

000 QORA: A SUSTAINABLE FRAMEWORK FOR OPEN- 001 WORLD GENERATIVE MODEL ATTRIBUTION WITH 002 QUASI-ORTHOGONAL REPRESENTATION DISENTAN- 003 GEMENT

008 **Anonymous authors**

009 Paper under double-blind review

012 ABSTRACT

014 The rapid emergence of new generative models poses significant challenges to
015 static attribution frameworks, which often confidently misattribute images from
016 unknown sources to known ones and struggle to adapt stably to new models. To
017 address these limitations, we propose Quasi-Orthogonal Representation Attribu-
018 tion (QORA), a unified framework for sustainable open-world generative model
019 attribution. QORA consists of two core modules. The Progressive Orthogonal
020 Learning Module (POLM) employs Stiefel manifold optimization to construct a
021 quasi-orthogonal feature space that reduces redundancy while maintaining a sta-
022 ble attribution subspace for open-world settings. The Fingerprint Disentangle-
023 ment and Enhancement Module (FDEM) leverages classifier-guided attention and
024 multi-auxiliary contrastive learning to disentangle and amplify model-specific fin-
025 gerprints. To enable continual learning, QORA integrates exemplar replay with
026 feature-similarity-based classifier initialization, achieving lightweight incremental
027 updates for new models while avoiding catastrophic forgetting. Extensive experi-
028 ments demonstrate that QORA achieves state-of-the-art closed-set accuracy and
029 strong open-set robustness across GAN and diffusion benchmarks, while main-
030 taining stable performance during incremental learning, highlighting its superior
031 scalability and applicability in evolving environments.

032 1 INTRODUCTION

035 Generative AI has made remarkable progress in image quality, diversity, and controllability, with
036 applications spanning from entertainment to production. Yet these capabilities also raise serious
037 security concerns, as maliciously crafted synthetic images are exploited to spread misinformation,
038 fabricate events, and manipulate public opinion, threatening the integrity of the digital ecosystem.
039 To mitigate risks, leading AI companies have pledged to embed watermarks into generated content
040 (Bartz & Hu), but such active solutions lack universality. This has driven research into passive
041 methods that detect AI-generated content (Wang et al., 2020b; 2023b; Ojha et al., 2023), though they
042 generally fail to identify the specific source model—information critical for responsibility tracing
043 and accountability.

044 To address this, the task of generative model attribution has been developed to passively trace the
045 source generator. Early reconstruction-based methods (Albright et al., 2019) exploited cross-model
046 reconstruction errors but were limited to GANs. Fingerprint-based approaches later demonstrated
047 distinct model-specific traces (Yu et al., 2019b; Marra et al., 2019a), enabling multi-class attribution
048 (Yang et al., 2021; Bui et al., 2022), while MAID (Zhu et al., 2025) extended attribution to diffusion
049 models. These methods, however, are closed-world and often misattribute images from unseen gen-
050 erators to the nearest known model. Open-world attribution addresses this limitation by combining
051 attribution with rejection of unknown classes, using strategies such as patch-based contrastive learn-
052 ing (Yang et al., 2022), rejection-aware classifiers (Wang et al., 2023a), metric learning (Fang et al.,
053 2023b), feature augmentation (Yang et al., 2023), Siamese verification (Abady et al., 2024), foren-
054 sic self-descriptions (Nguyen et al., 2025), and frequency-domain masking (Zhang et al., 2025).
055 Despite these advances, most methods are trained on limited data, are sensitive to irrelevant con-

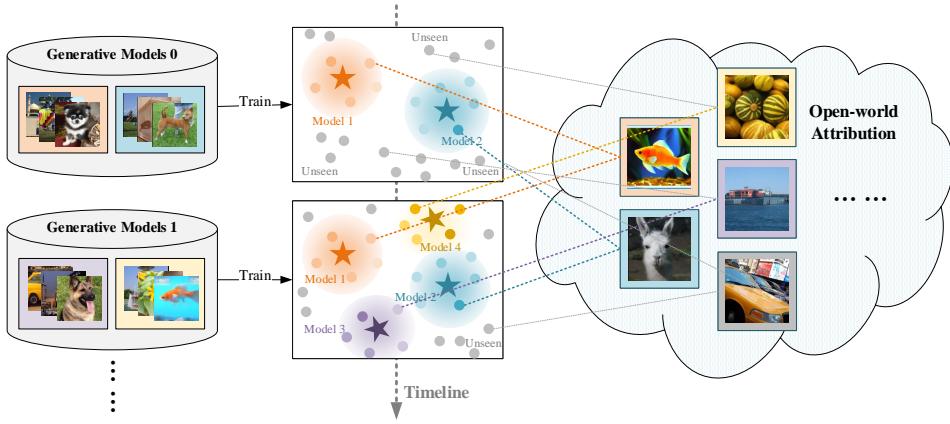


Figure 1: Overview of the SOW-GMA task, which requires the attribution system incrementally incorporates new generative models while maintaining accurate attribution for known sources and reliably rejecting unknown ones, ensuring long-term scalability in dynamic real-world scenarios.

tent or texture, and require full retraining to accommodate new models. As large-scale pretrained Vision–Language Models (VLMs) can produce robust, content-agnostic features, OCC-CLIP (Liu et al., 2024) adapts CLIP for few-shot attribution, while Cioni *et al.* (Cioni et al., 2025) analyze their feature layers for generalization. These approaches, however, typically use embeddings directly and do not optimize VLMs specifically for model attribution task or filter out irrelevant information.

Moreover, the rapid emergence of new generative models further underscores the need for sustainable open-world attribution, as illustrated in Fig. 1. Current solutions suffer from high computational cost, memory overhead, and catastrophic forgetting during incremental updates (Li et al., 2024a). A practical framework must therefore support accurate attribution of known generators, reliable rejection of unknowns, and efficient adaptation to new models without full retraining.

To this end, we propose Quasi-Orthogonal Representation Attribution (QORA), a scalable framework for the Sustainable Open-World Generative Model Attribution (SOW-GMA) task. Built on the CLIP-ViT L/14 backbone, QORA extracts mid-level features containing generative fingerprints and fine-tunes them via LoRA for artifact sensitivity. It introduces the Progressive Orthogonal Learning Module (POLM) to reduce feature redundancy and construct a stable artifact space for the open-world generators, and the Fingerprint Disentanglement and Enhancement Module (FDEM) to isolate and amplify fingerprint-specific signals for closed-set attribution. During incremental learning, QORA freezes most parameters and expands only lightweight classifiers with exemplar replay, enabling efficient adaptation with minimal overhead. The main contributions can be summarized as follows:

- We propose QORA, a practical and scalable framework for SOW-GMA task, which jointly supports accurate closed-set attribution, reliable open-set rejection, and efficient incremental learning for real-world deployment.
- We design a synergistic dual-module architecture, in which POLM construct a stable artifact space for open-world generators, and FDEM decouples and amplifies closed-set model-specific fingerprints.
- We first introduce Stiefel manifold optimization into generative model attribution. By constraining the encoder weights to yield maximally independent feature dimensions that better capture subtle generative fingerprints.

2 RELATED WORKS

Artifacts in AI-Generated Images. AI-generated images contain visually subtle but detectable artifacts that differ across architectures and can be exploited for attribution. Early studies emphasized frequency-domain traces, such as irregular mid–high-frequency patterns in GAN outputs (Durrall et al., 2020), leading to classifiers based on frequency domains (Frank et al., 2020; Jeong

108 et al., 2022c). However, these methods generalize poorly to diffusion models, whose artifacts are
 109 less frequency-pronounced. Recent works shift focus to spatial-domain cues, leveraging shallow-
 110 layer textures (Liu et al., 2020; Zhong et al., 2023), residual modeling (Sunitsa & Fried, 2024),
 111 or diffusion-specific reconstruction artifacts (Zhong et al., 2025; Wang et al., 2023b). Pretrained
 112 VLMs (Ojha et al., 2023; Sha et al., 2023; Zhu et al., 2023) further improve generalization by ex-
 113 tracting robust, content-invariant features. Our approach builds on this line by exploiting mid-level
 114 VLM features to extract stable spatial-domain fingerprints.

115 **Generative Model Attribution.** Attribution methods aim to identify the source generator of syn-
 116 thetic images. Active approaches embed watermarks but lack generality, while passive approaches
 117 exploit model-specific fingerprints. Recent closed-world methods adopt multi-class classifica-
 118 tion (Yang et al., 2021; Bui et al., 2022) or reconstruction errors (Albright & McCloskey, 2019;
 119 Zhu et al., 2025), but fail to generalize to unseen models. Open-world attribution extends to novel
 120 classes through strategies such as transformation-pretrained contrastive learning (Yang et al., 2022),
 121 Transformer-based localization (Wang et al., 2023a), metric learning (Fang et al., 2023a), feature-
 122 space augmentation (Yang et al., 2023), similarity verification (Abady et al., 2024), and spectral
 123 masking (Zhang et al., 2025). Despite these advances, most methods require retraining to handle
 124 new models and often struggle to suppress irrelevant content. Our work addresses these limitations
 125 by introducing quasi-orthogonal projection to suppress redundancy and construct a stable artifact
 126 space, while disentangling fingerprints to achieve sustainable attribution in the open world.

127 **Category-Incremental Learning for Attribution.** The continual emergence of new generators
 128 renders static attribution impractical. Category-Incremental Learning (CIL) (Wang et al., 2024; Ji
 129 et al., 2023) expands recognition capacity without full historical data, with prior work exploring
 130 contrastive learning (Pan et al., 2023), adapters (Gao et al., 2024), or regeneration-based updates (Li
 131 et al., 2024b). For GAN detection, incremental and adapter-based frameworks (Marra et al., 2019b;
 132 Tang et al., 2025) alleviate semantic drift. In attribution, however, most solutions remain costly or in-
 133 flexible. We propose a unified framework that combines open-world rejection with class-incremental
 134 expansion, using a compact exemplar memory and feature-similarity-based classifier initialization
 135 to achieve scalable, sustainable attribution.

3 PROBLEM DEFINITION

138 The SOW-GMA task is designed for a realistic and dynamic setting where generative models contin-
 139 uously emerge. The objective is to build an attribution framework supporting open-set recogni-
 140 tion and sustainable incremental learning. Training proceeds over sessions $t = 0, 1, \dots, T$, where the
 141 model receives a labeled dataset

$$\mathcal{D}_t^L = \{(x_{t,i}, y_{t,i})\}_{i=1}^{N_t}, \quad y_{t,i} \in \mathcal{C}_t^L, \quad (1)$$

142 where $x_{t,i}$ is a generated image and $y_{t,i}$ its source model label, together with a memory buffer
 143 $\mathcal{D}_t^M \subseteq \bigcup_{i=0}^{t-1} \mathcal{D}_i^L$ that stores exemplars from past sessions. The cumulative known classes are
 144 $\mathcal{C}_t^K = \bigcup_{i=0}^t \mathcal{C}_i^L$.

145 In addition to labeled data, a continuously growing unlabeled data pool $\mathcal{D}_t^U = \{x_i\}_{i=1}^m$ is also
 146 available, whose classes \mathcal{C}_t^U may include both known \mathcal{C}_t^K and novel unknown classes $\mathcal{C}_t^N \subseteq \mathcal{C}_t^U \setminus \mathcal{C}_t^K$.

147 The goal of SOW-GMA is to learn a continually adaptive feature extractor $\phi(\cdot)$ that:

- 148 1. attributes generated images from known models to \mathcal{C}_t^K ,
- 149 2. rejects generated images from novel unknown models \mathcal{C}_t^N as out-of-distribution,
- 150 3. incorporates new model classes through lightweight updates with limited memory \mathcal{D}_t^M .

4 METHOD

151 To address the SOW-GMA task, we propose QORA (Fig. 2), which uses the CLIP-ViT L/14 encoder
 152 pretrained on large-scale image-text data to reduce attribution biases. Features are extracted from
 153 the 12-th transformer block, and fine-tuned with LoRA for attribution alignment. These features
 154 are further processed by POLM and FDEM, POLM enhances open-world attribution generalization,
 155 while FDEM strengthens fingerprint discriminability.

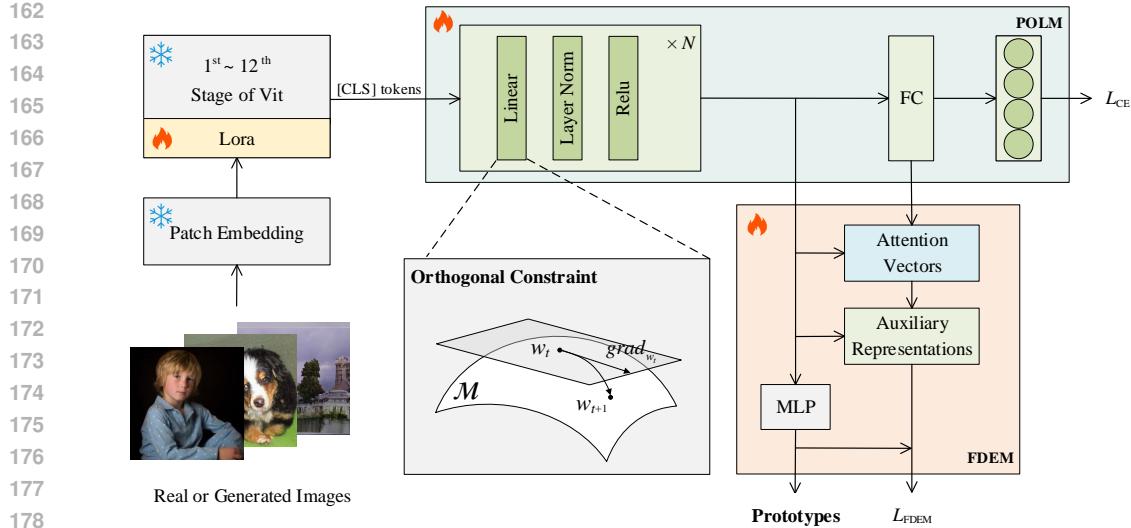


Figure 2: Overview of the proposed QORA framework. CLS tokens are first extracted from a pre-trained CLIP-ViT backbone with LoRA-based fine-tuning. These tokens are transformed by POLM to construct a stable quasi-orthogonal feature space. The FDEM then disentangles and amplifies model-specific fingerprints. After training, class prototypes are obtained by averaging the attribution features produced by FDEM for each category.

4.1 POLM

POLM integrates an orthogonally constrained encoder with a dimension-wise normalized classifier to project pretrained features into a quasi-orthogonal subspace. This space reduces redundancy and amplifies subtle artifact cues, providing a stable foundation for fingerprint disentanglement, enhancement, and sustainable incremental attribution.

Specifically, POLM maps the CLS token $\mathbf{f}_{\text{cls}} \in \mathbb{R}^d$ from the ViT encoder into quasi-orthogonal representations via an N -layer orthogonally-constrained MLP:

$$\mathbf{f}^{(0)} = \mathbf{f}_{\text{cls}}, \quad \mathbf{f}^{(l)} = \text{ReLU} \left(\text{LN} \left(W_{\text{o}}^{(l)} \mathbf{f}^{(l-1)} \right) \right), \quad \mathbf{f}_{\text{o}} = \mathbf{f}^{(N)}, \quad (2)$$

where $l = 1, 2, \dots, N$, $W_{\text{o}}^{(l)} \in \mathbb{R}^{d \times d}$ denotes the weight of the l -th layer in the encoder, and $\text{LN}(\cdot)$ and $\text{ReLU}(\cdot)$ denote layer normalization and activation. To ensure strict orthogonality, we constrain W_{o} to lie on the Stiefel manifold (Stiefel, 1935):

$$\mathcal{M}_{d,d} = \{W_{\text{o}} \in \mathbb{R}^{d \times d} \mid W_{\text{o}} \cdot W_{\text{o}}^{\top} = I_d\} \quad (3)$$

Therefore, this constraint can be reformulated as a Riemannian optimization problem:

$$\min_{W_{\text{o}} \in \mathcal{M}_{d,d}} \mathcal{L}(W_{\text{o}}) = \mathcal{L}_{\text{total}} \quad (4)$$

where $\mathcal{L}_{\text{total}}$ denotes the overall loss function of QORA. Meanwhile, to efficiently update W_{o} on the manifold, we compute a skew-symmetric matrix $A = \nabla_{W_{\text{o}}} \mathcal{L} W_{\text{o}}^{\top} - W_{\text{o}} (\nabla_{W_{\text{o}}} \mathcal{L})^{\top}$, where $\nabla_{W_{\text{o}}} \mathcal{L}$ is the gradient of the loss. The weight matrix W_{o} is then updated using the Cayley transform (Li et al., 2020):

$$W'_{\text{o}} = \left(I + \frac{\eta}{2} A \right)^{-1} \left(I - \frac{\eta}{2} A \right) W_{\text{o}} \quad (5)$$

where η is the learning rate. This update guarantees that W'_{o} remains orthogonal and ensures numerical stability throughout training.

In contrast to conventional classifiers that apply class-wise normalization to category vectors, we impose feature-dimension-wise normalization on the classifier weight matrix $W_{fc} \in \mathbb{R}^{C \times d}$:

$$W_{fc}[:, j] \leftarrow \frac{W_{fc}[:, j]}{\|W_{fc}[:, j]\|_2} \quad \forall j \in [1, d] \quad (6)$$

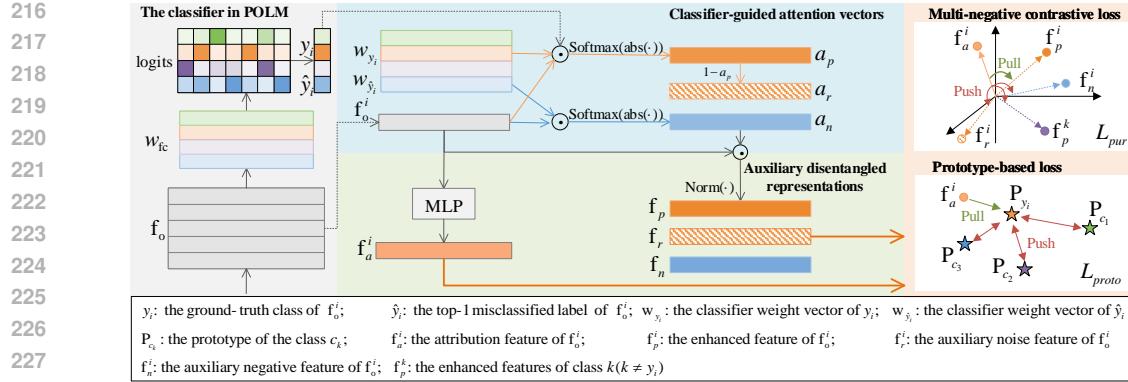


Figure 3: Architecture of FDEM. FDEM disentangles and amplifies generative fingerprints from quasi-orthogonal features produced by POLM. A lightweight MLP projects these features into an attribution space, while classifier weights are used to produce three auxiliary features. Along with class prototypes, these features supervise the attribution learning through contrastive losses.

which balances energy distribution among feature channels, mitigating dominance by high-response channels. This design significantly prevents overfitting to known model categories while enhancing open-set rejection robustness.

4.2 FDEM

FDEM enhances the quasi-orthogonal features from POLM by constructing an attribution subspace that leverages class-specific channel importance to isolate and strengthen generative fingerprints. As shown in Fig. 3, given a sample with feature f_o^i and label y_i (denoted as f_o and y), the attention vectors for the ground-truth class y and the top-1 misclassified class \hat{y} are computed as

$$\mathbf{a}_p = \text{Softmax} \left(\frac{|\mathbf{f}_o \odot \mathbf{w}_y|}{\tau} \right), \quad \mathbf{a}_n = \text{Softmax} \left(\frac{|\mathbf{f}_o \odot \mathbf{w}_{\hat{y}}|}{\tau} \right), \quad (7)$$

where \odot denotes element-wise multiplication and τ is a temperature parameter.

These attention maps quantify the channel contributions to correct and confusing predictions. Guided by them, we obtain three disentangled representations:

$$\mathbf{f}_{p/r/n} = \text{Normalize}(\mathbf{f}_o \odot \mathbf{a}_{p/r/n}), \quad \mathbf{a}_r = 1 - \mathbf{a}_p, \quad (8)$$

where f_p emphasizes discriminative fingerprints, f_r suppresses irrelevant noise, and f_n captures misleading fingerprint artifacts.

Thus, FDEM projects \mathbf{f}_o into an attribution space \mathbf{f}_a using a lightweight MLP and optimizes it with a multi-negative contrastive loss:

$$\mathcal{L}_{\text{pur}} = -\log \frac{\exp(\text{sim}(\mathbf{f}_a, \mathbf{f}_p)/\tau)}{\exp(\text{sim}(\mathbf{f}_a, \mathbf{f}_p)/\tau) + \sum_{f \in \{\mathbf{f}_r, \mathbf{f}_n\} \cup \{\mathbf{f}_y^j\}_{y_j \neq y_i}} \exp(\text{sim}(\mathbf{f}_a, f)/\tau)}, \quad (9)$$

where \mathbf{f}_p , \mathbf{f}_r , and \mathbf{f}_n denote enhanced fingerprints, residuals, and confusing artifacts, respectively, $\{\mathbf{f}_p^j\}_{y_j \neq y_i}$ are fingerprints from other classes, $\text{sim}(\cdot, \cdot)$ is cosine similarity, and τ is a temperature. This formulation aligns \mathbf{f}_a with clean fingerprints while pushing it away from noise, confusions, and unrelated classes.

To further enforce class-level structure, we adopt a prototype-guided loss:

$$\mathcal{L}_{\text{proto}} = -\frac{1}{N} \sum_{i=1}^N \log \frac{\exp(\mathbf{f}_a^i \cdot \mathbf{p}_{y_i} / \tau)}{\sum_{k=1}^K \exp(\mathbf{f}_a^i \cdot \mathbf{p}_k / \tau)} + \frac{1}{K(K-1)} \sum_{i \neq k} (\mathbf{p}_j \cdot \mathbf{p}_k)^2 \quad (10)$$

where \mathbf{f}_a^i is the normalized attribution feature of sample i , \mathbf{p}_k is the prototype of class k , N is the number of samples, and K is the number of known classes. The first term enforces intra-class

270 compactness, and the second prevents prototype overlap. Prototypes are updated by exponential
271 moving average:

$$272 \quad \mathbf{p}_k \leftarrow (1 - \lambda) \mathbf{p}_k + \lambda \bar{\mathbf{f}}_a^k \quad (11)$$

273 where $\bar{\mathbf{f}}_a^k$ is the batch-wise mean attribution feature of class k , and $\lambda \in (0, 1)$ is the momentum
275 factor.

276 Finally, the total training objective with the classifier cross-entropy loss \mathcal{L}_{CE} from POLM is
277

$$278 \quad \mathcal{L}_{\text{total}} = \mathcal{L}_{\text{CE}} + \mathcal{L}_{\text{pur}} + \mathcal{L}_{\text{proto}} \quad (12)$$

280 During inference, attribution is performed by comparing \mathbf{f}_a to stored prototypes \mathbf{p}_k .
281

282 4.3 SUSTAINABLE INCREMENTAL LEARNING

283 To integrate new generator classes while preserving performance on previously learned ones, we
284 adopt a memory-efficient incremental learning strategy. In each session t , 20 samples per past class
285 are stored in a replay buffer \mathcal{D}_{t-1}^M , covering $\mathcal{C}_{0:t-1}^L$. This buffer is then combined with the current
286 session’s labeled data \mathcal{D}_t^L of class set \mathcal{C}_t^L to form the updated buffer \mathcal{D}_t^M .
287

288 During incremental updates, the CLIP-ViT backbone, LoRA parameters, and the POLM encoder
289 are kept frozen. Only the POLM classifier and the MLP in FDEM are updated. Class-wise mean
290 features are first computed for both previously learned classes $k \in \mathcal{C}_{0:t-1}^L$ in \mathcal{D}_t^M , and new classes
291 $n \in \mathcal{C}_t^L$ in \mathcal{D}_t^L :

$$292 \quad \bar{\mathbf{f}}_o^k = \frac{1}{|\mathcal{D}_{t,k}^M|} \sum_{\mathbf{f}_{o,i} \in \mathcal{D}_{t,k}^M} \mathbf{f}_{o,i}, \quad \bar{\mathbf{f}}_o^n = \frac{1}{|\mathcal{D}_{t,n}^L|} \sum_{\mathbf{f}_{o,i} \in \mathcal{D}_{t,n}^L} \mathbf{f}_{o,i} \quad (13)$$

295 where $\mathcal{D}_{t,k}^M$ and $\mathcal{D}_{t,n}^L$ denote the sets of samples belonging to class k and n , respectively.

296 For each new class n , the nearest previously known class k^* is identified by
297

$$298 \quad k^* = \arg \min_{k \in \mathcal{C}_{0:t-1}^L} \|\bar{\mathbf{f}}_o^n - \bar{\mathbf{f}}_o^k\|_2 \quad (14)$$

300 and the classifier weight for class n is initialized as
301

$$302 \quad \mathbf{w}_n \leftarrow \mathbf{w}_{k^*} \quad (15)$$

304 Following initialization, incremental training is carried out using the same total loss $\mathcal{L}_{\text{total}}$ as in the
305 initial training phase. After training, updated prototypes are retained for future attribution.
306

307 5 EXPERIMENT

309 In this section, we provide a comprehensive evaluation of the proposed QORA framework. We first
310 outline the experimental setups. Then we assess static open-world attribution followed by exten-
311 sive ablation studies. Finally, we evaluate QORA in a five-session incremental learning scenario,
312 demonstrating its ability of sustainable.
313

314 5.1 EXPERIMENTAL SETUPS

316 **Datasets.** We evaluate QORA on two static open-world attribution benchmarks: OSMA (Yang
317 et al., 2023), a GAN-based dataset covering 53 GANs with diverse seeds and architectures, and
318 GenImage (Cioni et al., 2025), a diffusion-based benchmark with ImageNet classes and models
319 from eight diffusion generators. To simulate the continuous emergence of generators, we construct
320 a sustainable open-world benchmark from these datasets. As detailed in in Appendix A, it includes
321 one real-image class and 23 generator classes split into five sessions, each introducing four new seen
322 classes while the unseen set comprises remaining models.

323 **Evaluation Metrics.** Following established protocols (Yang et al., 2023; Cioni et al., 2025), we
324 evaluate QORA with three metrics: classification accuracy (Acc.) for closed-set attribution of seen

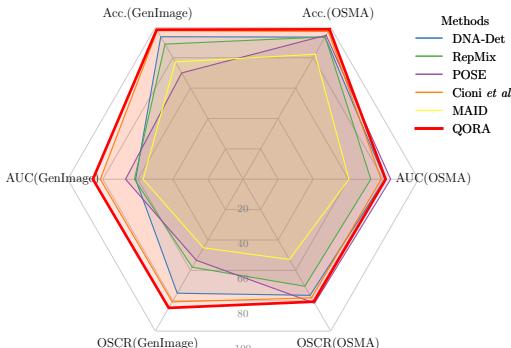


Figure 4: QORA outperforms baselines on OSMA and GenImage in both closed- and open-set metrics, highlighting strong generalization.

Table 1: Performance comparison on the diffusion-based model attribution benchmark GenImage. Results are averaged over five splits. The best performance is shown in bold, and the second-best is underlined.

Method	Acc. (%)	AUC (%)	OSCR (%)
DNA-Det	93.83	61.27	75.08
RepMix	88.98	61.93	57.92
POSE	70.00	67.00	53.35
Cioni <i>et al.</i>	<u>97.82</u>	<u>81.39</u>	<u>80.78</u>
MAID	77.23	56.98	45.16
QORA	98.51	85.63	84.74

Table 2: Performance comparison on OSMA. Results are averaged over five splits. The highest score for each metric is shown in bold, and the second-best score is underlined.

Method	Acc. (%)	Unseen Seed		Unseen Arch.		Unseen Data	
		AUC(%)	OSCR(%)	AUC(%)	OSCR(%)	AUC(%)	OSCR(%)
PRNU	55.27	69.20	49.16	70.02	49.49	67.68	48.57
Yu <i>et al.</i>	85.71	53.14	50.99	69.04	64.17	78.79	72.20
DCT-CNN	86.16	55.46	52.68	72.56	67.43	72.87	67.57
DNA-Det	93.56	61.46	59.34	80.93	76.45	<u>66.14</u>	63.27
RepMix	93.69	54.70	53.26	72.86	70.49	78.69	76.02
POSE	94.81	<u>68.15</u>	67.25	84.17	81.62	88.24	85.64
Cioni <i>et al.</i>	<u>97.29</u>	54.15	54.00	78.78	78.12	90.60	89.52
MAID	82.30	51.06	46.02	60.40	52.81	59.04	<u>52.01</u>
QORA	98.68	62.56	<u>62.23</u>	81.34	80.66	80.68	80.08

generators, AUC for open-set detection of unseen generators, and OSCR for jointly assessing attribution accuracy and rejection quality in open-world conditions.

Baseline Methods. We compare QORA against representative attribution baselines spanning both closed- and open-world settings, including PRNU (Marra et al., 2019a), Yu *et al.* (Yu et al., 2019a), DCT-CNN (Frank et al., 2020), DNA-Det (Yang et al., 2022), RepMix (Bui et al., 2022), POSE (Yang et al., 2023), Cioni *et al.* (Cioni et al., 2025), and MAID (Zhu et al., 2025).

Implementation Details. We fine-tune CLIP-ViT L/14 with LoRA with a rank of 16 per adapter, use a one-layer MLP as the POLM encoder, and update FDEM prototypes with a momentum coefficient λ of 0.995. Models are trained for 30 epochs on one-quarter of the training data per class using Adam with cosine annealing, where the initial learning rate is set to 1×10^{-4} . All experiments are implemented in PyTorch 2.0 and run on an NVIDIA RTX 3090.

5.2 EVALUATION OF OPEN-SET MODEL ATTRIBUTION

We evaluate QORA against baselines on OSMA and GenImage benchmarks, with overall results summarized in Fig. 4. QORA consistently surpasses prior methods in both closed-set and open-set performance, showing strong generalization across architectures.

Comparison with SOTA on GAN-generated images. OSMA evaluates three settings: unseen seeds, unseen architectures, and unseen training data. Strong performance on the first two indicates sensitivity to model-intrinsic fingerprints, while lower performance on unseen data suggests reduced reliance on content semantics. MAID’s results were obtained by retraining its open-source implementation under the standard protocol, whereas other baselines are reported from the official OSMA benchmark (Yang et al., 2023). As shown in Table 2, QORA achieves a closed-set attribution accuracy of 98.68%, surpassing the previous best by 1.39%. For open-set evaluation, QORA

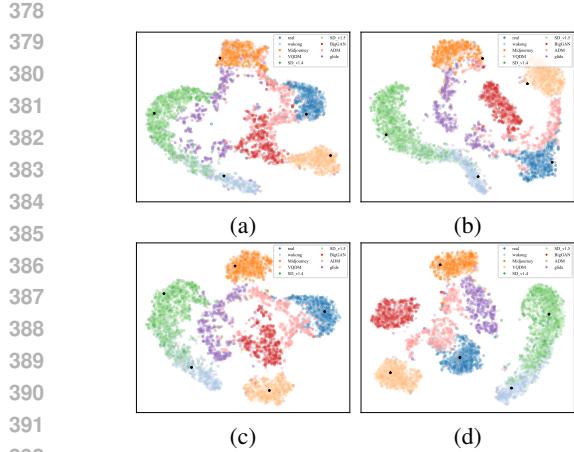


Figure 5: t-SNE under ablations: (a) w/o orthogonality or normalization, (b) orthogonality only, (c) normalization only, (d) full setup.

ranks second on unseen architectures and seeds, trailing POSE, but attains 80.68% AUC and 80.08% OSCR on unseen data, below POSE, which highlights its stronger emphasis on model-intrinsic fingerprints rather than semantic variations.

Comparison with SOTA on diffusion-generated images. As shown in Table 1, on GenImage, closed-set GAN-specific baselines are excluded due to their limited generalization capability. QORA achieves the highest closed-set accuracy of 98.51%, surpassing Cioni *et al.* by 0.69%. For open-set recognition, it achieves 85.63% AUC and 84.74% OSCR, yielding absolute gains of 4.24% and 3.96% over the previous best. These results demonstrate QORA’s effectiveness in capturing discriminative fingerprints of diffusion models.

5.3 ABLATION STUDIES

Ablation Study on POLM. We assess the contributions of the orthogonality constraint in the encoder and the dimension-wise normalization in the classifier on split-1 of GenImage. Four configurations are compared: (a) neither constraint, (b) orthogonality only, (c) normalization only, and (d) both constraints (full QORA). t-SNE visualizations of the attribution features (Fig. 5) show that (a) produces scattered distributions for seen categories and shows clear confusion between seen and unseen features, (b) improves inter-class separation for seen categories, (c) reduces overlap between seen and unseen samples, and (d) achieves well-separated clusters and distinct dispersion of unseen samples, demonstrating enhanced open-set rejection and a stable feature space.

Ablation on Loss Components in FDEM. Table 3 evaluates the prototype-guided loss $\mathcal{L}_{\text{proto}}$ and purification contrastive loss \mathcal{L}_{pur} across all five GenImage splits. Removing either loss degrades performance: without $\mathcal{L}_{\text{proto}}$, closed-set accuracy drops from 98.51% to 96.90%, highlighting its role in aligning features with class prototypes; without \mathcal{L}_{pur} , open-set AUC and OSCR decrease by 5.30% and 5.52%, showing its importance in purifying model-specific fingerprints. When both losses are removed, reliance on the POLM classifier alone leads to further degradation. These results confirm that FDEM is crucial for learning discriminative, generalizable representations and robust open-world attribution under dynamic conditions.

5.4 EVALUATION ON SUSTAINABLE OPEN-WORLD ATTRIBUTION

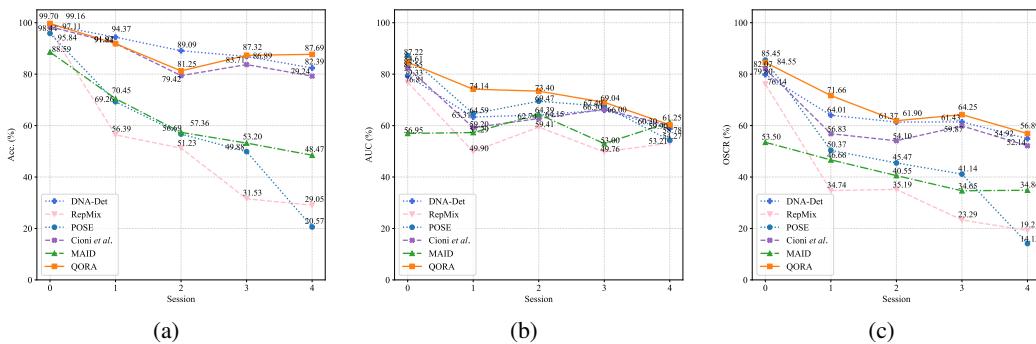
We evaluate QORA on the five-session SOW-GMA benchmark to assess scalability and adaptability under realistic open-world conditions, comparing it with five baselines: DNA-Det (Yang et al., 2022), RepMix (Bui et al., 2022), POSE (Yang et al., 2023), Cioni *et al.* (Cioni et al., 2025), and MAID (Zhu et al., 2025). All models are trained with official implementations, initializing each incremental session from the previous checkpoint.

Table 3: Ablation of loss functions over five GenImage splits. The first three rows measure attribution accuracy using attribution representations, while the last row reports classifier performance in POLM with pure cross-entropy loss \mathcal{L}_{CE} . The best performance is shown in bold.

Losses	Acc. (%)	AUC (%)	OSCR (%)
full model	98.51	85.63	84.74
w/o \mathcal{L}_{pur}	98.27	80.33	79.22
w/o $\mathcal{L}_{\text{proto}}$	96.90	82.29	80.19
w/o \mathcal{L}_{pur} and $\mathcal{L}_{\text{proto}}$	97.45	81.77	80.18

432 Table 4: Performance comparison between Session 0 and Session 4 for different methods. The best
 433 performance is shown in bold, and the second-best is underlined. Red arrows and text indicate the
 434 increase (\uparrow) or decrease (\downarrow) from Session 0 to Session 4.

Method	Acc. (%)		AUC (%)		OSCR (%)	
	Session 0	Session 4	Session 0	Session 4	Session 0	Session 4
DNA-Det	99.16	<u>82.39</u> \downarrow 16.77	79.33	58.78 \downarrow 20.55	79.80	<u>54.92</u> \downarrow 24.88
RepMix	97.11	29.05 \downarrow 68.06	76.81	53.21 \downarrow 23.60	76.14	19.21 \downarrow 56.93
POSE	95.84	20.57 \downarrow 75.27	87.22	54.27 \downarrow 32.95	85.45	14.13 \downarrow 71.32
Cioni <i>et al.</i>	98.44	79.24 \downarrow 19.20	82.55	59.90 \downarrow 22.65	82.07	52.14 \downarrow 29.93
MAID	88.59	48.47 \downarrow 40.12	56.95	61.25 \uparrow 4.30	53.50	34.86 \downarrow 18.64
QORA	99.70	87.69 \downarrow 12.01	<u>84.61</u>	<u>60.30</u> \downarrow 24.31	<u>84.55</u>	56.89 \downarrow 27.66



456 Figure 6: Comparison of four attribution methods over five incremental sessions shows that QORA
 457 consistently outperforms others in (a) closed-set accuracy, (b) open-set AUC, and (c) open-set
 458 OSCR, demonstrating its superior scalability and stability in open-world incremental learning.

462 Table 4 reports initial and final session performance. QORA achieves 99.70% closed-set accuracy
 463 initially and maintains 87.69% in Session 4, representing the smallest decline with 12.01% among
 464 all methods. In contrast, POSE, RepMix, and MAID show sharp degradation of 75.27%, 68.06%,
 465 and 40.12%. DNA-Det and Cioni drop to 82.39% and 79.24%, remaining 5–8% below QORA. For
 466 open-set detection, QORA’s initial AUC and OSCR are slightly lower than POSE’s but surpass it by
 467 Session 4, with gains of 6.03% in AUC and 42.76% in OSCR. MAID shows large AUC fluctuations,
 468 as shown in Fig. 6 (b), whereas QORA consistently keeps AUC above 60%, while other baselines
 469 decline or fluctuate. Fig. 6 shows metric trends across sessions. QORA maintains balanced,
 470 robust performance in closed- and open-set, effectively integrating new classes while preserving prior
 471 knowledge and rejecting unseen generators, demonstrating practical suitability for real-world incre-
 472 mental attribution.

6 CONCLUSION

477 In this paper, we present QORA, a sustainable framework for open-world generative model attri-
 478 bution. Unlike prior methods hindered by emerging models, QORA integrates accurate closed-
 479 set attribution, robust open-set rejection, and efficient class-incremental learning with low memory
 480 overhead. POLM leverages Stiefel manifold optimization to construct a quasi-orthogonal space
 481 that suppresses redundancy and enhances generalization, while FDEM disentangles and strengthens
 482 model-specific fingerprints via classifier-guided attention and contrastive learning. A lightweight in-
 483 cremental strategy further supports rapid adaptation without full retraining. Experiments on GAN-
 484 and diffusion-based benchmarks show that QORA achieves state-of-the-art attribution accuracy and
 485 preserves strong open-set robustness across sessions, highlighting its scalability and real-world ap-
 486 plicability.

486 REFERENCES
487

488 Lydia Abady, Jun Wang, Benedetta Tondi, and Mauro Barni. A siamese-based verification system
489 for open-set architecture attribution of synthetic images. *Pattern Recognition Letters*, 180:75–
490 81, 2024. ISSN 0167-8655. doi: <https://doi.org/10.1016/j.patrec.2024.03.002>. URL <https://www.sciencedirect.com/science/article/pii/S0167865524000709>.

491

492 Michael Albright and Scott McCloskey. Source generator attribution via inversion. In *Proceedings*
493 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops*,
494 June 2019.

495

496 Michael Albright, Scott McCloskey, and ACST Honeywell. Source generator attribution via inver-
497 sion. In *CVPR workshops*, volume 8, pp. 3, 2019.

498 Diane Bartz and Krystal Hu. Openai, google, others pledge to watermark ai content
499 for safety, white house says. URL <https://www.reuters.com/technology/openai-google-others-pledge-watermark-ai-content-safety-white-house-2023-07-21/>.

500

501

502 Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards AI. In *Large Scale Kernel*
503 *Machines*. MIT Press, 2007.

504

505 Tu Bui, Ning Yu, and John Collomosse. Repmix: Representation mixing for robust attribution of
506 synthesized images. In *European Conference on Computer Vision*, pp. 146–163. Springer, 2022.

507

508 Mo Chen, Jessica Fridrich, Miroslav Goljan, and Jan Lukas. Determining image origin and integrity
509 using sensor noise. *IEEE Transactions on Information Forensics and Security*, 3(1):74–90, 2008.
doi: 10.1109/TIFS.2007.916285.

510

511 Dario Cioni, Christos Tzelepis, Lorenzo Seidenari, and Ioannis Patras. Are clip features all you need
512 for universal synthetic image origin attribution? In *European Conference on Computer Vision*,
513 pp. 363–382. Springer, 2025.

514

515 Ricard Durall, Margret Keuper, and Janis Keuper. Watch your up-convolution: Cnn based gener-
516 ative deep neural networks are failing to reproduce spectral distributions. In *Proceedings of the*
517 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2020.

518

519 Shengbang Fang, Tai D Nguyen, and Matthew C Stamm. Open set synthetic image source attribu-
520 tion. *arXiv preprint arXiv:2308.11557*, 2023a.

521

522 Shengbang Fang, Tai D Nguyen, and Matthew C Stamm. Open set synthetic image source attribu-
523 tion. *arXiv preprint arXiv:2308.11557*, 2023b.

524

525 Joel Frank, Thorsten Eisenhofer, Lea Schönherr, Asja Fischer, Dorothea Kolossa, and Thorsten
526 Holz. Leveraging frequency analysis for deep fake image recognition. In *Proceedings of the 37th*
527 *International Conference on Machine Learning*, ICML’20. JMLR.org, 2020.

528

529 Caili Gao, Qisheng Xu, Peng Qiao, Kele Xu, Xifu Qian, and Yong Dou. Adapter-based incremental
530 learning for face forgery detection. In *ICASSP 2024-2024 IEEE International Conference on*
531 *Acoustics, Speech and Signal Processing (ICASSP)*, pp. 4690–4694. IEEE, 2024.

532

533 Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. *Deep learning*, volume 1.
534 MIT Press, 2016.

535

536 Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief
537 nets. *Neural Computation*, 18:1527–1554, 2006.

538

539 Yonghyun Jeong, Doyeon Kim, Seungjai Min, Seongho Joe, Youngjune Gwon, and Jongwon Choi.
540 Bihpf: Bilateral high-pass filters for robust deepfake detection. In *Proceedings of the IEEE/CVF*
541 *Winter Conference on Applications of Computer Vision*, pp. 48–57, 2022a.

542

543 Yonghyun Jeong, Doyeon Kim, Youngmin Ro, and Jongwon Choi. Freqgan: robust deepfake de-
544 tection using frequency-level perturbations. In *Proceedings of the AAAI conference on artificial*
545 *intelligence*, volume 36, pp. 1060–1068, 2022b.

540 Yonghyun Jeong, Doyeon Kim, Youngmin Ro, Pyounggeon Kim, and Jongwon Choi. Fingerprint-
 541 net: Synthesized fingerprints for generated image detection. In *European Conference on Com-*
 542 *puter Vision*, pp. 76–94. Springer, 2022c.

543 Zhong Ji, Zhishen Hou, Xiyao Liu, Yanwei Pang, and Xuelong Li. Memorizing complementation
 544 network for few-shot class-incremental learning. *IEEE Transactions on Image Processing*, 32:
 545 937–948, 2023.

546 Jun Li, Li Fuxin, and Sinisa Todorovic. Efficient riemannian optimization on the stiefel manifold
 547 via the cayley transform. *arXiv preprint arXiv:2002.01113*, 2020.

548 Meiling Li, Zhenxing Qian, and Xinpeng Zhang. Regeneration based training-free attribution of
 549 fake images generated by text-to-image generative models. *ArXiv*, abs/2403.01489, 2024a. URL
 550 <https://api.semanticscholar.org/CorpusID:268247911>.

551 Meiling Li, Zhenxing Qian, and Xinpeng Zhang. Regeneration based training-free attribution of
 552 fake images generated by text-to-image generative models. *arXiv preprint arXiv:2403.01489*,
 553 2024b.

554 Fengyuan Liu, Haochen Luo, Yiming Li, Philip Torr, and Jindong Gu. Which model generated this
 555 image? a model-agnostic approach for origin attribution. In *European Conference on Computer*
 556 *Vision*, pp. 282–301. Springer, 2024.

557 Zhengzhe Liu, Xiaojuan Qi, and Philip H.S. Torr. Global texture enhancement for fake face detection
 558 in the wild. In *2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 559 pp. 8057–8066, 2020. doi: 10.1109/CVPR42600.2020.00808.

560 Francesco Marra, Diego Gragnaniello, Luisa Verdoliva, and Giovanni Poggi. Do gans leave artifi-
 561 cial fingerprints? In *2019 IEEE conference on multimedia information processing and retrieval*
 562 (*MIPR*), pp. 506–511. IEEE, 2019a.

563 Francesco Marra, Cristiano Saltori, Giulia Boato, and Luisa Verdoliva. Incremental learning for the
 564 detection and classification of gan-generated images. In *2019 IEEE international workshop on*
 565 *information forensics and security (WIFS)*, pp. 1–6. IEEE, 2019b.

566 Tai D Nguyen, Aref Azizpour, and Matthew C Stamm. Forensic self-descriptions are all you need
 567 for zero-shot detection, open-set source attribution, and clustering of ai-generated images. In
 568 *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 3040–3050, 2025.

569 Utkarsh Ojha, Yuheng Li, and Yong Jae Lee. Towards universal fake image detectors that generalize
 570 across generative models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 571 *Pattern Recognition*, pp. 24480–24489, 2023.

572 Kun Pan, Yifang Yin, Yao Wei, Feng Lin, Zhongjie Ba, Zhenguang Liu, Zhibo Wang, Lorenzo
 573 Cavallaro, and Kui Ren. Dfil: Deepfake incremental learning by exploiting domain-invariant
 574 forgery clues. In *Proceedings of the 31st ACM International Conference on Multimedia*, pp.
 575 8035–8046, 2023.

576 Ekta Prashnani, Michael Goebel, and BS Manjunath. Generalizable deepfake detection with phase-
 577 based motion analysis. *IEEE Transactions on Image Processing*, 2024.

578 Yuyang Qian, Guojun Yin, Lu Sheng, Zixuan Chen, and Jing Shao. Thinking in frequency: Face
 579 forgery detection by mining frequency-aware clues. In *European conference on computer vision*,
 580 pp. 86–103. Springer, 2020.

581 Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
 582 and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
 583 ization. In *Proceedings of the IEEE international conference on computer vision*, pp. 618–626,
 584 2017.

585 Zeyang Sha, Zheng Li, Ning Yu, and Yang Zhang. De-fake: Detection and attribution of fake
 586 images generated by text-to-image generation models. In *Proceedings of the 2023 ACM SIGSAC*
 587 *Conference on Computer and Communications Security*, CCS ’23, pp. 3418–3432, New York,
 588 NY, USA, 2023. Association for Computing Machinery. ISBN 9798400700507. doi: 10.1145/
 589 3576915.3616588. URL <https://doi.org/10.1145/3576915.3616588>.

594 Sergey Sinitsa and Ohad Fried. Deep image fingerprint: Towards low budget synthetic image detec-
 595 tion and model lineage analysis. In *Proceedings of the IEEE/CVF Winter Conference on Applica-*
 596 *tions of Computer Vision (WACV)*, pp. 4067–4076, January 2024.

597 Eduard Stiefel. *Richtungsfelder und Fernparallelismus in n-dimensionalen Mannigfaltigkeiten*. PhD
 598 thesis, ETH Zurich, 1935.

600 Chuangchuang Tan, Yao Zhao, Shikui Wei, Guanghua Gu, and Yunchao Wei. Learning on gradi-
 601 ents: Generalized artifacts representation for gan-generated images detection. In *2023 IEEE/CVF*
 602 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 12105–12114, 2023. doi:
 603 10.1109/CVPR52729.2023.01165.

604 Shuai Tang, Peisong He, Haoliang Li, Wei Wang, Xinghao Jiang, and Yao Zhao. Towards extensible
 605 detection of ai-generated images via content-agnostic adapter-based category-aware incremental
 606 learning. *IEEE Transactions on Information Forensics and Security*, 2025.

607 Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine*
 608 *learning research*, 9(11), 2008.

610 Haofan Wang, Zifan Wang, Mengnan Du, Fan Yang, Zijian Zhang, Sirui Ding, Piotr Mardziel, and
 611 Xia Hu. Score-cam: Score-weighted visual explanations for convolutional neural networks. In
 612 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops*,
 613 pp. 24–25, 2020a.

614 Jun Wang, Omran Alamayreh, Benedetta Tondi, and Mauro Barni. Open set classification of gan-
 615 based image manipulations via a vit-based hybrid architecture. In *Proceedings of the IEEE/CVF*
 616 *Conference on Computer Vision and Pattern Recognition*, pp. 953–962, 2023a.

617 Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew Owens, and Alexei A Efros. Cnn-generated
 618 images are surprisingly easy to spot... for now. In *Proceedings of the IEEE/CVF conference on*
 619 *computer vision and pattern recognition*, pp. 8695–8704, 2020b.

621 Xuan Wang, Zhong Ji, Yunlong Yu, Yanwei Pang, and Jungong Han. Model attention expansion for
 622 few-shot class-incremental learning. *IEEE Transactions on Image Processing*, 2024.

623 Zhendong Wang, Jianmin Bao, Wengang Zhou, Weilun Wang, Hezhen Hu, Hong Chen, and
 625 Houqiang Li. Dire for diffusion-generated image detection. In *Proceedings of the IEEE/CVF*
 626 *International Conference on Computer Vision*, pp. 22445–22455, 2023b.

627 Qiang Xu, Shan Jia, Xinghao Jiang, Tanfeng Sun, Zhe Wang, and Hong Yan. Mdtl-net:
 628 Computer-generated image detection based on multi-scale deep texture learning. *Expert Sys-*
 629 *tems with Applications*, 248:123368, 2024. ISSN 0957-4174. doi: <https://doi.org/10.1016/j.eswa.2024.123368>. URL <https://www.sciencedirect.com/science/article/pii/S0957417424002331>.

632 Tianyun Yang, Juan Cao, Qiang Sheng, Lei Li, Jiaqi Ji, Xirong Li, and Sheng Tang. Learning to
 633 disentangle gan fingerprint for fake image attribution. *arXiv preprint arXiv:2106.08749*, 2021.

634 Tianyun Yang, Ziyao Huang, Juan Cao, Lei Li, and Xirong Li. Deepfake network architecture
 635 attribution. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pp.
 636 4662–4670, 2022.

638 Tianyun Yang, Danding Wang, Fan Tang, Xinying Zhao, Juan Cao, and Sheng Tang. Progres-
 639 sive open space expansion for open-set model attribution. *2023 IEEE/CVF Conference on*
 640 *Computer Vision and Pattern Recognition (CVPR)*, pp. 15856–15865, 2023. URL <https://api.semanticscholar.org/CorpusID:257496280>.

642 Ning Yu, Larry Davis, and Mario Fritz. Attributing fake images to gans: Learning and analyzing
 643 gan fingerprints. In *2019 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp.
 644 7555–7565, 2019a. doi: 10.1109/ICCV.2019.00765.

646 Ning Yu, Larry S Davis, and Mario Fritz. Attributing fake images to gans: Learning and analyzing
 647 gan fingerprints. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 pp. 7556–7566, 2019b.

648 Junbin Zhang, Yixiao Wang, Hamid Reza Tohidpour, and Panos Nasiopoulos. An efficient fre-
 649 quency domain based attribution and detection network. *IEEE Access*, 13:19909–19921, 2025.
 650 doi: 10.1109/ACCESS.2025.3534829.

651 Xu Zhang, Svebor Karaman, and Shih-Fu Chang. Detecting and simulating artifacts in gan fake
 652 images. In *2019 IEEE international workshop on information forensics and security (WIFS)*, pp.
 653 1–6. IEEE, 2019.

654 Nan Zhong, Yiran Xu, Sheng Li, Zhenxing Qian, and Xinpeng Zhang. Patchcraft: Exploring texture
 655 patch for efficient ai-generated image detection. *arXiv preprint arXiv:2311.12397*, 2023.

656 Nan Zhong, Haoyu Chen, Yiran Xu, Zhenxing Qian, and Xinpeng Zhang. Beyond generation: A
 657 diffusion-based low-level feature extractor for detecting ai-generated images. In *Proceedings of
 658 the Computer Vision and Pattern Recognition Conference (CVPR)*, pp. 8258–8268, June 2025.

659 Luyu Zhu, Kai Ye, Jiayu Yao, Chenxi Li, Luwen Zhao, Yuxin Cao, Derui Wang, and Jie Hao. Maid:
 660 Model attribution via inverse diffusion. In *ICASSP 2025-2025 IEEE International Conference on
 661 Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2025.

662 Mingjian Zhu, Hanting Chen, Mouxiao Huang, Wei Li, Hailin Hu, Jie Hu, and Yunhe Wang. Gendet:
 663 Towards good generalizations for ai-generated image detection. *ArXiv*, abs/2312.08880, 2023.
 664 URL <https://api.semanticscholar.org/CorpusID:266210505>.

665 A DETAILS OF DATASETS

666 We evaluate QORA on two **static open-world attribution** benchmarks:

- 667 • OSMA Yang et al. (2023): A GAN-based benchmark built on seven real-image datasets,
 668 each paired with two GANs for training. Its unseen set includes 53 GANs held out under
 669 three conditions: same architecture/dataset with different seeds, novel architectures, and
 670 novel training datasets.
- 671 • GenImage Cioni et al. (2025): A diffusion-based attribution dataset. Its known classes
 672 comprise real ImageNet images and outputs from four diffusion models. Its unseen set
 673 consists of samples generated by four additional diffusion models not used during training.

674 Both benchmarks are evaluated using five train/test splits, with each split varying the composition
 675 of seen and unseen generative models to ensure robust generalization testing.

676 To simulate real-world conditions where generative models continually emerge, we construct a **sus-
 677 tainable open-world attribution** benchmark based on the two datasets described above. As detailed
 678 in Table 5, the benchmark includes the real-image class and 20 generative model classes, chrono-
 679 logically divided into five incremental sessions from 2018 to 2022. Session 0 serves as the initial
 680 training pshase for the SOW-GMA task. In each session, four newly introduced generative
 681 models serve as the session-specific *seen* classes for training. Meanwhile, the *unseen* set comprises
 682 all generative models not yet encountered in the current or any previous session, along with three
 683 fixed unseen models, SNGAN, S3GAN, and Wav2Lip, that are consistently included in the open-set
 684 across all sessions.

685 As shown in Table 6, the training and testing protocol for each session t is defined as follows:

694 Table 5: Chronological split of seen and unseen generative models for SOW-GMA task.

695 Session	696 Year	697 Seen Models	698 Unseen Models
699 0	700 2018	701 Real, StarGAN, ProGAN, MMDGAN, BigGAN	702 SNGAN, S3GAN, Wav2Lip + Seen _{1,2,3,4}
703 1	704 2019	705 SAGAN, FSGAN, AttGAN, StyleGAN	706 SNGAN, S3GAN, Wav2Lip + Seen _{2,3,4}
707 2	708 2020	709 FaceSwap, StyleGAN2, ContraGAN, FaceShifter	710 SNGAN, S3GAN, Wav2Lip + Seen _{3,4}
711 3	712 2021	713 StyleGAN3, InfoMaxGAN, ADM, Glide	714 SNGAN, S3GAN, Wav2Lip + Seen ₄
715 4	716 2022	717 Wukong, Midjourney, Stable Diffusion v1.4, VQDM	718 SNGAN, S3GAN, Wav2Lip

702
703
704 Table 6: Data Split for training and testing process.
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

		Data Group
Train	Closed	Seen _t , Memory _t
Test	Closed	Seen _t , Memory _t
	Open	Unseen _t

- Training: 4K samples are used for each newly introduced class in session t , and 20 exemplars are retained for each previously seen class in a memory set denoted as Memory_t .
- Testing: The closed-set includes all classes in $\text{Seen}_t \cup \text{Memory}_t$, while the open-set consists of Unseen_t .