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ABSTRACT

Steering methods have emerged as effective tools for guiding large language mod-
els’ behavior, yet multimodal large language models (MLLMs) lack comparable
techniques due to recency and architectural diversity. Inspired by this gap, we
demonstrate that steering vectors derived solely from text-only LLM backbones can
effectively guide their multimodal counterparts, revealing a novel cross-modal trans-
fer that enables reuse of existing interpretability tools. Using community-standard
methods—Sparse Autoencoders (SAE), Mean Shift, and Linear Probing—we sys-
tematically validate this transfer effect across diverse MLLM architectures and
visual reasoning tasks. Text-derived steering consistently enhances multimodal
performance, with mean shift achieving up to +7.3% improvement in spatial re-
lationship accuracy and +3.3% in counting accuracy on CV-Bench, and exhibits
strong generalization to out-of-distribution datasets. These results highlight textual
steering vectors as a powerful, efficient mechanism for enhancing grounding in
MLLMs with minimal additional data collection and computational overhead.

1 INTRODUCTION

Steering large language models (LLMs) via their internal representations has emerged as a lightweight,
interpretable paradigm for eliciting safe and controllable behavior (Li et al., 2023a; Turner et al.,
2023; Sharkey et al., 2025, inter alia.). However, similar steering approaches have not yet gained
prominence for multimodal large language models (MLLMs). This is in part due to their relative
recency, as well as the heterogeneity of their architectures compared to text-only LLMs. Moreover,
many steering methods assume access to a dataset of contrast pairs (Marks and Tegmark, 2023) to
construct steering vectors, which may not be readily available for multimodal inputs.

Our key finding is that internal representations from a text-only LLM backbone retain their steering
effectiveness even after multimodal adaptation. This transfer effect enables a new multimodal
steering paradigm that is agnostic to architecture and does not require specialized multimodal data.
Importantly, it also allows us to directly repurpose steering methods originally developed for text-only
models—such as Sparse Autoencoders (SAEs), Mean Shift, and Linear Probing—without modality-
specific modifications. This bridges the mature ecosystem of text-based steering (McGrath et al.,
2024; Durmus et al., 2024; Hanna et al., 2025) with the emerging space of multimodal models,
providing a lightweight and interpretable pathway for enhancing multimodal reasoning.

Building on this insight, we propose a plug-and-play framework for multimodal steering. We
extract steering vectors from text-only LLM backbones using established techniques and then apply
them to the hidden states of their multimodal counterparts. This approach leverages the existing
toolbox of steering methods, which have been extensively studied and evaluated in the text domain,
to ensure accessibility and broader applicability for multimodal research. In contrast, developing
new multimodal-specific steering methods would require both specialized datasets and bespoke
implementations, which can be difficult to adapt across different modalities and fusion architectures.

We evaluate our approach across multiple open-weight MLLMs and a broad suite of visual reasoning
tasks. Our method consistently outperforms prompting baselines–for example, Mean Shift achieves
up to +7.3% improvement in spatial relationship accuracy on CV-Bench. Notably, while direct
prompting is effective for controlling text-only LLM behavior (Wu et al., 2025), it provides little
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Figure 1: Overview of our steering methodology. Given an MLLM with a text-only LLM backbone
and an image-bound prompt, we first identify the required visual concept (e.g, spatial relationships,
counting). For each hidden layer ℓ, we then extract corresponding steering vectors from the underlying
LLM using Mean Shift, Linear Probing, or Sparse Autoencoders. Finally, we apply these vectors to
image tokens, text tokens, or both, controlled by parameters γImage and γText.

benefit for multimodal reasoning. We also compare against LoRA fine-tuning: although LoRA
achieves stronger in-distribution accuracy, it exhibits limited out-of-distribution generalization and
lacks the lightweight and interpretability advantages of steering. Our contributions are as follows:

• We introduce a plug-and-play multimodal steering method built directly on existing LLM
representation-based techniques.

• We identify a novel transfer effect: representations from the text-only LLM backbone remain
effective for steering its multimodal counterpart, even after vision-language post-training.

• We demonstrate consistent performance gains across multiple MLLMs and task categories.
Importantly, we also show that textual steering vectors could generalize to out-of-distribution
test sets and demonstrate significant performance gains.

2 RELATED WORKS

Representation-Based Steering methods are an effective family of methods for steering LLMs, often
in two stages. First, they identify model components that influence target behaviors, using probing
directions (Li et al., 2023a; Zou et al., 2023), activation differences (Li et al., 2023a; Turner et al.,
2023; Panickssery et al., 2023; Marks and Tegmark, 2023; Lee et al., 2024), or lifted monosemantic
features via SAEs (Lieberum et al., 2024b; Gao et al., 2025; Templeton et al., 2024; Marks et al.,
2025) and their variants (Dunefsky et al., 2024), among other techniques. Second, they adjust steering
hyperparameters to balance desiderata such as truthfulness (Lin et al., 2022; Hernandez et al., 2023;
Li et al., 2023a), helpfulness (Zou et al., 2023), and quality.

While widely studied in LLMs, applying activation intervention to MLLMs remains elusive. To
our knowledge, the only such effort is the VTI method (Liu et al., 2025), which extends LLM
steering pipelines by constructing intervention vectors from paired multimodal inputs and applying
them to both visual and textual representations. In contrast, we show that interventions vectors
constructed solely from text inputs in the unimodal LLM can influence the MLLM’s multimodal
behavior. This result highlights an underexplored form of cross-modal transfer enabled by the
preserved semantics (Lieberum et al., 2024b) of the text backbone.
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Shared Semantics refer to the representations unifying heterogeneous modalities of the same content,
as identified across languages in multilingual LLMs (Artetxe et al., 2019; Wendler et al., 2024; Wu
et al., 2024) and text/vision inputs in multimodal models (Huh et al., 2024; Luo et al., 2024; Wu
et al., 2024). Our work studies the transfer of steering effect across different modalities and training
stages. Concurrently, Papadimitriou et al. show that SAE features co-activate across multimodal
inputs, while our work explores how such shared features can be exploited to steer MLLMs.

Multimodal Large Language Models are commonly developed by endowing a backbone LLM
with visual processing components and fine-tuning on multimodal datasets, with some exceptions
still pretrained from scratch (Team, 2024a; OLMo et al., 2024; Chen et al., 2025). Using an LLM
backbone typically involves projecting the outputs of an image encoder (Dosovitskiy et al., 2020;
Zhai et al., 2023) to the same dimension as the underlying LLM by an MLP, and concatenating the
resulting image/text tokens as input to the LLM. The model can then be finetuned on multimodal
data, possibly with frozen layers (e.g., in the LLM) to preserve pretrained knowledge.

3 TOY EXAMPLE

What’s the color of the image?
Steering Method: SparseAutoencoder (Gemma-2-9B)
Layer Index: 20;    Feature ID: 13864
Feature Explanation: “color-related terms, specifically 
highlighting the color red”

Figure 2: Effect of steering strength on
color token probabilities.

To demonstrate that textual representations can effec-
tively intervene in visual understanding, we conduct a
simple color perception experiment using GemmaScope
(Lieberum et al., 2024a) for Gemma-2-9B for feature ex-
traction and PaliGemma2-10B-mix-448 (Beyer et al.,
2024) as our target model. We present the model with a
yellow-orange image (whose RGB hex code is #FFB400)
and manipulate its perception by intervening in the hidden
representations. Specifically, we obtain the normalized
red vector from GemmaScope and we add this vector to
the hidden states of image tokens at layer 20 as follows:
h′
image = himage + α · vred, where α is the scale factor

controlling intervention strength. Figure 2 shows how in-
creasing the scale factor shifts perception along a color
spectrum: initially yellow-orange dominates, then orange
peaks at scale factor 50, and finally red becomes dominant
beyond scale factor 75. This demonstrates that textual
features can integrate with and modify visual understanding, supporting our hypothesis of unified
cross-modal representations within these models. We include more color examples in Appendix B.

4 METHODS

Building on our demonstration that textual representations can effectively steer visual understanding,
we now explore systematic approaches to improve MLLMs’ visual reasoning. Despite their growing
success, MLLMs still struggle with seemingly simple visual queries—miscounting objects, confusing
spatial relationships, and mishandling compositional prompts (Fu et al., 2024b). When the same
problems are posed in pure text, foundation models perform far better (Fu et al., 2024a).

This observation motivates our central question: Can existing steering mechanisms for textual
representations rectify the shortcomings of MLLMs? A promising remedy is steering vectors:
compact directions in activation space that encode specific concepts. By adding these vectors to
hidden representations at inference time as h′

target
(ℓ) = h

(ℓ)
target+α · v(ℓ), we can amplify the model’s

internal representation of desired concepts without parameter updates. The optimal layer ℓ∗ and scale
α∗ are found via grid search. We use three established methods—Sparse Autoencoders (SAE), Mean
Shift, and Linear Probing—to extract vectors v(ℓ) from text-only LLM backbones, demonstrating
broad applicability of cross-modal transfer while ensuring accessibility and reproducibility.

4.1 DATASET CONSTRUCTION FOR STEERING VECTOR EXTRACTION

To extract high-level textual representations for visual concepts, we identify four important tax-
onomies for static images: spatial relationship, counting, attribute, and entity (Huang et al., 2023;
Lin et al., 2024; Fu et al., 2025). For each visual concept, we curate small sets of sentence-anchor
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Figure 3: Left: Mean Shift method for counting features in Gemma-2-2B. The direction points from
mean control token states to mean counting-related token states. Right: Spatial relationship features
for Llama-3.1-8B. Activations projected to 2D for visualization.

pairs, where each pair contains a sentence exhibiting the visual concept and the specific anchor word
representing that concept. These sentence-anchor pairs serve as the foundation for all three steering
vector extraction methods. Examples are provided in Table 4 in Appendix A.1.

4.2 INTERPRETABLE STEERING VECTOR EXTRACTION METHODS

Sparse Autoencoders (SAE). Sparse Autoencoders reconstruct the activations of an LLM’s hidden
layer using an MLP with a single hidden layer and a sparsity penalty on the hidden layer. More
precisely, let x = h(ℓ)(t) ∈ RD be the model activations for a token t at layer ℓ in an LLM. A
SAE reconstructs x as x̂ = bdec +

∑F
i=1 fi(x)W

dec
·,i , where bdec ∈ RD and W dec ∈ RD×F are

learned decoder weights, and fi(x) is the activation corresponding to feature i. Feature activations are
computed using learned encoder weights W enc ∈ RF×D and benc ∈ RF as fi(x) = σ

(
W enc

i,· x+benc
i

)
,

where σ denotes an activation function of choice, e.g., ReLU or JumpReLU.

The model is trained by minimizing the loss function L = Ex

[
∥x− x̂∥22 + λ

∑F
i=1 fi(x) ∥W dec

·,i ∥2
]
,

i.e., L2-reconstruction error and L1-regularization on feature activations. In this formulation, unit-

normalized decoder weight vectors v
(ℓ)
i :=

W dec
·,i

∥W dec
·,i ∥2

serve as feature directions and α
(ℓ)
i (t) :=

fi(h
(ℓ)(t)) ∥W dec

·,i ∥2 as the activation strength of v(ℓ)i on token t.

We leverage existing pretrained SAEs—GemmaScope (Lieberum et al., 2024b) for Gemma-2 models
and LlamaScope (He et al., 2024) for Llama-3.1-8B. We emphasize that training SAEs is compu-
tationally expensive, and a key advantage of our approach is leveraging existing interpretability
infrastructure without additional training costs. Using our sentence-anchor pairs, we identify features
with high activations on anchor words. We then verify their relevance to the target visual concepts
and average these relevant feature vectors to create a single steering vector for each visual concept at
each layer. Additional details are provided in Appendix A.1.

Mean Shift. This method identifies feature directions by computing activation differences, as shown
in Figure 3, showing surprising effectiveness for LLM steering (Marks and Tegmark, 2023; Wu et al.,
2025). For each taxonomy T and layer ℓ, using sentence-anchor pairs {(s1, w1), . . . , (sK , wK)}, we
compute the mean shift vector m(ℓ)

T = 1
K

∑K
j=1 h

(ℓ)(wj)− 1
|S¬T |

∑
t∈S¬T

h(ℓ)(t) , where h(ℓ)(wj)

represents the residual stream activation of the anchor word wj at layer ℓ and S¬T is a control set of
non-anchor tokens from the same sentences. We refrain from normalizing the vector m(ℓ)

T , preserving
its magnitude relative to the original hidden states.

Linear Probing. We train a linear classifier distinguishing anchor word activations from control
tokens on the ℓ-th layer of a model (Alain and Bengio, 2016; Park et al., 2024). As the hidden
state dimensionality often exceeds our sample size (K < D), we first project to dimension d < K
using PCA. With Q ∈ Rd×D as the PCA matrix, the probe separates {h(ℓ)(wj)Q

⊤}j≤K and
{h(ℓ)(t)Q⊤}t∈S¬T , where {(s1, w1), . . . , (sK , wK)} are the sentence-anchor pairs for concept T
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the best (ℓ∗, α∗) for steering the model’s spa-
tial reasoning abilities. In this case, ℓ∗ = 5
and α∗ = 1.0.

Figure 4: Efficient Grid Search with PaliGemma2-3B on the Spatial Relationship Task.

and S¬T is our control set. The learned normal vector v ∈ Rd (pointing toward taxonomy-relevant
points) yields the final steering vector v′ = Q⊤v. We use d = K/2 in practice.

Prompting Baseline. Like our steering methods, prompting represents an interpretable approach that
no parameter updates, and it has displayed impressive steering abilities in text-only domains (Wu
et al., 2025). For a given taxonomy T , we generate a prompt meant to enhance an MLLM’s visual
reasoning ability with respect to T as follows: We first curate a collection of 96 prompts of varying
lengths by instructing GPT-4o to generate prompts that guide the model to reason with respect to
T , similar to the LLM-based prompt generation in AxBench (Wu et al., 2025), and then select the
best-performing prompt via grid search on training data. Refer to Appendix A.2 for further detail.

5 STEERING IMPROVES MULTIMODAL LLMS

Having established in Section 3 that textual steering vectors applied to non-output tokens can alter the
behavior of MLLMs, we now investigate whether the textual steering vectors we identified in Section
4.2 can improve visual understanding in MLLMs when applied to intermediate representations.

5.1 SETUP

Models. We investigate PaliGemma2 models with 3B and 10B parameters (PaliGemma2-3B-
mix-448 and PaliGemma2-10B-mix-448, referred to as PaliGemma2-3B and PaliGemma2-10B)
and Idefics3-8B-Llama3. These models differ architecturally: PaliGemma2 adopts prefix-LM mask-
ing where image tokens and textual instructions are cross-attended, while Idefics3 is fully autore-
gressive following LLaVA. Steering vectors are extracted from their respective text-only backbones:
Gemma2-2B, Gemma2-9B, and Llama-3.1-8B.

Dataset. We use CV-Bench (Tong et al., 2024) with 4 sub-categories: Count, Relation, Distance,
and Depth, totaling 2,638 data points. Each sub-category contains around 700 samples, split into
500-600 training samples for grid search and 150 for testing.

Grid Search. We identify optimal injection layer ℓ and scale factor α via grid search on the
training split. For each (ℓ, α) pair, we intervene as h′

target(ℓ) = htarget(ℓ) + αv(ℓ) and select
(ℓ∗, α∗) = argmaxℓ,α Acc(ℓ, α). We use A = {0.1, 0.2, 0.4, 0.6, 0.8, 1.0} for unnormalized vectors
(MeanShift). For normalized vectors (SAE, Probe), we use {10, 20, 30, 40, 50, 60} on PaliGemma2
models and {0.2, 0.4, 0.6, 0.8, 1.0, 1.2} on Idefics3 due to smaller hidden state norms. We set I to be
the middle layers, where we observe the learning from image tokens is predominantly happening (see
Figure 4a): {5, 6, . . . , 20} for PaliGemma2-3B and Idefics3-8B-Llama3, and {15, 16, . . . , 30}
for PaliGemma2-10B. Notably, we never steer output tokens, focusing on internal representations.

5.2 RESULTS

Table 1 presents a comparative analysis of three different models, PaliGemma2-3B, PaliGemma2-
10B, and Idefics3-8B-Llama3, on tasks related to spatial relationships and counting in CV-Bench.
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MODEL
INTERVENTION

TOKENS RELATION COUNT

TEXT IMAGE SAE PROBE MEANSHIFT SAE PROBE MEANSHIFT

PaliGemma2-3B

— 76.0 59.3
✓ 82.0 (+6.0)⋆ 77.3 (+1.3) 83.3 (+7.3)⋆ 60.0 (+0.7) 62.0 (+2.7) 60.0 (+0.7)

✓ 78.7 (+2.7) 76.7 (+0.7) 78.7 (+2.7)⋆ 62.0 (+2.7)⋆ 60.7 (+1.3) 62.0 (+2.7)
✓ ✓ 81.3 (+5.3)⋆ 78.7 (+2.7) 81.3 (+5.3)⋆ 62.7 (+3.3)⋆ 62.0 (+2.7)⋆ 62.0 (+2.7)⋆

Prompting 76.7 (+0.7) 60.0 (+0.7)

PaliGemma2-10B

— 79.3 63.3
✓ 78.7 (−0.7) 77.3 (−2.0) 83.3 (+4.0)⋆ 63.3 (+0.0) 62.7 (−0.7) 64.0 (+0.7)

✓ 79.3 (+0.0) 79.3 (+0.0) 78.7 (−0.7) 63.3 (+0.0) 63.3 (+0.0) 64.7 (+1.3)
✓ ✓ 78.7 (−0.7) 78.0 (−1.3) 83.3 (+4.0)⋆ 64.0 (+0.7) 63.3 (+0.0) 63.3 (+0.0)
Prompting 76.7 (−2.7) 63.3 (+0.0)

Idefics3-8B-Llama3

— 73.3 59.3
✓ 76.0 (+2.7) 78.0 (+4.7)⋆ 80.0 (+6.7)⋆ 58.7 (−0.7) 58.0 (−1.3) 60.0 (+0.7)

✓ 78.0 (+4.7)⋆ 72.7 (−0.7) 76.7 (+3.3) 60.0 (+0.7) 59.3 (+0.0) 60.7 (+1.3)
✓ ✓ 77.3 (+4.0)⋆ 78.7 (+5.3)⋆ 80.7 (+7.3)⋆ 62.0 (+2.7)⋆ 60.0 (+0.7) 60.7 (+1.3)
Prompting 75.3 (+2.0) 58.7 (−0.7)

Table 1: Textual Steering Vectors Improve Multimodal LLMs’ Visual Understanding. Task-
specific textual steering vectors reliably improve both spatial relation and counting performance
across models. Stars (⋆) denote statistically significant improvements (p < 0.05).

The performance is evaluated with and without intervention tokens (text, image, or both) and across
different steering methods (SAE, Probe, MeanShift, and Prompting).

Steering Interventions Prove Effective. Table 1 demonstrates that steering interventions, especially
MeanShift, consistently improve model performance on spatial relationship and counting tasks over
baseline levels. For instance, PaliGemma2-3B’s “Relation” accuracy with MeanShift rose from 76.0
to 83.3 using both tokens, illustrating the general efficacy of these mechanisms.

MeanShift Shows Superior Performance and Stable Effects. Among the evaluated methods,
MeanShift performs most effectively and demonstrates more stable effects across different models,
aligning with recent text-only steering findings (Wu et al., 2025). MeanShift’s superiority and stability
stem from its robustness: while SAE relies on learned sparse representations that may suffer from
overfitting or incomplete concept capture, and probing operates in lower-dimensional space with
sensitivity to specific projections, MeanShift operates on full-dimensional representations using
distributional properties. This gives it more deterministic and stable effects across different models.

Prompting Barely Steers. Table 1 indicates that prompting is often less effective than targeted
interventions and sometimes even deleterious. This deviates from text-only observations (Wu et al.,
2025), reflecting MLLMs’ challenges in following fine-grained visual reasoning instructions. Unlike
text-only models that reliably execute linguistic guidance, multimodal models may struggle with
translating textual prompts into enhanced visual understanding, making prompting less effective.

Steering More Impactful for Spatial Relationships. Interventions yield more substantial accuracy
improvements in the “Spatial Relationship” task than in “Counting”. For instance, as shown in Table
1, with both tokens and MeanShift, PaliGemma2-3B gained +7.3 for relationships but only +2.7
for counting. This disparity may stem from spatial relationships being more directly influenced by
highlighting salient object features and positions, while counting might demand a more holistic scene
interpretation, less directly aided by these specific steering methods.

Smaller Models Show Better Steering Responsiveness. Steering effectiveness increases with
smaller model size, with the 3B model showing consistently larger improvements than the 10B model.
This suggests that smaller models have more malleable internal representations, making them more
receptive to steering interventions. For instance, PaliGemma2-3B demonstrates high responsiveness
across all intervention types, while the 10B model shows reduced sensitivity to steering.

Intervention Transfers Across Tasks. As shown in Figure 5, intervention using a feature T some-
times transfer effectively to different tasks T ′. For instance, enhancing attribute and entity recognition
improves spatial relationship performance, suggesting that accurate object identification helps spatial
reasoning. This cross-task transfer reflects the interconnected nature of visual understanding, where
strengthening one capability can have cascading benefits for related reasoning processes.
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Figure 5: Performance improvements on CV-Bench tasks when steering PaliGemma2-3B with
MeanShift vectors. Each cell shows the percentage improvement in accuracy relative to the baseline.
Rows represent different CV-Bench tasks, while columns represent different feature vectors used for
steering. Text below improvements indicates the optimal layer number and intervention strength.

6 STEERING IMPROVEMENTS GENERALIZE OUT-OF-DISTRIBUTION

We now examine the ability of textual steering methods for MLLMs to generalize out-of-distribution,
i.e., to datasets on which the steering method’s hyperparameters (ℓ, α) have not been tuned.

6.1 SETUP

Datasets. We first examine the transferability of textual steering on five datasets specifically
designed to benchmark isolated visual reasoning capabilities: What’sUp-A, What’sUp-B, BLINK
Object Localization, CLEVR, and Super-CLEVR. What’sUp-A contains 408 images of pairs of
household objects arranged in clear spatial relations of {“on”, “under”, “left”, and “right”}, while
What’sUp-B similarly contains 412 images with objects in the image closer in size (Kamath et al.,
2023). The BLINK Object Localization category contains 122 questions related to bounding boxes
for large objects (Fu et al., 2024b). Finally, we sampled 500 datapoints from CLEVR (Johnson et al.,
2017) and 200 datapoints from Super-CLEVR (Li et al., 2023b) to evaluate the OOD accuracy of
textual steering in counting.

Steering Vector Hyperparameter Selection. We examine the previous three steering
methodologies—SAE, MeanShift, and Probe—with a single choice of layer ℓ and scale factor
α chosen independently of the test dataset. Specifically, for each test dataset, we select the (ℓ, α) pair
that performed best on the corresponding CV-Bench task category (e.g., “Relation” for the What’sUp
datasets and Blink Object Localization focusing on spatial relationships, and “Count” for CLEVR
and Super-CLEVR).

We emphasize that the steering methods’ hyperparameters are not tuned to the datasets considered in
this section, making this a true test of out-of-distribution generalization. Similarly, our prompting
baseline uses the exact prompt prefix that performed best on the associated CV-Bench tasks. The only
adaptation made was the use of a small validation subset (50 datapoints for What’sUp and CLEVR,
25 datapoints for BLINK Object Localization and Super-CLEVR) to determine the most effective
token type for intervention (image, text, or both) before evaluating on the remaining data.

6.2 RESULTS

Steering Remains Broadly Effective. Table 2 demonstrates that textual interventions are effective
across all 5 datasets considered, attaining an average improvement over all models and datasets of
at least +3.9 for all vector-based steering methods, demonstrating the strong OOD generalization
of steering. Prompting averaged a +0.8 improvement and worsened model performance in 5 cases,
suggesting that it may be less effective for MLLMs than for text-only LLMs (Wu et al., 2025).

Validation Against Linguistic Bias. The improved performance of steering on the What’sUp datasets
provides evidence that our steering enhances genuine visual understanding rather than exploiting
linguistic patterns. These datasets contain controlled image groups where identical objects are
arranged in systematically varied spatial relationships (e.g., an apple positioned left, right, above, or
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DATASET
VISUAL
CONCEPT

MODEL
INTERVENTION METHOD

BASELINE PROMPTING SAE PROBE MEANSHIFT

What’sUp-A
Spatial
Relation

PaliGemma2-3B 62.7 65.8 (+3.1)⋆ 71.8 (+9.1)⋆ 78.5 (+15.8)⋆ 75.4 (+12.7)⋆

PaliGemma2-10B 68.5 63.3 (−5.2) 80.1 (+11.6)⋆ 71.6 (+3.1)⋆ 74.9 (+6.4)⋆

Idefics3-8B-Llama3 62.2 61.9 (−0.4) 64.1 (+1.9) 62.2 (+0.0) 61.9 (−0.3)
AVERAGE IMPROVEMENT – -0.8 +7.6 +6.3 +6.3

What’sUp-B
Spatial
Relation

PaliGemma2-3B 60.6 56.7 (−3.9) 58.9 (−1.7) 57.5 (−3.1) 60.3 (−0.3)
PaliGemma2-10B 81.8 77.8 (−3.0) 82.4 (+0.6) 82.1 (+0.3) 82.1 (+0.3)
Idefics3-8B-Llama3 52.0 57.3 (+5.3)⋆ 56.2 (+4.2)⋆ 57.0 (+5.0)⋆ 63.4 (+11.5)⋆

AVERAGE IMPROVEMENT – -0.5 +1.0 +0.8 +3.8

BLINK Object
Localization

Spatial
Relation

PaliGemma2-3B 41.2 41.2 (+0.0) 43.3 (+2.1) 42.3 (+1.0) 44.3 (+3.1)⋆

PaliGemma2-10B 51.6 52.6 (+1.0) 54.6 (+3.1) 53.6 (+2.1) 57.7 (+6.2)⋆

Idefics3-8B-Llama3 53.6 53.6 (+0.0) 56.7 (+3.1)⋆ 53.6 (+0.0) 55.7 (+2.1)
AVERAGE IMPROVEMENT – +0.3 +2.8 +1.0 +3.8

CLEVR Count

PaliGemma2-3B 52.4 53.6 (+1.2) 70.7 (+18.2)⋆ 56.4 (+4.0)⋆ 67.1 (+14.7)⋆

PaliGemma2-10B 70.7 72.4 (+1.7) 74.9 (+4.2)⋆ 71.6 (+0.9) 80.4 (+9.8)⋆

Idefics3-8B-Llama3 59.8 60.2 (+0.4) 88.0 (+28.2)⋆ 84.4 (+24.7)⋆ 94.0 (+34.2)⋆

AVERAGE IMPROVEMENT – +1.1 +16.9 +9.9 +19.6

Super-CLEVR Count

PaliGemma2-3B 26.9 30.3 (+3.4) 32.0 (+5.1)⋆ 30.3 (+3.4) 33.1 (+6.3)⋆

PaliGemma2-10B 40.0 48.5 (+8.5)⋆ 40.6 (+0.6) 40.0 (+0.0) 44.6 (+4.6)⋆

Idefics3-8B-Llama3 66.5 65.7 (−0.8) 66.5 (+0.0) 67.5 (+1.0) 68.5 (+2.0)⋆

AVERAGE IMPROVEMENT – +3.7 +1.9 +1.5 +4.3

AVERAGE IMPROVEMENT – +0.8 +6.0 +3.9 +7.6

Table 2: Performance of textual steering on out-of-distribution datasets. Stars (⋆) denote statistically
significant improvements (p < 0.05).

below the same plate). If we were merely exploiting textual patterns, we would expect biased outputs
regardless of visual content, rather than the observed accurate tracking of true spatial relationships.

Superior OOD Performance on Focused Tasks. Remarkably, out-of-distribution performance often
surpasses in-distribution results on CV-Bench, particularly on datasets requiring “pure” reasoning
abilities. For example, CLEVR, which isolates counting skills using simple geometric objects without
requiring complex object recognition, shows pronounced gains (+19.6 average). In contrast, CV-
Bench Count and Super-CLEVR demand broader compositional understanding and object recognition
beyond the targeted abilities, resulting in more moderate improvements. This pattern suggests our
steering precisely targets the intended cognitive capabilities.

MeanShift Demonstrates Consistent Superiority. Across all experimental conditions, MeanShift
consistently outperforms other extraction methods, achieving the highest average improvement of
+7.6 compared to +6.0 for SAE and +3.9 for Linear Probing. This mirrors results from CV-Bench
and AxBench (Wu et al., 2025), demonstrating MeanShift’s consistent superiority across different
domains and modalities.

6.3 RESULTS ON REAL-WORLD TASKS

The datasets evaluated in the previous subsection were specifically designed to benchmark isolated
visual reasoning capabilities—spatial relationships and counting—making them ideal for controlled
evaluation of our steering methods. To examine broader practical applicability, we further evaluated
our cross-modal steering approach on real-world multimodal tasks that MLLMs encounter in practical
applications, including: general visual question answering (VQAv2 (Goyal et al., 2017)), open-ended
image captioning (COCO Captions (Chen et al., 2015)), document understanding (DocVQA (Mathew
et al., 2021)), chart understanding (ChartQA (Masry et al., 2022)), and table reasoning (VTab-
Fact (Kim et al., 2024)). We applied the most conceptually related steering vectors to their corre-
sponding tasks, using the same experimental protocol as Section 6.1. Both the experimental details
and complete results are provided in Appendix C.

Our steering methods demonstrate consistent effectiveness across these diverse domains, with Mean-
Shift achieving improvements in 15 out of 18 model-task combinations and 7 statistically significant
gains. While improvement magnitudes are smaller than those observed on our primary OOD datasets,
this is expected since these complex tasks depend less exclusively on core spatial relation and counting
skills that our steering vectors specifically target. Despite these differences, the consistent positive
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TASK DATA TYPE
LORA PERFORMANCE AVERAGE

IMPROVEMENTPALIGEMMA-3B PALIGEMMA-10B IDEFICS-8B

CVBench Relation In-dist 91.3 (+15.3)⋆ 91.3 (+12.0)⋆ 88.0 (+12.7)⋆ +13.3
CVBench Count In-dist 67.3 (+8.0)⋆ 72.0 (+8.7)⋆ 67.3 (+8.0)⋆ +8.2

AVERAGE IN-DISTRIBUTION +11.7 +10.4 +10.4 +10.8

What’sUp-A OOD 67.7 (+5.0)⋆ 69.3 (+0.8) 61.6 (−0.6) +1.7
What’sUp-B OOD 58.4 (−2.2) 86.0 (+4.2)⋆ 58.1 (+6.1)⋆ +2.7
BLINK Object OOD 42.3 (+1.1) 49.5 (−2.1) 52.6 (+1.0) +0.0
CLEVR OOD 54.2 (+1.8) 68.7 (−2.0) 66.7 (+6.9)⋆ +2.2
Super-CLEVR OOD 28.6 (+1.7) 43.4 (+3.4) 66.9 (+0.4) +1.8

AVERAGE OUT-OF-DISTRIBUTION +1.3 +1.2 +2.8 +1.7

Table 3: Performance comparison between LoRA and baseline models across in-distribution and
out-of-distribution tasks. Stars (⋆) denote statistically significant improvements (p < 0.05).

impact—especially the statistically significant gains—strongly indicates that our steering approach
effectively enhances visual reasoning capabilities across diverse applications.

7 STEERING VS. FINE-TUNING

Beyond our interpretable steering methods, fine-tuning represents another common approach for
enhancing model performance on specific tasks. To provide context for our steering approach, we
compare against Low-Rank Adaptation (LoRA) fine-tuning (Hu et al., 2022) on the same tasks.
We trained LoRA adapters using the training dataset from our grid search with an 80:20 train-
validation split with hyperparameters: rank r ∈ {1, 2, 4}, alpha α ∈ {4, 8}, learning rate η ∈ {1×
10−5, 5× 10−5, 1× 10−4}, epochs = 3, and dropout = 0.1. We applied LoRA to the query and value
projection parameters at the same layers used in our grid search: layers 5-20 for PaliGemma2-3B
and Idefics3-8B, and layers 15-30 for PaliGemma2-10B. For each model and task combination,
we selected hyperparameters that achieved optimal validation performance.

Table 3 presents the performance comparison between LoRA fine-tuning and our baseline models
across in-distribution and out-of-distribution tasks. LoRA demonstrates strong in-distribution per-
formance with an average improvement of +10.8 on CV-Bench, but its effectiveness diminishes
significantly on out-of-distribution datasets with only +1.7 average improvement. In contrast, our
steering methods maintain consistent performance across diverse datasets, with MeanShift achieving
+7.6 and SAE achieving +6.0 average out-of-distribution improvements, highlighting the superior
generalization capabilities of steering. This performance differential reflects fundamental differences
in their mechanisms: LoRA adapts models to specific task distributions, while steering enhances
underlying cognitive abilities such as spatial reasoning that remain applicable across diverse contexts.

8 DISCUSSION

We examine the ability of multimodal large language models (MLLMs) to be steered using tex-
tual steering vectors from their text-only backbone. We find that vectors extracted from Sparse
Autoencoders (SAEs), Mean Shift, and Linear Probing can all enhance MLLMs’ visual reasoning
across diverse tasks on CV-Bench, with Mean Shift demonstrating the strongest overall performance.
Notably, steering vectors with hyperparameters optimized on CV-Bench generalize to other out-of-
distribution datasets with superior performance compared to LoRA fine-tuning or prompt tuning,
underscoring text-driven steering as a powerful and efficient medium for enhancing visual reasoning
in MLLMs. A primary limitation of our steering method is the reliance on the quality of extracted
steering vectors. While existing vector extraction methods are widely used in the LLM interpretability
community, the vectors they extract can be of poor quality and fail to adequately represent the target
concepts, particularly for SAE and Linear Probing, leading to variable steering performance across
different layers and models. Future work can focus on developing more robust extraction methods for
text-only or cross-modal models to improve the reliability and consistency of steering vectors.
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ETHICS STATEMENT

We identify no significant ethical concerns. Our steering methods enhance visual reasoning on
standard benchmarks without introducing inherently harmful capabilities. While these techniques
could potentially be misused like any model modification approach, the risk is not greater than that of
the underlying MLLMs. We encourage responsible use and consideration of societal impacts when
deploying enhanced MLLMs.

REPRODUCIBILITY STATEMENT

We provide comprehensive implementation details and have open-sourced our code on GitHub and
uploaded it as supplementary material to OpenReview. Steering vector extraction methods are detailed
in Section 4.2 and Algorithm 1. Hyperparameter grid search procedures and experimental protocols
are described in Sections 5.1, 5, and 6. We use publicly available pre-trained SAEs (GemmaScope,
LlamaScope), models (PaliGemma2, Idefics3), and datasets (CV-Bench, What’sUp, BLINK, CLEVR,
Super-CLEVR, VQAv2, COCO Captions, DocVQA, ChartQA, VTabFact).
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A STEERING VECTOR METHODOLOGY

A.1 SPARSE AUTOENCODERS

We now provide further detail regarding the extraction of textual steering vectors for visual concepts
using SAEs.

Recall that we consider four important taxonomies for image-related concepts: spatial relationship,
counting, attribute, and entity. For each taxonomy, we sample K sentences {s1, . . . , sK} containing
these visual concepts. In practice, we set K to 20. For each sentence sj , we identify the anchor word
for this visual concept as wj , thus forming sentence-anchor pairs (sj , wj). See table 4 for several
examples.

Table 4: Sample sentence and anchor word pairs for various taxonomies.

TAXONOMY SENTENCE sj ANCHOR WORD wj

Spatial Relationship The cat is on the table on
She put the book under the chair under

Counting There are three apples in the basket three
The teacher counted five children five

Attribute The red car stopped at the light red
She wore a beautiful dress beautiful

Entity The dog barked at the mailman dog
A tree fell during the storm tree

Using our sentence-anchor pairs, we identify features with high activations on anchor words. Interest-
ingly, as shown in Figure 6, we find that each visual concept activates only a limited number of SAE
features, indicating a sparse encoding of these concepts. We then verify their relevance to the target
visual concepts and average these relevant feature vectors to create a single steering vector for each
visual concept at each layer.

We then use these sentence-anchor pairs to identify feature directions corresponding to the ideal
visual concepts using Algorithm 1. We employ a two-stage procedure which, at the first stage,
finds the top n activated features for anchor words wj in sentences sj . At the second stage, we
use o3-mini (OpenAI, 2025) to verify that these features indeed align with the desired visual
concept C. To accomplish the procedure, we use pretrained SAEs with detailed explanations and
top activations developed by the interpretability community, such as GemmaScope (Lieberum et al.,
2024b) for Gemma-2-2B and Gemma-2-9B (Team, 2024b), and LlamaScope (He et al., 2024) for
Llama-3.1-8B base model (at Meta, 2024). When we prompt o3-mini for verification, we craft
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Model: Gemma2-2B; SAE: GemmaScope-2B-Res-16K; 
Taxonomy: Spatial Relationships 
Layer: 7; Feature ID: 14725
Explanations: 

“spatial relationships and movements in a given context”
Top Activations: 

lay across surfaces; decorated eggs nestled inside;
float in the air; fingers underneath the waistband

Model: Gemma2-9B; SAE: GemmaScope-9B-Res-16K;
Taxonomy: Counting
Layer: 15; Feature ID: 11010
Explanations:

“quantitative indicators or numerical references”
Top Activations:

five of the charities; spent four years;
material costs by three percent

Model: Llama-3.1-8B; SAE: LlamaScope-8B-Res-32K;
Taxonomy: Attribute
Layer: 13; Feature ID: 29126
Explanations: 

“nouns related to significant entities or entities of 
importance in various contexts”

Top Activations:
game looks really awesome; bar is here; road was covered

Visual Concept Layer Index
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Gemma-2-2B
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Figure 6: Left: Number of SAE features associated with each taxonomy (counting, spatial rela-
tionship, entity, and attribute) across the layers of Llama-3.1-8B, Gemma2-2B, and Gemma2-9B.
Notably, SAE features for such visual concepts are sparse, numbering fewer than 10 across 16k
total SAE features (Gemma2-2B/9B) or 32k features (Llama-3.1-8B). Right: Examples of features
corresponding to visual concepts, identified by the layer whose activation space they inhabit and their
(arbitrary) feature ID. The feature’s explanation summarizes its semantic meaning, as evidenced by
the tokens and contexts on which it attains the greatest activations.

prompts to include both the explanation for the candidate feature vector v(ℓ)i , and sample top activated
tokens (see figure 7 for the prompting template). We find that o3-mini can indeed filter out features
unrelated to the desired visual concepts.

Algorithm 1 Find Textual Representations for Visual Concepts using SAEs

Require: Desired visual concepts C. Layer index ℓ.
Require: Sentence and anchor word pairs {(s1, w1), · · · , (sK , wK)}.
Require: Pretrained SAEs at layer ℓ.
▷ Find top activations and their corresponding SAE feature vectors.
V0 = {}
for each (sj , wj) do
{α(ℓ)

i (wj), v
(ℓ)
i } ← Pass sj into the pretrained SAE

{v(ℓ)i1
, · · · v(ℓ)in

} ← Topn{α
(ℓ)
i (wj), v

(ℓ)
i } ranked by activation strength α

(ℓ)
i (wj)

V0 ← V0 ∪ {v(ℓ)i1
, · · · v(ℓ)in

}
end for
▷ Filter out noisy SAE feature vectors.
V = {}
for each v

(ℓ)
i ∈ V0 do

Find the explanation e and top activated tokens {t1, · · · , tp} for v(ℓ)i
if o3-mini(VerificationPrompt, e, {t1, · · · , tp}, C) is True then
V ← V ∪ {v(ℓ)i }

end if
end for
▷ Aggregate SAE vectors to one steering vector.
v(ℓ) = 1

|V|
∑

u∈V u

return v(ℓ)

A.2 PROMPTING

We now elaborate upon our generation of prompts for eliciting taxonomy-specific visual reasoning in
MLLMs. As described in Section 4.2, we generate a total of 96 candidate prompts for each taxonomy
T . To do so, we use template shown in figure 8. Here, we set the num instructions to 6 and word
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FEATURE ALIGNMENT VERIFICATION

Task: Determine if a neural network’s sparse autoencoder (SAE)
feature aligns with the taxonomy "{taxonomy}".

Taxonomy Definition: {taxonomy_definition}

Feature Information:
1. Feature’s explanation: {feature_explanation}
2. Top activation examples (tokens wrapped in <top>...</top> have the
highest activation values and are the most important to focus on):
1. {activation_example_1}
2. {activation_example_2}
3. {activation_example_3}
4. {activation_example_4}
5. {activation_example_5}

Examples of features that DO align with the {taxonomy} taxonomy
(notice how the key words are highlighted with <top>...</top> tags):
Example 1:
- Explanation: {explanation_1}
- Activations: {activations_1}
Example 2:
- Explanation: {explanation_2}
- Activations: {activations_2}

When making your decision, you should follow these rules:
1. First pay attention to the feature’s explanation.
2. If you cannot decide, you should then pay special attention to
the tokens highlighted with <top>...</top> tags, as these are the most
highly activated tokens and strongest indicators of what the feature
detects.
3. Also consider the diversity of the activation examples provided.
If one feature only activates one particular word, it may not be as
aligned as a feature that activates on a variety of words.

Based on the feature’s explanation and the highlighted tokens in the
activation examples, does this feature specifically detect or respond
to {taxonomy_definition}? Your answer should start with YES or NO,
then provide a brief reason. Do not start with any other words or
phrases such as ‘answer’.

Figure 7: Prompt template for querying GPT-o3-mini to verify whether a given feature is related to
a visual taxonomy. For each taxonomy, the template employs a brief definition of the taxonomy, two
example features that align with each taxonomy (for few-shot learning), and the top five activations
of the feature in question.

count ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80}, resulting in total 6 × 16 = 96
steering prompts.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

STEERING PROMPT GENERATION

System prompt: You are an expert at creating concise, clear
instructions for Multimodal Large Language Models (MLLM).

Your task:
- Generate {num_instructions} different instruction(5) that will make
the Model focus on {concept} when answering questions about images
- Each instruction must be within {word_count} words
- Instructions should be direct and actionable, focusing specifically
on how to emphasize {concept}

IMPORTANT FORMAT REQUIREMENTS:
- Begin each instruction with "INSTRUCTION:" followed by the
instruction text
- Put each instruction on its own line
- Do not include any numbering, bullets, or other text beyond the
requested instructions
- Do not include any explanations, introductions, or conclusions

Example format for 2 instructions:
INSTRUCTION: First instruction text here within word limit.
INSTRUCTION: Second instruction text here within word limit.

User prompt: Create {num_instructions} instruction(s) about {concept}
using {word_count} words or fewer each.

Figure 8: System and user prompt template for generating MLLM prompts.
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B ADDITIONAL COLOR PERCEPTION INTERVENTION EXAMPLES

To further demonstrate the effectiveness of textual steering vectors in modifying visual understand-
ing within MLLMs, we present additional color perception intervention examples using the same
methodology described in §3.

(a) Steering a green image toward blue perception. As
the scale factor increases, the model’s interpretation
shifts from green to teal, and ultimately to blue.

(b) Steering a purple image toward red perception.
The intervention gradually shifts the model’s color
association from purple to pink, and finally to red.

(c) Steering an red image toward blue perception. The
intervention causes a gradual shift from red to purple,
and ultimately to blue.

(d) Another example of steering a yellow image to-
ward red perception, using a different steering vector
from layer 18 of PaliGemma2-10B. As the scale fac-
tor increases, the model’s interpretation transitions
from yellow to orange, and finally to red.

Figure 9: Additional color perception intervention examples. In each case, we apply the normal-
ized textual steering vector for the target color to the image tokens with increasing scale factors.
The steering vectors are extracted from and applies to one selected layer from layer 17 to 20 in
PaliGemma2-10B. The plots show token probability shifts, demonstrating how textual steering vec-
tors can systematically modify the model’s visual perception.

These additional examples further support our findings in §3. In each case, we see a clear progression
of perception as the steering strength increases, with intermediate colors appearing during the
transition. This confirms that textual steering vectors can produce predictable and continuous
modifications to visual understanding.

Notably, all these interventions were performed using steering vectors derived solely from text data,
yet they effectively modulate multimodal understanding. This provides additional evidence for our
hypothesis that MLLMs develop unified cross-modal representations that can be manipulated through
textual steering.
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TASK VISUAL CONCEPT MODEL
INTERVENTION METHOD

BASELINE PROMPTING SAE PROBE MEANSHIFT

VQAv2
Spatial
Relations

PaliGemma2-3B 86.8 87.0 (+0.2) 88.2 (+2.4) 87.1 (+0.3) 89.3 (+3.5)⋆

PaliGemma2-10B 88.2 86.8 (−1.4) 87.4 (−0.8) 86.9 (−1.3) 88.9 (+0.7)
Idefics3-8B 76.7 76.7 (+0.0) 78.1 (+1.4) 77.8 (+1.1) 74.6 (−2.1)
AVERAGE IMPROVEMENT – -0.4 +1.0 +0.0 +0.7

COCO
Captions

Spatial
Relations

PaliGemma2-3B 147.9 144.4 (−3.5) 151.2 (+3.3)⋆ 151.0 (+3.1)⋆ 152.5 (+4.6)⋆

PaliGemma2-10B 155.8 141.3 (−14.5) 160.0 (+4.2)⋆ 161.1 (+5.3)⋆ 158.4 (+2.6)
Idefics3-8B 70.0 70.3 (+0.3) 71.2 (+1.2) 70.9 (+0.9) 69.6 (−0.5)
AVERAGE IMPROVEMENT – -5.9 +2.9 +3.1 +2.2

DocVQA
Layout

Spatial
Relations

PaliGemma2-3B 79.4 81.4 (+2.0) 84.8 (+5.4)⋆ 81.0 (+1.6) 85.4 (+6.0)⋆

PaliGemma2-10B 81.3 82.5 (+1.2) 83.8 (+2.5) 83.9 (+2.6)⋆ 83.8 (+2.5)⋆

Idefics3-8B 88.5 86.3 (−2.2) 89.6 (+1.1) 88.2 (−0.3) 89.7 (+1.3)
AVERAGE IMPROVEMENT – +0.3 +3.0 +1.3 +3.3

DocVQA
Number

Counting

PaliGemma2-3B 76.1 76.2 (+0.1) 75.8 (−0.3) 76.3 (+0.2) 76.5 (+0.4)
PaliGemma2-10B 77.7 75.8 (−1.9) 77.6 (−0.1) 79.4 (+1.7) 76.9 (−0.8)
Idefics3-8B 86.8 84.5 (−2.3) 87.3 (+0.5) 86.9 (+0.1) 89.8 (+3.0)
AVERAGE IMPROVEMENT – -1.4 +0.0 +0.7 +0.9

ChartQA Counting

PaliGemma2-3B 46.4 45.4 (−1.0) 46.6 (+0.2) 47.4 (+1.0) 48.0 (+1.6)
PaliGemma2-10B 51.8 53.2 (+1.4) 53.8 (+2.0) 53.4 (+1.6) 54.4 (+2.6)⋆

Idefics3-8B 68.2 67.4 (−0.8) 71.0 (+2.8)⋆ 67.2 (−1.0) 72.6 (+4.4)⋆

AVERAGE IMPROVEMENT – -0.1 +1.7 +0.5 +2.9

VTabFact Counting

PaliGemma2-3B 56.5 54.5 (−2.0) 58.0 (+1.5) 56.0 (−0.5) 60.5 (+4.0)⋆

PaliGemma2-10B 57.0 58.5 (+1.5) 58.5 (+1.5) 59.0 (+2.0) 58.5 (+1.5)
Idefics3-8B 70.0 71.0 (+1.0) 75.5 (+5.5)⋆ 71.0 (+1.0) 73.5 (+3.5)
AVERAGE IMPROVEMENT – +0.2 +2.8 +0.8 +3.0

Table 5: Performance of textual steering methods on real-world multimodal tasks. Stars (⋆) denote
statistically significant improvements (p < 0.05).

C RESULTS ON REAL-WORLD TASKS

Experimental Setup: We evaluated our steering methods on six real-world multimodal tasks using
500 examples per dataset (200 for VTabFact due to dataset size limitations) for testing, and extra 50
examples for validation to determine optimal intervention token types. We applied counting steering
vectors to numerical reasoning tasks and spatial relationship vectors to layout and captioning tasks.

Task Details and Metrics:

• VQAv2: General visual question answering task, evaluated using the official VQA Accuracy
metric.

• COCO Captions: Open-ended image captioning task, evaluated using CIDEr-D metric.
• DocVQA Layout: Document QA task focusing on spatial layout and structure questions,

evaluated using ANLS×100.
• DocVQA Number: Document QA task focusing on numerical information extraction,

evaluated using ANLS×100.
• ChartQA: Chart interpretation and reasoning QA task, evaluated using the Relaxed Accu-

racy metric.
• VTabFact: Table reasoning multiple choice task, evaluated using accuracy.

Results demonstrate consistent effectiveness across diverse real-world applications, with MeanShift
achieving improvements in 15 out of 18 model-task combinations. The smaller improvement
magnitudes compared to capability-focused benchmarks reflect the multi-faceted nature of these
tasks, which require comprehensive reasoning abilities beyond isolated spatial or counting skills.
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D DATASET EVALUATION DETAILS

In this section, we explain in detail how we prompt and evaluate the model’s performance across
datasets and provide representative examples for each dataset. Each prompt consists of four com-
ponents: model prefix, task prefix, taxonomy prefix, and question. The model prefix
is the specific instruction token sequence required by different model families to perform certain
tasks. For PaliGemma2 models, we use "answer en" as the model prefix, indicating that the model
should answer in English for visual question answering tasks. For COCO dataset specifically, we use
"caption en", indicating that it is a captioning task. For Idefics3-8B-Llama3, no model prefix
is required, so this component remains empty. The task prefix provides task-specific instructions
that constrain the format of the model’s response. In multiple-choice questions, we use a task
prefix such as "Answer the multiple choice question by only responding with the
letter of the correct answer." for example. In CLEVR and Super-CLEVR counting ques-
tions, we use "Answer the question by only responding the number." The taxonomy
prefix of each taxonomy is the prompt we sampled in Section A.2, and it is only non-empty
for the Prompt method. The question component contains the original question format from the
dataset. Below are examples illustrating our prompting approach for each dataset.

CV-BENCH RELATION

Image:
[Model Prefix] answer en [Task Prefix] Answer the multiple choice
question by only responding the letter of the correct answer.
[Taxonomy Prefix] Emphasize objects’ positions relative to each other.
[Question] Considering the relative positions of the fork and the cup
in the image provided, where is the fork located with respect to the
cup? Select from the following choices.
(A) left
(B) right

Figure 10: Example prompt for the CV-Bench Relation dataset.
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CV-BENCH COUNT

Image:
[Model Prefix] answer en [Task Prefix] Answer the multiple choice
question by only responding the letter of the correct answer.
[Taxonomy Prefix] Prioritize counting objects and quantifying
elements over other analysis. [Question] Answer the multiple choice
question by only responding the letter of the correct answer. How
many beds are in the image? Select from the following choices.
(A) 0
(B) 2
(C) 1
(D) 3
(E) 4

Figure 11: Example prompt for the CV-Bench Count dataset.

WHAT’SUP-A

Image:
[Model Prefix] answer en [Task Prefix] Answer the multiple choice
question by only responding the letter of the correct answer.
[Taxonomy Prefix] Emphasize objects’ positions relative to each
other.[Question] Please select the correct caption for the image:
(A) A toilet roll under a chair
(B) A toilet roll to the left of a chair
(C) A toilet roll to the right of a chair
(D) A toilet roll on a chair

Figure 12: Example prompt for the What’sUp-A dataset.
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1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

WHAT’SUP-B

Image:
[Model Prefix] answer en [Task Prefix] Answer the multiple choice
question by only responding the letter of the correct answer.
[Taxonomy Prefix] Emphasize objects’ positions relative to each other.
[Question] Answer the multiple choice question by only responding the
letter of the correct answer. Please select the correct caption for
the image:
(A) A bowl behind a cup
(B) A bowl to the left of a cup
(C) A bowl to the right of a cup
(D) A bowl in front of a cup

Figure 13: Example prompt for the What’sUp-B dataset.

BLINK OBJECT LOCALIZATION

Image:
[Model Prefix] answer en [Task Prefix] Answer the multiple choice
question by only responding the letter of the correct answer.
[Taxonomy Prefix] Emphasize objects’ positions relative to each other.
[Question] A bounding box is an annotated rectangle surrounding
an object. The edges of bounding boxes should touch the outermost
pixels of the object that is being labeled. Given the two bounding
boxes on the image, labeled by A and B, which bounding box more
accurately localizes and encloses the teddy bear? Select from the
following options.
(A) Box A
(B) Box B

Figure 14: Example prompt for the BLINK Object Localization dataset.
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1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

CLEVR

Image:
[Model Prefix] answer en [Task Prefix] Answer the question by only
responding the number. [Taxonomy Prefix] Prioritize counting objects
and quantifying elements over other analysis. [Question] How many
different items are there in the image?

Figure 15: Example prompt for the CLEVR dataset.

SUPER-CLEVR

Image:
[Model Prefix] answer en [Task Prefix] Answer the question by only
responding the number. [Taxonomy Prefix] Prioritize counting objects
and quantifying elements over other analysis. [Question] How many
different items are there in the image?

Figure 16: Example prompt for the Super-CLEVR dataset.
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1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

VQAV2

Image:
[Model Prefix] answer en [Task Prefix] Answer the question about the
image. Provide a short, direct answer. [Taxonomy Prefix] Emphasize
objects’ positions relative to each other. [Question] Where is he
looking?

Figure 17: Example prompt for the VQAv2 dataset.

COCO

Image:
[Model Prefix] caption en [Task Prefix] [blank for COCO] [Taxonomy
Prefix] Emphasize objects’ positions relative to each other.
[Question] Generate a brief one-sentence caption.

Figure 18: Example prompt for the COCO dataset.
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1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

DOCVQA LAYOUT

Image:
[Model Prefix] answer en [Task Prefix] Answer the question about
the image. Provide a short, direct answer. [Taxonomy Prefix]
Answer the question based on the document. Provide a concise answer.
[Question] What is the year mentioned at the top of the page?

Figure 19: Example prompt for the DocVQA Layout dataset.
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1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

DOCVQA NUMBER

Image:
[Model Prefix] answer en [Task Prefix] Answer the question about
the image. Provide a short, direct answer. [Taxonomy Prefix]
Prioritize counting objects and quantifying elements over other
analysis. [Question] How many nomination committee meetings has S.
Banerjee attended?

Figure 20: Example prompt for the DocVQA Number dataset.
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1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

CHARTQA

Image:
[Model Prefix] answer en [Task Prefix] Answer the question based on
the chart. Provide a concise answer. [Taxonomy Prefix] Prioritize
counting objects and quantifying elements over other analysis.
[Question] In which year the value was 51?

Figure 21: Example prompt for the ChartQA dataset.

VTABFACT

Image:
[Model Prefix] answer en [Task Prefix] Answer the multiple choice
question by only responding the letter of the correct answer.
[Taxonomy Prefix] Prioritize counting objects and quantifying
elements over other analysis. [Question] ralph friedgen coach for
10 year at maryland
(A) Yes
(B) No

Figure 22: Example prompt for the VtabFact dataset.
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1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

E LLM USAGE STATEMENT

LLMs were used for: (1) text polishing, (2) SAE feature verification using o3-mini (Section A.1), and
(3) prompt generation using GPT-4o for baselines (Section A.2). These applications were limited to
specific methodological components. Core research ideas, innovations, and conclusions are original
author contributions.
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