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ABSTRACT

In this paper, we formulate the knowledge distillation (KD) as a conditional gen-
erative problem and propose the Generative Distribution Distillation (GenDD).
A naive GenDD encounters two major challenges: the curse of high-dimensional
optimization and the lack of semantic supervision from labels. To address these
issues, we introduce a Split Tokenization (SplitTok) strategy, achieving stable and
effective unsupervised KD. Additionally, we develop the Distribution Contrac-
tion technique to integrate label supervision into the reconstruction objective. Our
theoretical proof demonstrates that GenDD with Distribution Contraction serves
as a gradient-level surrogate for multi-task learning, realizing efficient supervised
training without explicit classification loss on multi-step sampling image represen-
tations. To evaluate the effectiveness of our method, we conduct experiments on
balanced, imbalanced, and unlabeled data. Experimental results show that GenDD
performs competitively in the unsupervised setting, significantly surpassing the
KL baseline by 16.29% on the ImageNet validation set. With label supervision,
our ResNet-50 achieves 82.28% top-1 accuracy on ImageNet in 600 epochs of
training, establishing a new state-of-the-art. Code is available in the Appendix.

1 INTRODUCTION

For natural language tasks, both inputs and outputs reside in the same domain, i.e., language se-
quences, enabling the unification of diverse tasks within a single generative model optimized via
next-token prediction. ChatGPT and GPT4V (Ouyang et al., 2022; Achiam et al., 2023) exemplify
this approach with data scaling law and are often regarded as an early prototype of artificial general
intelligence (AGI), showcasing the effectiveness of generative learning in natural language. Moti-
vated by this success, researchers have begun extending generative modeling to vision and multi-
modal domains (Liu et al., 2023; Li et al., 2024; Tian et al., 2024; Zhou et al., 2024; Fan et al., 2025;
Wu et al., 2024; Yang et al., 2025), with the long-term goal of building AGI systems.

Two prominent classes of generative models have gained popularity in the vision domain: autore-
gressive models (Li et al., 2024; Tian et al., 2024) and diffusion models (Ho et al., 2020; Yang et al.,
2025). Autoregressive models adopt the next-token prediction paradigm to sequentially generate
image content, whereas diffusion models transform images into Gaussian noise through a forward
diffusion process and learn to recover them via a reverse denoising process. In this paper, we recast
knowledge distillation (KD) (Hinton et al., 2015), typically formulated as a discriminative task min-
imizing the KL divergence between categorical output distributions of the teacher and student, as a
conditional generative problem modeled with the diffusion mechanism.

KD (Hinton et al., 2015) has been widely adopted for knowledge transfer and model compression in
real-world applications. As illustrated in Figure 1, existing approaches typically guide the student
model to imitate the teacher by minimizing either the KL divergence between output logits (Hin-
ton et al., 2015; Zhao et al., 2022; Cui et al., 2024a; Lv et al., 2024) or the mean squared error
(MSE) between intermediate-layer features (Chen et al., 2021; Romero et al., 2015; Park et al.,
2019; Tian et al., 2020; Heo et al., 2019). These approaches introduce additional loss terms into
a multi-task framework, increasing training complexity and requiring careful loss weight tuning.
Figure 2 presents an empirical study on CIFAR-100, showing that student performance is highly
sensitive to the choice of the loss weight. Moreover, the optimal weight also differs across teacher-
student configurations, underscoring the limited robustness and generalizability of these methods in
diverse application scenarios. This problem could exacerbate as the number of loss weight increases.
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Figure 1: Previous methods are discrimina-
tive point-wise distillation.
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Figure 2: Sensitivity to loss weights of
KD (Hinton et al., 2015). The accuracy
of student models varies with different loss
weights. Optimal loss weight varies with dif-
ferent teacher-student configurations.

Generative Distribution Distillation (GenDD). Inspired by the success of generative learn-
ing (Li et al., 2024; Ho et al., 2020; Song et al., 2020b), we leverage diffusion models to for-
mulate KD as a single generative process. As shown in Figure 3, taking image representa-
tion Fs(x) of the student model as conditional inputs, we learn to generate the representation
Ft(x) of the teacher model, thus achieving distribution mapping between the student and teacher.

 MLP

Condition

 

diffusion loss

Figure 3: Conditional generation for KD.

Challenges of GenDD. MAR (Li et al., 2024) de-
ploys a diffusion loss for autoregressive image gen-
eration. Specifically, images are tokenized in contin-
uous token sequences via VAE (Kingma et al., 2013)
and then fed into autoregressive models. However,
image tokens from VAE only have a dimension of
16 while image representations in classification often
have a large dimension, reaching to 2048. We empir-
ically observe the high-dimensional optimization dis-
aster: the training can’t converge or even crashes.
Moreover, diffusion models are optimized by varia-
tional lower bound (VLB) to reconstruct inputs, which lacks semantic constraints with labels and
thus hinders model performance.

Our Solution. To tackle the high-dimensional optimization challenge, we propose the Split Tok-
enization (SplitTok): split image representation Ft(x) into token sequences with positional index.
Conditoned on Fs(x), models are trained to reconstruct these tokens individually. Such a Split-
Tok operation effectively stabilizes the training of GenDD, achieving unsupervised KD. To enable
label supervision of GenDD, we develop a Distribution Contraction technique. We theoretically
prove that GenDD with Distribution Contraction serves as a surrogate to multi-task learning (com-
bining reconstruction and classification loss), eliminating explicit classification loss and multi-step
sampling and thus leading to efficient and effective supervised KD.

Our Results. To validate the effectiveness of our method, we conduct experiments on balanced
data including CIFAR-100 (Krizhevsky & Hinton, 2009) and ImageNet (Russakovsky et al., 2015),
imbalanced data like long-tailed ImageNet (Liu et al., 2019), and unlabeled data CC3M (Chang-
pinyo et al., 2021). With the SplitTok, our GenDD model significantly surpasses the KL baseline
by 16.29% in the unsupervised KD setting. Moreover, with Distribution Contraction technique,
GenDD incorporating label supervision largely outperforms previous distillation methods. Espe-
cially, we achieve a new state-of-the-art ResNet-50 performance on ImageNet.

In summary, our contributions are as follows:
• We formulate KD as a conditional generation problem and propose the GenDD algorithm.

• To address the high-dimensional optimization challenge, we propose a SplitTok strategy. To
enable label supervision of GenDD, the Distribution Contraction technique is developed.

• We theoretically prove that GenDD with Distribution Contraction acts as a gradient-level surro-
gate for the multi-task learning, resulting in effecient and effective optimization.

• We empirically show the advantage of our method on balanced, imbalanced, and unlabeled data.
Specifically, we achieve the state-of-the-art performance on ImageNet for both unsupervised and
supervised KD settings.
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Table 1: Comparison with previous distillation methods.

Method Generative or Discriminative Distributional or Point-wise Sensitivity to Loss Weight

Logits-based discriminative point-wise sensitive
Feature-based discriminative point-wise sensitive

GenDD generative distributional NA

2 RELATED WORK

Generative Learning. In NLP, generative modeling based on next-token prediction (NTP) forms
the foundation of the GPT series of language models (Radford et al., 2018; 2019; Brown et al.,
2020; Ouyang et al., 2022; Achiam et al., 2023). This approach enables unsupervised learning from
large-scale corpora and has driven significant advances in zero-shot and few-shot generalization,
culminating in powerful systems such as ChatGPT and GPT4V (Ouyang et al., 2022; Achiam et al.,
2023) that exhibit strong performance across diverse natural language tasks without task-specific
fine-tuning. Subsequently, autoregressive (AR) models leveraging NTP have also gained popularity
in vision (Li et al., 2024; Tian et al., 2024) and multi-modal (Liu et al., 2023; Zhu et al., 2023)
domains, fostering the development of unified generalist models capable of both understanding and
generation (Zhou et al., 2024; Fan et al., 2025; Wu et al., 2024; Yang et al., 2025) on multi-modal
data.

Besides NTP and autoregressive (AR) models, diffusion models (Sohl-Dickstein et al., 2015; Song
& Ermon, 2019; Ho et al., 2020; Song et al., 2020b) have emerged as a powerful class of generative
methods, demonstrating impressive sample quality and robustness (Rombach et al., 2022; Yang
et al., 2025; Zhou et al., 2024). However, they often require multi-step iterative sampling during
inference, which can be computationally expensive and time-consuming. Recently, flow matching
approaches (Geng et al., 2025; Lipman et al., 2022; Gat et al., 2024) have been proposed to address
these limitations by providing efficient and scalable generative modeling with fewer sampling steps
while maintaining high fidelity.

Knowledge Distillation. Knowledge distillation (KD) (Hinton et al., 2015) is developed to transfer
“dark knowledge” from a teacher model to a student model. The core idea is to leverage the soft
targets, i.e., the probability distribution over classes, produced by the teacher to guide the training
of the student. These soft labels contain rich information about inter-class similarities that are not
captured by one-hot labels, thereby enabling the student to learn more generalizable representations.
Since the success of KD (Hinton et al., 2015), advanced logit-based (Furlanello et al., 2018; Zhang
et al., 2018; Cho & Hariharan, 2019; Huang et al., 2022; Zhao et al., 2022; Hao et al., 2023; Cui
et al., 2024a; 2025) and feature-based (Romero et al., 2015; Park et al., 2019; Tian et al., 2020; Heo
et al., 2019; Chen et al., 2021; Huang et al., 2023) algorithms have been proposed. However, these
complicated methods are often sensitive to loss weights and require hyperparameter tuning for each
teacher-student configuration.

Additionally, previous KD methods are typically trained along with discriminative cross-entropy
loss and promote consistency between the teacher and student on each data point. In this paper, the
proposed GenDD is optimized with a single reconstruction objective and models the distribution of
each example. Refer to Table 1 for the comparison summary with previous work.

3 METHOD

3.1 REVISITING KNOWLEDGE DISTILLATION AS MULTI-TASK LEARNING

A typical classification model comprises a feature extractor F(·) and a classifier C(·). Given an
input image x, the model produces a feature representation F(x) and a corresponding prediction
argmax C(F(x)). While knowledge distillation (KD) is broadly applicable to a wide range of real-
world scenarios, we focus on image classification in this work. KD is designed to transfer the
inductive knowledge of the teacher model to the student model, enabling both model compression
and improved generalization. Previous KD methods (Hinton et al., 2015; Tian et al., 2020; Chen
et al., 2021) are often discriminative and point-wise, minimizing KL divergence or Mean Square
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Error (MSE) between sample logits or intermediate-layer features,

min
θ

CE(Cs ◦ Fs(x), y) + γ0 ·KL(Ct ◦ Ft(x), Cs ◦ Fs(x)) +
∑
i=1

γi ·MSE(f i
t , f

i
s), (1)

where θ is parameters of student, {γi} are hyper-parameters for multi-task learning.

As illustrated in Figure 2, the performance of the student model is notably sensitive to the choice
of hyperparameters, even on the same training dataset with different teacher-student configurations,
making the optimization challenging. For more detailed comparisons with advanced KD methods,
please refer to Appendix A.2. Moreover, in real-world scenarios, the teacher can be trained on
custom data that can’t be accessed publicly because of privacy protection. In this case, previous
algorithms can’t work well without cross-entropy in Equation (1), which is validated in Section 4.1.

In contrast, our proposed Generative Distribution Distillation (GenDD) is optimized by a unified
reconstruction objective, eliminating the need for extensive hyperparameter tuning. Furthermore, it
achieves competitive performance using only unlabeled data (Section 3.2.1) and attains state-of-the-
art results when annotation supervision is available (Section 3.2.2).

3.2 GENERATIVE DISTRIBUTION DISTILLATION (GENDD)

Inspired by the success of ChatGPT (Ouyang et al., 2022; Achiam et al., 2023) in natural language
processing (NLP), recent efforts have aimed to unify multi-modal understanding and generation
within a single generative framework (Zhou et al., 2024; Wu et al., 2024; Yang et al., 2025; Fan
et al., 2025). In particular, diffusion models have recently emerged as promising alternatives to
large language models (LLMs) (Arriola et al., 2025; Yang et al., 2025). In this paper, we propose to
formulate KD as a generative learning process based on diffusion foundations.

3.2.1 GENDD WITH UNLABELED DATA

Given an image x ∈ X , x̂0 ∼ q(Ft(x)), taking Fs(x) as condition, we learn to reconstruct the
image representation of teacher model, i.e., x̂0, with the following training objective,

Ex,m,ϵ

[
||ϵ− ϵθ(x̂m,m,Fs(x))||2

]
, (2)

where ϵ ∈ N (0, I), m ∈ [0,M ] is the sampled time step (M is the maximum), x̂m =
√
ᾱmx̂0 +√

1− ᾱmϵ is the noisy input at time step m, in particular, x̂0 = Ft(x), ᾱm = Πm
i=1αi, and α is

defined with a variance schedule (Ho et al., 2020; Nichol & Dhariwal, 2021).

At inference, with an input image x and a sampled x̂
′

M ∈ N (0, I), the image representation x̂
′

0
could be generated through iterative update from m = M to m = 0:

x̂
′

m−1 =
1√
αm

(
x̂

′

m − 1− αm√
1− ᾱm

ϵθ(x̂
′

m,m,Fs(x))

)
+ σmϵ, (3)

where ϵ ∈ N (0, I), σm could be learned or pre-defined. Note that, the reverse diffusion process
could be respaced (Li et al., 2024; Song et al., 2020a) for efficient sampling.

Then, the final prediction could be derived by inputting the image representation x̂
′

0 into teacher
model classifier, i.e., argmax Ct(x̂

′

0).

High-dimensional Optimization Disaster. Following MAR (Li et al., 2024), we implement the
diffusion head using a 3-layer MLP. MAR (Li et al., 2024) showcases the effectiveness of continu-
ous tokenizers for autoregressive image generation, where images are first tokenized into sequences
of continuous tokens using a VAE (Kingma et al., 2013). These tokens are then fed into an autore-
gressive model that learns the per-token distribution through a diffusion loss.

However, the dimensionality of each token in VAE (Kingma et al., 2013) is limited to 16, whereas
feature representations in image classification tasks typically have much higher dimensionality,
reaching up to 2048. Our empirical study reveals a high-dimensional optimization issue, partic-
ularly when the feature dimension of the student model, Dim(Fs(x)), is much lower than that of the
teacher model, Dim(Ft(x)), often leading to training instability or failure. Refer to Section 4.3 for
more details.
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Split Tokenization (SplitTok). To address the challenges of high-dimensional optimization, we
propose decomposing the feature representation x̂0 into a sequence of non-overlapped lower-
dimensional tokens. Specifically, we define the SplitTok operation as:

SplitTok(Ft(x)) =
[
(x̂1

0, 1,Fs(x)), (x̂
2
0, 2,Fs(x)), . . . , (x̂

n
0 , n,Fs(x))

]
, (4)

where each tuple consists of a token x̂i
0, its position index i, and the conditioning context from the

student model Fs(x). Based on this structure, we reformulate the training objective in Equation (2)
into a token-wise form:

Ey,id,c,m,ϵ

[
||ϵ− ϵθ(ŷm,m, id, c)||2

]
, where (y, id, c) ∼ q (SplitTok(Ft(x))[id]) . (5)

This token-based formulation allows the model to operate in lower-dimensional subspaces, thereby
mitigating instability during optimization in high-dimensional feature spaces.

3.2.2 GenDD with Label Supervision

Conditioned on the student’s feature representation, GenDD reconstructs the teacher’s feature to-
kens, enabling unsupervised knowledge distillation. However, the reconstruction objective alone
fails to exploit label supervision during training. To address this problem, we introduce a Distribu-
tion Contraction mechanism that enables GenDD to effectively incorporate label information into
the optimization process.

Multi-task Learning. To incorporate label supervision, a straightforward baseline is multi-task
learning, which combines the reconstruction objective with a standard cross-entropy loss:

min
θs

LCE = −y log Cs(x̂
′

0),

s.t.min
θ

Ey,id,c,m,ϵ

[
|ϵ− ϵθ(ŷm,m, id, c)|2

]
,

(6)

where Cs denotes the classifier on top of the reconstructed representation x̂
′

0, θ = (θs, θdiff ) are
parameters of student model and diffusion head respectively.

As shown in Equation (6), the cross-entropy loss encourages the generated feature x̂
′

0 to be correctly
classified, while the reconstruction loss regularizes the student feature space to align with that of the
teacher. These two objectives can be optimized either alternately or simultaneously during training.

However, in practice, involving x̂
′

0 directly in the training of the diffusion model is computationally
inefficient. Since x̂

′

0 must be sampled through a multi-step reverse diffusion process at each iteration,
using it as an intermediate target for supervision substantially increases training time and resource
consumption. Moreover, gradients cannot be efficiently propagated through the sampling chain,
limiting the effectiveness of end-to-end optimization.

GenDD with Label Supervision. Instead of relying on conventional multi-task learning, we incor-
porate label supervision through the proposed Distribution Contraction technique, formally defined
in Definition 1. Furthermore, Theorem 1 establishes that GenDD, trained with the Distribution
Contraction technique, serves as an efficient and effective surrogate for multi-task learning.

Definition 1 (Distribution Contraction) Let x̂0 ∼ q(Ft(x)) be the feature representation pro-
duced by a well-trained teacher model Ft on input x ∈ X , where Ct(x̂0) ∈ RC is the logits vector
over C categories. To incorporate label supervision y during diffusion model training, we enhance
the semantic consistency of x̂0 by contracting it toward the class center cy:

x̃0 = λx̂0 + (1− λ)cy, (7)

where λ ∈ [0, 1] controls the degree of contraction, cy denotes the centroid of features for class y.

Theorem 1 (Distribution Contraction Approximates Multi-task Learning at Gradient Level)
Assume the teacher model, composed of a feature extractor Ft(·) and a linear classifier Ct(·), is
well-trained, then the optimization of the reconstruction objective with distribution contraction in
Definition 1:

LGenDD = Ex,m,ϵ

[
∥ϵ− ϵθ(x̃m,m,Fs(x))∥2

]
, (8)
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is approximately equivalent, at the gradient level, to optimizing the multi-task objective:

Lmulti = γ0 Ex,m,ϵ

[
∥ϵ− ϵθ(x̂m,m,Fs(x))∥2

]
+ γ1 Ex [LCE (Ct(x̂′

0), y)] , (9)

where γ0 and γ1 are constants controlling the relative weights of the two loss terms, Ct(·) is frozen.

Proof. See Appendix A.1.

Remark. Theorem 1 shows that LGenDD acts as a gradient-level surrogate for the multi-task objec-
tive Lmulti, avoiding explicit classification loss optimization and eliminating the need for multi-step
sampling to obtain x̂

′

0 during training. This enables more efficient training while retaining strong
performance with label supervision.

4 EXPERIMENTS

Section 4.1 presents the competitive performance of GenDD under the unsupervised KD setting.
When label supervision is incorporated via Distribution Contraction, GenDD achieves strong re-
sults on both balanced and imbalanced datasets, as shown in Section 4.2. Finally, we perform
ablation studies in Section 4.3 to assess the impact of the proposed Split Tokenization (SplitTok) and
Distribution Contraction techniques.

Experimental Settings. Following prior work (Li et al., 2024), we implement the diffusion head
using a 3-layer MLP. For training, the maximum diffusion step is set to M = 1000. At inference,
we apply a 64-step sampling procedure to generate the feature representation x̂

′

0. For SplitTok, the
feature representation x̂0 is divided into non-overlapping tokens, each with a dimensionality of 64.
To enhance generation quality, we employ classifier-free guidance with a scale of 2.0.

For the unsupervised KD setting, we evaluate GenDD on the target dataset, i.e., ImageNet (Deng
et al., 2009), and non-target dataset CC3M (Changpinyo et al., 2021). Under the supervised KD
setting, we train various teacher-student configurations on balanced (including ImageNet (Deng
et al., 2009) and CIFAR (Krizhevsky et al., 2009)) and imbalanced data (ImageNet-LT).

4.1 GENDD IN UNSUPERVISED SETTING

To evaluate the effectiveness of GenDD for unsupervised knowledge distillation (KD), we train
models on both target data (ImageNet) and non-target data (CC3M), and assess their performance
on the ImageNet validation set. The results are summarized in Table 3.

For teacher-student configurations such as (ResNet-34, ResNet-18) and (ResNet-50, MobileNet),
we adopt pre-trained teacher models from PyTorch. Since these teachers have been trained on the
target dataset, their predictions closely approximate the ground-truth, allowing conventional KL-
based distillation without cross-entropy to perform competitively relative to GenDD.

However, in practical unsupervised KD scenarios, custom training data, along with their annotations,
can be both private and inaccessible. To simulate this setting, we train student models on non-
target data, specifically CC3M (Changpinyo et al., 2021), where teacher models have never been
exposed to the data. In this case, teacher predictions become less reliable, and naive KL-based
distillation without cross-entropy for label supervision fails to produce satisfactory results. As shown
in Table 3, with GenDD, our MobileNet achieves 67.89 top-1 accuracy, significantly outperforms
the KL baseline by 16.29%.

4.2 GENDD WITH LABEL SUPERVISION

Our studies on balanced data, including CIFAR and ImageNet, are presented in Section 4.2.1. Sec-
tion 4.2.2 discusses the effects of GenDD on imbalanced data, i.e., ImageNet-LT (Liu et al., 2019).

4.2.1 EXPERIMENTAL RESULTS ON BALANCED DATA

Experimental Results on ImageNet. On ImageNet, we evaluate a range of teacher-student configu-
rations, covering diverse network architectures (CNNs with regular or depth-wise convolutions, and

6
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Table 2: Top-1 accuracy (%) on the ImageNet validation with supervised GenDD. All results are
the average over three trials. “*” represents that the models are reproduced with the cosine learning
rate schedule for fair comparison.

Teacher Student Discriminative Point-wise Distillation Gen.D.D.

AT OFD CRD ReviewKD DKD* IKL-KD* KD* GenDD
ResNet-34, ResNet-18, Regular recipe, 100 epochs

Top-1 73.31 69.75 70.69 70.81 71.17 71.61 71.87 71.91 71.24 72.38
Top-5 91.42 89.07 90.01 89.98 90.13 90.51 90.45 90.52 90.23 90.63

ResNet-50, MobileNet, Regular recipe, 100 epochs

Top-1 76.16 68.87 69.56 71.25 71.37 72.56 72.55 73.19 71.44 73.78
Top-5 92.86 88.76 89.33 90.34 90.41 91.00 91.05 91.47 90.35 91.56

BEiTv2, ResNet-50, Strong recipe, 300 (A2) or 600 (A1) epochs

Top-1 (BEiT-L-A2) 88.01 79.80 - - 79.48 79.11 80.77 80.98 80.89 81.64
Top-1 (BEiT-B-A2) 86.12 79.80 - - - - - - 80.96 81.76
Top-1 (BEiT-L-A1) 88.01 80.38 - - - - 81.83 - 81.68 82.28

Table 3: Top-1 accuracy(%) on the ImageNet
validation with unsupervised GenDD.

Method Teacher Student Accuracy

w/o Label On Target Data, i.e., ImageNet-1K

KL ResNet-50 MobileNet 71.40
GenDD ResNet-50 MobileNet 72.03

w/o Label On Non-target Data, i.e., CC3M

KL ResNet-50 MobileNet 51.60
GenDD ResNet-34 ResNet-18 66.90
GenDD ResNet-50 MobileNet 67.89

Table 4: Top-1 accuracy(%) on the
ImageNet-LT validation with GenDD. “*”
represents the unsupervised setting.

Method Teacher Student Accuracy

Baseline - ResNet-18 41.15
Baseline - ResNet-50 45.47

KD ResNeXt-101 ResNet-18 44.32
KD ResNeXt-101 ResNet-50 48.31
IKL-KD ResNeXt-101 ResNet-18 45.21
IKL-KD ResNeXt-101 ResNet-50 49.29

GenDD* ResNext-101 ResNet-18 45.54
GenDD* ResNeXt-101 ResNet-50 49.31

Table 5: Top-1 accuracy (%) on the CIFAR-100 validation. Teachers and students are in the same
architectures. ∆ represents the improvements over the KD (Hinton et al., 2015) baseline. All results
are the average over three trials.

Distillation
Manner

Teacher ResNet56 ResNet110 ResNet32×4 WRN-40-2 WRN-40-2 VGG13
72.34 74.31 79.42 75.61 75.61 74.64

Student ResNet20 ResNet32 ResNet8×4 WRN-16-2 WRN-40-1 VGG8
69.06 71.14 72.50 73.26 71.98 70.36

Discriminative
Point-wise
Distillation

FitNet 69.21 71.06 73.50 73.58 72.24 71.02
RKD 69.61 71.82 71.90 73.35 72.22 71.48
CRD 71.16 73.48 75.51 75.48 74.14 73.94
OFD 70.98 73.23 74.95 75.24 74.33 73.95

ReviewKD 71.89 73.89 75.63 76.12 75.09 74.84

DKD 71.97 74.11 76.32 76.24 74.81 74.68
IKL-KD 71.44 74.26 76.59 76.45 74.98 74.98

KD 70.66 73.08 73.33 74.92 73.54 72.98

Gen.D.D. GenDD 72.63 74.95 77.47 76.83 75.98 74.24
∆ +1.97 +1.87 +4.14 +1.91 +2.44 +1.26

Transformers), training recipes (standard vs. strong augmentation), and model scales (e.g., ResNet-
34, ResNet-50, BEiT-Large). Despite the significant variation across configurations, we employ a
consistent λ = 0.9 for the Distribution Contraction in Definition 1, highlighting the generalizability,
robustness, and practical convenience of GenDD.

Under the regular training recipe (including RandomResizedCrop and horizontal flip), we train mod-
els 100 epochs with a cosine learning rate schedule. For fair comparisons, we reproduce the results of
KD, DKD, and IKL-KD with their open-sourced code and just replace the step learning rate sched-
ule with the cosine learning rate schedule. Our ResNet-18 achieves a top-1 accuracy of 72.38%,
outperforming KD, IKL-KD, and DKD by 1.14%, 0.47%, and 0.51%, respectively. Similarly, our
MobileNet reaches 73.78% top-1 accuracy, surpassing KD, IKL-KD, and DKD by 2.34%, 0.59%,
and 1.23%, respectively.
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Figure 4: Ablation studies on SplitTok and Distribution Contraction. (a) Top-1 Accuracy with dif-
ferent token dimension for SplitTok. The teacher-student configuration of (ResNet-50, MobileNet)
is used on ImageNet.; (b) Top-1 Accuracy under different 1−λ values for Distribution Contraction.
The teacher-student configuration of (ResNet-34, ResNet-18) is used on ImageNet.

When applying a strong training recipe, prior work (Hao et al., 2023) shows that recent advanced
KD methods such as DKD and ReviewKD only perform comparably to the original KD:

• A1: RandAug(7/0.5), MixUp: 0.2, CutMix: 1.0, Label Smoothing: 0.1, training 600 epochs.

• A2: RandAug(7/0.5), MixUp: 0.1, CutMix: 1.0, Label Smoothing: 0.0, training 300 epochs.

Remarkably, our GenDD models consistently outperform these baselines by a significant margin
with the same training settings. Specifically, taking BEiTv2-Large as the teacher, our ResNet-50
achieves 82.28% top-1 accuracy with the A1 training recipe.

Experimental Results on CIFAR. Following previous work (Cui et al., 2024a; Chen et al., 2021),
we consider the distillation among the architectures having the same unit structures, like ResNet56
and ResNet20, VGGNet13 and VGGNet8. On the other hand, we also explore the distillation among
architectures made up of different unit structures, like WideResNet and ShuffleNet, VGGNet and
ResNet. Specifically, we train all models for 240 epochs with a learning rate that decays by 0.1 at
the 150th, 180th, and 210th epoch.

Experimental results on CIFAR-100 are summarized in Table 5 and Table 7 (Appendix). Table 5 lists
the comparisons with previous methods under the setting that the architectures of the teacher and
student have the same unit structures. As shown in Table 5, GenDD models can achieve much better
or comparable performance in all considered settings. Specifically, we achieve the best performance
in 5 out of 6 training settings. Table 7 lists the comparisons with previous methods under the setting
that the architectures of the teacher and student have different unit structures. As shown in Table 7,
we achieve the best performance in 4 out of 5 training configurations.

4.2.2 EXPERIMENTAL RESULTS ON IMBALANCED DATA

Real-world data often exhibits a long-tailed distribution, making long-tailed recognition a critical
challenge for practical applications. Extensive research has been devoted to addressing this prob-
lem through both algorithmic and theoretical advances (Cui et al., 2019; Cao et al., 2019; Kang
et al., 2019; Cui et al., 2022; Menon et al., 2020; Cui et al., 2021; 2023; 2024b). Following recent
efforts (Cui et al., 2024a; 2025), we also evaluate the effectiveness of GenDD under data imbal-
ance using the ImageNet-LT benchmark (Liu et al., 2019). We train ResNet models for 90 epochs
using RandomResizedCrop and horizontal flipping as standard preprocessing. Following previous
work (Cui et al., 2024a), we report top-1 accuracy across Many-shot, Medium-shot, Few-shot, and
All classes to comprehensively assess performance.

As shown in Table 4 and Table 9 (Appendix A.5), we observe an interesting phenomenon: GenDD
without label supervision can even achieve slightly better performance than IKL-KD incorporating
labels. However, there are few accuracy gains after applying the label supervision with Distribution
Contraction, which is a different behaviour compared to balanced data. This phenomenon gives us
new insight into KD for imbalanced data: the necessity of labels for KD on imbalanced data. As
this work focuses on generative learning of KD, we leave this problem as our future work.
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Figure 5: Ablation studies on optimizer and learning rate schedule. (a) Comparison be-
tween AdamW and SGD optimizer for GenDD with teacher-student configuration of (ResNet-32x4,
ResNet-8x4) on CIFAR; (b) Comparison between Step and Cosine learning rate schedule for GenDD
with teacher-student configuration of (ResNet50, MobileNet) on ImageNet.

4.3 ABLATION STUDIES

Ablation of SplitTok. We validate the necessity of the proposed SplitTok under the (ResNet-50,
MobileNet) teacher-student configuration on ImageNet. As shown in Figure 4a, the model maintains
competitive performance when the token dimension is ≤ 256. However, accuracy drops sharply
to 0.1% as the token dimension increases from 512 to 2048, highlighting the high-dimensional
optimization challenge and the effectiveness of SplitTok in mitigating it.
Ablation on λ for Distribution Contraction. We validate the effectiveness of the proposed Distri-
bution Contraction technique under the (ResNet-34, ResNet-18) teacher configuration on ImageNet.
As illustrated in Figure 4b, GenDD achieves competitive performance in the unsupervised KD set-
ting with 1 − λ = 0.0. Deploying Distribution Contraction technique with a proper 1 − λ = 0.9,
our model achieves significant performance gains. Interestingly, we observe that the model achieves
much worse accuracy when the sample features contract to class centers, which indicates the im-
portance of the continuity of the sample feature space. Inspired by this phenomenon, we apply the
unsupervised mixup for diffusion training.
AdamW vs. SGD Optimizer. We investigate the impact of different optimizers on training GenDD.
While SGD is commonly used for CNNs and AdamW/Adam are standard choices for Transformers,
we adopt AdamW for GenDD following previous work MAR (Liu et al., 2023) and DDPM (Ho
et al., 2020). As shown in Figure 5a, our empirical results demonstrate that AdamW leads to more
stable and effective optimization for GenDD.
Cosine vs. Step Learning Rate Schedule for GenDD. We study the impact of learning rate sched-
ules on GenDD, focusing on step decay and cosine annealing strategies. For fair comparison, we
adopt the step schedule on CIFAR and reproduce the results of previous work with a cosine learning
rate in their open-sourced code on ImageNet. Our empirical results show that the cosine schedule
is critical for GenDD, particularly on large-scale datasets such as ImageNet. As illustrated in Fig-
ure 5b, cosine learning rates significantly accelerate convergence and improve overall performance.

5 CONCLUSION, LIMITATION, AND FUTURE WORK

In this paper, we propose the Generative Distribution Distillation (GenDD) algorithm, formulat-
ing the KD as a conditional generation problem. The straightforward GenDD pipeline suffers from
the high-dimensional optimization disaster and the lack of label supervision. We propose the Split
Tokenization (SplitTok) and Distribution Contraction techniques to address the above issues, respec-
tively. With theoretical analysis, we prove that GenDD with Distribution Contraction approximates
the multi-task learning (combining the reconstruction loss and the cross-entropy loss), while elim-
inating the multi-step sampling during training and achieving efficient optimization. Experimental
results in unsupervised/supervised KD demonstrate the effectiveness of our method.

At inference, we adopt a 64-step sampling to generate image representations for classification, which
can cause slightly higher latency. We would explore the few-step diffusion models or flow matching
to overcome this limitation in future work.
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6 ETHICS STATEMENT

This work presents the GenDD framework, aiming at improving the efficiency and effectiveness of
training smaller student models. By enabling compact models to better approximate the performance
of larger teacher models, our method has the potential to reduce computational costs and energy
consumption, thereby contributing to more sustainable and accessible AI.

We acknowledge that advances in KD may also be misused, for example, to replicate proprietary
models without authorization or to reduce safeguards embedded in larger models. To mitigate such
risks, we emphasize that our work is released for academic research purposes. All experiments are
conducted on standard public datasets (CIFAR, ImageNet, CC3M), and no sensitive or personally
identifiable information is used.

7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we provide detailed information regarding our ex-
perimental setup. All hyperparameters and implementation specifics are thoroughly documented in
Section 4 and Table A.2 in the Appendix of this paper. Additionally, our proof of Theorem 1 is
provided in Section A.1 of the Appendix. Finally, the code can be accessed at the following URL:

https://drive.google.com/file/d/12bwEj-wUqy2LFGpwsc_bikZF-Y_5SaP8/
view?usp=sharing
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A APPENDIX

A.1 PROOF OF THEOREM 1

We begin by restating the GenDD objective and the multi-task objective. The GenDD objective is
the expected noise prediction loss over noisy data x̃m:

LGenDD = Ex,m,ϵ

[
∥ϵ− ϵθ(x̃m,m,Fs(x))∥2

]
, (10)

where x̃m is given by:

x̃m =
√
ᾱmx̃0 +

√
1− ᾱmϵ, x̃0 = λx̂0 + (1− λ)cy (by Definition 1), (11)

where x̂0 is the teacher feature and cy is the class center for class y.

The multi-task objective consists of two parts: - The reconstruction loss via noise prediction:

Lnoise = Ex,m,ϵ

[
∥ϵ− ϵθ(x̂m,m,Fs(x))∥2

]
,

- The classification loss via cross-entropy:

LCE = Ex

[
LCE

(
Ct(x̂

′

0), y
)]

,

where x̂m is the noisy version of x̂0, Ct is the teacher classifier, and x̂
′

0 is the generated feature.

Thus, the multi-task loss is:
Lmulti = γ0Lnoise + γ1LCE,

where γ0 and γ1 are scaling constants.

Gradients of LGenDD Regarding x̂
′

0.

With the single-step estimation of x̂
′

0,

x̂
′

0 =
1√
ᾱm

(x̃m −
√
1− ᾱmϵθ). (12)

Then substitute x̃m in Equation (11),

x̂
′

0 = 1√
ᾱm

(
√
ᾱmx̃0 +

√
1− ᾱmϵ−√

1− ᾱmϵθ) = x̃0 +
√
1−ᾱm√
ᾱm

(ϵ− ϵθ), (13)

ϵ− ϵθ =
√

ᾱm

1−ᾱm
(x̂

′

0 − x̃0) (14)

With Equation (12),

LGenDD = Ex,m,ϵ

[
∥ϵ− ϵθ(x̃m,m,Fs(x))∥2

]
(15)

= Ex,m,ϵ

[∥∥∥∥ϵ− 1√
1− ᾱm

(x̃m −√
ᾱmx̂

′

0)

∥∥∥∥2
]

(16)

= Ex,m,ϵ

[
∥ϵ− ϵθ(x̂

′

0)∥2
]
. (17)

We take gradients of LGenDD with respect to x̂
′

0,

∇x̂
′
0
LGenDD = 2

√
ᾱm

1− ᾱm
(ϵ− ϵθ) (18)

=
2ᾱm

1− ᾱm
(x̂

′

0 − x̃0) (19)

=
2ᾱm

1− ᾱm
(x̂

′

0 − λx̂0 − (1− λ)cy) (20)

=

[
2ᾱm

1− ᾱm
(x̂

′

0 − x̂0)

]
+

[
2(1− λ)ᾱm

1− ᾱm
(x̂0 − cy)

]
. (21)
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Gradients of Lmulti Regarding x̂
′

0.

Similar to LGenDD, the gradient of Lnoise regrading x̂
′

0 is:

∇x̂
′
0
Lnoise =

2ᾱm

1− ᾱm
(x̂

′

0 − x̂0) (22)

For the LCE item, we assume the weight of the frozen linear classifier Ct(·) is W ∈ RC×d, where d
is the feature dimension and C is the number of interested classes. Then,

LCE = − log p(y|x̂′

0), where p(y|x̂′

0) =
Wyx̂

′

0∑C
i=1 Wix̂

′
0

, (23)

∇x̂
′
0
LCE =

C∑
i=1

[
p(i|x̂′

0)Wi

]
−Wy. (24)

Overall, the gradients of Lmulti regarding x̂0 is derived as:

∇x̂
′
0
Lmulti = γ0

[
2ᾱm

1− ᾱm
(x̂

′

0 − x̂0)

]
+ γ1

[
(x̂

′′

0 − cy)
]
, (25)

where x̂
′′

0 =
∑C

i=1

[
p(i|x̂′

0)Wi

]
, and cy = Wy . Note that we also use cy = Wy in Definition 1.

In Equation (25), we observe that x̂
′′

0 ≈ x̂
′

0 when the predicted probability p(y|x̂′

0) approaches 1.0.
To ensure consistency between training and inference in multi-task learning, it is crucial to employ
multi-step sampling to obtain accurate estimates of x̂

′

0 during the optimization of LCE. In such
cases, the improved quality of x̂

′

0 naturally leads to higher classification confidence, making the
approximation x̂

′′

0 ≈ x̂
′

0 practically valid.

Summary. Therefore, by comparing Equation (21) and Equation (25), we conclude that
∇x̂

′
0
LGenDD ≈ ∇x̂

′
0
Lmulti. This indicates that GenDD, augmented with the distribution contrac-

tion mechanism, functions as a gradient-level surrogate for multi-task learning, without requiring
the explicit application of the classifier loss to x̂

′

0.

A.2 COMPARISONS OF SENSITIVITY TO HYPERPARAMETERS WITH PREVIOUS METHODS ON
IMAGENET

Table 6: Sensitivity to hyperparameters. Advanced KD methods often involve complex hyperpa-
rameter tunning. Our GenDD method consistently works well across diverse teacher-student con-
figurations with λ = 0.9 on ImageNet.

Method Teacher-Student Hyperparameter configuration

KD ResNet-34 — ResNet-18
wkl = 0.5, wce = 0.5, T = 1.0ResNet-50 — MobileNet

DKD ResNet-34 — ResNet-18 wce = 1.0, wα = 1.0, wβ = 0.5, T = 1.0
ResNet-50 — MobileNet wce = 1.0, wα = 1.0, wβ = 2.0, T = 1.0

IKL-KD ResNet-34 — ResNet-18 wce = 1.0, wα = 1.0, wβ = 0.5, T = 1.0
ResNet-50 — MobileNet wce = 1.0, wα = 4.0, wβ = 1.0, T = 1.0

GenDD ResNet-34 — ResNet-18
λ=0.9ResNet-50 — MobileNet
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A.3 MORE RESULTS ON CIFAR-100

Table 7: Top-1 accuracy (%) on the CIFAR-100 validation. Teachers and students are in different
architectures. All results are the average over 3 trials.

Distillation
Manner

Teacher ResNet32×4 WRN-40-2 VGG13 WRN-40-2 ResNet32×4
79.42 75.61 74.64 75.61 79.42

Student ShuffleNet-V1 ShuffleNet-V1 ResNet20 ResNet8x4 ShuffleNet-V2
70.50 70.50 69.06 72.50 71.82

Discriminative
Point-wise
Distillation

FitNet 73.59 73.73 69.27 74.74 73.54
RKD 72.28 72.21 69.83 72.43 73.21
CRD 75.11 76.05 71.16 76.64 75.65
OFD 75.98 75.85 - 74.50 76.82

ReviewKD 77.45 77.14 - 75.48 77.78

DKD 76.45 76.70 70.57 75.23 77.07
IKL-KD 76.64 77.19 70.88 76.12 77.16

KD 74.07 74.83 70.20 74.01 74.45

Gen.D.D. GenDD 77.58 76.73 72.17 77.55 78.13
∆ +3.51 +1.90 +1.97 +3.54 +3.68

A.4 MORE ABLATIONS

Ablation on MLP Head. The diffusion head consists of a 3-layer MLP. To verify that the perfor-
mance gains are not due to additional parameters, we insert a 2/3-layer MLP before the classifier
in the student model for KD training. As shown in Table 8, this modification makes KD training
even harder to optimize without improving results, indicating that the gains arise from the diffusion
mechanism rather than extra parameters.

Method Top-1 (%)

KD*(optimal weight) 75.61
KD w/2-layer MLP 75.02
KD w/3-layer MLP 74.60

Table 8: Ablation on MLP head for the KD baseline.

A.5 DETAILED PERFORMANCE ON FEW-, MEDIUM-, AND MANY-SHOT

Table 9: Top-1 accuracy(%) on the ImageNet-LT validation with GenDD. “*” represents the
unsupervised setting.

Method Teacher Student All Few Medium Many

Baseline - ResNet-18 63.16 33.47 5.88 41.15
Baseline - ResNet-50 67.25 38.56 8.21 45.47

KD ResNeXt-101 ResNet-18 64.60 37.88 9.53 44.32
KD ResNeXt-101 ResNet-50 68.83 42.31 11.37 48.31
IKL-KD ResNeXt-101 ResNet-18 66.60 38.53 8.19 45.21
IKL-KD ResNeXt-101 ResNet-50 70.06 43.47 10.99 49.29

GenDD* ResNext-101 ResNet-18 66.71 39.02 8.66 45.54
GenDD* ResNeXt-101 ResNet-50 70.12 43.52 10.84 49.31
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B LLM USAGE AND REPRODUCIBILITY

We only use ChatGPT to polish our writing.

Our code is available at

https://drive.google.com/file/d/12bwEj-wUqy2LFGpwsc_bikZF-Y_5SaP8/
view?usp=sharing
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