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ABSTRACT

The interactive artificial intelligence in the motion control field is an interesting
topic, especially when universal knowledge adaptive to multiple task and univer-
sal environments is wanted. Although there are increasing efforts on Reinforce-
ment learning (RL) studies with the assistance of transformers, it might subject
to the limitation of the offline training pipeline, in which the exploration and
generalization ability is prohibited. Motivated by the cognitive and behavioral
psychology, such agent should have the ability to learn from others, recognize
the world, and practice itself based on its own experience. In this study, we
propose the framework of Online Decision MetaMorphFormer (ODM) which at-
tempts to achieve the above learning modes, with a unified model architecture to
both highlight its own body perception and produce action and observation pre-
dictions. ODM can be applied on any arbitrary agent with a multi-joint body,
located in different environments, trained with different type of tasks. Large-scale
pretrained dataset are used to warmup ODM while the targeted environment con-
tinues to reinforce the universal policy. Substantial online experiments as well
as few-shot and zero-shot tests in unseen environments and never-experienced
tasks verify ODM’s performance, and generalization ability. Our study shed some
lights on research of general artificial intelligence on the embodied and cogni-
tive field studies. Code, result and video examples can be found on the website
https://baimaxishi.github.io/.

1 INTRODUCTION

Research of embodied intelligence focus on the learning of control policy given the agent with some
morphology (joints, limbs, motion capabilities), while it has always been a topic whether the control
policy should be more general or specific. As the improvement of large-scale data technology and
cloud computing ability, the idea of artificial general intelligence (AGI) has received substantial
interest (Reed et al., [2022). Accordingly, a natural motivation is to develop a universal control
policy for different morphological agents and easy adaptive to different scenes. It is argued that such
a smart agent could be able to identify its ’active self’ by recognizing the egocentric, proprioceptive
perception, react with exteroceptive observations and have the perception of world forward model
(Hoffmann & Pfeifer, 2012). However, there is seldom such machine learning framework by so far
although some previous studies have similar attempts in one or several aspects.

Reinforcement Learning(RL) learns the policy interactively based on the environment feedback
therefore could be viewed as a general solution for our embodied control problem. Conventional
RL could solve the single-task problem in an online paradigm, but is relatively difficult to imple-
ment and slow in practice, and lack of generalization and adaptation ability. Offline RL facilitates
the implementation but in cost of performance degradation. Inspired by recent progress of large
model on language and vision fields, transformer-based RL (Reed et al.| [2022; |Chen et al., 2021}
Lee et al.,|2022; [Janner et al.|[2021;|Zheng et al., 2022 |Xu et al.||2022) has been proposed by trans-
forming RL trajectories as a large time sequence model and train it in the auto-regressive manner.
Such methods provide an effective approach to train a generalist agent for different tasks and envi-
ronments, but usually have worse performance than classic RL, and fail to capture the morphology
information. In contrast, MetaMorph (Gupta et al., [2022)) chooses to encode on agent’s body mor-
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phology and performs online learning, therefore has good performance but lack of time-dependency
consideration.

To have a better solution of embodied intelligence, we are motivated from behavioral psychology
in which agent improve its skill by actual practice, learning from others (teachers, peers or even
someone with worse skills), or makes decision based on the perception of 'the world model’
[Schmidhuber, 2018, [Wu et al.| 2022). It is reasonable to believe that an embodied intelligence agent
should have the above three learning paradigm simultaneously. We propose such a methodology
by designing a morphology-time transformer-based RL architecture which is compatible with both
offline and online learning. Offline training is conducted on multi-task datasets which considers
both learning from other agents and speculate the future system states. The online training allows
the agent to 1mpr0ve its pohcy in an on-policy way given a single task.
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Figure 1: Application pipeline of ODM.

In this work, we propose a framework called Online Decision Metamorphformer (ODM), which
aims to study the general knowledge of embodied control across different body shapes, environments
and tasks, as indicated in Figure[I] The model architecture contains the universal backbone and the
task-specific modules. The task-specific modules capture the potential difference in agent body
shapes, and the morphological difference is enhanced by a prompt based on characteristic of body
shapes. We first pretrain this model with a curriculum learning, by learning demonstrations from the
easiest to the hardest task, from the expert to low-level players. The environment model prediction
is added as an auxiliary loss. The same architecture can then be finetuned online given a specific
task. During the test, we are able to test ODM with all training environments, transfer the policy to
different body shapes, adaptive to unseen environments and accommodate with new types of tasks
(e.g. from locomotion to reaching, target capturing or escaping from obstacles.).

Main contributions of this paper include:

* We design a unified model architecture to encode time and morphology dependency simul-
taneously which bridges sequential decision making with embodiment intelligence.

* We propose a training paradigm which mimic the process of natural intelligence emerging,
including learning from others, boost with practices, and recognize the world.

* We train and test our framework with agent in eight different body shapes, different envi-
ronment terrain and different task types. These comprehensive analysis verifies the general
knowledge of motion control learned by us.

2 RELATED WORKS

Classic RL: Among conventional RL methods, on-policy RL such as Proximal Policy Optimiza-
tion (PPO (Schulman et al.| 2017) is able to learn the policy therefore has good adaptive ability to
environment, but is slow to convergence and might have large trajectory variations. Off-policy RL
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such as DQN (Mnih et al., 2015) improves the sampling efficiency but still require the data buffer
updated dynamically. In contrast, offline RL (Fujimoto et al., 2019; [Kumar et al., 2020; [Kostrikov
et al.,2021)) can solve the problem similar with supervised learning, but might have degraded perfor-
mance because of the distribution shift between offline dataset and online environment. In our work,
we aim to reach the state-of-the-art performance for different embodied control tasks, therefore a
model architecture compatible with on-policy Rl is proposed.

Transformer-based RL: Among these efforts, Decision Transformer (DT) (Chen et al., 2021)) and
Multi-game Decision Transformer (Lee et al., 2022) embodied the continuous state and action di-
rectly and use a GPT-like casual transformer to solve the policy offline. Their action decision is
conditioned on Return-to-Go (RTG), either arbitrarily set or estimated by model, since RTG is un-
known during inference. Instead, Trajectory Transformer (TT) (Janner et al., 2021) discards RTG
in the sequential modeling to avoid that approximation.PromptDT (Xu et al., |2022) adds the task
difference consideration into the model by using demonstrated trajectory as prompts. ODT (Zheng
et al., |2022) first attempts to solve transformer-based RL in an online manner but mainly focus on
supervised on actions instead of maximizing rewards. In our work, we propose a similar model ar-
chitecture but is able to conduct both offline learning and on-policy, actor-critic learning. The online
learning employs PPO as the detailed policy update tools with the objective as reward maximization.

Morphology-based RL: There are some other studies which focus on the agent’s morphology infor-
mation, including GNN-based RL which modeling agent joints as a kinematics tree graph (Huang
et al., [2020), Amorpheus (Kurin et al., [2021) which encodes a policy modular for each body joint,
and MetaMorph (Gupta et al.||2022) which intuitively use transformer to encode the body morphol-
ogy as a sequence of joint properties, and train it by PPO. In our work, we have the morphology-
aware encoder which is similar with MetaMorph and the same PPO update rule. However, compar-
ing with Metamorph, we encode the morphology on not only state but also historical actions, and
consider the historical contextual consideration.

3 PRELIMINARIES AND PROBLEM SETUP

We formulate a typical sequential decision making problem, in which on each time step ¢, an em-
bodied agent conceives a state s; € R™¢, performs an action a, € R™*, and receives a scalar reward
r, € R!. Reinforcement Learning (RL) can then be employed to produce the policy 7(ay|s;)
which aims to maximize the expectation sum of discounted rewards. The actor-critic framework
is a famous RL framework with the critic estimates the state value function V'(s), which the actor
determines the policy. Classical RL methodologies such as Proximal Policy Optimization (PPO) can
be employed to solve the problem effectively, with detailed derivation in Appendix [A]

Problem Setup: Here we redefine the aforementioned conventional RL notations in a more ‘embod-
ied style’, although still generalized enough for any arbitrary agent with multi-joint body. Inspired
by the idea of |Gupta et al.| (2022), we differentiate the observation into the agent’s proprioceptive
observations, the agent’s embodied joint-wise self-perception (e.g. angular, angular velocity of each
joint), as well as the exteroceptive observation, which is the agent’s global sensory (e.g. position,
velocity). Given a K-joint agent, we denote the proprioceptive observation by o € RE*" in
which each joint is embedded with n dimension observations. The exteroceptive observation is
x-dimensional which results in 0" € R* and s := [0P"°, 0°*!].

Table 1: Comparison of conventional RL and our notations

State Action
Conventional RL s ER"s a € R"®
oPTO APTO ¢ ]RKX n_yext c R®
Our approach v ;
pp! s = [Opro’oezt] a, Mg € RE xm
Connections ne=Kxn—> Ms+z ng = K*xm— Y Mg

Stepping forward from |Gupta et al.| (2022), we also define the action in the joint-dependent way;
that is, assuming each joint has m degree of freedom (DoF) of movements (e.g. torque), the action
is reshaped as a € RE*™, To allow the room of different agent body shapes, we introduce binary
masks which have the same shapes of 0”"° and a and zero-pad the impossible observations or actions
(e.g. DoF of a humanoid’s forearm should be smaller than its upper-arm due to their physical
connection). Table [T] visualizes the comparison between the conventional RL notations and our
embodied version notations.
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Attention-based Encoding: Given a stacked time sequence vector z € R7*¢ with T as the time
length and e as the embedding dimension, an time sequence encoder can be expressed as

Encr(z) = Attention(Q=2, K=, V=x) € RT*¢ o

according to the self-attention mechanism (Vaswani et al.l|2017) with @, K, V denoting query, key
and value. Analogously, given a stacked joint sequence vector p € R¥*¢ with K as the number of
joints, a morphology-aware encoder instead learns the latent representation on this joint sequence

Enc(p) = Attention(Q=p, K=p, V=p) € R¥*¢ )

By pre-tokenizing either o?"° or a into p, within the latent space with dimension e, their "pose’
latent variables can be encoded by Encj;. For each form of encoder, timestep or joint position info
is encoded by lookup embedding then adding to encoded vector. More details can be referred to the
MetaMorph paper (Gupta et al., 2022).

4 METHOD

4.1 MODEL ARCHITECTURE

Our ODM model structure contains a unified backbone and task-specific modules. Within this pa-
per’s context, task might be related with different agent (potentially different body types), environ-
ments and reward mechanism. Since the original system variables might have different dimensions,
task-specific modules map them into a uniform-dimensional latent space (e in Eq [2) and reverse
operations. The backbone has a two-directional, morphology-time transformer structure, including
morphology-aware encoders and a casual transformer. Architecture details are specified in Fig 2.
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Figure 2: Model structure of ODM and its training paradigm.

Tokenizer: At each time ¢, observations and actions are first embedded into the latent space
0¢ = Embed, (o}"?) € R¥¢,  2¢ = Embed, (o{*") € R®, af = Embed,(a;) € R**  (3)
Morphology-aware Encoder: Corresponding pose embedding vectors are obtained by traversing
the agent’s kinematic tree and encoding the morphology by Eq[2}
of =Encpr(0f), st =MLP([s¥,zf]) € R, a =Ency(ay) 4)
Casual Transformer: To capture the morphology difference, we apply the prompt technique as in
(Xu et al.}2022)), but embedding the morphology specifications instead of imitations

Prompt = Embed(K, n, m, ) (5)
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The casual transformer then translates the prompt and the input sequence into the output sequence

output =Ency (Prompt, input) (6)
input :={BOS, sh, ab,st, - -, da’ |, sV} 7
output :={8h,ah, &V,ab, -, &.aY )

with a forward casual time mask. Detailed structure is inherited from GPT2, a decoder-only structure
as in (Chen et al.; 2021; Janner et al., 2021; Zheng et al., 2022).

Projector: The task-specific projectors map latent outputs back to the original spaces:
ar = Proj, (a), & = Proj,(8}), Vi = Proj, (3}) 9)
Embed,,, Embed, , Embed, , Embed;, Proj,, Proj,, Proj,  are all modeled as MLPs with LayerNorm

and Relu between layers. More detailed configuration can be found in Appendix.

4.2 TRAINING PARADIGM

ODM has a two-phase training paradigm including pretraining and finetuning, as in Algorithm

Pretraining: To mimic the learning process of human infant, we design a curriculum-based learning
mechanism in which the training dataset transverses from the easiest to the most complicated one.
During each epoch, the current dataset is trained in a auto-regressive manner with two loss terms:

Limitation _ MSE(dt, af)7 Lprediction _ MSE(§t, Sf)7 Lpretrain _ animitation + ninrediCtion (10)

where MSE denotes the mean-square-error. Limiwton corresponds the imitation of action from
demonstrations, while LPredicion encourages the agent to predict future observations ﬂ

Finetuning: one extra predict head is activated to predict the state value V,; this head as long as the
very last prediction head of a; are employed as outputs of actor and critic:

Vi = Vi(se), a— m(se) (11)

Actor and critic are then trained by PPO with more details introduced in Section [A]Keeping some
extent of LP™™M a5 auxiliary loss, this finetuning becomes a self-supervised plus model-based RL

Lﬁnetune =m LPPO + nszretrain (12)

Algorithm 1 ODM
1: Initialize 6
2: Pretraining:
3 set num of epoch =0
4 SWITCH between 6 body shapes :
5: activate grad of env-specific module of current env, freeze others
6
7
8

REPEAT learning from pioneers of different expert levels
self-regressive training on LP™ of a mini-batch
increment num of epoch

9: save the model checkpoint
10: Finetuning:
11: load the model in the target environment
12: REPEAT iterations:
13: for each actor do
14: run current policy 7 for T' timesteps
15: compute advantage estimates Ag,-- Ap
16: end for
17: update # with the surrogate LP?°© on a mini-batch
18: stop when converges

! pprediction 4+ — ()} is masked out, since it is meaningless to predict the very first, randomly initiated state.
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5 EXPERIMENTS

5.1 EXPERIMENT CONFIGURATIONS

Bodies, Environments and Tasks: We practice with enormous agents, environments and tasks, to
validate the general knowledge studied by ODM. These scenes include:

* Body shape: including swimmer (3-joints, no foot), reacher (1-joint and one-side fixed),
hopper (1 foot), halfcheetah (2-foot), walker2d (2-foot), ant (4-foot), and humanoid on the
gym-mujoco platformﬂ walker (the agent called ragdoll has a realistic humanoid body)E]
on the unity platform (Juliani et al.,|2018)); and finally unimal, a mujoco-based enviroment
which contain 100 different morphological agents (Gupta et al., 2021]).

* Environment: flat terrain (FT), variable terrain (VT) or escaping from obstacles.

* Task: pure locomotion, standing-up (humanoid), or target reaching (reacher, walker).
Baselines: We compare ODM with four baselines, each representing a different learning paradigm:

* Metamorph: a morphological encoding-based online learning method to learn a universal
control policy (Gupta et al., [2022).

* DT: As a state-of-the-art offline learning baseline, we implement the decision transformer
with the expert action inference as in |Lee et al.[|(2022)) and deal with continuous space as
in (Chen et al.,2021). We name it DT in the following sections for abbreviation.

* PPO: The classical on-policy RL algorithm |Schulman et al.[(2017). Code is cloned from
stable-baseline3 in which PPO is in the actor-critic style.

* Random: The random control policy by sampling each action from uniform distribution
from its bounds. This indicates the performance without any prior knowledge especially
for the zero-shot case.

Demonstrating pioneers: For purpose of pretraining, we collect offline data samples of hopper,
halfcheetah, walker2d and ant from D4RL (Fu et al.l |2020), as sources of pioneer demonstra-
tions. For these environments, D4RL provide datasets sampled from agents of different skill levels,
which corresponds to different learning pioneers in our framework, including expert, medium-expert,
medium, medium-replay and random. We also train some baseline expert agents and using them to
sample offline dataset on walker and unimal. These dataset contains more than 25 million data sam-
ples, with statistics details shown in Appendix, Table @ Within each curriculum, we also rotate
demonstrations from the above pioneers for training, as indicated in Algorithm I]

5.2 EXPERIMENT RESULTS

Pretraining: Model is trained with datasets of hopper, halfcheetah, walker2d, ant, walker and uni-
mal, from the easiest to the most complex. Figure 3 shows the loss plot. One can observe that
the training loss successfully converges within each curriculum course; although its absolute value
occasionally jumps to different levels because of the environment (and the teacher) switching. Val-
idation set accuracy is also improved with walker and unimal as exhibition examples in Figure 3.

Online Experiments: To make the online learning faster, we use 32 independent agents to sample
the trajectory in parallel, with 1000 as the maximum episode steps. Experiment continues more
than 1500 iterations after the performance converges. Figure 4 provides a quick snapshot of online
performances. Comparing with ODM without pretraining, returns of ODM are higher at the very
beginning, indicating knowledge from pretraining is helpful. As online learning continuous, the
performance degrades slightly until finally grows up again, and converges faster than the other two
methods, although the entire training time (pretraining plus finetuning) is longer.

During online testing, 100 independent episodes are sampled, and each is fed with a unique random
seed. We examine the averaged episode return and episode length as our evaluation metrics . Ta-
ble 2] shows the online testing performance. One can observe that our ODM outperforms or is at

Zhttps://www.gymlibrary.dev/environments/mujoco/
*https://github.com/Unity-Technologies/ml-agents
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Figure 3: Time plot of pretraining performance. Orange: training loss. Green: validation MSE of

walker; Blue: validation MSE of unimal.
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Figure 4: Comparison of averaged episode returns during online experiments. Left: unimal. Right:

walker. Curves are smoothed and values are rescaled for better visualization.

least similar with Metamorph’s performance. It is worth noting that DT does not work for unimal,

indicating the limitation of pure offline method with changing agent body shapes.

Table 2: Averaged Episodic Performance in online locomotion environments.

Metric Env. ODM Metamorph DT PPO Random

return wal.ker* 331.88+280.96 303.9331+279.16 252.74£281.18 265.23£275.32 0.55+0.83
unimal 3197.224228.04 3251.68+192.61 -0.09+3.75 2507.324260.71 -3.544+4.97

length wal.ker* 133.29+35.88 128.42433.52 126.37+33.73 128.56+34.06 10.34+£1.55
unimal 917.85+£40.84 931.92433.21 347.364£66.47 884.39+50.34 321.98+£71.49

*: Performance of walker has substantial deviations since walker has forward process noise implemented.

Few-shot Experiments: We examine the policy transferability by providing several few-shot exper-
iments. Pretrained ODM is loaded in several unseen tasks, which are listed in Table@ As a few-shot
test, online training only lasts for 500 steps before testing. ODM obtains the best performance except

humanoid on flat terrain, indicating ODM has better adaptation ability than MetaMorph.

Zero-shot Experiments: Zero-shot experiments can be conducted by inferencing the model directly
without any online finetuning. The unimal environment allows such experiment in which the flat
terrain (FT) can be replaced by variable terrain (VT) or obstacles. Results are shown in Table El It
can be observed that ODM reaches state-of-the-art performance for zero-shot tests, indicating that
ODM has strong generalization ability by capturing general high-level knowledge from pretraining,

even without any prior experience.
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Table 3: Performance in few-shot experiments.

Metric Env. Task ODM Metamorph PPO Random
unimal obstacle 1611.864179.38 1288.154+127.48 932.34£79.45 -2.08£4.85
unimal VT 580.10+41.23 499.58+35.21 310.02£22.93 -4.87+£8.19

roturn swimmer FT ) 145.584+16.97 143.01£11.31 142.36£13.31 0.14£2.00
reacher target reaching -32.9745.18 -33.2844.58 -34.284+4.56 -42.9640.15

humanoid FT 359.90+54.84 360.87+51.28 360.70-£50.28 108.13£0.83

humanoid standup 76388.124+-906.01 75750.414897.01 75033.744895.20 38921.67+£451.25
unimal obstacle 827.85+53.25 771.38+50.18 619.82£68.35 322.05+65.81
unimal VT 780.23+89.02 764.48+717.73 524.10£59.92 542.70+88.76

length swimmer FT 1000 1000 1000 1000
reacher reaching 50* 50* 50* 50*

humanoid FT 68.10+3.15 66.8513.94 67.59+2.34 22.1540.17
humanoid standup 1000 1000 1000 1000

*: The official reacher environment has a maximum episode length limit of 50.

Table 4: Performance in zero-shot experiments.

Metric Env. Task ODM Metamorph DT Random

return unimal obstacle 1271.70£182.34 1137.524178.60 -0.55+3.06 -2.08+4.85
unimal VT 521.08+34.48 480.29423.21 8.2246.70 -4.87+8.19

length un%mal obstacle 750.99+86.23 736.90£75.16 228.20+£55.74 322.05£65.81
unimal VT 698.80+69.49 664.63+£72.25 585.13+83.54 542.70+88.76

Ablation Studies: To verify the effectiveness of each model component, we conduct the ablation
tests for ODM with only online finetuning phase (wo pretrain) and with only pretraining (wo fine-
tune); within the pretraining scope, we further examine ODM without the curriculum mechanism
(wo curriculum) and morphology prompt (wo prompt). The DT method could be viewed as the
ablation of both LPrediction 359 TPPO 56 we do not list the ablation results of these two loss terms.
We conduct the ablation study on unimal (all 3 tasks) as well as walker, with results shown in Table
[l Results shown that ODM is still the best on all these tasks, which indicating both learning from
others’ imitation and self-experiences are necessary for intelligence agents.

Table 5: Performance in ablation studies on unimal and walker.

Metric Env. Task ODM WO pretrain wo finetune wo curriculum WO prompt
unimal FT 3197.22+228.04 2331.361+131.24 463.12184.55 434.44£73.43 453.41£80.13

return unimal obstacle 1611.86+179.38 592.96+89.92 80.651-34.91 78.34432.52 75.231+32.21
unimal vT 580.10+41.23 404.68+122.46 70.23431.31 69.344-30.34 70.01432.05
walker FT 331.88+280.96 313.494+260.35 112.64+72.23 109.34+68.19 111.82+69.76
unimal FT 917.85+40.84 845.78+79.55 436.46+70.0 433.24470.0 436.46£70.0

length unimal obstacle 827.85+53.25 554.89+59.02 232.124+37.02 239.12+£29.13 230.78+£35.98
unimal vT 780.23+89.02 526.22+34.61 209.75+35.41 205.51£33.34 204.14£30.61
walker FT 133.294-35.88 105.29440.13 84.324-34.17 80.41433.41 82.14435.43

Typical Visualizations: Generalist learning not only aims to improve the mathematical metrics, but
also the motion reasonability from human’s viewpoint. It is difficult for traditional RL to work on
this issue which only solve the mathematical optimization problem. By jointly learning other agent’s
imitation and bridge with the agent’s self-experiences, we assume ODM could obtain more universal
intelligence about body control by solving many different types of problems. Here we provide some
quick visualizations about generated motions of ODM, comparing with the original versions

By examining the agent motion’s rationality and smoothness, we first visualize motions of trained
models on the walker environment. Since the walker agent has a humanoid body (the 'ragdoll’) such
that reader could easily evaluate the motion reasonability based on real life experiences. Figure 5
exhibit key frames of videos on the same time points. In this experiment, we force the agent starts
from exact the same state and remove the process noise. By comparing ODM (the bottom line) with
PPO (the upper line), one can see the ODM behaves more like human while PPO keep swaying
forwards and backwards and side to side, with unnatural movements such as lowering shoulders and
twisting waist.

We compare the motion agility by visualizing on the unimal environment, in which the agent is
encouraged to walk toward arbitrary direction. Figure 6 comparing ODM with Metamorph. Meta-
morph wastes most of time shaking foots, fluiding and gliding, therefore ODM walks longer distance
than the Metamorph, within the same time interval

“Full version of videos can be found on the website https://baimaxishi.github.io/
>Figure grids could help reader to recognize the comparison although the video is more obvious.
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PPO
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Figure 5: ODM improve motion fluency and coherence in the walker environment. Key frames are
screened on Second 1, 2, 3, 4, 5, respectively. Video can be found on the website.
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Figure 6: ODM improve motion agility of a typical unimal agent. Key frames are screened evenly
from a 30-second video. Video can be found on the website.

6 DISCUSSION

Our work can be viewed as an early attempt of an embodied intelligence generalist accommodated
for varied body shape, tasks and environment. One shortcoming of current approach is that ODM
still has task-specific modules (tokenizers and projectors) for varied body shapes. By using some
self-adaptive model structure (e.g. Hypernetwork) in these modules, it is possible to use one unified
model to represent the generalist agent. Another potential improvement is to add the value/return
prediction into the sequence modeled by the casual transformer. That is, the agent is able to estimate
’the value of its action’ before the action is actually conducted, which is also known as ’metacog-
nition’. The last interesting topic is the potential training conflict when training switch from offline
to online. That might be improved by some hyperparameter tuning (out of this paper’s scope), e.g.,
some warmup schedule of LPPO during finetuning; but could also be improved by different model
architecture which could better accommodate knowledge learning from offline and online phases.

7 CONCLUSION

In this paper, motivated by the intelligence development process in the natural world, we propose a
learning framework to learn a universal body control policy in arbitrary body shapes, environments
and tasks. We combine ideas of learning from others, reinforcing with self-experiences, as well as
the world model recognition. To achieve this, we design a two-dimensional transformer structure
which first encode the morphological information of agent states and actions at each time step, then
encode the time sequential decision process to formulate the policy function. A two-phase training
paradigm is designed accordingly in which the agent first learns from demonstrations of pioneers on
different skill levels, and from different tasks. After that, the agent interact with its own environment
and further reinforce its skill by on-policy RL. Online, few-shot and zero-shot experiments show that
our methodology is able to learn some general knowledge for embodied motion control. We believe
this work could shed some light on the embodied intelligence study when some kind of generalist
intelligent is wanted.
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