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Abstract

Our world is marked by unprecedented tech-001
nological, global, and socio-political transfor-002
mations, posing a significant challenge to text-003
to-image generative models. These models en-004
code factual associations within their parame-005
ters that can quickly become outdated, dimin-006
ishing their utility for end-users. To that end,007
we introduce ReFACT, a novel approach for008
editing factual associations in text-to-image009
models without relaying on explicit input from010
end-users or costly re-training. ReFACT up-011
dates the weights of a specific layer in the text012
encoder, modifying only a tiny portion of the013
model’s parameters and leaving the rest of the014
model unaffected. We empirically evaluate015
ReFACT on an existing benchmark, alongside016
a newly curated dataset. Compared to other017
methods, ReFACT achieves superior perfor-018
mance in both generalization to related con-019
cepts and preservation of unrelated concepts.020
Furthermore, ReFACT maintains image gen-021
eration quality, making it a practical tool for022
updating and correcting factual information in023
text-to-image models.1024

1 Introduction025

Text-to-image generative models (Ho et al., 2022;026

Dhariwal and Nichol, 2021; Ramesh et al., 2022;027

Rombach et al., 2022) are trained on extensive028

amounts of data, leading them to implicitly en-029

code factual associations within their parameters.030

While some facts are useful, others may be incor-031

rect or become outdated (e.g., the current President032

of the United States; see Figure 1). Once these033

models have been trained, they quickly become034

outdated and misrepresent the state of the world in035

their generations. However, model providers and036

creators currently have no efficient means to up-037

date them without either retraining them—which038

1Our code and data can be found in the supplementary
material, and will be made publicly available.

Figure 1: ReFACT edits knowledge in text-to-image
models using an editing prompt and a target prompt
(e.g., “The President of the United States” is edited to
“Joe Biden”). The edit generalizes to prompts unseen
during editing.

is costly in computation and time—or requiring 039

explicit prompt engineering from the end user. 040

In this work we present ReFACT, a new method 041

for Revising FACTual knowledge in text-to-image 042

models. ReFACT views facts as key–value pairs 043

encoded in the linear layers of the transformer and 044

updates the weights of a specific layer in the text- 045

encoder by editing a key–value mapping using a 046

closed form solution (Meng et al., 2022a). Our 047

method utilizes three textual inputs: an edit prompt, 048

a source, and a target, representing the desired edit. 049

For example, “The President of the United States” 050

as the edit prompt, “Donald Trump” as the source, 051

and “Joe Biden” as the target. Then, an edit can be 052

viewed as changing the value the model retrieves 053

for the corresponding key (“The President of the 054

United States”) from source to target (“Donald 055
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Figure 2: (A) An overview of a diffusion text-to-image model after editing with ReFACT. The edited text encoder
generates textual representations reflecting the updated information. Then, the representations are fed into the
cross-attention mechanism of a diffusion model, generating an image reflecting the new fact. (B) ReFACT receives
an edit prompt and a target prompt representing the desired change. We obtain the representation of the target and
other contrastive examples by passing it through the frozen CLIP text encoder and taking the output at the [EOS]
token. Then, we optimize a vector v∗ that, when inserted in a specific layer, will reduce the distance between the
edit and the target prompts representation, and increase the distance with respect to the contrastive examples. The
vector v∗ is then planted in the MLP layer using a closed form solution.

Trump” → “Joe Biden”). By doing so, ReFACT056

edits the factual associations of the model without057

fine-tuning. ReFACT modifies only a tiny portion058

of the model’s parameters (0.24%), far fewer than059

the previous editing method, TIME (1.95%).060

Once ReFACT is applied to the model, we061

achieve a persistent change in factual information,062

resulting in a model that consistently generates im-063

ages of Joe Biden for the desired prompt. Moreover,064

ReFACT is able to generalize to closely related065

prompts and demonstrate the desire update, while066

not affecting unrelated concepts. Notably, ReFACT067

preserves the general quality of generated images.068

We evaluate ReFACT on the TIME dataset (Or-069

gad et al., 2023), a benchmark for evaluating the070

editing of implicit model assumptions on specific071

attributes (e.g., editing roses to be blue instead072

of red). Moreover, we curate a new dataset, the073

Roles and Appearances Dataset (RoAD), for edit-074

ing other types of factual associations. We show075

that ReFACT successfully edits a wide range of076

factual association types, demonstrates high gen-077

eralization, and does not hurt the representations078

of unrelated facts. Our method achieves superior079

results compared to a recent editing method, TIME080

(Orgad et al., 2023). Overall, our method is a signif-081

icant improvement in text-to-image model editing.082

2 Method083

2.1 Background084

Text-to-image diffusion models (Rombach et al.,085

2022; Ramesh et al., 2022; Saharia et al., 2022b)086

are conditioned on a text prompt that guides the087

image generation process. Several text-to-image 088

diffusion models use CLIP (Radford et al., 2021) 089

as a multi-modal-aware text encoder. 090

CLIP consists of a text encoder and an image 091

encoder, jointly trained to create a shared embed- 092

ding space for images and texts. Concretely, a 093

special end-of-sequence token, denoted [EOS], is 094

appended at the end of each input. CLIP is trained 095

contrastively to maximize the cosine similarity be- 096

tween [EOS] token representations of correspond- 097

ing texts and images while minimizing the similar- 098

ity between unrelated inputs. CLIP’s text encoder 099

is a transformer model with a GPT-2 style archi- 100

tecture (Radford et al., 2018) trained from scratch. 101

Since the text encoder implements a unidirectional 102

attention mechanism, the [EOS] is the only token 103

able to aggregate information from all other tokens 104

in the sequence. Thus, the [EOS] token is suitable 105

for optimizing the insertion of new facts. 106

2.2 ReFACT 107

Since the image generation process is conditioned 108

on the representations produced by the text encoder, 109

we hypothesize that editing the knowledge of the 110

text encoder should be reflected in the generated 111

images. At a high level, ReFACT takes an edit 112

prompt (e.g., “The President of the United States”), 113

and source and target prompts that reflect the de- 114

sired edit (“Donald Trump” → “Joe Biden”), and 115

edits a specific layer in the text encoder. The goal 116

is to make the model’s representation of the edit 117

prompt similar to that of the target prompt, in con- 118

trast to the representation of the source prompt. 119

The process is illustrated in Figure 2. 120
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To achieve this, ReFACT targets the multi-layer121

perceptron (MLP) layers in the text encoder. Each122

MLP consists of two matrices with a non-linearity123

between them: Wproj · σ(Wfc). Following previ-124

ous work, we view Wproj as a linear associative125

memory (Kohonen, 1972; Anderson, 1972; Meng126

et al., 2022a). Linear operations can therefore be127

viewed as a key–value store WK ≈ V for a set of128

key vectors K and corresponding value vectors V129

at a specific layer l. For example, a key is a repre-130

sentation of “The President of the United States”,131

and the value is the identity of the president, which132

is “Donald Trump” prior to editing.133

In the case of a (text-only) language model,134

Meng et al. (2022b) performed a rank-one edit135

of W (l)
proj to insert a new key value pair (k∗, v∗),136

by setting Ŵ = W + Λ(C−1k∗)
T .2 This assign-137

ment sets the new key–value pair while minimiz-138

ing the effect on existing pairs (Bau et al., 2020).139

Given this formulation, one needs to specify how140

to choose the new pair to edit, (k∗, v∗).141

To choose k∗, we follow Meng et al. as we found142

it can be straightforwardly applied to our use case.143

For v∗, we found their direct optimization approach144

to not work well in our setting, and thus introduce145

a new approach, which is appropriate for the CLIP146

text encoder used in text-to-image models.147

Choosing k∗: The key is taken as the average148

representation of the last subject token from layer149

l in a set of prompts containing the subject (”The150

President of the United States”, ”An image of the151

President of the United States”, etc.). This is done152

to achieve a more general representation of last153

token, which is not dependent on specific contexts.154

Choosing v∗: Denote by s the edit prompt (“The155

President of the United States”), and the target156

by t∗ (“Joe Biden”). Employing a contrastive ap-157

proach, we consider N texts x1, ..., xN , where x1158

is the target t∗ and x2, ..., xN are contrastive ex-159

amples.3 The contrastive examples include the160

source prompt (“Donald Trump”), given as input,161

and other unrelated prompts (“A cat”), obtained162

from MS-COCO (Lin et al., 2014). We pass each163

xj through a frozen text encoder E, and take the164

[EOS] representation as the representation of the165

sequence, E(xj). We seek a v∗ that, when substi-166

2Here C = KKT is a pre-cached constant estimated on
wikipedia text and Λ = (v∗ −Wk∗)/(C

−1k∗)
T k∗.

3We use “contrastive examples” instead of the more com-
mon term “negative examples” to distinguish these examples
from the separate set of negative examples used for evaluation.

tuted as the output of MLP layer l at token i (the 167

last subject token, “States”), maximizes the similar- 168

ity of E(s) and E(t∗) = E(x1), while minimizing 169

the similarity of E(s) and E(x2), ..., E(xN ). In- 170

tuitively, We seek a v∗ that yields a representation 171

of the edit prompt that is close to that produced by 172

an unedited encoder given the target (“Joe Biden”), 173

while being far from the contrastive examples. 174

Formally, denote by E
m

(l)
i :=v

the text encoder 175

where the output of layer l at token i was substi- 176

tuted with v. For ease of notation we sometimes 177

omit the subscript i, as i is always chosen as the in- 178

dex of the last subject token. To obtain the desired 179

v∗, we optimize the following contrastive loss: 180

v∗ = argmin
v

exp(d(Em(l):=v(s), E(x1)))∑N
j=1 exp(d(Em(l):=v(s), E(xj)))

(1) 181

where d(·, ·) is the L2 distance. 182

In Appendix A, we experiment with several vari- 183

ations of our method: direct optimization without 184

contrastive examples, the choice of the distance 185

metric, and using images rather than texts as the 186

target t∗. In the main paper we report results with 187

the above method, which generally works better. 188

3 Experiments 189

3.1 Datasets 190

We evaluate our method on the TIME dataset (Or- 191

gad et al., 2023), a dataset for editing implicit as- 192

sumptions in text-to-image models, such as chang- 193

ing the default color of roses generated by the 194

model to be blue instead of red. 195

To perform a more comprehensive evaluation of 196

factual knowledge editing in text-to-image models, 197

we introduce RoAD, the Roles and Appearances 198

Dataset. RoAD contains 100 entries encompass- 199

ing a diverse range of roles fulfilled by individu- 200

als, such as politicians, musicians, and pop-culture 201

characters, as well as variations in the visual ap- 202

pearance of objects and entities. Each entry de- 203

scribes a single edit and contains an edit prompt 204

(e.g., “The Prince of Wales”), a source prompt 205

(“Prince Charles”), and a target prompt (“Prince 206

William”), as well as five positive and five nega- 207

tive prompts. Positive prompts are meant to eval- 208

uate the generalization of the editing algorithm to 209

closely related concepts (e.g., “The Prince of Wales 210

in the park”). Negative prompts are used to ensure 211

that other similar but unrelated concepts remain 212

unchanged (“Prince Harry”). See Figure 3 for data 213

samples and Appendix B for more details. 214
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Figure 3: Samples from the two datasets, TIME dataset and RoAD. TIME dataset contains editing of implicit model
assumptions while RoAD targets a general visual appearance of the edited subject. Each entry of RoAD contains
five positive prompts and five negative prompts, used for evaluation.

3.2 Experimental setup215

We experiment with Stable Diffusion V1-4 (Rom-216

bach et al., 2022) and CLIP (Radford et al., 2021),217

available on HuggingFace (Wolf et al., 2020).218

We compare our method to TIME, a recent edit-219

ing method that targets the cross-attention layers220

(Orgad et al., 2023). TIME expects the edit prompt221

and target to share some of the tokens (e.g., editing222

“A pack of roses” → “A pack of blue roses”). Thus,223

it cannot be applied out of the box to RoAD, which224

does not follow this format. We experimented with225

some adaptations of TIME to accommodate this226

issue (Appendix G).227

In line with Orgad et al., we compare our method228

to two approaches: (1) Oracle, an unedited model229

that receives the destination positive prompts for230

the positive examples (e.g., “Joe Biden as the231

President of the United States”) and the negative232

prompts for the negative examples (e.g., “Donald233

Trump”). The oracle requires the user to explicitly234

specify the desired update, in contrast to model edit-235

ing methods that change the model’s underlying236

knowledge. (2) Baseline, an unedited model that re-237

ceives the source prompts for all generations (“Pres-238

ident of the United States”). We also conducted239

preliminary experiments with standard fine-tuning240

of the same matrix considered by ReFACT (2nd241

matrix in the MLP at a specific layer). However,242

we found that this approach leads to catastrophic243

forgetting (Kirkpatrick et al., 2017) in prompts con-244

taining multiple concepts (Appendix G).245

3.3 Metrics246

Following Meng et al. and Orgad et al., we report247

efficacy, generalization, and specificity. We use 25248

random seeds, editing a clean model in each setting 249

and generating one image per prompt for each seed. 250

We then compute each of the metrics using CLIP 251

as a zero-shot classifier,4 and average over seeds. 252

Efficacy: quantifies how effective an editing 253

method is on the prompt that was used to perform 254

the edit. For example, when editing “The Prince of 255

Wales” from “Prince Charles” to “Prince William” 256

(Figure 3), efficacy measures how many of the im- 257

ages generated using the prompt “the Prince of 258

Wales” successfully generate an image of Prince 259

William. 260

Generalization: quantifies how well an editing 261

method generalizes to related prompts, e.g., “The 262

prince of Wales in the park”. Generalization is cal- 263

culated as the portion of related prompts (Positives 264

in Figure 3) for which the editing was successful. 265

Specificity: quantifies how specific an editing 266

method is. Specificity is calculated as the portion 267

of unrelated prompts (Negatives in Figure 3) that 268

were not affected by the editing. 269

Additional details about these metrics are in Ap- 270

pendix D. 271

We also compute the geometrical mean of the 272

generalization and specificity scores (denoted F1). 273

In addition, to test the effect of ReFACT on the 274

overall quality of the model’s image generation 275

process, we measure FID (Heusel et al., 2017) and 276

CLIP scores (Hessel et al., 2021) over the MS- 277

COCO validation dataset (Lin et al., 2014), as is 278

standard practice (Rombach et al., 2022; Saharia 279

et al., 2022a; Ramesh et al., 2022). 280

4We use Laion’s ViT-G/14 (Schuhmann et al., 2022).
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Figure 4: Specificty of ReFACT. Our method is able to precisely edit specific concepts without affecting related
concepts or other elements in the generated image.

Figure 5: ReFACT is able to generalize to related prompts.

4 Results281

4.1 Qualitative evaluation282

Figure 4 demonstrates that ReFACT is able to alter283

specific knowledge while leaving other unrelated284

but close prompts unchanged. For example, after285

editing an apple to appear as an avocado, when the286

edited model is prompted with “An apple and a287

lemon”, it successfully generates images showing288

both fruits. The generalization of ReFACT to other289

related words and phrasings is demonstrated in290

Figure 5. For instance, after editing “Canada’s291

Prime Minister” to be Beyonce, prompts with the292

abbreviation “PM” successfully generate images293

of Beyonce. Editing “A Cat” extends to images294

of a “Kitten” and editing “Apple” generalizes to295

“Granny Smith”, a popular variety of apples. For296

additional qualitative results, see Appendix E.297

Figure 6 shows several comparisons with TIME298

(Orgad et al., 2023). ReFACT is able to edit299

cases where TIME essentially fails and hurts the300

model’s generalization (editing “Cauliflower” to301

“Leek”). ReFACT also generalizes in cases where 302

TIME does not (editing “a pedestal” to “a wooden 303

pedestal” generalizes also in “a pedestal in the gar- 304

den”), and keeps generations for unrelated prompts 305

unchanged (editing “ice cream” to “strawberry ice 306

cream” does not affect the color of ice). 307

4.2 Quantitative evaluation 308

Table 1 presents results on two datasets: the 309

TIME dataset and RoAD. ReFACT achieves bet- 310

ter efficacy, generalization, and specificity on both 311

datasets, compared to the previous editing method. 312

On the TIME dataset, our method achieves superior 313

efficacy, on-par with the oracle. It also achieves 314

significantly better generalization than TIME, and 315

better specificity, albeit not as high as the oracle. 316

On RoAD, ReFACT obtains significantly better 317

performance across all metrics. 318

Importantly, ReFACT does not hurt the image 319

generation capabilities of the model, as demon- 320

strated by excellent FID and CLIP scores in 321

both datasets (virtually identical to the unedited 322
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TIME

ReFACT

Generation prompt: A bucket of ice

Edit: Ice cream       Strawberry ice cream

TIME

ReFACT

Generation prompt: A pedestal in the 
garden

Edit: A pedestal       A wooden pedestal

TIME

ReFACT

Generation prompt: Cauliflower

Edit: Cauliflower        Leek

Figure 6: TIME and ReFACT, demonstrated on failure cases of TIME.

Dataset Method Efficacy (↑) Generality (↑) Specificity (↑) F1 (↑) FID (↓) CLIP (↑)

TIME
Dataset

Baseline 04.27% ±2.24 06.21% ±0.91 95.68% ±1.18 24.37 12.67 26.50
Oracle 97.04% ±2.35 93.26% ±1.47 95.68% ±1.18 94.46 12.67 26.50
TIME 83.23% ±3.65 64.08% ±1.66 75.95% ±2.34 69.76 12.10 26.12
ReFACT 98.19% ±1.13 88.02% ±1.15 79.18% ±1.98 83.48 12.48 26.44

RoAD

Baseline 01.15% ±0.91 03.76% ±0.81 99.36% ±0.33 19.32 12.67 26.50
Oracle 98.13% ±1.12 96.68% ±0.85 99.36% ±0.33 98.01 12.67 26.50
TIME 52.18% ±3.86 42.74% ±2.17 75.36% ±1.57 56.75 17.56 26.42
ReFACT 93.38% ±1.59 86.80% ±0.98 95.44% ±0.53 91.01 12.47 26.48

Table 1: Evaluation of editing methods on TIME and RoAD test sets. Best results are marked with bold. Best
results among editing methods (TIME, ReFACT) are marked with underline.

model’s). In contrast, when TIME is used to edit323

entries from RoAD, it sometimes results in an un-324

wanted outcome where the images generated by325

the model are not coherent anymore (Figure 6, left).326

This is also reflected in the higher FID score.327

4.3 Multiple edits328

Our main experiments with ReFACT edited one329

piece of information at a time. To assess ReFACT’s330

ability to edit multiple facts, we perform sequen-331

tial edits. We alternate on entries from the TIME332

dataset and RoAD, editing 90 facts in total. As333

Figure 7 shows, sequential edits work almost as334

well as single edits in all three metrics. See Ap-335

pendix H for additional results. These encouraging336

results show that ReFACT may be useful in prac-337

tice. Future work may scale it up by performing338

simultaneous edits, akin to Meng et al. (2022b).339

4.4 Failure cases340

While ReFACT is very effective at modifying spe-341

cific attributes and can generalize very well, it342

sometimes modifies other attributes of an object343

Figure 7: The performance of ReFACT when applied
sequentially to achieve multiple edits, versus applied
individually on a clean model for each single edit.

as well. This is crucial in people’s faces, where a 344

change in a facial feature changes the identity of 345

the person (Figure 8). While ReFACT performed 346

the desired edit, it excessively changed the person’s 347

face, unlike TIME, which better preserved facial 348

features. In addition, ReFACT still incurs some 349

specificity failures, demonstrated in Figure 9. 350
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Figure 8: Editing facial features of people. ReFACT
might edit unintended features compared to TIME.

Figure 9: Specificity failures: Concepts that should not
be affected by the edit are changed in an unwanted way.

5 Editing for Interpretability351

So far, we edited a particular layer for all facts,352

which was selected using the validation set. How-353

ever, we hypothesize that different layers encode354

distinct features. To investigate differences among355

different layers in the text encoder, we employ356

ReFACT as a causal analysis tool, editing indi-357

vidual layers and observing the corresponding out-358

comes. We focus here on facial expressions.359

We use six “universal” emotions (Ekman, 1992)360

(happiness, sadness, anger, fear, disgust, and sur-361

prise) and use ReFACT with a target text of people362

expressing the emotions. We edit each layer and363

generate 50 images for each emotion (25 females364

and 25 males). Appendix J gives more details.365

Results. Editing lower layers tends to affect the366

emotions in the generated images more than editing367

Figure 10: Images generated after editing various emo-
tions in different layers. Emotions are less visible in the
generated image as we edit deeper layers.

Figure 11: CLIP score of emotions after editing across
layers. Deeper layers are less effective in editing emo-
tions.

deeper layers, as demonstrated in Figure 10 and 368

quantified in Figure 11. These results indicate that 369

emotions are more encoded in the lower layers 370

of the text encoder. This is different from most 371

other editing cases, where we found that generally 372

higher layers are more suitable for editing (layer 9 373

in TIME dataset and 7 in RoAD). 374

6 Related work 375

Editing knowledge embedded within deep neural 376

networks has been the focus of several lines of 377

work, achieving success in editing generative ad- 378

versarial networks (Bau et al., 2020; Nobari et al., 379

2021; Wang et al., 2022), image classifiers (San- 380

turkar et al., 2021), and large language models 381

(LLMs) (Meng et al., 2022b; Raunak and Menezes, 382

2022; Mitchell et al., 2021). Several methods were 383

proposed to update weights in LLMs in particular, 384

including fine-tuning on edited facts (Zhu et al., 385

2020), weight predictions using hyper-networks 386

(Cao et al., 2021), identifying and editing specific 387

neurons (Dai et al., 2021), and rank one model edit- 388

ing (Meng et al., 2022a). The task of factual editing 389

in text-to-image models was introduced by Orgad 390

et al. (2023), who targeted the cross-attention lay- 391

ers. In contrast, we target a specific layer in the 392
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text encoder of the text-to-image model, allowing a393

more precise edit that changes fewer model param-394

eters (0.24% compared to 1.95% of model parame-395

ters) and outperforms Orgad et al. on all metrics.396

The task of editing knowledge in (the parameters397

of) text-to-image models is separate from two other398

lines of work. First, a large body of work has been399

devoted to image editing (Avrahami et al., 2022;400

Mokady et al., 2022; Nichol et al., 2021; Wallace401

et al., 2022; Wu and De la Torre, 2022; Zhang et al.,402

2022; Couairon et al., 2022). Image editing aims to403

modify specific attributes of an input image based404

on some auxiliary inputs, recently using texts and405

instructions (Bau et al., 2021; Kawar et al., 2022;406

Hertz et al., 2022). Contrary to our setting, this407

task does not aim to make a persistent change in408

the models’ generations and thus does not consider409

modification of the model’s weights.410

Another distinct line of work is personalization411

of text-to-image diffusion models, where the goal412

is to adapt the model to a specific individual or413

object (Agrawal et al., 2021; Ruiz et al., 2022),414

given a specific word or pseudo-word (Cohen et al.,415

2022; Gal et al., 2022; Daras and Dimakis, 2022;416

Tewel et al., 2023). Personalization methods pro-417

vide the user with a new token or embedding that418

represents a novel entity, while preserving the orig-419

inal class of objects (for example, using “[v]” to420

represent a specific dog in “A [v] dog”, while pre-421

serving the original generic meaning of “A dog”).422

In contrast, our work focuses on a fundamentally423

different task: completely transforming the fac-424

tual associations without preserving the original425

value. For example, after editing, the model should426

consistently generate images of Joe Biden for all427

prompts and phrases related to “The President of428

the United States”, without the need to include a429

special token in the user’s prompt, and without pre-430

serving the original outdated association to Donald431

Trump. Thus, our method provides a practical way432

for model providers to keep their models up to date.433

7 Editing versus Personalization434

Although personalization and editing differ in use435

(Section 6), we adapted DreamBooth (Ruiz et al.,436

2022), a popular personalization method, to per-437

form a variation of the task that is related to editing438

for comparison purposes. Namely, we introduce439

the edited entity using a personalized token that is440

added to the editing prompt (e.g., introducing “[v]”441

in “The [v] President of the United State”). Notably,442

our approach does not fully align with editing goals,443

as original prompts still produce images with the 444

initial fact. DreamBooth underperforms compared 445

to ReFACT on the RoAD validation set, achieving 446

F1 scores of 75.7% and 91.0%, respectively, with 447

its original hyper-parameters. Even with hyper- 448

parameter optimization, DreamBooth only reaches 449

81.4%, generating lower-quality and less diverse 450

images than ReFACT. Further examples and details 451

are available in Appendix I.1. 452

Novel entities. Our main experiments with roles 453

entail swapping a given role with a known person, 454

such as updating the model’s association of “The 455

President of the United States” to Biden instead 456

of Trump. What happens if a previously unknown 457

person becomes the President? When applied out 458

of the box, ReFACT cannot update the model to as- 459

sociate a role with an unknown person. To address 460

this use case, we suggest to combine personaliza- 461

tion and editing. First, we can introduce the new 462

entity as a unique token (“[v]”) using a personal- 463

ization method. Then, we can apply ReFACT and 464

edit the requested prompt, using the special token 465

to specify the target. Preliminary results in this 466

direction are discussed in Appendix I.2. 467

8 Conclusion 468

In this work, we presented ReFACT, an editing 469

method that modifies knowledge encoded in text- 470

to-image models without fine-tuning. ReFACT is 471

effective at editing various types of factual associ- 472

ations, such as implicit model assumptions or the 473

appearance of an entire subject. Its edits are spe- 474

cific, leaving other pieces of knowledge unchanged. 475

Compared to previous methods, ReFACT only up- 476

date a small portion of the models’ parameters 477

(0.24%), leaving the rest of the model unchanged. 478

We demonstrated the use of ReFACT to preform 479

multiple edits on the same model with only a slight 480

drop in performance compared to single individual 481

edits. Moreover, we showed how ReFACT can be 482

used as a causal analysis tool for analyzing which 483

information is stored in different layers. 484

Limitations 485

While ReFACT is a useful tool for updating text- 486

to-image models, it has limitations. Our method 487

is relatively slow, as it requires an optimization 488

process, while the competing method, TIME, has a 489

closed-form solution. ReFACT typically takes up 490

to 2 minutes on a single NVIDIA A40 GPU. 491
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Ethical Considerations492

The technology presented in this paper is meant493

to improve human–technology interaction. Nev-494

ertheless, it may also be used with unintended495

consequences, such as planting harmful phrases496

or incorporating harmful social views. Given the497

vast research on harmful representations (Boluk-498

basi et al., 2016; Bianchi et al., 2022; Cho et al.,499

2022; Struppek et al., 2022; Fraser et al., 2023), we500

believe that sharing the editing method in this paper501

has more benefits than potential harms. We encour-502

age future work to investigate the use of ReFACT503

for mitigating unwanted social impacts.504
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A Ablations of ReFACT768

The modality of t∗. An alternative approach to769

editing can be achieve by using an image as the edit770

target t∗, representing the concept that we wish to771

edit to (e.g., a photo of Joe Biden). As we found772

in early experiments, this approach does not pre-773

form as well as textual target, presumably due to774

the modality gap between CLIP’s text encoder and775

image encoder (Liang et al., 2022). Additionally,776

we found that the choice of specific image for edit-777

ing might heavily affect the observed results. It is778

more difficult to specify the exact property we wish779

to edit (e.g., editing a doctor to a female doctor)780

without also affecting over attributes as well (the781

pose of the doctor, their hair or skin color) – see782

Figure 12. Expressing the target concept in text783

enables us to express our edit in a more general784

way, which is more robust. We found that editing785

to representations from the text encoder generalizes786

better, and is more robust compared to editing from787

the image encoder in terms of image diversity and788

editing quality. In case of editing appearance of789

roles, when the diffusion model encodes the edited790

character well, such as “Joe Biden”, editing with791

text is more effective – see Figure 14. Thus, the re-792

sults reported in the main paper use a text encoding793

for t∗. On the other hand, the image representa-794

tion enables us to target multiple concepts at once,795

specifically applicable to changing the appearance796

of an object or role in a way that is difficult to ex-797

plain via text. For example, if we want to edit the798

appearance of a TV character, who is now adapted799

to be played by a new actor, choosing t∗ to be the800

name of the actor does not capture specific recog-801

nizable traits of the new adaptation – see Figure 13.802

Direct versus contrastive optimization. The803

computation of v∗ described in Section 2.2 is done804

using a contrastive objective, maximizing the simi-805

larity between the editing prompt (e.g., “The pres-806

ident of the United States”) and the target (e.g.,807

“Joe Biden”), while relatively minimizing the simi-808

larity to other contrastive examples (e.g., “Donald809

Trump”). A different approach would be to di-810

rectly maximize the similarity, without utilizing811

contrastive examples. To obtain v∗ using direct812

optimization, we minimize the following loss:813

v∗ = argmin
v

d(E(t∗), Em(l):=v(x1)) (2)814

Preliminary experiments showed that contrastive815

optimization is more effective, and thus we contin- 816

ued with it. 817

Cosine similarity versus L2 distance. While co- 818

sine similarity better reflects CLIP’s original train- 819

ing objective, L2 is more directly related to our 820

goal of editing the embeddings of the input prompt. 821

We found L2 to perform better in all experiments 822

and thus present the results with L2 as the distance 823

function of choice. 824

Hyper-parameter search. We line searched over 825

the following parameters, beginning from a basic 826

variation which we found reasonable in early ex- 827

periments and refining it on each search. First, 828

we chose the layer to edit within the CLIP text en- 829

coder: Table 2 presents our layer search on the base 830

configuration, for each dataset. We chose layer 9 831

for editing on TIME dataset, and layer 7 for edit- 832

ing RoAD. Then, we also searched for the number 833

of contrastive examples (20); the learning rate for 834

learning v∗ (best value was 0.05); the maximum 835

number of steps for optimization (100); and the 836

probability threshold used for early stopping of 837

v∗ optimization process (0.99, illustrated in Fig- 838

ure 15). 839

B RoAD 840

RoAD consists of two types of editing requests: 841

Roles and appearances. Roles refer to positions 842

filled by individuals, such as politicians, musicians, 843

and pop-culture characters (e.g., “The President of 844

the United States”, “Ross Geller”, “Forrest Gump”). 845

Appearances are editing requests that aim to alter 846

the complete visual appearance of an object (e.g., 847

“Apple”, ”Honda Accord”). Although all entries 848

in RoAD share the same structure, there are some 849

conceptual differences between editing roles and 850

editing appearances. For example, when editing 851

“The President of the United States” to “Joe Biden”, 852

we expect the model to still be able to generate 853

the source prompt, “Donald Trump”. This is not 854

the case when editing “Apple” to “Avocado”, since 855

both the editing prompt and the source prompt are 856

“Apple”, and are expected to demonstrate the edited 857

fact. 858

RoAD is split into a test set (90 entries) and a 859

smaller, disjoint, validation set (10 entries), used 860

for hyper-parameter search. Each entry in RoAD 861

consists of an editing prompt, a source, and a target. 862

The editing prompt (e.g., “The Prince of Wales”, 863

“A computer”) describes a role or entity whose vi- 864

sual appearance can be consistently generated by a 865
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Figure 12: Editing “A doctor” to “A female doctor” using a image as the target (t∗). Generated images shows that
not only the gender was changes, and all photos showcase similar haircut, hair color, skin color, and pose.

Figure 13: Editing using an image as the target versus
textual target. Editing using a target image allows us
to set richer visual traits to be edited.

Figure 14: Editing using textual targets is often more
effective when the CLIP model has a good represen-
tation for the target prompt.

text-to-image model. In entries for editing roles (46866

entries), the source describes the person generated867

by the model when given the editing prompt (e.g.,868

“Price Charles”). For entries for editing appear-869

ances (64 entries), the source describe the entity870

itself and is the same as the editing prompt (e.g.,871

“A computer”). The source and target of each en-872

try can be used to generate multi-modal input to873

fit various editing algorithms. They can be used874

simply as textual source and target descriptions, or875

be used to automatically generate images using a876

text-to-image model of choice, which are later fed877

to the editing algorithm.878

For each positive prompt, RoAD includes the879

prompt itself (e.g., “The Prince of Wales in the880

park”), and two variations of the positive prompt881

describing the source and targets (e.g., “Prince882

Charles in the park”, “Prince William in the park”,883

respectively). For appearance editing entries, the884

positive prompt and source-positive prompts are885

again identical. For each negative example RoAD886

includes a negative prompt (“Prince Harry”, “A887

computer screen”) and the negative-target prompt888

(“Prince William”, “A laptop screen”).889

All entries in RoAD were manually collected,890

and thus do not contain any private personal data,891

other than names of well-known individuals.892

RoAD is available at the supplementary material.893

C Implementation Details 894

We implemented our code using Pytorch (Paszke 895

et al., 2019) and Huggingface libraries (Wolf et al., 896

2020; von Platen et al., 2022), and based our rank- 897

one editing code on the code of Meng et al. (2022a) 898

(MIT License). We use Stable Diffusion V1-4 (Cre- 899

ativeML Open RAIL-M License) (Rombach et al., 900

2022) and CLIP (MIT License) (Radford et al., 901

2021). All experiments are averaged over 25 seeds 902

from 0 to 24. We ran the experiments on the follow- 903

ing GPUs: Nvidia A40, RTX 6000 Ada Generation, 904

RTX A4000 and GeForce RTX 2080 Ti. 905

Our code is available at the supplementary mate- 906

rial. 907

D Metrics 908

We describe here the measured metrics in a math- 909

ematical notation. We refer to the set of images 910

generated after editing with positive prompts and 911

negative prompts as P and N , respectively. Let 912

pnew and pold denote the positive and negative new 913

prompts, and nnew and nold denote the positive and 914

negative new prompts. Then: 915

Generalization:

1

|P|
∑
im∈P

[CLIP(im, pnew) > CLIP(im, pold)] 916
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TIME dataset (validation set) RoAD (validation set)

Edit layer Efficacy General. Spec. F1 Efficacy General. Spec. F1

0 0.925 0.683 0.884 0.777 1.000 0.858 0.935 0.896
1 0.910 0.718 0.807 0.761 1.000 0.890 0.920 0.905
2 0.920 0.755 0.870 0.810 1.000 0.838 0.943 0.889
3 0.955 0.730 0.853 0.789 1.000 0.882 0.931 0.906
4 0.915 0.684 0.876 0.774 1.000 0.838 0.942 0.888
5 0.930 0.708 0.892 0.795 1.000 0.832 0.927 0.878
6 0.930 0.694 0.884 0.783 1.000 0.914 0.900 0.907
7 0.940 0.717 0.870 0.790 1.000 0.970 0.940 0.955
8 0.940 0.807 0.803 0.805 1.000 0.941 0.906 0.923
9 0.945 0.771 0.866 0.817 1.000 0.919 0.952 0.935
10 0.990 0.801 0.832 0.816 0.996 0.906 0.962 0.934

Table 2: Editing in different layers of the CLIP model.

Figure 15: The importance of selecting a high threshold when optimizing v∗. Higher thresholds result in an image
that is closer to our target edit.

Specificity:
1

N
∑

im∈N
[CLIP(im, nnew) < CLIP(im, nold)]917

We computed the efficacy, specificity and gener-918

alization metrics using Laion’s ViT-G/14 (Schuh-919

mann et al., 2022), which is the best open source920

CLIP model to date. The general CLIP score used921

to evaluate generation quality was computed us-922

ing the standard Torchmetrics (Detlefsen et al.,923

2022) CLIPScore class, for which CLIP-vit-large-924

patch14-336 is the best available CLIP model.925

E Additional Qualitative Results926

We present additional qualitative results of927

ReFACT. Figure 16 demonstrates the generated928

images for the prompt “a cake” across different ed-929

its, using the same seeds. Figure 17 illustrates the930

generalization of ReFACT and Figure 18 illustrates931

its specificity.932

F Limitation of ReFACT: facial features933

As we discussed in Section 4.4, an edit consider-934

ing a person can sometimes modify facial features935

in an undesired way. We experimented in editing 936

different layers of the model to overcome this limi- 937

tation, but found that it only helps slightly or not at 938

all. This is demonstrated in Figure 20. 939

G Baselines Implementation 940

G.1 Fine-tuning baseline 941

We conducted preliminary experiments with a fine- 942

tuning baseline, where we fine-tuned the same ma- 943

trices considered for editing (the second matrix 944

within the MLP at a specific layer). The fine- 945

tuning objective was composed of minimizing the 946

cross-entropy loss over the contrastive objective 947

presented in Section 2.2, and a regularization term 948

for minimizing the distance between the original 949

model’s weights and the updated weights. To chose 950

hyper-parameters, we conducted a line search us- 951

ing the RoAD validation set, beginning from a ba- 952

sic set of parameters which we found reasonable. 953

First, we chose the editing layer (layer 9), and the 954

learning rate (5e − 5). Finally, we chose the reg- 955

ularization hyper-parameters (infinity norm as the 956

regularization norm, and 5e10 as the regularization 957
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Figure 16: Editing “A cake” to different flavors.

Figure 17: Generalization of ReFACT.

Figure 18: Specificity of ReFACT.
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Figure 19: Prompts such as “A president” and “The president”, which do not refer specifically to the President of
the United States, are mostly unaffected by ReFACT. A small number of seeds mistakenly lead, before editing, to
images of Donald Trump. After applying ReFACT, these seeds now generates a generic notion of "President" which
is not Trump nor Biden.

Figure 20: Editing sometimes result in facial features change, even when editing different layers.

factor). We fine-tuned the model for 5 epochs.958

We found that this approach leads to catastrophic959

forgetting (Kirkpatrick et al., 2017), as was also960

show in text-only model editing (Zhu et al., 2020).961

This phenomena specifically effects more complex962

prompts with multiple concepts, where after fine-963

tuning, some of the concepts are consistently miss-964

ing from the generated images. In some cases,965

unrelated concepts are also affected leading to a966

drop in the specificity of the edit. Figure 21 demon-967

strates some of these issues. After editing “The968

tower of Pisa” to appear as “The Eiffel Tower”,969

prompts containing multiple concepts such as “A970

couple in front of the Tower of Pisa”, or “A painting971

of the Tower of Pisa” results in images containing972

only the tower, without the couple or painting style.973

Moreover, negative prompts such as “The Colos-974

seum” or “The Statue of Liberty” also generate975

images of the Eiffel Tower after editing with fine-976

tuning.977

G.2 Modifications to TIME978

TIME (Orgad et al., 2023) is a method designed979

to edit implicit assumptions, and as such, it is de-980

signed to edit from an under-specified prompt (“a981

pack of roses”) to a specified prompt (“a pack of 982

blue roses”). As we discussed in Appendix B, our 983

dataset RoAD contains two types of samples: roles 984

and appearance. We separate their treatment when 985

we run TIME: 986

Roles. Roles are more similar to the edits pre- 987

formed by TIME, and can be written as an under- 988

specified prompt (“The President of the United 989

States”) and a specified prompt (“Joe Biden as the 990

President of the United States”). We use this for- 991

mulation to apply TIME to these samples. 992

Appearance. Appearances entries are different 993

from those used by TIME, since they edit from one 994

object to an entirely different one. For instance, 995

editing “Apple” to “Avocado”. We do not have 996

a natural way of designing this edit as an under- 997

specified prompt and a specified prompt. Thus, for 998

these samples we only edit the pad tokens, which 999

matches the formulation of TIME that edits only 1000

matching tokens and also edits the pad tokens. 1001

Additionally, we make modifications to TIME 1002

that make it more similar to ReFACT, to narrow 1003

down the reason that ReFACT is more success- 1004

ful. We experiment with two approaches: editing 1005
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Figure 21: Fine-tuning baseline compared to ReFACT. Fine-tuning exhibits catastrophic forgetting in complex
prompts by neglecting to generate some concepts (e.g., “A couple”), and demonstrates poor specificity by affecting
unrelated concepts (e.g., “The Colosseum”).

Edit to target
prompt

Edit
[EOS]

Gen. Spec. F1

False False 0.42 0.79 0.58
True True 0.31 0.94 0.54
False True 0.17 0.96 0.41

Table 3: Modifications to TIME algorithm and their
effect on generality, specificity, and F1, tested on the
RoAD validation set.

only the [EOS] token and editing directly to the tar-1006

get prompt (“Joe Biden”), like we do in ReFACT.1007

When we taking the former, we only edit the [EOS]1008

token, as done in ReFACT. We show in Table 3 the1009

results on RoAD with the various modifications.1010

We choose the original setting, which achieves the1011

highest F1 score. All of the results are relatively1012

poor, which indicates that the difference between1013

the methods lies within the component of editing1014

(attention layers versus inner MLP layers) and not1015

the other design choices we considered.1016

H Multiple Edits 1017

We evaluate multiple edits by preforming the 1018

editing requests sequentially on the same CLIP 1019

text encoder, using the same hyper-parameters as 1020

ReFACT. We edit entries from both the TIME 1021

dataset and RoAD, testing three different permu- 1022

tations of the edit requests. We edit up to 90 1023

facts. Figure 23 shows the efficacy, generaliza- 1024

tion and specificity of the model at every 10 edits 1025

interval. Our experiments show that multiple edits 1026

result in only a slight drop across all metrics, possi- 1027

bly thanks to the high specificity demonstrated by 1028

ReFACT. 1029

Figure 22 shows examples of entries that were 1030

edited in the first ten sequential edits, along the dif- 1031

ferent steps. The first two rows demonstrate editing 1032

“The British Monarch” from “Queen Elizabeth” to 1033

“Prince Charles”, and editing “Daffodils” to “Blue 1034

Daffodils”. The figure shows minimal changes in 1035

the generated images for these edits after multiple 1036

sequential edits. On the other hand, editing “Car- 1037

nation” to “Foxgloves” shows a drop in efficacy 1038
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Figure 22: Examples of edited knowledge preservation when preforming multiple sequential edits. Top two rows
show examples of edits that are left unaffected by later edits. Bottom row shows and example of an affected edit.

Figure 23: Efficacy, generalization and specificity after
multiple sequential edits.

after 20 edits, as the model generated images of1039

different flowers.1040

I Applying Personalization Methods1041

I.1 Editing versus personalization1042

Although personalization and editing differ in use,1043

we adapted DreamBooth (Ruiz et al., 2022), a pop-1044

ular personalization method, to preform a varia-1045

tion of personalization that is related to editing, for1046

comparison. Specifically, we used DreamBooth to1047

insert a personalized token “[v]” to represent the1048

edited entity. Thus, using “The President of the1049

United State” as an example, we can insert the new1050

token such that “The [v] President of the United1051

State” will now reflect our edit target, Joe Biden.1052

As DreamBooth takes images as the description of1053

the target, we utilized the same images used in the1054

preliminary experiments described in Appendix A1055

on editing using target images. For each sample1056

from our validation set, we applied DreamBooth us- 1057

ing the implementation available in HuggingFace, 1058

by adding the “[v]” token to each editing prompt. 1059

Evaluation remained the same as detailed in sec- 1060

tion 3. 1061

We found that DreamBooth achieves worse met- 1062

rics on our dataset, RoAD. The original parameters 1063

presented by Ruiz et al. achieved an overall F1 1064

score of 75.7% on the RoAD validation set (com- 1065

pared to 95.8% by ReFACT), with an efficacy score 1066

of 79.6% (100% in ReFACT), generalization score 1067

of 62.56% (91.76% in ReFACT) and specificity 1068

score of 87.04% (95.76% in ReFACT). Examples 1069

are shown in Figure 24. 1070

As Figure 24 demonstrates, the application of 1071

DreamBooth produces images that are lower qual- 1072

ity and less diverse than using ReFACT. We note 1073

that the original DreamBooth dataset uses high- 1074

resolution input images, compared to our input 1075

images which were generated with Stable Diffu- 1076

sion. While this difference can cause the artifacts 1077

visible in the generated images, it also highlights 1078

the advantages of editing with a textual target: A 1079

text target captures the notion of the entity in a con- 1080

cise but nonspecific manner, i.e., does not capture 1081

specific colors, poses and composition, unless spec- 1082

ified explicitly. This can be observed when editing 1083

a sunflower to an orchid. The variation of orchids 1084

produced by ReFACT is much greater compared to 1085

DreamBooth. 1086

We further searched for a better learning rate 1087

and class-specific prior preservation loss weight 1088

for Dreambooth, achieving an overall F1 score of 1089
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Figure 24: ReFACT compared to DreamBooth, a popular personalization method, applied on samples from
the RoAD dataset. Top row shows images generated after editing with ReFACT. Second row shows the input
images used for DreamBooth, which are generated using SD. Last two rows show images generated after applying
DreamBooth. We experimented with using the reported parameters, and optimizing the parameters w.r.t F1 score on
our evaluation metrics. DreamBooth leads to overfitting compared to ReFACT, and generates images that are less
diverse and lower quality.

81.4%, which is still lower than ReFACT (91.0%).1090

However, these optimized parameters led to over-1091

fitting of the model to the input images, lack of1092

diversity in the generated images, and catastrophic1093

forgetting. Figure 25 demonstrates some examples1094

of these issues. For example, given the prompts “a1095

vase of [v] sunflowers” and “Van Gogh’s [v] sun-1096

flower”, the model ignores the additional concepts,1097

and generates the same images of orchids, which1098

are similar to the input images. Additionally, unre-1099

lated concepts are affected in this setting, causing1100

unrelated prompts like “Hibiscus Flowers” and “A1101

marigold” to also produce images of orchids.1102

I.2 Editing combined with personalization1103

We conducted a preliminary experiment to com-1104

bine personalization and editing to achieve editing1105

with novel entities. At first, we used DreamBooth1106

(Ruiz et al., 2022) to fine-tune the model and create1107

the representation for the new entity. For exam-1108

ple, “the [v] president of the United States”, which1109

can now also be a person previously unknown to1110

the model. Note that at this point, the model still1111

generates images of Donald Trump for the prompt1112

"The President of the United States". We then edit 1113

the model using that new entity as the target, to 1114

eliminate the use of the special token [v]: “The 1115

president of the United States” is now edited with 1116

the target prompt “The [v] president of the United 1117

States”. Our results, demonstrated in Figure 26, 1118

show the potential of this direction, as the prompt 1119

“The president of the United States” now gener- 1120

ates a previously anonymous person. However, the 1121

limitations of using DreamBooth discussed in Ap- 1122

pendix I.1 still apply, and are left for future work 1123

exploring the combination of the two approaches. 1124

J Per-layer analysis: facial expressions 1125

J.1 Implementation 1126

For this experiment, we needed prompts that gen- 1127

erate portrait images of people. We found that 1128

prompts such as “a portrait of a man” or “a photo 1129

of a woman” tend to generate images of very dif- 1130

ferent styles, while the prompt “a doctor”, which 1131

we borrowed from TIME dataset, tends to gener- 1132

ate realistic images of people looking directly at 1133

the camera. We thus use it to perform our experi- 1134
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Figure 25: Applying Dreambooth can lead to catastrophic forgetting, where prompts containing multiple concepts
generate only a subsection of the concepts (e.g., “A vase”, “Van Gogh”). Moreover, Dreambooth can hurt the
specificity of edits, with unrelated prompts also being affected (e.g., “Hibiscus flower”).

Figure 26: Combining ReFACT and personalization to achieve editing with novel entities. First, we use DreamBooth,
a personalization method to introduce the new concept using a new token “[v]”. Then, we apply ReFACT and
preform an edit using the special token as the textual target.

ments on facial expressions. Since the generative1135

model is biased (Orgad et al., 2023), it tends to1136

generate male images of doctors and thus we use1137

the prompts “a male doctor” and “a female doctor”.1138

For all experiments, we also experimented with1139

an additional variation of ReFACT (described in1140

Appendix A) that uses the image encoder to get the1141

target embedding.1142

J.2 Additional Results1143

In Figure 27, we present the plots from the image1144

editing and the text editing experiments, on differ-1145

ent emotions and layers. The two plots follow the1146

same trend, illustrating that editing in lower layers1147

results in the facial expression being more appar-1148

ent in the image generated by the edited model.1149

Figure 28 and 29 present more illustrations of this1150

phenomenon.1151

(a) Editing with image embedding.

(b) Editing with textual embedding.

Figure 27: CLIP score of different emotions on the
generated images after editing each later.
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Figure 28: Editing with an image target, across layers.

Figure 29: Editing with a textual target, across layers.
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