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Abstract

Nearest neighbor machine translation is a suc-001
cessful approach for fast domain adaption,002
which interpolates the pre-trained transform-003
ers with domain-specific token-level k-nearest-004
neighbor (kNN) retrieval without retraining.005
Despite kNN MT’s success, searching large ref-006
erence corpus and fixed interpolation between007
the kNN and pre-trained model led to com-008
putational complexity and translation quality009
challenges. In this paper, we propose a simply010
trainable nearest neighbor machine translation011
and carry out inference experiments on GPU.012
In specific, we first adaptively construct a small013
datastore for each input sentence. Second, we014
train the interpolation coefficient between the015
knnMT and pre-trained result to automatically016
interpolate in different domains. Experimen-017
tal results on different domains show that our018
proposed method at least maintains the transla-019
tion quality of other methods in the literature020
while being automatic. In addition, our infer-021
ence results demonstrate that running knnMT022
is feasible on GPUs with only a 5% speed drop.023

1 Introduction024

Neural Machine Translation (NMT) has been show-025

ing an increasing trend of translation quality owing026

to the ongoing development of deep neural network027

models (Vaswani et al., 2017; Kim et al., 2021).028

However, the quality of these models is limited as029

soon as the domain of the input test sentences is030

different than the training data.031

To handle this out-of-domain problem, k-nearest032

neighbor machine translation (kNN-MT) has033

proven to be successful in many studies (Khan-034

delwal et al., 2021; Zheng et al., 2021a,b; Jiang035

et al., 2021; Wang et al., 2022; Meng et al., 2022),036

and thus piqued much attention in the community037

of machine translation. At the core of kNN-MT, a038

kNN classifier over an external datastore is built039

based on cached decoder representations and cor-040

responding target tokens. This classifier is utilized041

to augment the given NMT model without finetun- 042

ing leading to improved predictions, especially for 043

domain adaption. Augmenting the NMT model is 044

done via interpolating between the output proba- 045

bility distribution of the NMT model and the kNN 046

classifier output probability distribution. 047

Despite kNN-MT’s noticeable success in allevi- 048

ating the domain adaption problem, vanilla kNN- 049

MT proposed in (Khandelwal et al., 2021) mainly 050

suffers two challenges slowing down kNN-MT’s 051

deployment. First, vanilla kNN-MT requires large 052

datastore sizes resulting in massive storage and ex- 053

pensive latency overheads during inference. For 054

example, (Khandelwal et al., 2021) showed that 055

kNN-MT is two orders of magnitude slower than 056

the base NMT system in a generation speed when 057

retrieving 64 keys from a datastore containing bil- 058

lions of records. Second, the interpolation between 059

the NMT model and the kNN classifier is fixed for 060

all sentences in the test sets and manually tuned to 061

improve translation quality. 062

Reviewing the literature, various techniques have 063

been proposed to overcome kNN-MT’s challenges. 064

For example, (Meng et al., 2022) designed Fast 065

kNN-MT where a subset of the large datastore is 066

created for each source sentence by searching for 067

the nearest token-level neighbors of the source to- 068

kens and mapping them to the corresponding target 069

tokens. Building on (Meng et al., 2022), (Dai et al., 070

2023) proposed a simple and scalable kNN-MT 071

that leverages current efficient text retrieval mech- 072

anisms, such as BM25 (Robertson et al., 2009), 073

to obtain a small number of reference samples 074

that have high semantic similarities with the in- 075

put sentence, and then dynamically construct a 076

tiny datastore by forwarding the samples to the 077

pre-trained model. (Dai et al., 2023) successfully 078

introduced a simple distance-aware interpolation 079

equation to adaptively incorporate kNN retrieval 080

results into the NMT model. However, this sim- 081

ple equation required manual tuning. Along the 082
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same line, (Jiang et al., 2022) proposed a trainable083

interpolation method but with a relatively compli-084

cated neural network. To the best of our knowledge,085

these papers did not integrate kNN-MT into GPU086

inference to observe the trade-off between accuracy087

and speed results.088

Towards kNN-MT challenges, this paper pro-089

poses a simply trainable nearest neighbor machine090

translation and demonstrates kNN feasibility with091

GPU Inference. Similar to (Dai et al., 2023), we092

reduce the large datastore size by extracting on-093

line a small number of reference samples that have094

high semantic similarities with the input test sen-095

tence using the efficient BM25 retrieval algorithm096

(Robertson et al., 2009). Based on these insights,097

we propose a simply trainable neural network that098

adaptively interpolates the NMT and knnMT prob-099

ability distributions per domain in an average of 40100

minutes of a single GPU training time. Last but101

not least, we integrate kNN-MT into FasterTrans-102

former, a highly optimized NMT GPU inference103

implementation offered by NVIDIA, and observe104

its speed and accuracy performance on a sparsely105

activated large-scale MoE. Experimental results106

show the translation quality effectiveness of our107

adaptive and automatic interpolation technique and108

insignificant speed drop of knnMT on GPU.109

2 Background: kNN-MT110

2.1 Vanilla-kNN111

In Vanilla-kNN, a datastore is created to convert112

a bilingual sentence into a set of key-value pairs.113

These keys and values are defined in Equation 1.114

K,V = F (x, y<t), yt (1)115

where (x, y) ∈ (X, Y) define the reference corpus116

for which the pretrained NMT model generates117

the context representation F (x, y<t at each time118

step t. Then we collect the output hidden state119

F (x, y<t) as key and yt as value to construct the120

whole datastore (K,V ).121

At inference time, the current context represen-122

tation F (x, ŷ<t) at decoding step t, as well as the123

already generated words, are leveraged to gener-124

ate a retrieval distribution Pknn(yt|y<t, x) over the125

entire vocabulary:126

(2)Pknn(yt|x, ŷ<t)

∝
∑

(hi,vi)∈Nt

Iyt=viexp(
−L2(hi, F (x, ŷ<t))

T
)

where L2 is the Euclidean distance between the 127

current context embedding and the embedding of 128

a token from the data store. In vanilla KNN-MT, 129

a predefined interpolation weight λ is fixed as a 130

hyperparameter. This weight interpolates between 131

the probability distribution computed from KNN 132

and the probability distribution generated from the 133

pretrained NMT model (see Equation 3). 134

(3)P (yt|x, ŷ<t) = λ ∗ Pmt(yt|x, ŷ<t)

+ (1− λ) ∗ Pknn(yt|x, ŷ<t)

2.2 SK-MT 135

In SK-MT (Dai et al., 2023), Elasticsearch is used 136

for semantic retrieval components to create a sen- 137

tence adaptive datastore instead of a static and ex- 138

tensive datastore used in Vanilla kNN-MT. In spe- 139

cific, Elasticsearch does two main operations: In- 140

dex & Search; storing parallel sentences in indexes 141

format, and then retrieving 32 sentences per input 142

sentence with the highest relevance score from the 143

training corpus. 144

Also, SK-MT provided a successful way of set- 145

ting the interpolation coefficient in Equation 4. 146

λ = Relu(1− d0
T
) (4) 147

where d0 is the top-1 L2 distance during the nearest 148

neighbor search, T is the temperature parameter 149

and is typically fixed. 150

3 Inference with Trainable kNN Retrieval 151

3.1 Trainable Interpolation 152

Even though Sk-MT introduced a simple solution 153

that derives the interpolation weight from the dis- 154

tance, a fixed parameter T for all datasets is tuned 155

to produce the best results. A fixed temperature 156

may not be optimal for all domains and datasets. 157

For example, Figure 1 shows the BLEU score from 158

the Koran dataset when varying T from 100 to 159

500 with a step size of 100. As seen in the figure, 160

T = 300 provides the best BLEU score and the 161

optimal value varies with the dataset. This obser- 162

vation motivates a simple and trainable method to 163

find the optimal temperature for each dataset. 164

The proposed simple neural network consists 165

of a single layer trained to predict the interpola- 166

tion weight given the distance of the retrieved kNN 167

candidates. This is in contrast to other adaptive in- 168

terpolation methods e.g. (Jiang et al., 2022) which 169

use more complex architectures and are harder to 170
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train. We use the development set of each domain171

to optimize our single-layer network.172

Our training objective is designed to provide173

better translation quality. Knowing the ground truth174

token, we can choose the best interpolation weight175

that produces the best probability distribution that176

we can get from the interpolation between Pmt177

and Pknn. Thus, our final objective is to create178

a sharper final probability distribution toward our179

ground truth token.180

Algorithm 1 Training Interpolation Layer

len← length(y)
t← 0
while t ̸= len do

gt← ground truth Index
generate Pknn(y<t, x)
generate Pmt(y<t, x)
if Pknn(gt|y<t, x) ≥ Pmt(gt|y<t, x) then

label = 1 ▷ favoring Pknn
else

label = 0
end if
λpred = Sigmoid(W ∗D0 +B)
loss← CrossEntropy(λpred, label)
update W,B
t = t+ 1

end while

As shown in Algorithm 1, our training proce-181

dure is divided into two stages at each decoding182

step. The first stage examines the probability of the183

ground truth token in both distributions Pknn and184

Pmt. If the probability of the ground truth token185

Pknn is higher then we set the label to 1 otherwise186

we set the label to 0. The second stage trains our187

single-layer network using binary loss.188

Figure 1: Koran Temperature Variation.

4 Experimental Results 189

4.1 Experimental Setup 190

Input stimuli and Datasets: We test our method- 191

ology in 2 language directions: German-English 192

(deen), and English-Czech (encs). For deen, we 193

employ the multi-domain dataset as the baseline 194

(Khandelwal et al., 2021) in addition to an e- 195

commerce domain. For encs, we utilize two other 196

domains: finance and medpharma. Our evalua- 197

tion metrics are the SacreBLEU (Post, 2018) and 198

COMET-22 (wmt22-COMET-da) (Rei et al., 2022), 199

a reference-based metric that combines direct as- 200

sessments (DA), sentence-level scores, and word- 201

level tags from Multidimensional Quality Metrics 202

(MQM) error annotations. 203

Models: Three transformer models are used in 204

our experiments. The first two of the three are 205

used to measure the translation quality. The first 206

two transformer models are constructed from 12 207

encoder layers and 12 decoder layers with 512 hid- 208

den dimensions and 2048 feedforward layer hid- 209

den dimensions with 8 multi-head attention heads. 210

The third transformer is the ZCode M3 model re- 211

viewed and presented in (Kim et al., 2021). ZCode 212

M3 is constructed from 24 encoder layers and 12 213

decoder layers with 1024 hidden dimensions and 214

4096 feedforward layer hidden dimensions with 16 215

multi-head attention heads. The ZCode M3 has 32 216

experts, 5B parameters, and 128,000 vocab size. 217

Baselines: The model without knnMT is one base- 218

line. We also compare with the SK-MT method that 219

uses a distance-aware adapter (Dai et al., 2023). In 220

(Dai et al., 2023), the authors compared with other 221

methods and showed success so we use (Dai et al., 222

2023) as a proxy to compare with other methods. 223

GPU Inference Hardware and Environment: In- 224

ference and speed evaluation experiments are car- 225

ried out on a single NVIDIA Tesla V100 GPU. 226

Our inference environment is the highly optimized 227

FasterTransformer from NVIDIA. Without loss of 228

generality, we utilize the SK-MT with its fixed 229

distance-aware adapter in these experiments to mea- 230

sure speed. Because experimental results between 231

SK-MT and the proposed trainable method show 232

similar translation quality performance, the speed 233

numbers should not change. 234

4.2 Trainable kNN Retrieval Results 235

Table 1 shows the translation quality performance 236

comparison between the proposed trainable method 237

and other baselines. As shown in the table, our pro- 238
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Table 1: Translation quality of the proposed method versus other methods at Beam=5 and K=2.

Domain BLEU WMT22-COMET-da
NMT SK-MT Trainable NMT SK-MT Trainable

IT 38 45.5 46.1 83.0 85.0 85.0
Law 49.6 62.8 62.7 86.7 88.3 88.0

Koran 12.2 15.5 16.4 69.1 70.0 70.6
Medical 42.7 57.1 51.0 83.9 85.2 85.0

e-commerce 52.5 58.1 58.5 90.7 90.9 90.9
finance 48.6 53.3 53.3 70.6 94.2 93.9

medpharma 41.6 47.4 45.5 92.2 92.0 92.5
AVERAGE 40.8 48.5 47.6 82.4 86.5 86.6

Table 2: GPU Inference Results on ZCode M3 Model.

beam=1, batch=1 beam=2, batch=20
Domain BLEU Speed Drop (%) BLEU Speed Drop (%)

NMT SK-MT NMT SK-MT
IT 37.6 43.8 4.9 37.4 43.7 6.5

Medical 45.6 55.6 5.0 45.8 56.3 9.1
Law 54.1 61.8 5.8 54.1 62.2 5.5

AVERAGE 45.7 53.7 5.2 45.7 54.0 7.0

posed trainable method improves the NMT base-239

line translation quality by a large margin. In ad-240

dition, the proposed method at least maintains the241

translation quality relative to SK-MT on average242

in terms of the BLEU and COMET scores except243

for the Medical and medpharma domains. This244

result demonstrates the ability to at least maintain245

the performance of SK-MT while being trainable246

in a simple manner. For Medical and medpharma,247

SK-MT outperforms our proposed method because248

the datastore built by the dev set does not have249

any semantic similarity to the training set leading250

to imbalanced binary labeling, whereas the test251

does not have this imbalanced binary labeling. To252

overcome this challenge, we suggest that we add253

weights to the binary cross-entropy training loss254

function. With this weighted loss function, our255

trainable method achieves 57.2 BLEU, 85 COMET256

in Medical, and 48.1 BLEU, 92.5 COMET in med-257

phrama. These results increase our average results258

to 48.9 BLEU, and 86.6 COMET, respectively.259

Table 1 shows that the translation quality in260

terms of COMET using SK-MT or our proposed261

method is not always significantly improved as no-262

ticed in BLEU. For example, e-commerce has an263

improvement of roughly 6 BLEU points relative264

to NMT, while the improvement is 0.3 COMET265

score points. For the domain problem, we be-266

lieve this phenomenon exists in some domains be- 267

cause COMET could focus slightly more on flu- 268

ency, while BLEU could focus more on adequacy 269

and text completeness. 270

4.3 GPU Inference Results 271

Table 2 depicts the speed results of ZCode M3 272

inference and corresponding BLEU scores in three 273

domains under test namely, IT, Medical, and Law. 274

The results for beam=1, batch=1 SK-MT setting on 275

the large scale MoE improves the NMT baseline 276

with a large margin while dropping the speed by 277

only 5.2% on average. Similarly, SK-MT has an 278

improved translation quality with only a drop of 279

7% relative to NMT as beam and batch increase 280

to 2 and 20, respectively. These results show the 281

potential of deploying the knnMT domain adaption 282

approach in such a large-scale model as ZCode M3. 283

Conclusion 284

This paper proposes a simply trainable nearest- 285

neighbor machine translation and carries out ex- 286

periments on large-scale models to demonstrate 287

kNN feasibility with GPU Inference. Experimental 288

results show the translation quality effectiveness of 289

our adaptive and automatic interpolation technique 290

and insignificant speed drop of knnMT on GPU 291

inference. 292
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