous best by 1.39%. For open-set evaluation, QORA
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Table 3: Ablation of loss functions over five
; Genlmage splits. The first three rows measure
%, attribution accuracy using attribution represen-
tations, while the last row reports classifier per-
s formance in POLM with pure cross-entropy loss
. Lcg. The best performance is shown in bold.

(®)

Losses Acc. (%) AUC (%) OSCR (%)

L. il full model 98.51 8563  84.74
SRR W/ Lour 9827 8033  79.22

¢ : W/0 Loroto 9690 8229  80.19
wlo Lo and Lpe 9745 8177 80.18

(c) (d)

Figure 5: t-SNE under ablations: (a) w/o or-
thogonality or normalization, (b) orthogonality
only, (c) normalization only, (d) full setup.

ranks second on unseen architectures and seeds, trailing POSE, but attains 80.68% AUC and 80.08%
OSCR on unseen data, below POSE, which highlights its stronger emphasis on model-intrinsic fin-
gerprints rather than semantic variations.

Comparison with SOTA on diffusion-generated images. As shown in Table 1| on Genlmage,
closed-set GAN-specific baselines are excluded due to their limited generalization capability. QORA
achieves the highest closed-set accuracy of 98.51%, surpassing Cioni et al. by 0.69%. For open-
set recognition, it achieves 85.63% AUC and 84.74% OSCR, yielding absolute gains of 4.24%
and 3.96% over the previous best. These results demonstrate QORA’s effectiveness in capturing
discriminative fingerprints of diffusion models.

5.3 ABLATION STUDIES

Ablation Study on POLM. We assess the contributions of the orthogonality constraint in the en-
coder and the dimension-wise normalization in the classifier on split-1 of Genlmage. Four config-
urations are compared: (a) neither constraint, (b) orthogonality only, (c) normalization only, and
(d) both constraints (full QORA). t-SNE visualizations of the attribution features (Fig. E]) show that
(a) produces scattered distributions for seen categories and shows clear confusion between seen and
unseen features, (b) improves inter-class separation for seen categories, (c) reduces overlap between
seen and unseen samples, and (d) achieves well-separated clusters and distinct dispersion of unseen
samples, demonstrating enhanced open-set rejection and a stable feature space.

Ablation on Loss Components in FDEM. Table [3| evaluates the prototype-guided loss Ly and
purification contrastive loss Ly, across all five Genlmage splits. Removing either loss degrades
performance: without L0, closed-set accuracy drops from 98.51% to 96.90%, highlighting its
role in aligning features with class prototypes; without Ly, open-set AUC and OSCR decrease
by 5.30% and 5.52%, showing its importance in purifying model-specific fingerprints. When both
losses are removed, reliance on the POLM classifier alone leads to further degradation. These results
confirm that FDEM is crucial for learning discriminative, generalizable representations and robust
open-world attribution under dynamic conditions.

5.4 EVALUATION ON SUSTAINABLE OPEN-WORLD ATTRIBUTION

We evaluate QORA on the five-session SOW-GMA benchmark to assess scalability and adaptability
under realistic open-world conditions, comparing it with five baselines: DNA-Det (Yang et al.,
2022), RepMix (Bui et al.| [2022), POSE (Yang et al., 2023)), Cioni et al. (Cioni et al.| [2025), and
MAID (Zhu et al, 2025). All models are trained with official implementations, initializing each
incremental session from the previous checkpoint.
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Table 4: Performance comparison between Session 0 and Session 4 for different methods. The best
performance is shown in bold, and the second-best is underlined. Red arrows and text indicate the
increase (1) or decrease (/) from Session 0 to Session 4.

Method Acc. (%) AUC (%) OSCR (%)
Session 0 Session 4 Session 0 Session 4 Session 0 Session 4
DNA-Det 99.16 82.39 | 16.77 79.33 58.78 | 20.55 79.80 54.92 | 24.88
RepMix 97.11 29.05 | 68.06 76.81 53.21 | 23.60 76.14 19.21 | 56.93
POSE 95.84 20.57 | 75.27 87.22 54.27 | 32.95 85.45 14.13 | 71.32
Cioni et al. 98.44 79.24 | 19.20 82.55 59.90 | 22.65 82.07 52.14 | 29.93
MAID 88.59 48.47 | 40.12 56.95 61.25 1 4.30 53.50 34.86 | 18.64
QORA 99.70 87.69 | 12.01 84.61 60.30 | 24.31 84.55 56.89 | 27.66
i ,L S 1 1
e AT g
5 S .tq,a(:f " g 1990 b Y g
(a) (b) ©)

Figure 6: Comparison of four attribution methods over five incremental sessions shows that QORA
consistently outperforms others in (a) closed-set accuracy, (b) open-set AUC, and (c) open-set
OSCR, demonstrating its superior scalability and stability in open-world incremental learning.

Table [ reports initial and final session performance. QORA achieves 99.70% closed-set accuracy
initially and maintains 87.69% in Session 4, representing the smallest decline with 12.01% among
all methods. In contrast, POSE, RepMix, and MAID show sharp degradation of 75.27%, 68.06%,
and 40.12%. DNA-Det and Cioni drop to 82.39% and 79.24%, remaining 5—8% below QORA. For
open-set detection, QORA’s initial AUC and OSCR are slightly lower than POSE’s but surpass it by
Session 4, with gains of 6.03% in AUC and 42.76% in OSCR. MAID shows large AUC fluctuations,
as shown in Fig. [6] (b), whereas QORA consistently keeps AUC above 60%, while other baselines
decline or fluctuate. Fig. @ shows metric trends across sessions. QORA maintains balanced, ro-
bust performance in closed- and open-set, effectively integrating new classes while preserving prior
knowledge and rejecting unseen generators, demonstrating practical suitability for real-world incre-
mental attribution.

6 CONCLUSION

In this paper, we present QORA, a sustainable framework for open-world generative model attri-
bution. Unlike prior methods hindered by emerging models, QORA integrates accurate closed-
set attribution, robust open-set rejection, and efficient class-incremental learning with low memory
overhead. POLM leverages Stiefel manifold optimization to construct a quasi-orthogonal space
that suppresses redundancy and enhances generalization, while FDEM disentangles and strengthens
model-specific fingerprints via classifier-guided attention and contrastive learning. A lightweight in-
cremental strategy further supports rapid adaptation without full retraining. Experiments on GAN-
and diffusion-based benchmarks show that QORA achieves state-of-the-art attribution accuracy and
preserves strong open-set robustness across sessions, highlighting its scalability and real-world ap-
plicability.
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A DETAILS OF DATASETS

We evaluate QORA on two static open-world attribution benchmarks:

* OSMA |Yang et al.|(2023): A GAN-based benchmark built on seven real-image datasets,
each paired with two GANS for training. Its unseen set includes 53 GANSs held out under
three conditions: same architecture/dataset with different seeds, novel architectures, and
novel training datasets.

* Genlmage |Cioni et al.| (2025): A diffusion-based attribution dataset. Its known classes
comprise real ImageNet images and outputs from four diffusion models. Its unseen set
consists of samples generated by four additional diffusion models not used during training.

Both benchmarks are evaluated using five train/test splits, with each split varying the composition
of seen and unseen generative models to ensure robust generalization testing.

To simulate real-world conditions where generative models continually emerge, we construct a sus-
tainable open-world attribution benchmark based on the two datasets described above. As detailed
in Table [5] the benchmark includes the real-image class and 20 generative model classes, chrono-
logically divided into five incremental sessions from 2018 to 2022. Session O serves as the initial
training pshase for the SOW-GMA task. In each session, four newly introduced generative mod-
els serve as the session-specific seen classes for training. Meanwhile, the unseen set comprises
all generative models not yet encountered in the current or any previous session, along with three
fixed unseen models, SNGAN, S3GAN, and Wav2Lip, that are consistently included in the open-set
across all sessions.

As shown in Table[] the training and testing protocol for each session ¢ is defined as follows:

Table 5: Chronological split of seen and unseen generative models for SOW-GMA task.

Session|Year Seen Models Unseen Models
0 |2018|Real, StarGAN, ProGAN, MMDGAN, BigGAN SNGAN, S3GAN, Wav2Lip + Seeni 23,4
1 2019|SAGAN, FSGAN, AttGAN, StyleGAN SNGAN, S3GAN, Wav2Lip + Seens 3 4
2 |2020|FaceSwap, StyleGAN2, ContraGAN, FaceShifter =~ |SNGAN, S3GAN, Wav2Lip + Seens 4
3 |2021|StyleGAN3, InfoMaxGAN, ADM, Glide SNGAN, S3GAN, Wav2Lip + Seeny
4 |2022|Wukong, Midjourney, Stable Diffusion v1.4, VQDM|SNGAN, S3GAN, Wav2Lip
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Table 6: Data Split for training and testing process.

Data Group
Train | Closed | Seen;, Memory,
Test Closed | Seen;, Memory,
Open | Unseen

 Training: 4K samples are used for each newly introduced class in session ¢, and 20 exem-
plars are retained for each previously seen class in a memory set denoted as Memory,.

* Testing: The closed-set includes all classes in Seen;UMemory,, while the open-set consists

of Unseen,.

14



	Introduction
	Related Works
	Problem Definition
	Method
	POLM
	FDEM
	Sustainable Incremental Learning

	Experiment
	Experimental Setups
	Evaluation of Open-Set Model Attribution
	Ablation Studies
	Evaluation on Sustainable Open-World Attribution

	Conclusion
	Details of datasets

