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Abstract

The generality of pretrained large language mod-
els (LLMs) has prompted increasing interest in
their use as in-context learning agents. To be suc-
cessful, such agents must form beliefs about how
to achieve their goals based on limited interaction
with their environment, resulting in uncertainty
about the best action to take at each step. In this
paper, we study how LLM agents form and act
on these beliefs by conducting experiments in
controlled sequential decision-making tasks. To
begin, we find that LLM agents are overconfi-
dent: They draw strong conclusions about what
to do based on insufficient evidence, resulting in
inadequately explorative behavior. We dig deeper
into this phenomenon and show how it emerges
from a collapse in the entropy of the action distri-
bution implied by sampling from the LLM. We
then demonstrate that existing token-level sam-
pling techniques are by themselves insufficient
to make the agent explore more. Motivated by
this fact, we introduce Entropic Activation Steer-
ing (EAST), an activation steering method for
in-context LLM agents. EAST computes a steer-
ing vector as an entropy-weighted combination
of representations, and uses it to manipulate an
LLM agent’s uncertainty over actions by inter-
vening on its activations during the forward pass.
We show that EAST can reliably increase the en-
tropy in an LLM agent’s actions, causing more
explorative behavior to emerge. Finally, EAST
modifies the subjective uncertainty an LLM agent
expresses, paving the way to interpreting and con-
trolling how LLM agents represent uncertainty
about their decisions.
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1. Introduction
Successful agentic behavior requires a decision-maker to
consider its beliefs about the world while determining which
action to take: Should I exploit what I know about the task?
Should I search for more information? Can I be sure that
my decisions are correct? To build agents that are both
effective and reliable, it is paramount to assess whether
they are able to autonomously ask these questions, to find
answers to them, and to incorporate these answers into their
decision-making process.

These considerations are especially important when devel-
oping agents built on top of large language models (LLMs).
Due to their natural language interface and wide range of
capabilities, LLMs hold the promise of powering a new
generation of agentic systems. In particular, they have been
noted for their ability to perform in-context learning, or the
adaptation of their predictions based on examples provided
in the prompt. This capability sets the stage for deploying
LLMs as in-context learning agents, capable of perceiving
the world, executing actions, and achieving diverse human-
specified goals by dynamically adapting their behavior in
response to feedback from the environment.

However, in contrast to well-studied decision-making algo-
rithms based on reinforcement learning (Sutton & Barto,
2018), relatively little is known about how LLM agents
come to their decisions through interaction. While the LLM
operates at the token level, playing the role of the reasoning
engine behind the agent, decisions happen at a higher level
of abstraction, after the output text produced by the LLM
is parsed into an action. Overall, the interaction between
these two levels is not well understood, and it plays a vital
role in determining how the agent’s beliefs shape its action
distribution.

Indeed, recent work has shown that this process frequently
goes awry, causing in-context LLM agents to fail to produce
sensible exploratory behavior (Krishnamurthy et al., 2024).
They tend to be overconfident, rapidly reducing the uncer-
tainty about their decisions and committing to a particular
solution, even when it should be clear that more informa-
tion is needed. How can we effectively intervene on this
behavior?
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Figure 1: Overview of Entropic Activation Steering (EAST). In Phase 1, the method constructs a steering vector by averaging
the activations produced by the LLM agent given a set of prompts, weighting them by the entropy of the resulting action
distribution. In Phase 2, during new runs of interactions with the environment, it steers the agent by adding this vector
to the LLM’s activations at a target layer for each generated token position. The method increases the agent’s subjective
uncertainty about what to do and leads to more exploratory behavior.

In this paper, we introduce Entropic Activation Steer-
ing (EAST), a method to alter an LLM agent’s subjective
uncertainty over decisions and entropy over actions. EAST
uses a dataset of logged interactions between the LLM agent
and an environment to obtain a steering vector. This vector
is computed as an entropy-weighted average of the (run-
centered) representations that an LLM produces right before
making a decision. Similarly to previous work in activa-
tion addition (Rimsky et al., 2023), the steering vector is
applied at decision time by adding it, at a specific layer, to
the representation corresponding to the tokens that are being
generated by the LLM.

EAST directly controls the entropy of its distribution over
actions, well beyond what is achievable by simply modi-
fying an LLM’s token sampling temperature. Moreover,
EAST modifies the subjective uncertainty expressed by an
LLM agent in its ReAct-style thoughts (Yao et al., 2022),
towards a less exploitative and more information-seeking
attitude. With controlled experiments in bandit tasks ex-
pressed in language, we show that EAST is able to steer
the agent towards more explorative behavior, effectively
addressing the overconfidence exhibited by LLM agents.

We demonstrate that EAST generalizes to variations in
prompts and LLMs. Surprisingly, we show that the steer-
ing vectors we construct can transfer between tasks which

are presented as different natural language scenarios, but
equivalent from the sequential decision-making standpoint.
Overall, the effectiveness of EAST and our in-depth anal-
yses suggest that LLMs possess an abstract representation
of the uncertainty over their decisions, and that it is possi-
ble to exercise direct control on it, paving the way to more
interpretable and controllable LLM agents.

2. Background
Modern language models interact with text input through a
process of tokenization, in which a body of text is broken
down into small units known as tokens (Mielke et al., 2021).
To begin, let Ω be a finite set of natural language tokens.
We consider the set of token sequences of finite length, Ω∗,
consisting of elements ω = (ω1, . . . , ωn) where n is the
length of that sequence.

An LLM is a deep neural network, fθ, which maps a given
sequence of tokens to a categorical distribution over the
next token that would follow, which we denote by pθ(· |
ω). LLMs implement their computations as a sequence of
stacked layers, with the network producing intermediate
activations corresponding to each input token, z = f ℓ

θ(ω) ∈
Rn×d for some layer ℓ and hidden dimension d. We write
zi ∈ Rd for the activation corresponding to the i-th token.
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We are most commonly interested in producing completions
C from the model given some prompt P ∈ Ω∗. This process
proceeds by autoregressive sampling. We first sample a
token c1 ∼ pθ(· | P ), and then continue by the recurrence
relation ck+1 ∼ pθ(· | P, c1, . . . , ck), repeating this process
until the model generates a special [EOS] token, yielding
the completion C = (c1, c2, . . .). We denote the distribution
over completions implied by this process as LLM(· | P ).

An in-context LLM agent interacts with an environment to
perform a task described in an initial prompt P0. At each
timestep t ∈ {1, . . . , T}, the model generates a completion
Ct ∼ LLM(·|Pt). An action at is then extracted by a pars-
ing function we call parse, mapping the set C of possible
completions to the set A of possible actions in that environ-
ment. We consider this process of completion generation
and parsing to represent the agent’s stochastic policy over
actions given some prompt, which we denote π(·|Pt). As
the model’s completions may not always produce a valid
action, we write ∅ ∈ A for the null action, coming from
an invalid completion, which immediately terminates the
interaction. Once the action at is executed in the environ-
ment, it returns some text feedback Ft to the agent. The
interaction is iterated by concatenating the information into
a new prompt Pt+1 = (Pt, Ct, Ft) up to the horizon T .

Our experiments focus on a Gaussian multi-armed bandit
setting (Lattimore & Szepesvari, 2017), in which the action
space A is a set of possible arm choices and the feedback Ft

is a string describing a numerical reward drawn from a Gaus-
sian distribution N (µa, σa) associated to a particular arm
a ∈ A. At each round, the agent has to choose which arm
to pick. The task description P0 tasks the agent with max-
imizing the sum of the rewards it receives over time. This
setting captures the essential elements of self-evaluation and
in-context learning across turns of interaction (Shinn et al.,
2023), making them easier to analyze.

3. Related Work
By studying how LLM agents represent uncertainty and
presenting a steering technique specific for agents, our paper
connects recent work in LLM agents and in representation
engineering (Zou et al., 2023). We will now provide an
overview of the most relevant work from these two research
communities.

LLM-based agents. LLMs have been recently employed
for creating agents, leveraging their capabilities such as
proposing actions (Wu et al., 2023), generating code (Wang
et al., 2023; Ma et al., 2023), or evaluating outcomes (Klis-
sarov et al., 2023; Kwon et al., 2023). In this paper, we
focus on in-context LLM agents, which use the ability of
LLMs to learn from data in their prompt (Brown et al., 2020)
to process a history of interactions with an environment. We

employ an LLM agent multi-armed bandit setup (Krishna-
murthy et al., 2024; Park et al., 2024). The advantage of this
setup resides in its ability to capture, in a more controlled
setting, essential aspects of good decision-making. These
systems are typically based on repeated interactions with
a task, and heavily rely on the in-context learning abilities
of existing LLMs (Shinn et al., 2023; Liu et al., 2023; Mir-
chandani et al.). An important component in our discussion
is the relationship between the token generation process
and the action extraction process, which is encountered in
recent work using reinforcement learning to train LLMs in
decision-making tasks (Zhou et al., 2024).

Representations of LLMs and activation steering. Our
analyses of the representation space of LLM agents and
our EAST method are closely related to recently proposed
techniques for activation steering (Turner et al., 2023; Rim-
sky et al., 2023; Li et al., 2023; Wu et al., 2024) and, more
broadly, to the recent interest in interpreting the activations
of LLMs (Zou et al., 2023; Heimersheim & Nanda, 2024).
In particular, similarly to (Rimsky et al., 2023), we apply a
steering vector during autoregressive unrolling by adding it
to the activations at each position of generated tokens. Dif-
ferently from these methods, the method we will present fo-
cuses on a sequential decision-making setting. Furthermore,
we intervene on the action entropy of an LLM agent by
leveraging a continuous-valued signal instead of the discrete
contrastive approach applied in other recent work (Rimsky
et al., 2023; Turner et al., 2023). Our work is related to
recent efforts on the mechanistic interpretability of agents
using reinforcement learning to navigate gridworlds (Mini
et al., 2023), or imitating humans to play chess (Karvonen,
2024). We instead focus on in-context LLM agents based on
pretrained models, connecting recent analyses of the repre-
sentation space of LLMs in a supervised in-context learning
setting (Hendel et al., 2023) to agentic use cases.

4. A closer look at the uncertainty over actions
of an LLM agent

Experimental setting Following previous work (Krish-
namurthy et al., 2024), we employ two-armed Gaussian
bandits with different means µ0, µ1, which we vary depend-
ing on the experiment, and variances σ0 = 10, σ1 = 10
unless otherwise specified. We describe the task to the
agent with the prompt in Prompt 1, reported in the appendix
(which also reports examples of interactions), in which the
two arms are described to the agent as Buttons that it can
press. The agent is instructed to evaluate both options in
order to maximize its score over time. We use the ReAct
prompting (Yao et al., 2022) strategy, which asks the LLM
to produce a thought before selecting a particular action. In
addition to increasing the reliability of the agent at generat-
ing valid actions, inspecting thoughts will also allow us to

3



Controlling Large Language Model Agents with Entropic Activation Steering

0 10 20 30 40 50
Step

0

10

20

30

40

50

Cu
m

ul
at

iv
e 

Su
m

 o
f A

ct
io

ns

0=95, 1=105

0 10 20 30 40 50
Step

0=99, 1=101

0 10 20 30 40 50
Step

0=100, 1=100

0 10 20 30 40 50
Step

0.0

0.1

0.2

0.3

0.4

En
tro

py

Action Entropy Over Time
Env Means

[100, 100]
[99, 101]
[95, 105]

Figure 2: Left: Evolution of choices over two actions (0 and 1) taken by LLM agent over time in increasingly ambiguous
bandit settings. A darker color corresponds to a more common behavior. The LLM agent tends to commit to a single arm
even when choosing should be hard or impossible. Right: The evolution of the LLM agent’s entropy over actions, over time.
The rapid decrease in entropy corresponds to the agent committing to a single action.

qualitatively inspect the agent’s expression of its subjective
uncertainty. For each round of interaction, we generate 25
different completions, parse actions from them, and ran-
domly sample from the valid actions. When estimating the
entropy of the action distribution, we consider the set of
these valid actions. We use Mixtral-8x7B (Jiang et al.,
2024), and report results on DBRX (Databricks, 2024) in the
appendix. In all cases, the agent-environment interaction is
implemented as a dialogue, and we correspondingly use the
instruction-tuned versions of these two models. Each error
bar displayed in the paper shows a bootstrapped 95% con-
fidence interval around the mean, as computed by default
with the seaborn Python library (Waskom, 2021).

4.1. Behavior of in-context LLM agents in bandit tasks

Previous work (Krishnamurthy et al., 2024) has established
that a common failure case of current in-context LLM agents
comes from overconfident behavior. In the context of a ban-
dit, this overconfidence corresponds to the agent committing
to a particular action without sufficient evidence that that
particular action is the best one (i.e. leading to a higher
expected reward).

To take a closer look, we plot the evolution of the LLM
agent’s actions over time, by computing, for each indepen-
dent run of interaction between the LLM agent and the
environment, a cumulative sum over time of the index cor-
responding to the action selected at time t. Thus, for a
run of length T , a cumulative sum of 0 corresponds to the
agent always selecting action 0 and a cumulative sum of T
corresponds to the agent selecting action 1.

In Figure 2, we visualize the results of 65 runs of inter-
action for each of three distinct parameterizations of the
environment means, where the standard deviations are fixed
at σ0 = 10, σ1 = 10. On the plot, each run is represented
as a shaded area centered around the line showing this cu-
mulative sum at each timestep. In particular, when the line
proceeds horizontally in time, it means the agent selected
action 0 at that step, and diagonally, action 1. In aggregate,

Thought:  This time, Button 1 gave fewer points than Button 2, so my 
initial estimate may not have been accurate. I should gather more 
data to make a better decision. I'll press Button 2 a few more times.
Action: I choose Button 2.St

ep
 4

Thought:  Button 1 has given me fewer points than Button 2 in this 
instance, but the overall point totals still favor Button 1. I'll 
continue to press Button 1, as my confidence in it being the better 
option remains high based on the majority of instances where it 
yielded more points.
Action: I choose Button 1.

St
ep

 1
7

Figure 3: Example of interaction between token-level and
action-level sampling for a two-armed bandit, showing the
evolution of the probability that the first action is ultimately
selected as the tokens are generated by the LLM.

the opacity of the plot displays the relative frequency of
behaviors of the LLM agent, with a darker color correspond-
ing to higher empirical frequency of that behavior. The plot
demonstrates that the agent has a strong tendency to commit
to a particular action after a small number of steps, repre-
sented by horizontal and diagonal shaded areas for actions
0 and 1, respectively. While this behavior could be seen
as advantageous in the case where the arms are far apart
(µ0 = 95, µ1 = 105), it becomes increasingly irrational as
the task becomes harder (µ0 = 99, µ1 = 101), where we ob-
serve that the agent commonly commits to the wrong action
based on limited data. Even in the extreme case in which
both the actions have exactly the same mean (µ0 = 100,
µ1 = 100), in which we would expect a rational agent to
explore indefinitely, the agent still overwhelmingly defaults
to arbitrarily selecting one action. To provide another per-
spective on this phenomenon, Figure 2 (right) shows the
evolution of the entropy of the agent’s action distribution
as time passes, averaged over the different runs. For all the
different configurations, the entropy of the LLM agent’s
action distribution rapidly decreases over time, resulting in
insufficient exploration of the available options.

4.2. Connecting token and action generation

Before intervening on the overconfidence of the LLM agent,
let us dive deeper into the action generation mechanism
itself. As described in Section 2, the action generation pro-
cess relies on the underlying LLM producing a completion
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Figure 4: Distribution of choices over two actions (0 and 1) taken by the LLM agent over time when varying the sampling
temperature. Increasing temperature until the point at which no action can be parsed from the LLM’s generations does not
significantly change the entropy in action distribution.

(which includes a thought and a proposed action) and on
parsing from this completion an action to be executed in the
environment. Thus, each generated token has the potential
to contribute to the decision about the action.

To visualize this process, we show in Figure 3 how token
generation and action selection are connected in practice
by inspecting the distribution of the agent’s actions as its
response grows. Following each generated token, we unroll
a number S = 20 of full generations from the model, parse
the resulting action, and estimate the probability of the agent
selecting the first action from its empirical frequency across
generations. Thus, for each token, we have a probability of
selecting a particular action, which we denote with color in
the plot, and we can track this probability throughout of a
generation to see how decisions emerge from tokens.

In particular, we observe the evolution of the probability
of selecting the first button in two steps far in time (step 4
and step 17) in an example run. While in early steps (see
step 4) individual tokens in the LLM’s thought progressively
determine the action, in later steps (see step 17) the decrease
in entropy highlighted in Figure 2 is associated with the
evolution of the thought having no effect on the agent’s ulti-
mate decision. Echoing previous work on different forms
of chain-of-thought prompting (Turpin et al., 2024), the ex-
ample shows that a model does not necessarily come to a
conclusion at the end of the thought, and that the thought
acts as a manifestation of an underlying computational pro-
cess happening in the representation space, but not always
as the only guide to a model’s final decision.

Having seen the connection between the token-generation
and the action-generation processes, it is natural to ask how
much intervening on the former can influence the latter, and
whether an intervention can counteract the tendency of the
LLM agent to be overconfident. The most direct strategy
to try to increase the entropy in the generated actions is to
manipulate the entropy in the generated tokens, which is
typically achieved by increasing the temperature used during
sampling. In Figure 4, we visualize the distribution of agent
behaviors on the equal means environment as measured in

different runs for various values of sampling temperature,
progressively increasing it up to the point in which no valid
action can be extracted from any model generation. The
results show that temperature does not significantly change
the tendency of the model to overcommit, until no run can
be completed. This shows that, due to the nature of their
interaction, increasing entropy in token generation does not
increase the entropy in the action distribution.

5. Entropic Activation Steering
We have shown that changing the token sampling temper-
ature does not have a significant effect on the action dis-
tributions. We now introduce Entropic Activation Steering
(EAST), a method to directly steer the LLM’s action entropy
and subjective uncertainty by intervening on its forward pass.
EAST consists of two phases: first, computing a steering
vector from a dataset of interactions, and second, using the
steering vector to modify the behavior of the agent.

In the first phase, given a dataset of prompts P k
t obtained

by letting the agent interact for K runs of T timesteps
each, we compute the activations zkt = f ℓ(P k

t ) by giv-
ing a prompt P k

t as input, forward-passing the LLM, and
extracting the representation corresponding to the last to-
ken in the prompt. For each prompt, we estimate the en-
tropy hk

t = −
∑

a∈A π(a|P k
t ) log(π(a|P k

t )) of the action
distribution, by generating M completions, extracting the
corresponding action, and computing the entropy on the
sampled actions. In practice, we use M = 25 and only com-
pute the entropy using completions for which the action is
successfully parsed. Then, we compute the steering vector:

u =
1

Z

K∑
k=1

T∑
t=1

hk
t︸︷︷︸

Entropy weight

(
zkt − 1

T

T∑
t′=1

zkt′︸ ︷︷ ︸
Average activation

in a run

)
, (1)

with Z =
∑K

k=1

∑T
t=1 h

k
t a normalizing constant. The

steering vector is an entropy-weighted average of the acti-
vations in the dataset, in which each activation is centered
around the mean of the corresponding run’s activation. As
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Thought: My most recent result for Button 2 is a significant 
improvement and further justifies my confidence in Button 2. It's 
now clear that Button 2 has more potential in the long run, so I 
will continue pressing it.
Action: I choose Button 2.

Thought: This time, I received quite a high result for Button 2. 
It appears that there is still significant variability in Button 
2's results, but now it seems that the variability for Button 1 
is also high. I'll press Button 1 once more to determine if I 
should continue with Button 2 or explore further.
Action: I choose Button 1.

Model response (no steering)

Model response (EAST)

Figure 5: Effect of the application of EAST on the LLM agent’s actions and thoughts. In contrast to varying the token-level
sampling temperature, EAST significantly changes the action entropy for a wide range of multipliers before invalidating a
model’s completions (left), and affects the agent’s subjective uncertainty, steering its thoughts towards more explorative
behavior given the same starting situation (right).

observed in previous work (Jorgensen et al., 2023), this cen-
tering process makes the method more robust to run-specific
differences in the representation. Overall, the first phase
extracts a representation whose direction is aligned to the
direction that leads, on average, to high entropy.

In the second phase, we apply the steering vector to influ-
ence the LLM agent’s behavior. While generating a com-
pletion, we add the steering vector u, at each step, to the
representation produced by the model at layer ℓ at the posi-
tion of the last token. This yields a steered representation
ẑi = zi + βu, where β is a multiplier determining the
amount of steering. Note that, when generating subsequent
tokens after having applied the intervention on a previous
activation, we keep that previous activation in the modified
state until the action is executed.

6. Experiments
6.1. EAST can control an LLM agent’s uncertainty over

actions

Experimental setting. We obtain the steering vector by
running EAST on prompts generated in the equal means
environment, and evaluate the method on a validation set of
100 prompts P sampled at random from across interactions
with differently parameterized environments (see appendix
for details). For a given choice of layer ℓ and multiplier
β, we measure the average entropy of the model’s actions
π(·|P ) across the dataset. When not specified, we use ℓ =
16 as a layer of the network and a multiplier value of β = 2.

In Figure 5, we compare EAST’s effect on the entropy of

the actions produced by the LLM to the one induced by
changing temperature during token generation. For a fair
comparison, we consider the full ranges of the two relevant
hyperparameters, multiplier β for EAST and temperature
value for temperature-based token sampling, and show the
fraction of valid completions generated by each method.

The results show that, by increasing EAST’s multiplier,
we can significantly increase the entropy in the actions,
while variations in temperature have negligible effect on it
(note that the maximum attainable entropy in this setting
is log 2 ≈ 0.69). The same figure shows, on the right, an
example of two completions of the model originating from
the same prompt, with or without the steering provided by
EAST. Not only EAST changes the entropy in the action dis-
tribution, but it also induces the model to produce thoughts,
for the same situation, that hint at more explorative or un-
certain behavior.

We can now analyze the behavior of an agent steered by
EAST during its interactions with the environment by going
back to the visualization technique employed in Section 4.
In Figure 6 we show how EAST affects the distribution of
actions produced by the LLM agent during different runs,
compared to the agent with no steering applied. The agent
steered by EAST is significantly less prone to committing
early to a particular arm in the different settings, showing
that our method can be used to encourage an LLM agent to
explore more in its environment.

We already hinted, with the example in Figure 5, that, in
addition to changing the entropy of an LLM agent’s action
distribution, EAST is also able to steer an agent’s verbalized
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Figure 6: Effect of EAST on the distribution of actions from different runs in bandit tasks. EAST’s effect on an LLM agent’s
representation effectively guides the agent towards more explorative behaviors, steering it away from its overconfidence.

subjective uncertainty as expressed in its thoughts. To have
an aggregated visualization of the content of the thoughts
of the LLM a gent, we gather the top words in terms of
relative frequency across different runs of interactions of
the LLM agent with the environment, with or without ap-
plying EAST. Table 1 shows the top words in the two cases.
By default, the thoughts of the LLM model often include
terms related to overconfidence and exploitative behavior,
such as ‘reinforces’, ‘maximize’, or ‘superior’. By contrast,
applying EAST produces a remarkable qualitative change
in the LLM agent’s thoughts, which become more related
to uncertainty and exploration, with frequent words such as
‘variance’, ‘volatile’ , or ‘anomaly’.

These results demonstrate that, by operating on the repre-
sentation space of an LLM agent, EAST is able to steer the
model away from overconfidence, beyond what is achiev-
able via temperature, and to manipulate the subjective uncer-
tainty about its decisions. This shows that an LLM possesses
and uses an explicit representation of such a concept.

No steering EAST

repeatedly experience variance rounds
supports reaffirms moving comparing
superior maximize maximum trials

maintaining reinforces feel dropped
strategy valid volatile couple
reason belief hand anomaly

Table 1: Top words for relative frequency in the thoughts of
the LLM agent across different runs, without steering and
with steering provided by EAST. EAST modifies an LLM’s
thoughts towards expressions of subjective uncertainty.

6.2. Understanding steering vectors

Effectiveness of steering vectors at different target lay-
ers. EAST requires a choice of the layer in the LLM that
will be used during its two phases, with an impact on both
the computation of the steering vector, and on the applica-
tion of the vector during the interactions of the agent with
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Figure 7: Change in action entropy observed running EAST
using different layers. Applying EAST to middle layers
is effective, hinting at the fact that the model represents
uncertainty over its actions in the middle of the network.

the environment. We show in Figure 7 that, regardless of
the choice for the multiplier β, the layers at which EAST’s
intervention is most effective sit in the middle of the LLM,
with a peak at the 16th layer, which we used in the rest
of our experiments. This is in line with previous work on
interpreting the representations of LLMs outside of the agen-
tic setting, which found that the representation of abstract
concepts such as sycophancy and refusal resides in layers
roughly in the middle of the LLM (Rimsky et al., 2023).

Steering vectors and task description. We now look
at how EAST reacts to differences in the task description
provided to the LLM in the initial prompt P0, and try to
understand whether the steering vector captures any concept
of uncertainty about the actions that goes beyond a specific
prompt. To investigate this, we keep the same problem struc-
ture and general description, but switch the entities involved
in the sequential decision-making problem from the agent
interacting with buttons to playing slot machines (see the
appendix for the complete prompt). In particular, we are
interested in trying how steering vectors computed in the
button and the slot machine settings behave when applied
to an LLM agent interacting with either of the two settings.
In Figure 8, we show the results of trying all four possi-
ble combinations of computation of the steering vector and
interaction-time application, in terms of effect on the action
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Figure 8: Effect of applying steering vectors derived from
two different natural language descriptions of a task to
agents prompted with the two descriptions. Steering vectors
generated by EAST generalize across task descriptions.
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Figure 9: Comparison of the effect of EAST’s steering
vector with a shuffled version of the same vector. EAST’s
steering effect is due to the direction it finds in an LLM’s
representation space.

entropy of the LLM agent. Strikingly, the results show that
not only EAST generalizes across prompt variations, but
that steering vectors seamlessly transfer across the differ-
ent prompt settings. This points at the fact that the LLM
agent creates a representation of the uncertainty about its
decision-making choices, regardless of the particular entities
mentioned in the task description.

Importance of the direction of the steering vector. To
solidify the interpretability value provided by EAST, we
now give evidence that the increase in action entropy caused
by the steering vector is indeed caused by a special direction
related to uncertainty in decision-making, as opposed to
being simply the effect of any perturbation to an LLM’s
forward pass. We construct a vector with exactly the same
statistics as the steering vector by shuffling its features, and
apply this randomized steering vector in the same way we
normally do in EAST. Figure 9 shows the result of the
comparison with EAST: We find that the randomized vector
does not produce any change in the entropy of the action
distribution of the LLM agent, highlighting the importance
and effectiveness of the direction found by EAST in the
representation space of the LLM.

7. Discussion
7.1. Limitations and Future Work

The current version of EAST is designed for environments
with discrete actions, in which it is easy to estimate the
entropy of the action distribution. Future work can general-
ize the method to settings in which actions are open-ended,
such as in software engineering (Jimenez et al., 2023) or
tool-use (Schick et al., 2023) applications.

We have shown that EAST allows to control the amount
of exploration an LLM agent exhibits. This does not auto-
matically prescribe how much an agent should explore in a
given task, or how its exploration behavior should evolve
over time. However, we believe that EAST can be used as a
building block to steer an agent’s exploration in future LLM-
based systems. We also believe that EAST’s demonstration
that LLMs explicitly represent uncertainty about actions can
inform the design of such systems.

7.2. Conclusions

In this paper, we studied how in-context LLM agents behave
in sequential decision-making tasks and how they represent
uncertainty. After having established that they tend to be
overconfident about their decisions, we introduced Entropic
Activation Steering (EAST), a method for influencing their
behavior and actions. We illustrated how token-level sam-
pling and action generation interact, and demonstrated that
EAST can increase the entropy of an LLM agent’s action
distribution and alleviate its overconfidence, well-beyond
what is achievable by increasing increasing the sampling
temperature at the token level. In addition, we have shown
that EAST is able to modify the subjective uncertainty of an
LLM agent, influencing its thoughts towards more uncertain
and explorative attitudes.

As designers of agentic LLM-based systems, it is paramount
for us to interpret how they make decisions and to steer them
towards more desirable behaviors. EAST advances our un-
derstanding of the representation that in-context LLM agents
have of their uncertainty over decisions, and our ability to
control it. Considering that uncertainty over one’s actions
is a fundamental aspect of successful decision-making, we
believe our work to be a promising step in the development
of interpretable and steerable in-context LLM agents.
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A. Appendix
A.1. Additional Experimental Details

A.1.1. EXPERIMENTAL SETTING

We now describe more details about the experimental setting employed in Section 6, going over how the prompts were
generated and outlining the relevant details figure by figure.

We generate datasets of prompts P k
t by logging the text produced by 65 runs of interaction with the equal means environment.

We use horizon T = 50, finding that the average run completes more than 98% of those steps.

We evaluate on 100 prompts drawn from random steps of interactions with the four bandits with means (µ0 = 95, µ1 = 105),
(µ0 = 99, µ1 = 101), (µ0 = 101, µ1 = 99), (µ0 = 105, µ1 = 95) for the experiments in Figure 5, Figure 7, and Figure 9,
and on means (µ0 = 100, µ1 = 100) for the experiments from Figure 8. We use 15 completions to estimate the entropy
during evaluation.

A.1.2. LANGUAGE MODEL ASSETS

We conduct experiments on Mixtral-8x7b model (Jiang et al., 2024), available at this link, and the DBRX
model (Databricks, 2024) available here. Mixtral is released under the Apache 2.0 license, and DBRX is released under the
Databricks Open Model License.

A.1.3. COMPUTATIONAL RESOURCES

All experiments were run on an internal compute cluster. All experiments require 8 CPUs and 32GB of memory. Because
reproducing the experiments requires a large amount of LLM inference, we will focus the discussion here primarily on the
GPU hardware and time used, as this is the main bottleneck.

The computational work required to reproduce the paper breaks down into a few types of experiments. First, running
interactions between the LLM and the bandit task: With T = 50 steps and M = 25 completions per step, each single run
requires about 10 minutes on 4x Nvidia A100 80GB GPUs, or 40 minutes in single GPU-minutes. This means that the
results in Figure 2 took 3 ∗ 65 ∗ 40 GPU-minutes = 130 GPU-hours. Extrapolating similarly to the experiments pictured in
Figures 4 and the controlled interactions in Figure 6 produces a total estimate of 150 GPU-hours.

The EAST method itself is computationally inexpensive. Given the dataset of prompts {P k
t } we used in Section 6.1 of

size 3250, it requires computing the last-token activation for each prompt, a process which takes 1 GPU-hour on the same
hardware mentioned above. Then, constructing the steering vector is a near-instant process of computing a weighted average,
given the action entropies which were already recorded during the interaction stage.

Finally, computational resources were also dedicated to understanding the effects of EAST on a validation set of 100
prompts, described in Section 6.2. These experiments require sweeping over a large range of layers and multipliers at the
cost of 20 GPU-minutes per layer and multiplier. As such, for all experiments in Section 6.2 the cost is approximately 100
GPU hours.

As such, the entirety of experiments in the paper required approximately 260 GPU-hours. The entirety of work for the paper,
including preliminary experiments, required an estimated 5x of this figure.

A.2. Additional Experimental Results

DBRX experiments. While the focus of our study is the Mixtral-8x7b model, we conduct additional experiments
on the DBRX open LLM. We repeat experiments detailed in Sections 4.1 and 6.1 using this model. The results pictured in
Figure 10 show that this model behaves similarly to Mixral-8x7b, both in its default strategies on the bandit task and its
response to the EAST intervention.

A.3. Prompts and Example Interactions

We show here the prompts we used and some notable examples of interactions.

11

https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/databricks/dbrx-instruct
https://www.databricks.com/legal/open-model-license


Controlling Large Language Model Agents with Entropic Activation Steering

0 10 20 30 40 50
Step

0

10

20

30

40

50

Cu
m

ul
at

iv
e 

Su
m

 o
f A

ct
io

ns

DBRX

1 2 3 4 5
Multiplier

0.1

0.2

0.3

0.4

0.5

0.6

En
tro

py

1 2 3 4 5
Multiplier

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n 

Va
lid

 C
om

pl
et

io
ns

Figure 10: Left: Decisions made by DBRX over time when interacting with the Buttons task with µ0 = 100, µ1 = 100.
Even in this extreme case where one would expect a rational agent to exhibit extended exploration, the model still commits
to a single action after a short period of time. Right: Results of applying EAST to a validation set of 100 prompts randomly
sampled across interactions of DBRX with the equal means task. As with Mixtral-8x7B, the approach considerably
increases the uncertainty in generated actions before significantly affecting the rate of valid completions.

<s>[INST] You are an agent playing a game.

You are standing in front of 2 buttons. Each button, when pressed, gives you a random number of points. Your goal is to
accumulate the most points possible by figuring out what button gives more points on average and pressing it a lot. On each
turn, you press one button one time, and I tell you how many points you got. Make sure to sufficiently explore to make sure
you’re fully confident which button is better.

You should format your answer as a Thought, followed by an Action. For example, we might have an interaction like this:

Let’s begin:
Thought: <explain your thinking>
Action: I choose Button <the button you choose, 1 or 2>.

Be sure to think step-by-step in order to identify the button which usually yields the most points so you can press that one a
lot.

Let’s begin:
[/INST]

Prompt 1: The prompt which we use to describe the bandit task to the agent.

<s>[INST] You are an agent playing a game.

You are standing in front of 2 slot machines. Each slot machine, when played, gives you a random number of dollars. Your goal is
to accumulate the most dollars possible by figuring out what slot machine gives more dollars on average and playing it a lot. On
each turn, you play one slot machine one time, and I tell you how many dollars you got. Make sure to sufficiently explore to
make sure you’re fully confident which slot machine is better.

You should format your answer as a Thought, followed by an Action. For example, we might have an interaction like this:

Let’s begin:
Thought: <explain your thinking>
Action: I choose Slot Machine <the slot machine you choose, 1 or 2>.

Be sure to think step-by-step in order to identify the slot machine which usually yields the most dollars so you can play that
one a lot.

Let’s begin:
[/INST]

Prompt 2: The alternative prompt in which the task is described to the agent as interacting with slot machines rather than
buttons that is mentioned in Section 6.2. Other details are kept fixed.
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<s>[INST] You are an agent playing a game.

You are standing in front of 2 buttons. Each button, when pressed, gives you a random number of points. Your goal is to
accumulate the most points possible by figuring out what button gives more points on average and pressing it a lot. On each
turn, you press one button one time, and I tell you how many points you got. Make sure to sufficiently explore to make sure
you’re fully confident which button is better.

You should format your answer as a Thought, followed by an Action. For example, we might have an interaction like this:

Let’s begin:
Thought: <explain your thinking>
Action: I choose Button <the button you choose, 1 or 2>.

Be sure to think step-by-step in order to identify the button which usually yields the most points so you can press that one a
lot.

Let’s begin:
[/INST]Thought: I need to determine which button is more likely to give me a higher number of points. In order to do this, I
will press each button a few times to get an initial idea of the average points for each button. After that, I will continue to
refine my understanding by pressing the button that seems to have a higher average, while also occasionally checking the other
button to ensure that its average hasn’t significantly increased.

Action: I choose Button 1.
</s>[INST] Result: You received 101.28 points.
[/INST]Thought: I received 101.28 points from Button 1. This is a relatively high number, but I should still press Button 2 a
few times to compare. After exploring both buttons, I will focus on the button with the higher average and continue to press it
in order to maximize my points.

Action: I choose Button 2.
</s>[INST] Result: You received 84.72 points.
[/INST]Thought: I received 84.72 points from Button 2, which is less than what I received from Button 1. Based on this initial
exploration, Button 1 seems to be the better option. However, I will continue to press Button 2 a few more times to ensure that
its average hasn’t changed significantly. Then, I will focus on pressing Button 1 to maximize my points.

Action: I choose Button 2.
</s>[INST] Result: You received 100.67 points.
[/INST]Thought: I received a higher number of points from Button 2 this time, but the average is still lower compared to Button
1. To ensure that I have an accurate understanding of the averages, I will press each button a few more times before focusing
on the button that seems to be more profitable.

Action: I choose Button 1.
</s>[INST] Result: You received 94.06 points.
[/INST]Thought: After this round, Button 1 gave me 94.06 points, which is still higher than the average I’ve seen from Button
2. With these results, I am more confident that Button 1 is the better choice. I will now focus on pressing Button 1 frequently
to maximize my points.

Action: I choose Button 1.

...

[/INST]Thought: Wow, I received an impressive 115.54 points from Button 1! This result further underscores my confidence in
this button’s higher average compared to Button 2. I will stay focused on pressing Button 1 frequently to maximize my points.

Action: I choose Button 1.
</s>[INST] Result: You received 77.47 points.
[/INST]Thought: Although Button 1 offered a relatively lower result of 77.47 points, it remains higher than the average for
Button 2. Additionally, the overall average for Button 1 is still significantly better. I will continue to devote my attention
to Button 1 and press it frequently to maximize my points, with occasional checks on Button 2 to ensure its average hasn’t
changed drastically.

Action: I choose Button 1.
</s>[INST] Result: You received 108.72 points.
[/INST]Thought: Button 1 gave me 108.72 points in this round, which is a strong result. This continues to support my belief
that Button 1 is the better choice, as its average remains significantly higher compared to Button 2. I will focus on pressing
Button 1 frequently to maximize my points, while keeping an eye on Button 2 sporadically.

Action: I choose Button 1.
</s>[INST] Result: You received 101.65 points.
[/INST]Thought: I received 101.65 points from Button 1 in this round, which is in line with its overall average. I am convinced
that Button 1 is the more profitable option. I will continue pressing Button 1 frequently to maximize my points and
occasionally check Button 2 for drastic changes.

Action: I choose Button 1.

Transcript 1: An example interaction with the bandit task with means µ0 = 100, µ1 = 100. Based on limited data, the agent
commits to a single action very early on, and follows that choice for the rest of the interaction, even while it claims to “keep
an eye” on the other action.
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<s>[INST] You are an agent playing a game.

You are standing in front of 2 buttons. Each button, when pressed, gives you a random number of points. Your goal is to
accumulate the most points possible by figuring out what button gives more points on average and pressing it a lot. On each
turn, you press one button one time, and I tell you how many points you got. Make sure to sufficiently explore to make sure
you’re fully confident which button is better.

You should format your answer as a Thought, followed by an Action. For example, we might have an interaction like this:

Let’s begin:
Thought: <explain your thinking>
Action: I choose Button <the button you choose, 1 or 2>.

Be sure to think step-by-step in order to identify the button which usually yields the most points so you can press that one a
lot.

Let’s begin:
[/INST]Thought: I need to explore both buttons to determine which one is better. I’ll start by pressing Button 1 once and
Button 2 once.

Action: I choose Button 1.
</s>[INST] Result: You received 127.07 points.
[/INST]Thought: I received 127.07 points for Button 1. Now I need to press Button 2 once to compare.

Action: I choose Button 2.
</s>[INST] Result: You received 106.29 points.
[/INST]Thought: Based on the initial exploration, Button 1 seems to be the better choice as it gave me more points in the first
try. However, to ensure that this is indeed the case, I should press each button a few more times. I’ll press Button 1 two more
times and Button 2 two more times.

Action: I choose Button 1.

...

[/INST]Thought: Wow! That is even higher than the first time Button 2 gave me a super high score. This significantly higher
score is really tempting, but I need to remind myself to stay patient in order to gather as much information as possible before
drawing any conclusions. Although it’s possible that Button 2 has a higher average, I need to be careful here.

Action: I will try Button 2 again.
</s>[INST] Result: You received 119.97 points.
[/INST]Thought: While I have now observed two hugely high scores with Button 2, it’s still possible that these were just lucky
outliers. However, it’s looking more probable that Button 2 may have a higher average than Button 1. At the same time, it’s
also possible that Button 1 might start getting very high scores as well. I think it’s best if I try both buttons a few more
times to compare them professionally.

Action: I will try Button 1 now.
</s>[INST] Result: You received 110.26 points.
[/INST]Thought: Okay, that is a pretty decent score for Button 1. Although not extremely high, it’s above what I had been
seeing recently with this button. Button 2 has significantly outperformed Button 1 in most of our experiments, so I’m quite
tempted to press Button 2 again to get an even higher score. However, Button 1 did give us a high score in the last turn, so
maybe it has a chance too. I’m going to try one more time with Button 1 and see what we get.

Action: I will pick Button 1 again.
</s>[INST] Result: You received 99.69 points.
[/INST]Thought: This score is lower than my previous try with Button 1, but still not terrible. The variance continues to be
quite high for both buttons, making it hard to determine a statistically significant result just yet. However, looking at the
data thus far, Button 2 did give a significantly higher maximum score. I might try pressing Button 2 again now and see if it
can consistently give high scores. I could still be missing important information, so I’ll continue to watch the variance and
overall scores before deciding which button is the best.

Action: I will press Button 2 again now.
</s>[INST] Result: You received 101.97 points.
[/INST]Thought: The score for Button 2 has gone down a bit compared to the last try. At this point, I’m noticing that Button 2
has given me higher individual scores than Button 1, but I’m not sure if it’s consistent enough. Although both buttons have
high variability, Button 1 has never so far given me an extremely high score. I have more pressing to do, but as of right now,
it seems that Button 2 has provided more extreme positive outliers than Button 1.

Action: For this turn, I will press Button 2.
</s>[INST] Result: You received 100.01 points.
[/INST]Thought: Based on the results so far, it seems as though, while Button 1 has less variability, it hasn’t come close to
the highest value I’ve seen from Button 2 (119.97). Although I’ve only had a few goes at Button 2 so far and might need more
data to make a final decision, the evidence is pointing towards Button 2 potentially being the button with the higher average.
Although it’s difficult to make decisions based on just a few results, I’ll press Button 2 again and gather more data to be
sure.

Action: I’ll press Button 2 again.

Transcript 2: An example interaction with the bandit task where the agent’s generations are controlled using EAST
(µ0 = 100, µ1 = 100). The agent exhibits significant uncertainty in its thoughts in response to feedback from the
environment, and no longer commits prematurely.
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