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ABSTRACT

We address the challenge of minimizing true risk in multi-node distributed learn-
ing.1 These systems are frequently exposed to both inter-node and intra-node label
shifts, which present a critical obstacle to effectively optimizing model performance
while ensuring that data remains confined to each node. To tackle this, we propose
the Versatile Robust Label Shift (VRLS) method, which enhances the maximum
likelihood estimation of the test-to-train label density ratio. VRLS incorporates
Shannon entropy-based regularization and adjusts the density ratio during training
to better handle label shifts at the test time. In multi-node learning environments,
VRLS further extends its capabilities by learning and adapting density ratios across
nodes, effectively mitigating label shifts and improving overall model performance.
Experiments conducted on MNIST, Fashion MNIST, and CIFAR-10 demonstrate
the effectiveness of VRLS, outperforming baselines by up to 20% in imbalanced
settings. These results highlight the significant improvements VRLS offers in ad-
dressing label shifts. Our theoretical analysis further supports this by establishing
high-probability bounds on estimation errors.

1 INTRODUCTION

The classical learning theory relies on the assumption that data samples, during training and testing,
are independently and identically distributed (i.i.d.) drawn from an unknown distribution. However,
this i.i.d. assumption is often overly idealistic in real-world settings, where the distributions of training
and testing samples can differ significantly and change dynamically as the operational environment
evolves. In distributed learning (Kim et al., 2022; Wen et al., 2023; Ye et al., 2023; Luo et al., 2023),
where nodes retain their own data without sharing, these discrepancies across nodes become more
pronounced, further intensifying the learning challenge (Rahman et al., 2023; Wang et al., 2023).

Label shifts (Lipton et al., 2018; Garg et al., 2022; Mani et al., 2022; Zhou et al., 2023) represent a
form of distributional discrepancy that arises when the marginal distribution of labels in the training set
differs from that in the test set, i.e., pte(y) ̸= ptr(y), while the conditional distribution of features given
labels, p(x|y), remains largely stable across both datasets. Label shifts commonly manifest both inter-
node and intra-node, complicating the learning process in real-world distributed learning scenarios.
However, a commonly used learning principle in this distributed setting, empirical risk minimization
(ERM) (Kur et al., 2024), operates under the assumption that the training and test distributions are
identical on each node and across nodes. This overlooks these shifts, failing to account for the
statistical heterogeneity across decentralized data sources. While the current literature (Yin et al.,
2024) addresses statistical heterogeneity across nodes, it often neglects distribution shifts at test or
operation time, which has been a significant challenge in the entire data science over decades.

The primary technical challenge in addressing label shifts lies in the efficient and accurate estimation
of the test-to-train density ratios, pte(y)/ptr(y), across all labels. A widely popular solution is Maxi-
mum Likelihood Label Shift Estimation (MLLS) (Garg et al., 2020), which frames this estimation as
a convex optimization problem, akin to the Expectation-Maximization (EM) algorithm (Saerens et al.,
2002). Model calibration refers to the process of ensuring that predicted probabilities reflect the true
likelihood of correctness, which is crucial for improving the accuracy of density ratio estimation (Guo
et al., 2017a; Garg et al., 2020). Bias-Corrected Calibration (BCT) (Alexandari et al., 2020) serves as
an efficient calibration method that enhances the EM algorithm within MLLS.

1We use the term node to refer to a client, FPGA, APU, CPU, GPU, or worker.
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While BCT and other post-hoc calibration techniques (Guo et al., 2017c; Kull et al., 2019; Wang
et al., 2021a; Sun et al., 2024) contribute to improved calibration and may potentially improve model
performance, their primary focus remains on refining classification outcomes rather than on accurately
approximating the true conditional distribution ptr(y|x). The “predictor” in these literature captures
the relationship between the input features x and the corresponding output probabilities across the
labels in the discrete label space Y , with |Y| = m, which should approximate the true distribution
of ptr(y|x). Despite this goal, training with conventional cross-entropy loss often leads to models
that produce predictions that are either highly over-confident or under-confident, resulting in poorly
calibrated outputs (Guo et al., 2017a). Consequently, the predictor fails to capture the underlying
uncertainty inherent in ptr(y|x), which limits its effectiveness in estimating density ratios (Alexandari
et al., 2020; Garg et al., 2020; Guo et al., 2020; 2017b; Pereyra et al., 2017; McMahan et al., 2017).

To address this limitation, we propose a novel Versatile Robust Label Shift (VRLS) method, specifi-
cally designed to improve density ratio estimation for tackling the label shift problem. A key idea of
our VRLS method is to approximate ptr(y|x) in a way that accounts for the inherent uncertainty over
the label space Y for each input x. Accordingly, we propose a new objective function incorporating
regularization to penalize predictions that lack proper uncertainty calibration. We show that training
the predictor in this manner significantly reduces estimation error under various label shift conditions.

Building upon our VRLS method, we extend its application to multi-node settings by proposing an
Importance Weighted-ERM (IW-ERM) framework. Within the multi-node distributed environment,
our IW-ERM aims to find an unbiased estimate of the overall true risk minimizer across multiple
nodes with varying label distributions. By effectively addressing both intra-node and inter-node label
shifts with generalization guarantees, our framework handles the statistical heterogeneity inherent in
decentralized data sources. Our extensive experiments demonstrate that the IW-ERM framework,
which trains predictors exclusively on local node data, significantly improves overall test error.
Moreover, it maintains convergence rates and privacy levels comparable to standard ERM methods
while achieving minimal communication and computational overhead compared to existing baselines.
Our main contributions are as follows:

• We propose VRLS, which enhances the approximation of the probability distribution ptr(y|x) by
incorporating a novel regularization term based on Shannon entropy (Neo et al., 2024). This
regularization leads to more accurate estimation of the test-to-train label density ratio, resulting in
improved predictive performance under various label shift conditions.

• By integrating our VRLS ratio estimation into multi-node distributed learning environment, we
achieve performance close to an upper bound that uses true ratios on Fashion MNIST and CIFAR-10
datasets with 5, 100, and 200 nodes. Our IW-ERM framework effectively manages both inter-node
and intra-node label shifts while remaining data confined within each node, resulting in up to 20%
improvements in average test error over current baselines.

• We establish high-probability estimation error bounds for VRLS, as well as high-probability conver-
gence bounds for IW-ERM with VRLS in nonconvex optimization settings (Section 5, Appendices E,
F). Additionally, we demonstrate that incorporating importance weighting does not negatively impact
convergence rates or communication guarantees across various optimization settings.

2 DENSITY RATIO ESTIMATION AND IMPORTANCE WEIGHTED-ERM

Density ratio estimation Density ratio estimation for label shifts has been addressed by methods
such as solving linear systems (Lipton et al., 2018; Azizzadenesheli et al., 2019) and minimizing
distribution divergences (Garg et al., 2020), primarily in the context of a single node. Lipton et al.
(2018); Azizzadenesheli et al. (2019); Garg et al. (2020) assumed the conditional distribution p(x|y)
remains fixed between the training and test datasets, while the label distribution p(y) changes. Black
Box Shift Estimation (BBSE) (Lipton et al., 2018; Rabanser et al., 2019) and Regularized Learning
under Label Shift (RLLS) (Azizzadenesheli et al., 2019) are confusion matrix-based methods for
estimating density ratios in label shift problems. While BBSE has been shown consistent even when
the predictor is not calibrated, its subpar performance is attributed to information loss inherent in
using confusion matrices (Garg et al., 2020). To overcome this, Garg et al. (2020) has introduced the
MLLS, resulting in significant improvements in estimation performance, especially when combined
with post-hoc calibration methods like BCT (Shrikumar et al., 2019). This EM algorithm based
MLLS method (Saerens et al., 2002; Garg et al., 2020) is concave and can be solved efficiently.
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Table 1: Details of the label shift scenarios. Their IW-ERM formulas are presented in Appendix C.

Scenario #Nodes Assumptions on Distributions Ratio Node i Needs
No-LS in Equation (17) 2 ptr

1(y) = pte
1 (y), p

tr
1(y) ̸= ptr

2(y) ptr
1(y)/p

tr
2(y)

LS on single in Equation (18) 2 ptr
1(y) ̸= pte

1 (y), p
tr
2(y) = pte

2 (y) pte
1 (y)/p

tr
1(y), p

te
1 (y)/p

tr
2(y)

LS on both in Equation (18) 2 ptr
1(y) ̸= pte

1 (y), p
tr
2(y) ̸= pte

2 (y) pte
1 (y)/p

tr
1(y), p

te
1 (y)/p

tr
2(y)

LS on multi in Equation (19) K ptr
k(y) ̸= pte

1 (y) for all k pte
1 (y)/p

tr
k(y) for all k

Importance Weighted-ERM Classical ERM seeks to minimize the expected loss over the training
distribution using finite samples. However, when there is a distribution shift between the training
and test data, the objective of ERM is not to minimize the expected loss over the test distribution,
regardless of the number of training samples. To address this, IW-ERM is developed (Shimodaira,
2000; Sugiyama et al., 2006; Byrd & C. Lipton, 2019; Fang et al., 2020), which adjusts the training
loss by weighting samples according to the density ratio, i.e., the ratio of the test density to the
training density. Shimodaira (2000) has shown that the IW-ERM estimator is asymptotically unbiased
under certain conditions. Building on this, Ramezani-Kebrya et al. (2023) have recently introduced
Federated IW-ERM, which incorporates density ratio estimation to handle covariate shifts in dis-
tributed learning. However, this approach has limitations, as it does not address label shifts and the
density ratio estimation method poses potential privacy risks.

In this work, we focus on label shifts and propose an IW-ERM framework enhanced by our VRLS
method. We show that our IW-ERM with VRLS performs comparably to an upper bound that
utilizes true density ratios, all while preserving data privacy across distributed data sources. This
approach effectively addresses both intra-node and inter-node label shifts while ensuring convergence
in probability to the overall true risk minimizer.

3 VERSATILE ROBUST LABEL SHIFT: REGULARIZED RATIO ESTIMATION

In this section, we introduce the Versatile Robust Label Shift (VRLS) method for density ratio
estimation in a single-node setting, which forms the basis of the IW-ERM framework. To solve the
optimization problem of IW-ERM, each node k requires an accurate estimate of the ratio:

rk(y) =

∑K
j=1 p

te
j (y)

ptr
k(y)

, (1)

where pte
j (y) and ptr

k(y) represent the test and training label densities, respectively. To improve
clarity and avoid over-complicating notations, we first consider the scenario where we have only one
node under label shifts and then extend to multiple nodes. Table 1 presents various scenarios. In a
single-node label shift scenario, the goal is to estimate the ratio r(y) = pte(y)/ptr(y). Following the
seminal work of Garg et al. (2020), we formulate density ratio estimation as a Maximum Likelihood
Estimation (MLE) problem by constructing an optimization problem based on Kullback-Leibler
(KL) divergence to directly estimate r(y). We train a predictor fθ to approximate ptr(y|x), where θ
denotes the parameters of a neural network. After training, we apply the predictor fθ⋆ to a finite set
of unlabeled samples drawn from the test distribution to obtain predicted label probabilities. These
predictions are then used to estimate the ratio rf⋆ . Further details are provided in Algorithm 1.

One of the novelties of VRLS is its ability to better calibrate the predictor, enabling it to better
approximate the true conditional distribution ptr(y|x). This approximation faces two main chal-
lenges, as highlighted in Theorem 3 of (Garg et al., 2020): finite-sample error and miscalibration
error. Entropy-based regularization can directly tackle miscalibration, which occurs when predicted
probabilities systematically deviate from true likelihoods. Building on these insights, we introduce an
explicit entropy regularizer into the training objective, which is based on Shannon’s entropy (Pereyra
et al., 2017; Neo et al., 2024). The regularization term Ω(fθ) is defined as:

Ω(fθ) =

m∑
c=1

ϕ
(
fθ(x)

)
c
log

(
ϕ
(
fθ(x)

)
c

)
, (2)

where ϕ denotes the softmax function, and c represents the cth element of the softmax output vector.
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Algorithm 1 VRLS Density Ratio Estimation Algorithm

Require: Labeled training data {(xi,yi)}n
tr

i=1.
Require: Unlabeled test data {xj}n

te

j=1.
Require: Initial predictor fθ .
Ensure: Optimized predictor fθ∗ and estimated density ratio rf∗ .
1: Training:
2: Optimize fθ using Equation (4) via SGD.
3: Continue until the training loss drops below a threshold or the maximum epochs are reached.
4: Obtain the optimized predictor fθ∗ .
5: Density Ratio Estimation:
6: With the optimized predictor fθ∗ , estimate the density ratio rf∗ using equation Equation (3).

With this regularization to the softmax outputs, VRLS encourages smoother and more reliable
predictions that account for inherent uncertainty in the data, leading to more accurate density ratio
estimates and improving the SotA in practice. These improvements are empirically demonstrated
in Section 6. Our proposed VRLS objective is formulated as follows:

rf⋆ = argmax
r∈Rm

+

Ete
[
log(fθ⋆(x)⊤r)

]
, (3)

where
θ⋆ = argmin

θ
Etr

[
ℓCE

(
fθ(x),y

)
+ ζΩ(fθ)

]
. (4)

The vector r in Equation (3), representing the density ratios for all m classes, belongs to the non-
negative real space Rm

+ . This constraint set is defined similarly to MLLS (Garg et al., 2022), and
we use the expected value Ete for estimation, denoting the optimal density ratio as rf⋆ . To train
the predictor θ, we minimize the cross-entropy loss ℓCE together with a scaled regularization term
ζΩ(fθ), where ζ > 0 is a coefficient controlling the regularization strength. Incorporating the
regularizer Ω(fθ) improves the model calibration under the influence of ℓCE loss.

4 VRLS FOR MULTI-NODE ENVIRONMENT

We now extend VRLS to the multi-node environment, taking into account the privacy and commu-
nication requirements. This extension naturally aligns with the concept of IW-ERM, effectively
integrating these considerations into the multi-node learning paradigm. We consider multiple nodes
where each node has distinct training and test distributions. The goal here is to train a global model
that utilizes local data and addresses overall test error. In this setup, each node uses its local data to
estimate the required density ratios, as outlined in Section 3, and shares only low-dimensional ratio
information, without the need to share any local data.

The process begins with each node training a global model on its local data, independently estimating
its density ratios. These locally computed ratios are then shared amongst the nodes, allowing for
the aggregated ratio required for IW-ERM to be computed centrally. This aggregated ratio is then
used to further refine the global model in a second round of global training. This approach ensures
minimal communication overhead and preserves node data privacy, as detailed in Section 5. Our
experimental results in Section 6 demonstrate that the IW-ERM framework significantly improves
test error performance while minimizing communication and computation overhead compared to
baseline ERM. The density ratio estimation and IW-ERM are described in Algorithm 2.

To provide a more comprehensive understanding of the multi-node environment, the following
discussion delves into its details. Let X ⊆ Rd0 be a compact metric space for input features, Y be a
discrete label space with |Y| = m, and K be the number of nodes in an multi-node setting.2 Let Sk =

{(xtr
k,i,y

tr
k,i)}

ntr
k

i=1 denote the training set of node k with ntr
k samples drawn i.i.d. from a probability

2Sets and scalars are represented by calligraphic and standard fonts, respectively. We use [m] to denote
{1, . . . ,m} for an integer m. We use ≲ to ignore terms up to constants and logarithmic factors. We use E[·] to
denote the expectation and ∥ · ∥ to represent the Euclidean norm of a vector. We use lower-case bold font to
denote vectors.
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Algorithm 2 IW-ERM with VRLS in Distributed Learning

Require: Labeled training data {(xtr
k,i,y

tr
k,i)}

ntr
k

i=1 at each node k, for k = [K].

Require: Unlabeled test data {xte
k,j}

nte
k

j=1 at each node k, for k = [K].
Require: Initial global model hw.
Ensure: Trained global model hw optimized with IW-ERM.
1: Phase 1: Density Ratio Estimation with VRLS
2: for each node k = 1 to K in parallel do
3: Train local predictor fk,θ on local training data {(xtr

k,i,y
tr
k,i)}.

4: Use fk,θ∗ to estimate the density ratio rk,f∗ on unlabeled test data {xte
k} at node k.

5: end for
6: Phase 2: Density Ratio Aggregation
7: for each node k = 1 to K do
8: Aggregate density ratio using Equation (1).
9: end for

10: Phase 3: Global Model Training with IW-ERM
11: Train global model hw using Equation (IW-ERM) with the aggregated density ratios.

distribution ptr
k on X × Y . The test data of node k is drawn from another probability distribution pte

k
on X ×Y . We assume that the class-conditional distribution pte

k (x|y) = ptr
k(x|y) := p(x|y) remains

the same for all nodes k. This is a common assumption and holds when label shifts primarily affect
labels’ prior distribution of the labels p(y) rather than the underlying feature distribution given the
labels, e.g., when features that are generated given a label remains constant (Zadrozny, 2004; Huang
et al., 2006; Sugiyama et al., 2007). Note that ptr

k(y) and pte
k (y) can be arbitrarily different, which

gives rise to intra- and inter-node label shifts (Zadrozny, 2004; Huang et al., 2006; Sugiyama et al.,
2007; Garg et al., 2023).

In this multi-node environment, the aim is to find an unbiased estimate of the overall true risk
minimizer across multiple nodes under both intra-node and inter-node label shifts. Specifically, we
aim to find a hypothesis hw ∈ H : X → Y , represented by a neural network parameterized by w,
such that hw(x) provides a good approximation of the label y ∈ Y corresponding to a new sample
x ∈ X drawn from the aggregated test data. Let ℓ : X × Y → R+ denote a loss function. Node k
aims to learn a hypothesis hw that minimizes its true (expected) risk:

Rk(hw) = E(x,y)∼pte
k(x,y)

[ℓ(hw(x),y)]. (Local Risk)

We now modify the classical ERM and formulate IW-ERM to find a predictor that minimizes the
overall true risk over all nodes under label shifts:

min
hw∈H

K∑
k=1

1

ntr
k

ntr
k∑

i=1

∑K
j=1 p

te
j (y

tr
k,i)

ptr
k(y

tr
k,i)

ℓ(hw(xtr
k,i),y

tr
k,i) (IW-ERM)

where ntr
k is the number of training samples at node k.

To incorporate our VRLS density ratio estimation method into the IW-ERM framework, we replace

the ratio term
∑K

j=1 pte
j (y

tr
k,i)

ptr
k(y

tr
k,i)

with our estimated density ratios. This modification aims to align
the empirical risk minimization with the true risk minimization over all nodes. We formalize the
convergence of this approach in Proposition 4.1.
Proposition 4.1. Under the label shift setting described in Section 1, equation IW-ERM is consistent
and the learned function hw converges in probability towards the optimal function that minimizes the
overall true risk across nodes,

∑K
k=1 Rk.

Proof. Due to space limitations, the proof is provided in Appendix C. Convergence in probability
is established by applying the law of large numbers following (Shimodaira, 2000)[Section 3] and
(Sugiyama et al., 2007)[Section 2.2].

5 RATIO ESTIMATION BOUNDS AND CONVERGENCE RATES

In this section, we present bounds on ratio estimation and convergence rates for the finite sample
errors incurred during the estimation, as further discussed in Appendices E, F. In practice, we only

5
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have access to a finite number of labeled training samples, {(xi,yi)}n
tr

i=1, and a finite number of
unlabeled test samples, {xj}n

te

j=1. These samples serve to compute the following estimates:

θ̂ntr = argmin
θ∈Θ

1

ntr

ntr∑
i=1

(
ℓCE(fθ(xi),yi) + ζΩ(fθ)

)
,

and r̂nte = argmax
r∈Rm

+

1

nte

nte∑
j=1

log(fθ̂ntr
(xj)

⊤r).

We will show that the errors of these estimates can be controlled. The following assumptions are
necessary to establish our results.
Assumption 5.1 (Boundedness). The data and the parameter space Θ are bounded, i.e, there exists
bX , bΘ > 0 such that

∀x ∈ X , ∥x∥2 ≤ bX and ∀θ ∈ Θ, ∥θ∥2 ≤ bΘ.

Assumption 5.2 (Calibration). Let θ⋆ be as defined in Equation (4). There exists µ > 0 such that

E
[
fθ⋆(x)fθ⋆(x)⊤

]
⪰ µIm.

The calibration Assumption 5.2 first appears in (Garg et al., 2020). It is necessary for the ratio
estimation procedure to be consistent and we refer the reader to Section 4.3 of Garg et al. (2020)
for more details. We further need Assumption 5.1 because, unlike (Garg et al., 2020), the empirical
estimator r̂nte is estimated using another estimator θ̂ntr . Uniform bounds are therefore needed to
control finite sample error as we cannot directly apply concentration inequalities, as is done in the
proof of (Garg et al., 2020, Lemma 3), since we do not have independence of the terms appearing in
the empirical sums. We nonetheless prove a similar result in the following theorem.
Theorem 5.1 (Ratio Estimation Error Bound). Let δ ∈ (0, 1) and F := {x 7→ r⊤fθ(x), (r,θ) ∈
R×Θ}. Under Assumptions 5.1-5.2, there exist constants L > 0, B > 0 such that with probability
at least 1− δ:

∥r̂nte − rf⋆∥2 ≤ 2

µpmin

( 4√
nte

Rad(F) + 4B

√
log(4/δ)

nte

)
+

4L

µpmin
E [∥θ − θ⋆∥2] . (5)

Here, pmin = miny p(y) and

Rad(F) =
1√
ntr

Eσ1,...,σ

 sup
(r,θ)∈R×Θ

∣∣∣∣∣∣
ntr∑
i=1

σir
⊤fθ(xi)

∣∣∣∣∣∣
 , (6)

where σ1, . . . , σ are Rademacher variables uniformly chosen from {−1, 1}.

Proof. The proof of Theorem 5.1 is provided in Appendix E. The Rademacher complexity appearing
in the bound will depend on the function class chosen for f . Moreover as regularization often
encourages lower complexity functions, this complexity can be reduced because of the presence of
the regularization term in the estimation of θ in our setting.

By estimating the ratios locally and incorporating them into local losses, the properties of the modified
loss with respect to neural network parameters w remain unchanged, with data-dependent parameters
like Lipschitz constants scaled linearly by rmax. Our approach trains the predictor using only local
data, ensuring IW-ERM with VRLS retains the same privacy guarantees as baseline ERM-solvers.
Communication involves only the marginal label distribution, adding negligible overhead, as it is far
smaller than model parameters and requires just one round of communication. Overall, importance
weighting does not impact communication guarantees during optimization.
Theorem 5.2 (Convergence-communication). Let maxy∈Y supf rf (y) = rmax. Suppose Algo-
rithm 2, e.g., IW-ERM with VRLS for multi-node environment, is run for T iterations. Then Algo-
rithm 2 achieves a convergence rate of O(rmaxh(T )), where O(h(T )) denotes the rate of ERM-solver
baseline without importance weighting. Throughout the course of optimization, Algorithm 2 has the
same overall communication guarantees as the baseline.
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In the following, we establish tight convergence rates and communication guarantees for IW-ERM
with VRLS in a broad range of importance optimization settings including upper- and lower-bounds
for convex optimization (Theorems 5.3- 5.4), second-order differentiability, composite optimization
with proximal operator (Theorem F.3), optimization with adaptive step-sizes, and nonconvex opti-
mization (Theorems F.1- F.2), along the lines of e.g., (Woodworth et al., 2020; Haddadpour et al.,
2021; Glasgow et al., 2022; Liu et al., 2023; Hu & Huang, 2023; Wu et al., 2023; Liu et al., 2023).

Assumption 5.3 (Convex and Smooth). 1) A minimizer w⋆ exists with bounded ∥w⋆∥2; 2) The ℓ◦hw

is β-smoothness and convex w.r.t. w; 3) The stochastic gradient g(w) = ∇̃wℓ(hw) is unbiased, i.e.,
E[g(w)] = ∇wℓ(hw) for any w ∈ W with bounded variance E[∥g(w)−∇wℓ(hw)∥22].

For convex and smooth optimization, we establish convergence rates for IW-ERM with VRLS and
local updating along the lines of e.g., (Woodworth et al., 2020, Theorem 2).

Theorem 5.3 (Upper Bound for Convex and Smooth). Let D = ∥w0 −w⋆∥, τ denote the number
of local steps (number of stochastic gradients per round of communication per node), R denote
the number of communication rounds, and maxy∈Y supf rf (y) = rmax. Under Assumption 5.3,
suppose Algorithm 2 with τ local updates is run for T = τR total stochastic gradients per node with
an optimally tuned and constant step-size. Then we have the following upper bound:

E[ℓ(hwT
)− ℓ(hw⋆)] ≲

rmaxβD
2

τR
+

(rmaxβD
4)1/3

(
√
τR)2/3

+
D√
KτR

. (7)

Assumption 5.4 (Convex and Second-order Differentiable). 1) The ℓ(hw(x),y) is β-smoothness
and convex w.r.t. w for any (x, y); 2) The stochastic gradient g(w) = ∇̃wℓ(hw) is unbiased, i.e.,
E[g(w)] = ∇wℓ(hw) for any w ∈ W with bounded variance E[∥g(w)−∇wℓ(hw)∥22].
Theorem 5.4 (Lower Bound for Convex and Second-order Differentiable). Let D = ∥w0 −w⋆∥,
τ denote the number of local steps, R denote the number of communication rounds, and
maxy∈Y supf rf (y) = rmax. Under Assumption 5.4, suppose Algorithm 2 with τ local updates is
run for T = τR total stochastic gradients per node with a tuned and constant step-size. Then we
have the following lower bound:

E[ℓ(hwT
)− ℓ(hw⋆)] ≳

rmaxβD
2

τR
+

(rmaxβD
4)1/3

(
√
τR)2/3

+
D√
KτR

. (8)

We finally establish high-probability convergence bounds for IW-ERM with VRLS along the lines
of e.g., (Liu et al., 2023, Theorem 4.1). To show the impact of importance weighting on convergence
rate decoupled from the impact of number of nodes and obtain the current SotA high-probability
bounds for nonconvex optimization, we focus on IW-ERM with K = 1.

Assumption 5.5 (Sub-Gaussian Noise). 1) A minimizer w⋆ exists; 2) The stochastic gradients
g(w) = ∇̃wℓ(hw) is unbiased, i.e., E[g(w)] = ∇wℓ(hw) for any w ∈ W; 3) The noise ∥g(w)−
∇wℓ(hw)∥2 is σ-sub-Gaussian (Vershynin, 2018).

Theorem 5.5 (High-probability Bound for Nonconvex Optimization). Let δ ∈ (0, 1) and T ∈ Z+.
Let K = 1 and maxy∈Y supf rf (y) = rmax. Under Assumption 5.5 and β-smoothness of nonconvex

ℓ ◦ hw, suppose IW-ERM is run for T iterations with a step-size min
{

1
rmaxβ

,
√

1
σ2rmaxβT

}
. Then

with probability 1− δ, gradient norm squareds satisfy:

1

T

T∑
t=1

∥∇wℓ(hwt
)∥22 = O

(
σ

√
rmaxβ

T
+

σ2 log(1/δ)

T

)
. (9)

Proof. We note that density ratios do not depend on the model parameters w and the Lipschitz and
smoothness constants for ℓ ◦ hw w.r.t. w are scaled by rmax. The rest of the proof follows the
arguments of (Liu et al., 2023, Theorem 4.1).

Theorem 5.5 shows that when the stochastic gradients are too noisy σ = Ω(
√
rmaxβ/ log(1/δ)) such

that the second term in the rate dominates, then importance weighting does not have any negative
impact on the convergence rate.
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MNIST CIFAR-10 CIFAR-10, Relaxed CIFAR-10, Relax-m

Figure 1: MSE analysis across different datasets and settings for VRLS (ours) compared to baselines,
focusing on shift parameter (α) experiments. These subfigures include results from MNIST, CIFAR-
10, and relaxed label shift, illustrating the consistent superiority of VRLS. In the ‘relaxed’ setting,
Gaussian blur (kernel size: 3; σ: 0.1–0.5) and brightness adjustment (factor: ±0.1) are applied with
a 30% probability to introduce real-world variability. In the ‘relax-m’ scenario, augmentations are
applied with a 50% probability, with Gaussian blur (σ: 0.1–0.7) and brightness (factor: ±0.2).

MNIST CIFAR-10 CIFAR-10, Relaxed CIFAR-10, Relax-m

Figure 2: MSE analysis across different datasets and settings for VRLS (ours) compared to baselines,
focusing on sample size experiments. These subfigures include results from MNIST, CIFAR-10, and
relaxed label shift conditions, highlighting VRLS’s superior performance across varying test set sizes.

6 EXPERIMENTS

The experiments are divided into two main parts: evaluating VRLS’s performance on a single node
focusing on intra-node label shifts, and extending it to multi-node distributed learning scenarios with
5, 100, and 200 nodes. In the multi-node cases, we account for both inter-node and intra-node label
shifts. Further experimental details, results, and discussions are provided in Appendix J.

Density ratio estimation. We begin by evaluating VRLS on the MNIST (LeCun et al., 1998)
and CIFAR-10 (Krizhevsky) datasets in a single-node setting. Following the common experimental
setup in the literature (Lipton et al., 2018), we simulate the test dataset using a Dirichlet distribution
with varying α parameters. In this context, a higher α value indicates smoother transitions in the
label distribution, while lower values reflect more abrupt shifts. The training dataset is uniformly
distributed across all classes. Initially, using a sample size of 5,000, we investigate 20 α values
within the range [10−1, 101]. Next, we fix α at either 1.0 or 0.1 and explore 50 different sample sizes
ranging from 200 to 10,000. For each experiment, we run 100 trials and compute the mean squared
error (MSE) between the true ratios and the estimated ratios. A two-layer MLP is used for MNIST,
while ResNet-18 (He et al., 2016) is applied for CIFAR-10.

Figure 1 and Figure 2 compares our proposed VRLS with baselines (Garg et al., 2020; Saerens et al.,
2002) under label shifts. MLLS L2 refers to the MLLS method using convex optimization via SGD
(Garg et al., 2020), while MLLS EM employs the same objective function but is optimized using
the EM algorithm (Saerens et al., 2002). Our proposed VRLS is optimized in a similar manner,
resulting in VRLS L2 and VRLS EM, as shown in the figure. Our method consistently achieves lower
MSE across different label shift intensities (α) and test sample sizes on both datasets. Notably, our
density ratio estimation experiments align with the error bound in Theorem 5.1, demonstrating that
increasing the number of test samples improves estimation error at a rate proportional to the square
root of the sample size. Additionally, the regularization term constrains the parameter space and
reduces Rademacher complexity, leading to smoother predictions and improved model calibration, as
supported by Section S2 in (Guo et al., 2017a). Both of them contribute to reduced estimation error.
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Method Avg.accuracy

Our IW-ERM 0.7520 ± 0.0209

Our IW-ERM (small) 0.7376 ± 0.0099

FedAvg 0.5472 ± 0.0297

FedBN 0.5359 ± 0.0306

FedProx 0.5606 ± 0.0070

SCAFFOLD 0.5774± 0.0036

Upper Bound 0.8273 ± 0.0041

Table 2: We utilize LeNet on Fashion MNIST to
address label shifts across 5 nodes. For the baseline
methods—FedAvg, FedBN, FedProx, and SCAF-
FOLD—we run 15,000 iterations, while both the
Upper Bound (IW-ERM with true ratios) and our
IW-ERM with VRLS are limited to 5,000 iterations.
Notably, we employ a simple MLP with dropout
for training the predictor. The model labeled Our
IW-ERM (small) refers to our approach where the
black-box predictor is trained using only 10% of
the available training data, balancing computa-
tional efficiency with competitive performance.

Table 3: We deploy ResNet-18 on CIFAR-10 to address label shifts across 5 nodes. The predictor
is also a ResNet-18, ensuring consistency with the single-node scenario. For a fair comparison, we
limit IW-ERM with VRLS and the true ratios to 5,000 iterations, while FedAvg and FedBN are run
for 10,000 iterations. Detailed results are provided in Table 7.

CIFAR-10 Our IW-ERM FedAvg FedBN Upper Bound

Avg. accuracy 0.5640 ± 0.0241 0.4515 ± 0.0148 0.4263 ± 0.0975 0.5790 ± 0.0103

Table 4: We present the average node accuracies from the CIFAR-10 target shift experiment conducted
with 100 and 200 nodes, where 5 nodes are randomly sampled to participate in each training round.
Our IW-ERM with VRLS is run for 5,000 and 10,000 iterations, respectively, while both FedAvg and
FedBN are run for 10,000 iterations each.

CIFAR-10 Our IW-ERM FedAvg FedBN

Avg. accuracy (100 nodes) 0.5354 0.3915 0.1537

Avg. accuracy (200 nodes) 0.6216 0.5942 0.1753

We also tested density ratio estimation under relaxed label shift conditions and found VRLS to exhibit
greater robustness (see Appendix J.2 for detailed settings). Although this assumption holds broader
potential for real-world applications, its precise alignment with real-world datasets requires further
investigation—an important direction for future research that extends beyond the scope of this work.

Distributed learning settings. We apply VRLS in a distributed learning context, addressing
both intra- and inter-node label shifts. The initial experiments involve 5 nodes, using predefined
label distributions on Fashion MNIST (Xiao et al., 2017) and CIFAR-10, as shown in Tables 8- 9
in Appendix J.

We employ a simple MLP with dropout as the predictor for Fashion MNIST. For global training
with IW-ERM, LeNet (LeCun et al., 1998) is used on Fashion MNIST, and ResNet-18 (Ramezani-
Kebrya et al., 2023) on CIFAR-10. All experiments are run with three random seeds, reporting
the average accuracy across nodes. We compare IW-ERM with VRLS against baseline methods,
including FedAvg (McMahan et al., 2017), FedBN (Li et al., 2021b), FedProx (Li et al., 2020b), and
SCAFFOLD (Karimireddy et al., 2020a), as well as IW-ERM with true ratios serving as an upper
bound. Hyperparameters are kept consistent with those in (McMahan et al., 2017; Li et al., 2021b;
Ramezani-Kebrya et al., 2023).

Each node’s stochastic gradients are computed with a batch size of 64 and aggregated using the Adam
optimizer. All experiments are run on a single GPU within an internal cluster. Both MLLS and VRLS
use identical hyperparameters and training epochs for CIFAR-10 and Fashion MNIST, stopping once
the classification loss reaches a predefined threshold on MNIST. We also conduct experiments with
100 and 200 nodes on CIFAR-10, where five nodes are randomly sampled each iteration to simulate
more realistic distributed learning. In this case, IW-ERM with true ratios does not act as the upper
bound due to the stochastic node sampling. The experiment is run once, and average accuracy across
nodes is reported, with label distribution shown in Table 10 in Appendix J. Despite FedBN’s reported
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slow convergence (Ramezani-Kebrya et al., 2023), we maintain 15,000 and 10,000 iterations for
FedAvg and FedBN on Fashion MNIST and CIFAR-10, respectively, for fair comparison. However,
IW-ERM is limited to 5,000 iterations using both true and estimated ratios due to faster convergence.

As shown in Table 2, IW-ERM achieves over 20% higher average accuracy than all baselines on
Fashion MNIST, with only a third of the iterations. Notably, even with just 10% of the training data
in the first round of global training, the performance remains comparable, demonstrating reduced
training complexity. This improvement is attributed to the theoretical benefits of IW-ERM, the
robustness of density estimation, and the fact that the aggregation of density ratios reduces reliance
on any single local estimate. Similarly, Table 3 shows that IW-ERM approaches the upper bound
on CIFAR-10, outperforming the baselines. Individual node accuracies are detailed in Tables 6-7
in Appendix J. In the 100-node scenario, IW-ERM continues to demonstrate superior performance,
requiring only half the iterations, as shown in Table 4. It is important to note that using true ratios
does not equate to IW-ERM, given the stochasticity of node selection during training.

7 CONCLUSIONS AND LIMITATIONS

We propose VRLS to address label shift in distributed learning. Paired with IW-ERM, VRLS
improves intra- and inter-node label shifts in multi-node settings. Empirically, VRLS consistently
outperforms MLLS-based baselines, and IW-ERM with VRLS exceeds all multi-node learning
baselines. Theoretical bounds further strengthen our method’s foundation. Future work will explore
estimating ratios by relaxing the strict class-conditional assumption and optimizing IW-ERM to
reduce time complexity while ensuring scalability and practicality in real-world distributed learning.

ETHICS STATEMENT

No ethical approval was needed as no human subjects were involved. All authors fully support the
content and findings.

REPRODUCIBILITY STATEMENT

We ensured reproducibility with publicly available datasets (MNIST, CIFAR-10) and standard models
(e.g., ResNet-18). Links to datasets, code, and configurations will be provided upon camera-ready
submission. Experiments were run on NVIDIA 3090, A100 GPUs, and Google Colab, with average
results and variances reported across multiple trials.
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The Appendix part is organized as follows:

• All related work are provided in Appendix A.
• Additional details of prior work of BBSE and MLLS are in Appendix B.
• Mathematical proof for label shifts with multiple nodes and IW-ERM is given in Appendix C.
• General algorithmic description is in Appendix D.
• Proof of Theorem 5.1 is in Appendix E.
• Proof of Theorem 5.2 and Convergence-Communication-Privacy guarantees for IW-ERM

in Equation (IW-ERM) are provided in Appendix F.
• Complexity analysis is in Appendix G.
• Mathematical notations are summarized in Appendix H.
• Limitations are discussed in Appendix I.
• Additional experiments and experimental details are provided in Appendix J.
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A RELATED WORK

In the context of distributed learning with label shifts, importance ratio estimation is tackled either
by solving a linear system as in (Lipton et al., 2018; Azizzadenesheli et al., 2019) or by minimizing
distribution divergence as in (Garg et al., 2020). In this section, we overview complete related work.

Federated learning (FL). Much of the current research in FL predominantly centers around the
minimization of empirical risk, operating under the assumption that each node maintains the same
training/test data distribution (Li et al., 2020a; Kairouz et al., 2021; Wang et al., 2021b). Prominent
methods in FL (Kairouz et al., 2021; Li et al., 2020a; Wang et al., 2021b) include FedAvg (McMahan
et al., 2017), FedBN (Li et al., 2021b), FedProx (Li et al., 2020b) and SCAFFOLD (Karimireddy et al.,
2020a). FedAvg and its variants such as (Huang et al., 2021; Karimireddy et al., 2020b) have been the
subject of thorough investigation in optimization literature, exploring facets such as communication
efficiency, node participation, and privacy assurance (Ramezani-Kebrya et al., 2023).Subsequent
work, such as the study by de Luca et al. (2022), explores Federated Domain Generalization and
introduces data augmentation to the training. This model aims to generalize to both in-domain datasets
from participating nodes and an out-of-domain dataset from a non-participating node. Additionally,
Gupta et al. (2022) introduces FL Games, a game-theoretic framework designed to learn causal
features that remain invariant across nodes. This is achieved by employing ensembles over nodes’
historical actions and enhancing local computation, under the assumption of consistent training/test
data distribution across nodes. The existing strategies to address statistical heterogeneity across
nodes during training primarily rely on heuristic-based personalization methods, which currently lack
theoretical backing in statistical learning (Smith et al., 2017; Khodak et al., 2019; Li et al., 2021a).
In contrast, we aim to minimize overall test error amid both intra-node and inter-node distribution
shifts, a situation frequently observed in real-world scenarios. Techniques ensuring communication
efficiency, robustness, and secure aggregations serve as complementary.

Importance ratio estimation Classical Empirical Risk Minimization (ERM) seeks to minimize
the expected loss over the training distribution using finite samples. When faced with distribution
shifts, the goal shifts to minimizing the expected loss over the target distribution, leading to the
development of Importance-Weighted Empirical Risk Minimization (IW-ERM)(Shimodaira, 2000;
Sugiyama et al., 2006; Byrd & C. Lipton, 2019; Fang et al., 2020). Shimodaira (2000) established
that the IW-ERM estimator is asymptotically unbiased. Moreover, Ramezani-Kebrya et al. (2023)
introduced FTW-ERM, which integrates density ratio estimation.

Label shift and MLLS family For theoretical analysis, the conditional distribution p(x|y) is held
strictly constant across all distributions (Lipton et al., 2018; Garg et al., 2020; Saerens et al., 2002).
Both BBSE (Lipton et al., 2018) and RLLS (Azizzadenesheli et al., 2019) designate a discrete latent
space z and introduce a confusion matrix-based estimation method to compute the ratio w by solving
a linear system (Saerens et al., 2002; Lipton et al., 2018). This approach is straightforward and has
been proven consistent, even when the predictor is not calibrated. However, its subpar performance is
attributed to the information loss inherent in the confusion matrix (Garg et al., 2020).

Consequently, MLLS (Garg et al., 2020) introduces a continuous latent space, resulting in a significant
enhancement in estimation performance, especially when combined with a post-hoc calibration
method (Shrikumar et al., 2019). It also provides a consistency guarantee with a canonically calibrated
predictor. This EM-based MLLS method is both concave and can be solved efficiently.

Discrepancy Measure In information theory and statistics, discrepancy measures play a critical role
in quantifying the differences between probability distributions. One such measure is the Bregman
Divergence (Banerjee et al., 2005), defined as

Dϕ(x∥y) = ϕ(x)− ϕ(y)− ⟨∇ϕ(y),x− y⟩,
which encapsulates the difference between the value of a convex function ϕ at two points and the
value of the linear approximation of ϕ at one point, leveraging the gradient at another point.

Discrepancy measures are generally categorized into two main families: Integral Probability Metrics
(IPMs) and f -divergences. IPMs, including Maximum Mean Discrepancy (Gretton et al., 2012)
and Wasserstein distance (Villani, 2009), focus on distribution differences P − Q. In contrast, f -
divergences, such as KL-divergence (Kullback & Leibler, 1951) and Total Variation distance, operate

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

on ratios P/Q and do not satisfy the triangular inequality. Interconnections and variations between
these families are explored in studies like (f,Γ)-Divergences (Birrell et al., 2022), which interpolate
between f -divergences and IPMs, and research outlining optimal bounds between them (Agrawal &
Horel, 2020).

MLLS (Garg et al., 2020) employs f -divergence, notably the KL divergence, which is not a metric as
it doesn’t satisfy the triangular inequality, and requires distribution P to be absolutely continuous
with respect to Q. Concerning IPMs, while MMD is reliant on a kernel function, it can suffer from the
curse of dimensionality when faced with high-dimensional data. On the other hand, the Wasserstein
distance can be reformulated using Kantorovich-Rubinstein duality (Dedecker et al., 2006; Arjovsky
et al., 2017) as a maximization problem subject to a Lipschitz constrained function f : Rd → R.
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B BBSE AND MLLS FAMILY

In this section, we summarize the contributions of BBSE (Lipton et al., 2018) and MLLS (Garg et al.,
2020). Our objective is to estimate the ratio pte(y)/ptr(y). We consider a scenario with m possible
label classes, where y = c for c ∈ [m]. Let r⋆ = [r⋆1 , . . . , r

⋆
m]⊤ represent the true ratios, with each

r⋆c defined as r⋆c = pte(y=c)
ptr(y=c) (Garg et al., 2020). We then define a family of distributions over Z ,

parameterized by r = [r1, . . . , rm]⊤ ∈ Rm, where rc is the c-th element of the ratio vector.

pr(z) :=

m∑
c=1

pte(z|y = c) · ptr(y = c) · rc (10)

Here, rc ≥ 0 for c ∈ [m] and
∑m

c=1 rc · ptr(y = c) =
∑m

c=1 p
te(y = c) = 1 as constraints. When

r = r⋆, e.g., rc = r⋆c for c ∈ [m], we have pr(z) = pr⋆(z) = pte(z) (Garg et al., 2020). So our task
is to find r such that

m∑
c=1

pte(z|y = c) · ptr(y = c) · rcx

=

m∑
c=1

ptr(z, y = c) · rc = pte(z)

(11)

Lipton et al. (2018) introduced Black Box Shift Estimation (BBSE) to address this issue. With a
pre-trained classifier f for the classification task, BBSE assumes that the latent space Z is discrete
and defines p(z|x) = δargmax f(x), where the output of f(x) is a probability vector (or a simplex)
over m classes. BBSE estimates pte(z|y) as a confusion matrix, using both the training and validation
data. It calculates ptr(y = c) from the training set and pte(z) from the test data. The problem then
reduces to solving the following equation:

Aw = B (12)

where |Z| = m, A ∈ Rm×m with Ajc = pte(z = j|y = c) · ptr(y = c), and B ∈ Rm with
Bj = pte(z = j) for c, j ∈ [m].

The estimation of the confusion matrix in terms of pte(z|y) leads to the loss of calibration information
(Garg et al., 2020). Furthermore, when defining Z as a continuous latent space, the confusion matrix
becomes intractable since z has infinitely many values. Therefore, MLLS directly minimizes the
divergence between pte(z) and pr(z), instead of solving the linear system in Equation (12).

Within the f -divergence family, MLLS seeks to find a weight vector r by minimizing the KL-
divergence DKL (p

te(z), pr(z)) = Ete [log p
te(z)/pr(z)], for pr(z) defined in Equation (10). Lever-

aging on the properties of the logarithm, this is equivalent to maximizing the log-likelihood:
r := argmaxr∈R Ete [log pr(z)]. Expanding pr(z), we have

Ete [log pr(z)] = Ete

[
log(

m∑
c=1

ptr(z, y = c)rc)

]

= Ete

[
log(

m∑
c=1

ptr(y = c | z)rc) + log ptr(z)

]
.

(13)

Therefore the unified form of MLLS can be formulated as:

r := argmax
r∈R

Ete

[
log(

m∑
c=1

ptr(y = c | z)rc)

]
. (14)

This is a convex optimization problem and can be solved efficiently using methods such as EM,
an analytic approach, and also iterative optimization methods like gradient descent with labeled
training data and unlabeled test data. MLLS defines the p(z|x) as δx, plugs in the pre-defined f to
approximate ptr(y|x) and optimizes the following objective:
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rf := argmax
r∈R

ℓ(r, f) := argmax
r∈R

Ete
[
log(f(x)Tr)

]
. (15)

With the Bias-Corrected Calibration (BCT) (Shrikumar et al., 2019) strategy, they adjust the logits
f̂(x) of f(x) element-wise for each class, and the objective becomes:

rf := argmax
r∈R

ℓ(r, f) := argmax
r∈R

Ete

[
log(g ◦ f̂(x))Tr)

]
, (16)

where g is a calibration function.
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C PROOF OF PROPOSITION 4.1

In the following, we consider four typical scenarios under various distribution shifts described
in Table 1 and formulate their IW-ERM with a focus on minimizing R1.

C.1 NO INTRA-NODE LABEL SHIFT

For simplicity, we assume that there are only 2 nodes, but our results can be extended to multiple
nodes. This scenario assumes ptr

k(y) = pte
k (y) for k = 1, 2, but ptr

1(y) ̸= ptr
2(y). Node 1 aims to learn

hw assuming ptr
1(y)

ptr
2(y)

is given. We consider the following IW-ERM that is consistent in minimizing R1:

min
hw∈H

1

ntr
1

ntr
1∑

i=1

ℓ(hw(xtr
1,i),y

tr
1,i)

+
1

ntr
2

ntr
2∑

i=1

ptr
1(y

tr
2,i)

ptr
2(y

tr
2,i)

ℓ(hw(xtr
2,i),y

tr
2,i).

(17)

Here H is the hypothesis class of hw. This scenario is referred to as No-LS.

C.2 LABEL SHIFT ONLY FOR NODE 1

Here we consider label shift only for node 1, i.e., ptr
1(y) ̸= pte

1 (y) and ptr
2(y) = pte

2 (y). We consider
the following IW-ERM:

min
hw∈H

1

ntr
1

ntr
1∑

i=1

pte
1 (y

tr
1,i)

ptr
1(y

tr
1,i)

ℓ(hw(xtr
1,i),y

tr
1,i)

+
1

ntr
2

ntr
2∑

i=1

pte
1 (y

tr
2,i)

ptr
2(y

tr
2,i)

ℓ(hw(xtr
2,i),y

tr
2,i).

(18)

This scenario is referred to as LS on single.

C.3 LABEL SHIFT FOR BOTH NODES

Here we assume ptr
1(y) ̸= pte

1 (y) and ptr
2(y) ̸= pte

2 (y), i.e., label shift for both nodes. The cor-
responding IW-ERM is the same as Eq. Equation (18). This scenario is referred to as LS on
both.

Without loss of generality and for simplicity, we set l = 1. We consider four typical scenarios under
various distribution shifts and formulate their IW-ERM with a focus on minimizing R1. The details
of these scenarios are summarized in Table 1.

C.4 MULTIPLE NODES

Here we consider a general scenario with K nodes. We assume both intra-node and inter-node label
shifts by the following IW-ERM:

min
hw∈H

K∑
k=1

1

ntr
k

ntr
k∑

i=1

pte
1 (y

tr
k,i)

ptr
k(y

tr
k,i)

ℓ(hw(xtr
k,i),y

tr
k,i), (19)

This scenario is referred to as LS on multi.

For the scenario without intra-node label shift, the IW-ERM in Equation (17) can be expressed as
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1

ntr
2

ntr
2∑

i=1

ptr
1(y

tr
2,i)

ptr
2(y

tr
2,i)

ℓ(hw(xtr
2,i),y

tr
2,i)

ntr
2→∞−−−−→ Eptr

2(x,y)

[
ptr
1(y)

ptr
2(y)

ℓ(hw(x),y)

]
=

∫
Y

ptr
1(y)

ptr
2(y)

Ep(x|y)[ℓ(hw(x),y)]ptr
2(y)dy)

=

∫
Y
ptr
1(y)Ep(x|y)[ℓ(hw(x),y)]dy

=

∫
Y
pte
1 (y)Ep(x|y)[ℓ(hw(x),y)]dy

= Epte
1(x,y)

[ℓ(hw(x),y)]

= R1(hw).

(20)

where the second equality holds due to the assumption of the label shift setting and Bayes’ theorem:
p(x,y) = p(x|y) · p(y), and the fourth equality holds by the assumption that ptr

1(y) = pte
1 (y) in the

No-LS setting.

For the scenario with label shift only for Node 1 or for both nodes, the IW-ERM in Equation (18)
admits

1

ntr
2

ntr
2∑

i=1

pte
1 (y

tr
2,i)

ptr
2(y

tr
2,i)

ℓ(hw(xtr
2,i),y

tr
2,i) (21)

ntr
2→∞−−−−→ Eptr

2(x,y)

[
pte
1 (y)

ptr
2(y)

ℓ(hw(x),y)

]
(22)

=

∫
Y

pte
1 (y)

ptr
2(y)

Ep(x|y)[ℓ(hw(x),y)]ptr
2(y)dy (23)

=

∫
Y
pte
1 (y = y)Ep(x|y)[ℓ(hw(x),y)]dy (24)

= Epte
1(x,y)

[ℓ(hw(x),y)] (25)

= R1(hw). (26)

For multiple nodes, let k ∈ [K]. Similarly, we have

1

ntr
k

ntr
k∑

i=1

pte
1 (y

tr
k,i)

ptr
k(y

tr
k,i)

ℓ(hw(xtr
k,i),y

tr
k,i)

ntr
k→∞−−−−→ R1(hw). (27)

Then we have

K∑
k=1

1

ntr
k

ntr
k∑

i=1

pte
1 (y

tr
k,i)

ptr
k(y

tr
k,i)

ℓ(hw(xtr
k,i),y

tr
k,i)

ntr
1,...,n

tr
K→∞−−−−−−−−−→ R1(hw). (28)

Note that to solve Equation (19), node 1 needs to estimate pte
1(y)

ptr
k(y)

for all nodes k in Equation (19).

The consistency of Equation (IW-ERM), i.e., convergence in probability, is followed the standard
arguments in e.g., (Shimodaira, 2000)[Section 3] and (Sugiyama et al., 2007)[Section 2.2] using the
law of large numbers.
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D ALGORITHMIC DESCRIPTION

1

2 # Split the training dataset on each node
3 trainsets = target_shift.split_dataset(trainset.data, trainset.targets,

node_label_dist_train, transform=transform_train)
4

5 # Split the test dataset on each node
6 testsets = target_shift.split_dataset(testset.data, testset.targets,

node_label_dist_test, transform=transform_test)
7

8 # Initialize K local models (nets) for each node
9 nets = [initialize_model() for _ in range(node_num)]

10

11 # Initialize the estimator for each local model
12 estimators = [LS_RatioModel(nets[k]) for k in range(node_num)]
13

14 # Initialize tensors to store the estimated ratios, values, and marginal
values for each pair of nodes.

15 estimated_ratios = torch.zeros(node_num, node_num, nclass)
16 estimated_values = torch.zeros(node_num, node_num, nclass)
17 marginal_values = torch.zeros(node_num, nclass)
18

19 # Phase 1: Compute the estimated ratios for each node pair (k, j)
20 for k in range(node_num):
21 for j in range(node_num):
22 # Perform test on node k using node j’s testset
23 estimated_ratios[k, j] = estimators[k](testsets[j].data.cpu().

numpy())
24

25 # Phase 2: Compute the marginal values on each node’s training set
26 for i, trainset in enumerate(trainsets):
27 marginal_values[i] = marginal(trainset.targets)
28

29 # Phase 3: Compute the final estimated values for each node
30 for k in range(node_num):
31 for j in range(node_num):
32 estimated_values[k, j] = marginal_values[j] * estimated_ratios[k,

j]
33

34 # Aggregate the estimated values across nodes
35 aggregated_values = torch.sum(estimated_values, dim=1)
36

37 # Compute the final ratios for each node
38 ratios = (aggregated_values / marginal_values).to(args.device)

Listing 1: Our VRLS in distributed learning. It is the implementation of Algorithm 2
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E PROOF OF THEOREM 5.1

Proof. Let H(r,θ,x) = − log(f(x,θ)⊤r). From the strong convexity in Lemma E.7, we have that

∥r̂nte − rf⋆∥22 ≤ 2

µpmin
(Lθ⋆(r̂nte)− Lθ⋆(rf⋆)) (29)

Now focusing on the term on the right-hand side, we find by invoking Lemma E.4 that

Lθ⋆(r̂nte)− Lθ⋆(rf⋆)

≤ E
[
H(r̂nte , θ̂ntr ,x)

]
− E

[
H(rf⋆ , θ̂ntr ,x)

]
+ 2LE

[
∥θ̂ntr − θ⋆∥2

]

= E
[
H(r̂nte , θ̂ntr , x)

]
− 1

nte

nte∑
j=1

H(r̂nte , θ̂ntr ,xj) +
1

nte

nte∑
j=1

H(r̂n, θ̂ntr ,xj)

− E
[
H(rf⋆ , θ̂ntr ,x)

]
+ 2LE

[
∥θ̂ntr − θ⋆∥2

]

≤ E
[
H(r̂nte , θ̂ntr ,x)

]
− 1

nte

nte∑
j=1

H(r̂nte , θ̂ntr ,xj) +
1

nte

nte∑
j=1

H(rf⋆ , θ̂ntr ,xj)

− E
[
H(rf⋆ , θ̂ntr ,x)

]
+ 2LE

[
∥θ̂ntr − θ⋆∥2

]
,

(30)

where in the last inequality we used the fact that r̂n is a minimizer of r 7→ 1
n

∑n
j=1 H(r, θ̂t,xj).

Finally by using Lemma E.5 and Lemma E.6 with δ/2 each, we have that with probability 1− δ,

Lθ⋆(r̂nte)− Lθ⋆(rf⋆) ≤ 4√
nte

Rad(F) + 2LE
[
∥θ̂ntr − θ⋆∥2

]
+ 4B

√
log(4/δ)

nte
(31)

Plugging this back into Equation (29), we have that

∥r̂nte − rf⋆∥22 ≤ 2

µpmin

(
4√
nte

Rad(F) + 4B

√
log(4/δ)

nte

)
+

4L

µpmin
E
[
∥θ̂ntr − θ⋆∥2

]
. (32)

Lemma E.1. For any r ∈ Rm
+ , θ ∈ Θ, x ∈ X , we have that

r⊤f(x,θ) ≤ 1

pmin
.

Proof. Applying Hölder’s inequality we have that

r⊤f(x,θ) ≤ ∥r∥∞∥f(x,θ)∥1 = ∥r∥∞.

Moreover, since r ∈ Rm
+ , we have that

∑
y ryptr(y) = 1 This implies that ∥r∥∞ ≤ 1

pmin
, which

yields the result.

Lemma E.2 (Implication of Assumption Assumption 5.1). Under Assumption 5.1, there exists B > 0
such that for any r ∈ Rm

+ , θ ∈ Θ, x ∈ X ,

| log(r⊤f(x,θ))| ≤ B.

Proof. Since r ∈ Rm
+ , it has at least one non-zero coordinate and f(x,θ) is the output of a softmax

layer so all of its coordinates are non-zero. Consequently,

r⊤f(x,θ) > 0

So by Assumption 5.1, the function (r,θ,x) 7→ log(r⊤f(x,θ)) is defined and continuous over a
compact set, so there exists a constant B giving us the result.
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Lemma E.3 (Population Strong Convexity). Let H(r,θ,x) = − log(r⊤f(x,θ)). Under Assump-
tion Assumption 5.2, the function

Lθ⋆ : r 7→ E
[
H(r,θ⋆,x)

]
is µpmin-strongly convex.

Proof. We first compute the Hessian of L to find that

∇2L(r) = E
[

1

(r⊤f(x,θ⋆))2
f(x,θ⋆)f(x,θ⋆)⊤

]
.

Since by Lemma E.1, we have that r⊤f(x,θ⋆) ≤ p−1
min, we conclude that

∇2L(r) ⪰ pminE
[
f(x,θ⋆)f(x,θ⋆)⊤

]
⪰ µpminIm.

Lemma E.4 (Lipschitz Parametrization). Let H(r,θ,x) = − log(f(x,θ)⊤r). There exists L > 0
such that for any θ1,θ2 ∈ Θ, and r ∈ Rm

+ , we have that
|H(r,θ1,x)−H(r,θ2,x)| ≤ L∥θ1 − θ2∥2.

Proof. The gradient of H with respect to θ is given by

∇θH(r,θ,x) = − 1

f(x,θ)⊤r
∇θf(x,θ)

Reasoning like in Lemma E.1, we know that 1
f(x,θ)⊤r

is defined and continuous over the compact set
of its parameters, we also know that f is a neural network parametrized by θ, hence ∇θf(x,θ) is
bounded when θ and x are bounded. Consequently, under Assumption 5.1, there exists a constant
L > 0 such that

∥∇θH(r,θ,x)∥2 ≤ L.

Lemma E.5 (Uniform Bound 1). Let δ ∈ (0, 1), with probability 1− δ, we have that

E
[
H(r̂n, θ̂t,x)

]
− 1

n

n∑
j=1

H(r̂n, θ̂t,xj)

≤ 2√
n

Rad(F) + 2B

√
log(4/δ)

n
.

(33)

Proof. Let δ ∈ (0, 1). Since r̂n is learned from the samples xj , we do not have independence, which
would have allowed us to apply a concentration inequality. Hence, we derive a uniform bound as
follows. We begin by observing that:

E
[
H(r̂n, θ̂t,x)

]
− 1

n

n∑
j=1

H(r̂n, θ̂t,xj)

≤ sup
r,θ

E
[
H(r,θ,x)

]
− 1

n

n∑
j=1

H(r,θ,xj)


Now since Lemma E.2 holds, we can apply McDiarmid’s Inequality to get that with probability 1− δ,
we have:

sup
r,θ

E
[
H(r,θ,x)

]
− 1

n

n∑
j=1

H(r,θ,xj)


≤ E

[
sup
r,θ

E
[
H(r,θ,x)

]
− 1

n

n∑
j=1

H(r,θ,xj)

]+ 2B

√
log(2/δ)

n
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The expectation of the supremum on the right-hand side can be bounded by the Rademacher com-
plexity of F := {x 7→ r⊤f(x,θ), (r,θ) ∈ Rm

+ ×Θ}, and we obtain:

sup
r,θ

E
[
H(r,θ,x)

]
− 1

n

n∑
j=1

H(r,θ,xj)


≤ 2√

n
Rad(F) + 2B

√
log(2/δ)

n
.

(34)

Lemma E.6 (Uniform Bound 2). Let δ ∈ (0, 1), with probability 1− δ, we have that

E
[
H(rf⋆ , θ̂t,x)

]
− 1

n

n∑
j=1

H(rf⋆ , θ̂t,xj)

≤ 2√
n

Rad(F) + 2B

√
log(2/δ)

n
.

(35)

Proof. The proof is identical to that of Lemma E.5.

Lemma E.7 (Strong Convexity of Population Loss). Let L(r,θ) be the population loss as defined in
Lemma E.7. We establish that L(r,θ) is µpmin-strongly convex under the assumptions of calibration
(Assumption 5.2).

Proof. We compute the Hessian of the population loss L as in Lemma E.7, obtaining that:

∇2L(r) = E
[

1

(r⊤f(x,θ))2
f(x,θ)f(x,θ)⊤

]
.

From Lemma E.1, we have that r⊤f(x,θ) ≤ p−1
min. Therefore, we conclude:

∇2L(r) ⪰ pminE
[
f(x,θ)f(x,θ)⊤

]
⪰ µpminIm.

Lemma E.8 (Bound on Empirical Loss). Under Assumption 5.1, the empirical loss Lnte(r, θ̂ntr)
satisfies the following concentration bound:

P

(
sup
r∈Rm

+

∣∣∣Lnte(r, θ̂ntr)− L(r, θ̂ntr)
∣∣∣ > ϵ

)
≤ 2 exp

(
−cnteϵ2

)
.

Proof. This result follows from standard concentration inequalities, such as McDiarmid’s inequality,
together with the Lipschitz continuity of the loss function L with respect to the samples.
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F PROOF OF THEOREM 5.2 AND CONVERGENCE-COMMUNICATION
GUARANTEES FOR IW-ERM WITH VRLS

We now establish convergence rates for IW-ERM with VRLS and show our proposed importance
weighting achieves the same rates with the data-dependent constant terms increase linearly with
maxy∈Y supf rf (y) = rmax under negligible communication overhead over the baseline ERM-
solvers without importance weighting. In Appendix F, we establish tight convergence rates and
communication guarantees for IW-ERM with VRLS in a broad range of importance optimization
settings including convex optimization, second-order differentiability, composite optimization with
proximal operator, optimization with adaptive step-sizes, and nonconvex optimization, along the lines
of e.g., (Woodworth et al., 2020; Haddadpour et al., 2021; Glasgow et al., 2022; Liu et al., 2023; Hu
& Huang, 2023; Wu et al., 2023; Liu et al., 2023).

By estimating the ratios locally and absorbing into local losses, we note that the properties of the
modified local loss w.r.t. the neural network parameters w, e.g., convexity and smoothness, do not
change. The data-dependent parameters such as Lipschitz and smoothness constants for ℓ ◦ hw

w.r.t. w are scaled linearly by rmax. Our method of density ratio estimation trains the pre-defined
predictor exclusively using local training data, which implies IW-ERM with VRLS achieves the same
privacy guarantees as the baseline ERM-solvers without importance weighting. For ratio estimation,
the communication between clients involves only the estimated marginal label distribution, instead
of data, ensuring negligible communication overhead. Given the size of variables to represent
marginal distributions, which is by orders of magnitude smaller than the number of parameters
of the underlying neural networks for training and the fact that ratio estimation involves only one
round of communication, the overall communication overhead for ratio estimation is masked by the
communication costs of model training. The communication costs for IW-ERM with VRLS over the
course of optimization are exactly the same as those of the baseline ERM-solvers without importance
weighting. All in all, importance weighting does not negatively impact communication guarantees
throughout the course of optimization, which proves Theorem 5.2.

In the following, we establish tight convergence rates and communication guarantees for IW-ERM
with VRLS in a broad range of importance optimization settings including convex optimization,
second-order differentiability, composite optimization with proximal operator, optimization with
adaptive step-sizes, and nonconvex optimization.

For convex and second-order Differentiable optimization, we establish a lower bound on the conver-
gence rates for IW-ERM in with VRLS and local updating along the lines of e.g., (Glasgow et al.,
2022, Theorem 3.1).
Assumption F.1 (PL with Compression). 1) The ℓ(hw(x), y) is β-smoothness and convex w.r.t. w
for any (x, y) and satisfies Polyak-Łojasiewicz (PL) condition (there exists αℓ > 0 such that, for all
w ∈ W , we have ℓ(hw) ≤ ∥∇wℓ(hw)∥22/(2αℓ); 2) The compression scheme Q is unbiased with
bounded variance, i.e., E[Q(x)] = x and E[∥Q(x) − x∥22 ≤ q∥x∥22]; 3) The stochastic gradient
g(w) = ∇̃wℓ(hw) is unbiased, i.e., E[g(w)] = ∇wℓ(hw) for any w ∈ W with bounded variance
E[∥g(w)−∇wℓ(hw)∥22].

For nonconvex optimization with PL condition and communication compression, we establish
convergence and communication guarantees for IW-ERM with VRLS, compression, and local
updating along the lines of e.g., (Haddadpour et al., 2021, Theorem 5.1).
Theorem F.1 (Convergence and Communication Bounds for Nonconvex Optimization with PL).
Let κ denote the condition number, τ denote the number of local steps, R denote the number of
communication rounds, and maxy∈Y supf rf (y) = rmax. Under Assumption F.1, suppose ?? with τ
local updates and communication compression (Haddadpour et al., 2021, Algorithm 1) is run for
T = τR total stochastic gradients per node with fixed step-sizes η = 1/(2rmaxβγτ(q/K + 1)) and
γ ≥ K. Then we have E[ℓ(hwT

)− ℓ(hw⋆)] ≤ ϵ by setting

R ≲
( q

K
+ 1
)
κ log

(1
ϵ

)
and τ ≲

( q + 1

K(q/K + 1)ϵ

)
. (36)

Assumption F.2 (Nonconvex Optimization with Adaptive Step-sizes). 1) The ℓ ◦hw is β-smoothness
with bounded gradients; 2) The stochastic gradients g(w) = ∇̃wℓ(hw) is unbiased with bounded
variance E[∥g(w) − ∇wℓ(hw)∥22]; 3) Adaptive matrices At constructed as in (Wu et al., 2023,
Algorithm 2) are diagonal and the minimum eigenvalues satisfy λmin(At) ≥ ρ > 0 for some ρ ∈ R+.
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For nonconvex optimization with adaptive step-sizes, we establish convergence and communication
guarantees for IW-ERM with VRLS and local updating along the lines of e.g., (Wu et al., 2023,
Theorem 2).
Theorem F.2 (Convergence and Communication Guarantees for Nonconvex Optimization with
Adaptive Step-sizes). Let τ denote the number of local steps, R denote the number of communication
rounds, and maxy∈Y supf rf (y) = rmax. Under Assumption F.2, suppose ?? with τ local updates is
run for T = τR total stochastic gradients per node with an adaptive step-size similar to (Wu et al.,
2023, Algorithm 2). Then we E[∥∇wℓ(hwT

)∥2] ≤ ϵ by setting:

T ≲
rmax

Kϵ3
and R ≲

rmax

ϵ2
. (37)

Assumption F.3 (Composite Optimization with Proximal Operator). 1) The ℓ ◦ hw is smooth and
strongly convex with condition number κ; 2) The stochastic gradients g(w) = ∇̃wℓ(hw) is unbiased.

For composite optimization with strongly convex and smooth functions and proximal operator, we
establish an upper bound on oracle complexity to achieve ϵ error on the Lyapunov function defined as
in (Hu & Huang, 2023, Section 4) for Gradient Flow-type transformation of IW-ERM with VRLS in
the limit of infinitesimal step-size.
Theorem F.3 (Oracle Complexity of Proximal Operator for Composite Optimization). Let κ denote
the condition number. Under Assumption F.3, suppose Gradient Flow-type transformation of ??
with VRLS and Proximal Operator evolves in the limit of infinitesimal step-size (Hu & Huang, 2023,
Algorithm 3). Then it achieves O

(
rmax

√
κ log(1/ϵ)

)
Proximal Operator Complexity.
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G COMPLEXITY ANALYSIS

In our algorithm, the ratio estimation is performed once in parallel before the IW-ERM step.

In the experiments, we used a simple network to estimate the ratios in advance, which required
significantly less computational effort compared to training the global model. Although IW-ERM
with VRLS introduces additional computational complexity compared to the baseline FedAvg, it
results in substantial improvements in overall generalization, particularly under challenging label
shift conditions.
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H MATHEMATICAL NOTATIONS

In this appendix, we provide a summary of mathematical notations used in this paper in Table 5:

Table 5: Math Symbols

Math Symbol Definition

X Compact metric space for features
Y Discrete label space with |Y| = m
K Number of clients in an FL setting
Sk All samples in the training set of client k
hw Hypothesis function hw : X → Y
H Hypothesis class for hw

Z Mapping space from X , which can be discrete or continuous
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I LIMITATIONS

The distribution shifts observed in real-world data are often not fully captured by the label shift or
relaxed distribution shift assumptions. In our experiments, we applied mild test data augmentation to
approximate the relaxed label shift and manage ratio estimation errors for both the baselines and our
method. However, the label shift assumption remains overly restrictive, and the relaxed label shift
lacks robust empirical validation in practical scenarios.

Additionally, IW-ERM’s parameter estimation relies on local predictors at each client, which limits
its scalability. In practice, a simpler global predictor could be sufficient for parameter estimation and
IW-ERM training. Future research could explore VRLS variants capable of effectively handling more
complex distribution shifts in challenging datasets, such as CIFAR-10.1 (Recht et al., 2018; Torralba
et al., 2008), as suggested in (Garg et al., 2023).
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J EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS

In this section, we provide experimental details and additional experiments. In particular, we validate
our theory on multiple clients in a federated setting and show that our IW-ERM outperforms FedAvg
and FedBN baselines under drastic and challenging label shifts.

J.1 EXPERIMENTAL DETAILS

In single-client experiments, a simple MLP without dropout is used as the predictor for MNIST, and
ResNet-18 for CIFAR-10.

For experiments in a federated learning setting, both MNIST (LeCun et al., 1998) and Fashion
MNIST (Xiao et al., 2017) datasets are employed, each containing 60,000 training samples and
10,000 test samples, with each sample being a 28 by 28 pixel grayscale image. The CIFAR-10
dataset (Krizhevsky) comprises 60,000 colored images, sized 32 by 32 pixels, spread across 10
classes with 6,000 images per class; it is divided into 50,000 training images and 10,000 test images.
In this setting, the objective is to minimize the cross-entropy loss. Stochastic gradients for each client
are calculated with a batch size of 64 and aggregated on the server using the Adam optimizer. LeNet
is used for experiments on MNIST and Fashion MNIST with a learning rate of 0.001 and a weight
decay of 1 × 10−6. For CIFAR-10, ResNet-18 is employed with a learning rate of 0.0001 and a
weight decay of 0.0001. Three independent runs are implemented for 5-client experiments on Fashion
MNIST and CIFAR-10, while for 10 clients, one run is conducted on CIFAR-10. The regularization
coefficient ζ in Equation (4) is set to 1 for all experiments. All experiments are performed using a
single GPU on an internal cluster and Colab.

Importantly, the training of the predictor for ratio estimation on both the baseline MLLS and our
VRLS is executed with identical hyperparameters and epochs for CIFAR-10 and Fashion MNIST.
The training is halted once the classification loss reaches a predefined threshold on MNIST.

J.2 RELAXED LABEL SHIFT EXPERIMENTS

In conventional label shift, it is assumed that p(x | y) remains unchanged across training and test
data. However, this assumption is often too strong for real-world applications, such as in healthcare,
where different hospitals may use varying equipment, leading to shifts in p(x | y) even with the same
labels (Rajendran et al., 2023). Relaxed label shift loosens this assumption by allowing small changes
in the conditional distribution (Garg et al., 2023; Luo & Ren, 2022).

To formalize this, we use the distributional distance D and a relaxation parameter ϵ > 0, as defined by
Garg et al. (2023): maxy D (ptr(x | y), pte(x | y)) ≤ ϵ. This allows for slight differences in feature
distributions between training and testing, capturing a more realistic scenario where the conditional
distribution is not strictly invariant.

In our case, visual inspection suggests that the differences between temporally distinct datasets,
such as CIFAR-10 and CIFAR-10.1 v6 (Torralba et al., 2008; Recht et al., 2018), may not meet
the assumption of a small ϵ. To address this, we instead simulate controlled shifts using test data
augmentation, allowing us to regulate the degree of relaxation, following the approach outlined in
Garg et al. (2023).

J.3 ADDITIONAL EXPERIMENTS

In this section, we provide supplementary results, visualizations of accuracy across clients and tables
showing dataset distribution in FL setting and relaxed label shift.
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Figure 3: MSE analysis on MNIST for MLLS baselines. Left: Performance evaluation across various
alpha values, comparing different methods: MLLS EM, MLLS L1, MLLS L2, and MLLS CG.
MLLS L1 and MLLS L2 utilize convex optimization with L1 and L2 regularization for estimating
our limited test sample problem, respectively, and are solved directly with a convex solver. In
contrast, MLLS CG uses conjugate gradient descent and MLLS EM solves this convex optimization
problem with EM algorithm. Both the EM and convex optimization methods (MLLS L1, MLLS L2)
demonstrate superior and more consistent performance, especially under severe label shift conditions,
when compared to MLLS CG. Middle: At an alpha value of 1.0, the MSE analysis shows comparable
performance across most methods, with the exception of MLLS CG, which lags behind. Right: For
alpha=0.1, MLLS CG performs significantly worse than the EM and convex optimization methods,
consistent with the trends observed in the left plot.

Figure 4: In our detailed analysis with the MNIST dataset, we conduct a thorough comparison of
VRLS alongside MLLS (Garg et al., 2020), EM (Saerens et al., 2002), and also RLLS (Azizzade-
nesheli et al., 2019).

Table 6: LeNet on Fashion MNIST with label shift across 5 clients. 15,000 iterations for FedAvg and
FedBN; 5,000 for Upper Bound (FTW-ERM) using true ratios and our IW-ERM. To mention, to train
our predictor, we use a simpliest MLP and employ linear kernel.

FMNIST Our IW-ERM FedAvg FedBN Upper Bound

Avg. accuracy 0.7520 ± 0.0209 0.5472 ± 0.0297 0.5359 ± 0.0306 0.8273 ± 0.0041
Client 1 accuracy 0.7162 ± 0.0059 0.3616 ± 0.0527 0.3261 ± 0.0296 0.8590 ± 0.0062
Client 2 accuracy 0.9266 ± 0.0125 0.9060 ± 0.0157 0.9035 ± 0.0162 0.9357 ± 0.0037
Client 3 accuracy 0.6724 ± 0.0467 0.3279 ± 0.0353 0.3612 ± 0.0814 0.7896 ± 0.0109
Client 4 accuracy 0.7979 ± 0.0448 0.6858 ± 0.0105 0.6654 ± 0.0121 0.8098 ± 0.0112
Client 5 accuracy 0.6468 ± 0.0248 0.4548 ± 0.0655 0.4234 ± 0.0387 0.7426 ± 0.0257
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Figure 5: In this experiment with Fashion MNIST, a simple MLP with dropout were employed.

Table 7: ResNet-18 on CIFAR-10 with label shift across 5 clients. For fair comparison, we run 5,000
iterations for our method and Upper Bound, while 10000 for FedAvg and FedBN.

CIFAR-10 Our IW-ERM FedAvg FedBN Upper Bound

Avg. accuracy 0.5640 ± 0.0241 0.4515 ± 0.0148 0.4263 ± 0.0975 0.5790 ± 0.0103
Client 1 accuracy 0.6410 ± 0.0924 0.5405 ± 0.1845 0.5321 ± 0.0620 0.7462 ± 0.0339
Client 2 accuracy 0.8434 ± 0.0359 0.3753 ± 0.0828 0.4656 ± 0.2158 0.7509 ± 0.0534
Client 3 accuracy 0.4591 ± 0.1131 0.3973 ± 0.1333 0.2838 ± 0.1055 0.5845 ± 0.0854
Client 4 accuracy 0.4751 ± 0.1241 0.5007 ± 0.1303 0.5256 ± 0.1932 0.3507 ± 0.0578
Client 5 accuracy 0.4013 ± 0.0430 0.4429 ± 0.1195 0.5603 ± 0.1581 0.4627 ± 0.0456

Figure 6: The average, best-client, and worst-client accuracy, along with their standard deviations,
are derived from Table 6. Our method exhibits the lowest standard deviation, showcasing the most
robust accuracy amongst the compared methods.

Figure 7: The average, best-client, and worst-client accuracy, along with their standard deviations,
are derived from Table 7.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Table 8: Label distribution on Fasion MNIST with 5 clients, with the majority of classes possessing a
limited number of training and test images across each client.

Class
0 1 2 3 4 5 6 7 8 9

Client 1 Train 34 34 34 34 34 5862 34 34 34 34
Test 977 5 5 5 5 5 5 5 5 5

Client 2 Train 34 34 34 34 34 34 5862 34 34 34
Test 5 977 5 5 5 5 5 5 5 5

Client 3 Train 34 34 34 34 34 34 34 5862 34 34
Test 5 5 977 5 5 5 5 5 5 5

Client 4 Train 34 34 34 34 34 34 34 34 5862 34
Test 5 5 5 977 5 5 5 5 5 5

Client 5 Train 34 34 34 34 34 34 34 34 34 5862
Test 5 5 5 5 977 5 5 5 5 5

Table 9: Label distribution on CIFAR-10 with 5 clients, with the majority of classes possessing a
limited number of training and test images across each client.

Class
0 1 2 3 4 5 6 7 8 9

Client 1 Train 34 34 34 34 34 5862 34 34 34 34
Test 977 5 5 5 5 5 5 5 5 5

Client 2 Train 34 34 34 34 34 34 5862 34 34 34
Test 5 977 5 5 5 5 5 5 5 5

Client 3 Train 34 34 34 34 34 34 34 5862 34 34
Test 5 5 977 5 5 5 5 5 5 5

Client 4 Train 34 34 34 34 34 34 34 34 5862 34
Test 5 5 5 977 5 5 5 5 5 5

Client 5 Train 34 34 34 34 34 34 34 34 34 5862
Test 5 5 5 5 977 5 5 5 5 5
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Table 10: Label distribution on CIFAR-10 with 100 clients, wherein groups of 10 clients share the
same distribution and ratios. The majority of classes possess a limited quantity of training and test
images on each client.

Class
0 1 2 3 4

Client 1-10 Train 95/100 5/9 5/9 5/9 5/9
Test 5/9 5/9 5/9 5/9 5/9

Client 11-20 Train 5/9 95/100 5/9 5/9 5/9
Test 5/9 5/9 5/9 5/9 5/9

Client 21-30 Train 5/9 5/9 95/100 5/9 5/9
Test 5/9 5/9 5/9 5/9 5/9

Client 31-40 Train 5/9 5/9 5/9 95/100 5/9
Test 5/9 5/9 5/9 5/9 5/9

Client 41-50 Train 5/9 5/9 5/9 5/9 95/100
Test 5/9 5/9 5/9 5/9 5/9

Client 51-60 Train 5/9 5/9 5/9 5/9 5/9
Test 5/9 5/9 5/9 5/9 95/100

Client 61-70 Train 5/9 5/9 5/9 5/9 5/9
Test 5/9 5/9 5/9 95/100 5/9

Client 71-80 Train 5/9 5/9 5/9 5/9 5/9
Test 5/9 5/9 95/100 5/9 5/9

Client 81-90 Train 5/9 5/9 5/9 5/9 5/9
Test 5/9 95/100 5/9 5/9 5/9

Client 91-100 Train 5/9 5/9 5/9 5/9 5/9
Test 95/100 5/9 5/9 5/9 5/9

Class
5 6 7 8 9

Client 1-10 Train 5/9 5/9 5/9 5/9 5/9
Test 5/9 5/9 5/9 5/9 95/100

Client 11-20 Train 5/9 5/9 5/9 5/9 5/9
Test 5/9 5/9 5/9 95/100 5/9

Client 21-30 Train 5/9 5/9 5/9 5/9 5/9
Test 5/9 5/9 95/100 5/9 5/9

Client 31-40 Train 5/9 5/9 5/9 5/9 5/9
Test 5/9 95/100 5/9 5/9 5/9

Client 41-50 Train 5/9 5/9 5/9 5/9 5/9
Test 95/100 5/9 5/9 5/9 5/9

Client 51-60 Train 95/100 5/9 5/9 5/9 5/9
Test 5/9 5/9 5/9 5/9 5/9

Client 61-70 Train 5/9 95/100 5/9 5/9 5/9
Test 5/9 5/9 5/9 5/9 5/9

Client 71-80 Train 5/9 5/9 95/100 5/9 5/9
Test 5/9 5/9 5/9 5/9 5/9

Client 81-90 Train 5/9 5/9 5/9 95/100 5/9
Test 5/9 5/9 5/9 5/9 5/9

Client 91-100 Train 5/9 5/9 5/9 5/9 95/100
Test 5/9 5/9 5/9 5/9 5/9
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