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Abstract

Nearest neighbor machine translation is a suc-
cessful approach for fast domain adaption,
which interpolates the pre-trained transform-
ers with domain-specific token-level k-nearest-
neighbor (kNN) retrieval without retraining.
Despite KNN MT’s success, searching large ref-
erence corpus and fixed interpolation between
the kNN and pre-trained model led to com-
putational complexity and translation quality
challenges. In this paper, we propose a simply
trainable nearest neighbor machine translation
and carry out inference experiments on GPU.
In specific, we first adaptively construct a small
datastore for each input sentence. Second, we
train the interpolation coefficient between the
knnMT and pre-trained result to automatically
interpolate in different domains. Experimen-
tal results on different domains show that our
proposed method at least maintains the transla-
tion quality of other methods in the literature
while being automatic. In addition, our infer-
ence results demonstrate that running knnMT
is feasible on GPUs with only a 5% speed drop.

1 Introduction

Neural Machine Translation (NMT) has been show-
ing an increasing trend of translation quality owing
to the ongoing development of deep neural network
models (Vaswani et al., 2017; Kim et al., 2021).
However, the quality of these models is limited as
soon as the domain of the input test sentences is
different than the training data.

To handle this out-of-domain problem, k-nearest
neighbor machine translation (kKNN-MT) has
proven to be successful in many studies (Khan-
delwal et al., 2021; Zheng et al., 2021a,b; Jiang
etal., 2021; Wang et al., 2022; Meng et al., 2022),
and thus piqued much attention in the community
of machine translation. At the core of KNN-MT, a
kNN classifier over an external datastore is built
based on cached decoder representations and cor-
responding target tokens. This classifier is utilized

to augment the given NMT model without finetun-
ing leading to improved predictions, especially for
domain adaption. Augmenting the NMT model is
done via interpolating between the output proba-
bility distribution of the NMT model and the kNN
classifier output probability distribution.

Despite KNN-MT’s noticeable success in allevi-
ating the domain adaption problem, vanilla kNN-
MT proposed in (Khandelwal et al., 2021) mainly
suffers two challenges slowing down kKNN-MT’s
deployment. First, vanilla KNN-MT requires large
datastore sizes resulting in massive storage and ex-
pensive latency overheads during inference. For
example, (Khandelwal et al., 2021) showed that
kNN-MT is two orders of magnitude slower than
the base NMT system in a generation speed when
retrieving 64 keys from a datastore containing bil-
lions of records. Second, the interpolation between
the NMT model and the kNN classifier is fixed for
all sentences in the test sets and manually tuned to
improve translation quality.

Reviewing the literature, various techniques have
been proposed to overcome kNN-MT’s challenges.
For example, (Meng et al., 2022) designed Fast
kNN-MT where a subset of the large datastore is
created for each source sentence by searching for
the nearest token-level neighbors of the source to-
kens and mapping them to the corresponding target
tokens. Building on (Meng et al., 2022), (Dai et al.,
2023) proposed a simple and scalable kKNN-MT
that leverages current efficient text retrieval mech-
anisms, such as BM25 (Robertson et al., 2009),
to obtain a small number of reference samples
that have high semantic similarities with the in-
put sentence, and then dynamically construct a
tiny datastore by forwarding the samples to the
pre-trained model. (Dai et al., 2023) successfully
introduced a simple distance-aware interpolation
equation to adaptively incorporate kNN retrieval
results into the NMT model. However, this sim-
ple equation required manual tuning. Along the



same line, (Jiang et al., 2022) proposed a trainable
interpolation method but with a relatively compli-
cated neural network. To the best of our knowledge,
these papers did not integrate KNN-MT into GPU
inference to observe the trade-off between accuracy
and speed results.

Towards KNN-MT challenges, this paper pro-
poses a simply trainable nearest neighbor machine
translation and demonstrates kNN feasibility with
GPU Inference. Similar to (Dai et al., 2023), we
reduce the large datastore size by extracting on-
line a small number of reference samples that have
high semantic similarities with the input test sen-
tence using the efficient BM25 retrieval algorithm
(Robertson et al., 2009). Based on these insights,
we propose a simply trainable neural network that
adaptively interpolates the NMT and knnMT prob-
ability distributions per domain in an average of 40
minutes of a single GPU training time. Last but
not least, we integrate KNN-MT into FasterTrans-
former, a highly optimized NMT GPU inference
implementation offered by NVIDIA, and observe
its speed and accuracy performance on a sparsely
activated large-scale MoE. Experimental results
show the translation quality effectiveness of our
adaptive and automatic interpolation technique and
insignificant speed drop of knnMT on GPU.

2 Background: kNN-MT
2.1 Vanilla-kNN

In Vanilla-kNN, a datastore is created to convert
a bilingual sentence into a set of key-value pairs.
These keys and values are defined in Equation 1.
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where (X, y) € (X, Y) define the reference corpus
for which the pretrained NMT model generates
the context representation F'(x,y«; at each time
step t. Then we collect the output hidden state
F(x,y<t) as key and y; as value to construct the
whole datastore (K, V).

At inference time, the current context represen-
tation F'(x, J<;) at decoding step t, as well as the
already generated words, are leveraged to gener-
ate a retrieval distribution Py, (y¢|y<¢, ) over the
entire vocabulary:
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where L2 is the Euclidean distance between the
current context embedding and the embedding of
a token from the data store. In vanilla KNN-MT,
a predefined interpolation weight A is fixed as a
hyperparameter. This weight interpolates between
the probability distribution computed from KNN
and the probability distribution generated from the
pretrained NMT model (see Equation 3).
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2.2 SK-MT

In SK-MT (Dai et al., 2023), Elasticsearch is used
for semantic retrieval components to create a sen-
tence adaptive datastore instead of a static and ex-
tensive datastore used in Vanilla kKNN-MT. In spe-
cific, Elasticsearch does two main operations: In-
dex & Search; storing parallel sentences in indexes
format, and then retrieving 32 sentences per input
sentence with the highest relevance score from the
training corpus.

Also, SK-MT provided a successful way of set-
ting the interpolation coefficient in Equation 4.

A = Relu(1l — %) 4)

where d is the top-1 L2 distance during the nearest
neighbor search, 7' is the temperature parameter
and is typically fixed.

3 Inference with Trainable £KNN Retrieval

3.1 Trainable Interpolation

Even though Sk-MT introduced a simple solution
that derives the interpolation weight from the dis-
tance, a fixed parameter 7" for all datasets is tuned
to produce the best results. A fixed temperature
may not be optimal for all domains and datasets.
For example, Figure 1 shows the BLEU score from
the Koran dataset when varying 1" from 100 to
500 with a step size of 100. As seen in the figure,
T = 300 provides the best BLEU score and the
optimal value varies with the dataset. This obser-
vation motivates a simple and trainable method to
find the optimal temperature for each dataset.

The proposed simple neural network consists
of a single layer trained to predict the interpola-
tion weight given the distance of the retrieved kNN
candidates. This is in contrast to other adaptive in-
terpolation methods e.g. (Jiang et al., 2022) which
use more complex architectures and are harder to



train. We use the development set of each domain
to optimize our single-layer network.

Our training objective is designed to provide
better translation quality. Knowing the ground truth
token, we can choose the best interpolation weight
that produces the best probability distribution that
we can get from the interpolation between Pp¢
and Py,,. Thus, our final objective is to create
a sharper final probability distribution toward our
ground truth token.

Algorithm 1 Training Interpolation Layer

len < length(y)
t+0
while ¢ # [en do
gt < ground truth Index
generate Pknn(y<, )
generate Pmt(y<, z)
if Pknn(gt|y<t, =) > Pmt(gt|y<¢, x) then

label =1 > favoring Pknn
else

label =0
end if

Apred = Sigmoid(W x Dy + B)
loss <— CrossEntropy(Apred, label)
update W, B
t=t+1

end while

As shown in Algorithm 1, our training proce-
dure is divided into two stages at each decoding
step. The first stage examines the probability of the
ground truth token in both distributions Py, and
P,,;. If the probability of the ground truth token
Pryp, 1s higher then we set the label to 1 otherwise
we set the label to 0. The second stage trains our
single-layer network using binary loss.
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Figure 1: Koran Temperature Variation.

4 Experimental Results

4.1 Experimental Setup

Input stimuli and Datasets: We test our method-
ology in 2 language directions: German-English
(deen), and English-Czech (encs). For deen, we
employ the multi-domain dataset as the baseline
(Khandelwal et al., 2021) in addition to an e-
commerce domain. For encs, we utilize two other
domains: finance and medpharma. Our evalua-
tion metrics are the SacreBLEU (Post, 2018) and
COMET-22 (wmt22-COMET-da) (Rei et al., 2022),
a reference-based metric that combines direct as-
sessments (DA), sentence-level scores, and word-
level tags from Multidimensional Quality Metrics
(MQM) error annotations.

Models: Three transformer models are used in
our experiments. The first two of the three are
used to measure the translation quality. The first
two transformer models are constructed from 12
encoder layers and 12 decoder layers with 512 hid-
den dimensions and 2048 feedforward layer hid-
den dimensions with 8 multi-head attention heads.
The third transformer is the ZCode M3 model re-
viewed and presented in (Kim et al., 2021). ZCode
M3 is constructed from 24 encoder layers and 12
decoder layers with 1024 hidden dimensions and
4096 feedforward layer hidden dimensions with 16
multi-head attention heads. The ZCode M3 has 32
experts, SB parameters, and 128,000 vocab size.
Baselines: The model without knnMT is one base-
line. We also compare with the SK-MT method that
uses a distance-aware adapter (Dai et al., 2023). In
(Dai et al., 2023), the authors compared with other
methods and showed success so we use (Dai et al.,
2023) as a proxy to compare with other methods.
GPU Inference Hardware and Environment: In-
ference and speed evaluation experiments are car-
ried out on a single NVIDIA Tesla V100 GPU.
Our inference environment is the highly optimized
FasterTransformer from NVIDIA. Without loss of
generality, we utilize the SK-MT with its fixed
distance-aware adapter in these experiments to mea-
sure speed. Because experimental results between
SK-MT and the proposed trainable method show
similar translation quality performance, the speed
numbers should not change.

4.2 Trainable kNN Retrieval Results

Table 1 shows the translation quality performance
comparison between the proposed trainable method
and other baselines. As shown in the table, our pro-



Table 1: Translation quality of the proposed method versus other methods at Beam=>5 and K=2.

Domain BLEU WMT22-COMET-da
NMT SK-MT Trainable NMT SK-MT Trainable
IT 38 45.5 46.1 83.0 85.0 85.0
Law 49.6 62.8 62.7 86.7 88.3 88.0
Koran 12.2 15.5 16.4 69.1 70.0 70.6
Medical 42.7 57.1 51.0 83.9 85.2 85.0
e-commerce 52.5 58.1 58.5 90.7 90.9 90.9
finance 48.6 53.3 53.3 70.6 94.2 93.9
medpharma 41.6 47.4 45.5 92.2 92.0 92.5
AVERAGE 40.8 48.5 47.6 82.4 86.5 86.6
Table 2: GPU Inference Results on ZCode M3 Model.
beam=1, batch=1 beam=2, batch=20
Domain NMT BLI;E_MT Speed Drop (%) NMT BLI;E_MT Speed Drop (%)
IT 37.6 43.8 49 374 43.7 6.5
Medical 45.6 55.6 5.0 45.8 56.3 9.1
Law 54.1 61.8 5.8 54.1 62.2 5.5
AVERAGE | 45.7 53.7 5.2 45.7 54.0 7.0

posed trainable method improves the NMT base-
line translation quality by a large margin. In ad-
dition, the proposed method at least maintains the
translation quality relative to SK-MT on average
in terms of the BLEU and COMET scores except
for the Medical and medpharma domains. This
result demonstrates the ability to at least maintain
the performance of SK-MT while being trainable
in a simple manner. For Medical and medpharma,
SK-MT outperforms our proposed method because
the datastore built by the dev set does not have
any semantic similarity to the training set leading
to imbalanced binary labeling, whereas the test
does not have this imbalanced binary labeling. To
overcome this challenge, we suggest that we add
weights to the binary cross-entropy training loss
function. With this weighted loss function, our
trainable method achieves 57.2 BLEU, 85 COMET
in Medical, and 48.1 BLEU, 92.5 COMET in med-
phrama. These results increase our average results
to 48.9 BLEU, and 86.6 COMET, respectively.
Table 1 shows that the translation quality in
terms of COMET using SK-MT or our proposed
method is not always significantly improved as no-
ticed in BLEU. For example, e-commerce has an
improvement of roughly 6 BLEU points relative
to NMT, while the improvement is 0.3 COMET
score points. For the domain problem, we be-

lieve this phenomenon exists in some domains be-
cause COMET could focus slightly more on flu-
ency, while BLEU could focus more on adequacy
and text completeness.

4.3 GPU Inference Results

Table 2 depicts the speed results of ZCode M3
inference and corresponding BLEU scores in three
domains under test namely, IT, Medical, and Law.
The results for beam=1, batch=1 SK-MT setting on
the large scale MoE improves the NMT baseline
with a large margin while dropping the speed by
only 5.2% on average. Similarly, SK-MT has an
improved translation quality with only a drop of
7% relative to NMT as beam and batch increase
to 2 and 20, respectively. These results show the
potential of deploying the knnMT domain adaption
approach in such a large-scale model as ZCode M3.

Conclusion

This paper proposes a simply trainable nearest-
neighbor machine translation and carries out ex-
periments on large-scale models to demonstrate
kNN feasibility with GPU Inference. Experimental
results show the translation quality effectiveness of
our adaptive and automatic interpolation technique
and insignificant speed drop of knnMT on GPU
inference.



References

Yuhan Dai, Zhirui Zhang, Qiuzhi Liu, Qu Cui, Weihua
Li, Yichao Du, and Tong Xu. 2023. Simple and
scalable nearest neighbor machine translation. In
The Eleventh International Conference on Learning
Representations (ICLR).

Hui Jiang, Ziyao Lu, Fandong Meng, Chulun Zhou,
Jie Zhou, Degen Huang, and Jinsong Su. 2022. To-
wards robust k-nearest-neighbor machine translation.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5468-5477, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Qingnan Jiang, Mingxuan Wang, Jun Cao, Shanbo
Cheng, Shujian Huang, and Lei Li. 2021. Learning
kernel-smoothed machine translation with retrieved
examples. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 7280-7290, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2021. Nearest neigh-
bor machine translation. In International Conference
on Learning Representations (ICLR).

Young Jin Kim, Ammar Ahmad Awan, Alexandre
Muzio, Andres Felipe Cruz Salinas, Liyang Lu,
Amr Hendy, Samyam Rajbhandari, Yuxiong He, and
Hany Hassan Awadalla. 2021. Scalable and effi-
cient moe training for multitask multilingual models.
arXiv preprint arXiv:2109.10465.

Yuxian Meng, Xiaoya Li, Xiayu Zheng, Fei Wu, Xi-
aofei Sun, Tianwei Zhang, and Jiwei Li. 2022. Fast
nearest neighbor machine translation. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 555-565, Dublin, Ireland. Association
for Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186—
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Ricardo Rei, José GC De Souza, Duarte Alves,
Chrysoula Zerva, Ana C Farinha, Taisiya Glushkova,
Alon Lavie, Luisa Coheur, and André FT Martins.
2022. Comet-22: Unbabel-ist 2022 submission for
the metrics shared task. In Proceedings of the Sev-
enth Conference on Machine Translation (WMT),
pages 578-585.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Re-

trieval, 3(4):333-389.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Dexin Wang, Kai Fan, Boxing Chen, and Deyi Xiong.
2022. Efficient cluster-based k-nearest-neighbor ma-
chine translation. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 2175-2187,
Dublin, Ireland. Association for Computational Lin-
guistics.

Xin Zheng, Zhirui Zhang, Junliang Guo, Shujian Huang,
Boxing Chen, Weihua Luo, and Jiajun Chen. 2021a.
Adaptive nearest neighbor machine translation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 368-374,
Online. Association for Computational Linguistics.

Xin Zheng, Zhirui Zhang, Shujian Huang, Boxing Chen,
Jun Xie, Weihua Luo, and Jiajun Chen. 2021b. Non-
parametric unsupervised domain adaptation for neu-
ral machine translation. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2021,
pages 4234-4241, Punta Cana, Dominican Republic.
Association for Computational Linguistics.


https://doi.org/10.48550/ARXIV.2302.12188
https://doi.org/10.48550/ARXIV.2302.12188
https://doi.org/10.48550/ARXIV.2302.12188
https://aclanthology.org/2022.emnlp-main.367
https://aclanthology.org/2022.emnlp-main.367
https://aclanthology.org/2022.emnlp-main.367
https://doi.org/10.18653/v1/2021.emnlp-main.579
https://doi.org/10.18653/v1/2021.emnlp-main.579
https://doi.org/10.18653/v1/2021.emnlp-main.579
https://doi.org/10.18653/v1/2021.emnlp-main.579
https://doi.org/10.18653/v1/2021.emnlp-main.579
https://doi.org/10.48550/ARXIV.2010.00710
https://doi.org/10.48550/ARXIV.2010.00710
https://doi.org/10.48550/ARXIV.2010.00710
https://doi.org/10.48550/ARXIV.2109.10465
https://doi.org/10.48550/ARXIV.2109.10465
https://doi.org/10.48550/ARXIV.2109.10465
https://doi.org/10.18653/v1/2022.findings-acl.47
https://doi.org/10.18653/v1/2022.findings-acl.47
https://doi.org/10.18653/v1/2022.findings-acl.47
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.18653/v1/2022.acl-long.154
https://doi.org/10.18653/v1/2022.acl-long.154
https://doi.org/10.18653/v1/2022.acl-long.154
https://doi.org/10.18653/v1/2021.acl-short.47
https://doi.org/10.18653/v1/2021.findings-emnlp.358
https://doi.org/10.18653/v1/2021.findings-emnlp.358
https://doi.org/10.18653/v1/2021.findings-emnlp.358
https://doi.org/10.18653/v1/2021.findings-emnlp.358
https://doi.org/10.18653/v1/2021.findings-emnlp.358

	Introduction
	Background: kNN-MT
	Vanilla-kNN
	SK-MT

	Inference with Trainable kNN Retrieval
	Trainable Interpolation

	Experimental Results
	Experimental Setup
	Trainable kNN Retrieval Results
	GPU Inference Results


