
Flavors of Margin: Implicit Bias of Steepest Descent
in Homogeneous Neural Networks

Nikolaos Tsilivis
New York University
nt2231@nyu.edu

Gal Vardi
Weizmann Institute of Science

gal.vardi@weizmann.ac.il

Julia Kempe
New York University & Meta FAIR

kempe@meta.com

Abstract

We study the implicit bias of the general family of steepest descent algorithms,
which includes gradient descent, sign descent and coordinate descent, in deep ho-
mogeneous neural networks. We prove that an algorithm-dependent geometric
margin starts increasing once the networks reach perfect training accuracy and
characterize the late-stage bias of the algorithms. In particular, we define a gen-
eralized notion of stationarity for optimization problems and show that the algo-
rithms progressively reduce a (generalized) Bregman divergence, which quantifies
proximity to such stationary points of a margin-maximization problem. We then
experimentally zoom into the trajectories of neural networks optimized with var-
ious steepest descent algorithms, highlighting connections to the implicit bias of
Adam.

1 Introduction

Overparameterized neural networks excel in many natural supervised learning applications. A the-
ory that aims to explain their strong generalization performance places optimization at the forefront:
in problems where many candidate models are available, the optimization algorithm implicitly se-
lects well-generalizing ones (Neyshabur et al., 2015b). The term “implicitly” indicates that neither
the unregularized loss function nor the architecture explicitly favors simple, well-generalizing so-
lutions, but this occurs due to the choice of the optimization algorithm. Most existing theoretical
results on this so-called implicit bias of optimization demonstrate, to some extent, that gradient de-
scent in overparameterized problems biases the solution to be the simplest, in terms of the lowest
possible ℓ2 norm of the weights (Soudry et al., 2018; Ji & Telgarsky, 2019, 2020; Lyu & Li, 2020;
Nacson et al., 2019).

Simplicity, however, is a term that depends on the setting. For instance, in logistic regression with
many irrelevant features, an ℓ1-regularized solution is simpler than an ℓ2-regularized one (Ng, 2004).
Moreover, in contemporary deep learning, Adam (Kingma & Ba, 2015), AdamW (Loshchilov &
Hutter, 2019), and related optimization algorithms are preferred for language modeling (Zhang et al.,
2020), and their implicit bias might be better suited for such applications than gradient descent.
It is therefore important to understand the types of solutions favored by optimization algorithms
beyond (stochastic) gradient descent, in order to address the current (and future) applications of
deep learning.

In this work, we contribute to this line of research by studying the large family of steepest descent
algorithms (Equation 1) with respect to an arbitrary norm ∥·∥ in deep, non-linear, homogeneous
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neural networks. This class of methods generalizes gradient descent to optimization geometries
other than the Euclidean, allowing the update rule to operate under a different norm. It includes
coordinate descent (which has strong ties to boosting (Mason et al., 1999)) and sign gradient descent
(which is closely related to Adam (Kunstner et al., 2023)) as special cases.

Our contributions. We provide a unifying, rigorous analysis of any steepest descent algorithm
in classification settings with locally-Lipschitz, homogeneous neural networks trained using an
exponentially-tailed loss. Specifically, we focus on the late stage of training (after the network
has achieved perfect training accuracy) in the limit of an infinitesimal learning rate. Our first result
characterizes the algorithm’s tendency to increase an algorithm-dependent margin (Theorem 3.1):
similar to prior work on gradient descent (Lyu & Li, 2020), we show that a soft version of the
geometric margin starts increasing immediately after fitting the training data.

We then turn our attention to the asymptotic properties of the algorithm. In an attempt to find ev-
idence of margin maximization, we define a notion of stationary points for optimization problems,
which generalizes the usual Karush-Kuhn-Tucker one (Definition 3.4), along with approximate ver-
sions (Definition A.9). As we show, during training, the algorithms make implicit progress towards
such stationary points of a margin maximization problem in a specific, geometric sense: they pro-
gressively reduce a (generalized) Bregman divergence (Definition 3.6), which quantifies how well
the stationarity condition is satisfied. As this process concludes, the limit points of training are along
the direction of a generalized KKT point of the algorithm-dependent geometric margin maximiza-
tion problem (Theorem 3.8). For algorithms whose squared norm is a smooth function (for example,
any ℓp norm for p ≥ 2), Theorem 3.8 further implies directional convergence to KKT points of the
same margin maximization problem (Corollary 3.8.1).

In total, these results provide evidence for (geometric) margin-maximization in any steepest descent
algorithm and significantly generalize prior results that concerned gradient descent only (Lyu & Li,
2020; Nacson et al., 2019). Moreover, the generalized divergence can be interpreted as a measure
of proximity to stationarity for optimization problems, similarly to what was proposed in prior def-
initions of approximate KKT points in the literature (Dutta et al., 2013), and could be of broader
interest to the optimization community. We find it appealing and theoretically intriguing that, de-
spite the non-convexity of the loss landscape of deep neural networks, such simple convex structures
emerge once the data points separate.

Finally, in Section 4, we train neural networks with the three main steepest descent algorithms
(gradient descent, sign gradient descent and coordinate descent). We perform experiments in: (a)
teacher-student tasks, to elucidate the theoretical findings and assess the connection between implicit
bias and generalization and (b) image classification tasks, to study the relationship between Adam
and steepest descent algorithms.

1.1 Related Work

There have been numerous works studying the implicit bias of optimization in supervised learning
and their relationship to geometric margin maximization - see (Vardi, 2023) for a survey.

Steepest descent algorithms with respect to non-Euclidean geometries have been explored before,
both in supervised (e.g. Neyshabur et al. (2015a); Large et al. (2024)) and non-supervised (e.g. Carl-
son et al. (2015)) machine learning problems. The implicit bias of this family of optimization meth-
ods was first studied in generality in Gunasekar et al. (2018) in the context of linear models for
separable data, where margin maximization was established. Their proof is based on a result on
Adaboost due to Telgarsky (2013). Most related to our paper are the works of Nacson et al. (2019);
Lyu & Li (2020) and Ji & Telgarsky (2020). Nacson et al. (2019) studied infinitesimal regulariza-
tion and its connection to margin maximization in both homogeneous and non-homogeneous deep
models, while also proving (directional) convergence of gradient descent to a first order point of
an ℓ2-margin maximization problem for homogeneous models under strong technical assumptions.
Lyu & Li (2020); Ji & Telgarsky (2020), whose theoretical setup we mainly follow, significantly
weakened the assumptions, under which such a result holds, and Lyu & Li (2020) further demon-
strated the experimental benefits of margin maximization in terms of robustness. Kunin et al. (2023)
generalized these results to a broader class of networks with varying degree of homogeneity, which
includes networks with biases and skip connections. Vardi et al. (2022) identified cases where the
KKT points of the ℓ2 margin maximization problems are not (even locally) optimal.
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The implicit bias of Adam (Kingma & Ba, 2015) has been previously studied in Wang et al. (2021,
2022) for homogeneous networks, where it is proven that it shares the same asymptotic properties as
gradient descent (ℓ2 margin maximization). Recently, Zhang et al. (2024) analyzed a version of the
algorithm in linear models, without a numerical precision constant, which arguably better captures
realistic training runs, and found bias towards ℓ1 margin maximization - the same bias as in the case
of sign gradient descent. This makes us optimistic that insights from our analysis, which covers
sign gradient descent (steepest descent with respect to the ℓ∞ norm), can shed light on the poorly
understood implicit bias of Adam in deep neural networks. See also Xie & Li (2024) for a recently
established connection between AdamW (Loshchilov & Hutter, 2019) and sign gradient descent.
An additional motivation for studying steepest descent algorithms is in improving the robustness of
deep neural networks: Tsilivis et al. (2024), recently, provided experimental evidence and theoretical
arguments that deep networks adversarially trained with different steepest descent algorithms exhibit
significant differences in their (robust) generalization error.

2 Background

Learning Setup We consider binary classification problems with deep, homogeneous, neural net-
works. Formally, let S = {xi, yi}mi=1 be a dataset of i.i.d. points sampled from an unknown
distribution D with xi ∈ Rd and yi ∈ {±1} for all i ∈ [m], and let f(·;θ) : Rd → R de-
note a neural network parameterized by θ ∈ Rp. The vector θ contains all the parameters of the
neural network, concatenated into a single vector. We study training under an exponential loss
L(θ) =

∑m
i=1 e

−yif(xi;θ). We focus on this setting for simplicity in the main text, but our results
should readily generalize to more common losses, such as the logistic loss, as well as its multi-class
generalization - the cross-entropy loss. See Section A.3 for details and extensions of our main result.

Algorithms The family of steepest descent algorithms generalizes gradient descent to different
optimization geometries, allowing the update rule to operate under an arbitrary norm (instead of the
usual Euclidean one) (Boyd & Vandenberghe, 2014). Formally, the update rule for steepest descent
with respect to a norm ∥·∥ is:

θt+1 = θt + ηt∆θt, where ∆θt satisfies
∆θt = argmin

∥u∥≤∥∇L(θt)∥⋆

⟨u,∇L(θt)⟩ , (1)

where the dual norm ∥·∥⋆ of ∥·∥ is defined as ∥z∥⋆ = maxv{|⟨z,v⟩| : ∥v∥ = 1} for any z, and ηt is
a learning rate. Gradient descent can be derived from Equation 1 with ∥·∥ = ∥·∥2. See Appendix C
for details on how steepest descent algorithms are closely related to popular adaptive methods, such
as Adam (Kingma & Ba, 2015) and Shampoo (Gupta et al., 2018).

Assumptions & Technical Points In order to formally allow commonly used activation functions,
such as the ReLU, we theoretically analyze loss landscapes that are not necessarily differentiable.
That is, we consider Clarke’s subdifferentials (Clarke, 1975) in our analysis:

∂f := conv

{
lim
k→∞

∇f(xk) : xk → x, f differentiable at xk

}
, (2)

where conv(·) stands for the convex hull of a set.
Furthermore, we analyze steepest descent in the limit of infinitesimal step size, i.e. steepest flow:

dθ

dt
∈

{
argmin

∥u∥≤∥gt∥⋆

⟨u,gt⟩ : gt ∈ ∂L(θt)

}
. (3)

This choice simplifies the analysis while still capturing the essence of the bias of the algorithms.
Finally, we make the following assumptions:

(A1) Local Lipschitzness: For any xi ∈ Rd, f(xi; ·) : Rp → R is locally Lipschitz (and admits
a chain rule - see Theorem A.2).

(A2) L-Homogeneity: We assume that f is L-homogeneous in the parameters, i.e. f(·; cθ) =
cLf(·;θ) for any c > 0.
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(A3) Realizability. There is a t0 > 0, such that L(θt0) < 1.

Assumption (A1) is a minimal assumption on the regularity of the network, while assumption (A2)
includes many commonly used architectures. For instance, ReLU networks with an arbitrary number
of layers, but without bias terms, satisfy (A1),(A2). Assumption (A3) ensures that the algorithm will
succeed in classifying the training points and allows us to focus on what happens beyond that point
of separation. Indeed, we are particularly interested in understanding the geometric properties of the
model f(·;θt) as t→ ∞ (at convergence) – the so-called implicit biases of the learning algorithms.

3 Theory

We analyze the behavior of steepest descent algorithms in the late stage of training and study their
geometric properties and how these relate to geometric, algorithm-specific, margins.

3.1 Algorithm-Dependent Margin Increases

In linear models, where f(x;θ) = ⟨θ,x⟩, the concept of ∥·∥⋆-geometric margin 1 ,
mini∈[m]

yi⟨θ,xi⟩
∥θ∥ , plays a central and fundamental role in the analysis of the convergence of train-

ing (Novikoff, 1963) as well as in the generalization of the final model (Vapnik, 1998). Ideally,
we would like to track a similar quantity when training general, homogeneous, non-linear networks
f(·;θ) with steepest descent with respect to the ∥·∥ norm:

γ(θ) =
mini∈[m] yif(xi;θ)

∥θ∥L
= min
i∈[m]

yif

(
xi;

θ

∥θ∥

)
, (4)

where recall that L is the level of homogeneity of the model. As it turns out, it is easier to follow the
evolution of the following, soft, geometric margin:

γ̃(θ) = − logL(θ)
∥θ∥L

. (5)

The characterisation of “soft” comes from the definition of “softmax” (a.k.a. log-sum-exp), which is
often used in machine learning. The same idea is used here to approximate the numerator of Equa-
tion 4. The soft margin γ̃(θ) is at most an additive logm away from γ(θ) - see Lemma A.7.

We show next that, given the algorithm has reached a small value in the loss, the soft margin is
non-decreasing. This theorem is similar to part of Lemma 5.1 in (Lyu & Li, 2020), which is the key
lemma in their result. Ours is admittedly simpler, avoiding a beautiful polar decomposition which
was crucial in their analysis, yet, unfortunately, pertinent to the ℓ2 case only.
Theorem 3.1 (Soft margin increases). For almost any t > t0, it holds:

d log γ̃

dt
≥ L

∥∥∥∥dθdt
∥∥∥∥2
(

1

LL(θt) log 1
L(θt)

− 1

∥θt∥
∥∥dθ
dt

∥∥
)

≥ 0.

Proof of a simplified version. We present a proof for a simplified version of this theorem here, cov-
ering differentiable networks f , while we defer the full proof to Appendix A.2. For differentiable
losses, steepest flow corresponds to:

dθ

dt
∈ argmin

∥u∥≤∥∇L(θt)∥⋆

⟨u,∇L(θt)⟩ . (6)

By the definition of the dual norm and chain rule, we have for any t > 0:∥∥∥∥dθdt
∥∥∥∥ = ∥∇L(θt)∥⋆ and

dL(θt)
dt

= −
∥∥∥∥dθdt

∥∥∥∥2 . (7)

1In this paper, we diverge from the established terminology when it comes to naming margins, by calling it
∥·∥⋆-geometric margin (instead of ∥·∥-geometric margin) when it is defined with respect to the ∥·∥ norm of the
parameters. We believe this is proper, since the ∥·∥⋆-geometric margin in linear models maximizes the metric
induced by the ∥·∥⋆ norm (and not its dual, ∥·∥).
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Let nt ∈ ∂∥θt∥ (recall that a norm ∥·∥ might not be differentiable everywhere). For any t > t0, we
have:

d log γ̃

dt
=

d

dt
log log

1

L(θt)
− L

d

dt
log ∥θt∥

=
d

dt
log log

1

L(θt)
− L

〈
nt
∥θt∥

,
dθ

dt

〉
(Chain rule)

≥ d

dt
log log

1

L(θt)
− L

∥∥dθ
dt

∥∥
∥θt∥

(def. of dual norm and ∥nt∥⋆ ≤ 1, Lemma A.4)

= −dL(θt)
dt

1

L(θt) log 1
L(θt)

− L

∥∥dθ
dt

∥∥
∥θt∥

(Chain rule)

=

∥∥∥∥dθdt
∥∥∥∥2
(

1

L(θt) log 1
L(θt)

− L

∥θt∥
∥∥dθ
dt

∥∥
)
. (Equation 7)

(8)

The first term inside the parenthesis can be related to the second one via the following calculation:

⟨θt,−∇L(θt)⟩ =

〈
θt,

m∑
i=1

e−yif(xi;θt)yi∇f(xi;θt)

〉

=

m∑
i=1

e−yif(xi;θt)yi ⟨θt,∇f(xi;θt)⟩

= L

m∑
i=1

e−yif(xi;θt)yif(xi;θt),

(9)

where the last equality follows from Euler’s theorem for homogeneous functions. Now, observe that
this last term can be lower bounded as:

⟨θt,−∇L(θt)⟩ ≥ L

m∑
i=1

e−yif(xi;θt) min
i∈[m]

yif(xi;θt) ≥ LL(θt) log
1

L(θt)
, (10)

where we used the fact e−mini∈[m] yif(xi;θt) ≤
∑m
i=1 e

−yif(xi;θt) = L(θt). We have made the first
term of Equation 8 appear. By plugging Equation 10 into Equation 8, we get:

d log γ̃

dt
≥
∥∥∥∥dθdt

∥∥∥∥2
(

L

⟨θt,−∇L(θt)⟩
− L

∥θt∥
∥∥dθ
dt

∥∥
)

≥
∥∥∥∥dθdt

∥∥∥∥2
(

L

∥θt∥∥∇L(θt)∥⋆
− L

∥θt∥
∥∥dθ
dt

∥∥
)
. (definition of dual norm)

(11)

Noticing that ∥∇L(θt)∥⋆ =
∥∥dθ
dt

∥∥ (from Equation 7) concludes the proof.

Remark 3.2. Observe that it is the geometric margin induced by the dual norm of the algorithm
that is non-decreasing, and not any geometric margin. The proof crucially relies on the fact that
∥∇L(θt)∥⋆ =

∥∥dθ
dt

∥∥.

3.2 Convergence to Generalized Stationary Points of the Max-Margin Problem

The previous theorem provides evidence and is a first indication that steepest flow implicitly maxi-
mizes the ∥·∥⋆-geometric margin in deep neural networks. However, the monotonicity of the (soft)
margin alone does not imply anything about its final value and its optimality. In this section, we
provide a concrete characterization of the asymptotic behavior of steepest flow: we show that any
limit point of the iterates produced by steepest flow is along the direction of a generalized KKT point
of the following margin maximization (MM) optimization problem:

min
θ∈Rp

1

2
∥θ∥2

s.t. yif(xi;θ) ≥ 1, ∀i ∈ [m].
(MM)

Let us recall the definition of a Karush-Kuhn-Tucker point (Karush, 1939; Kuhn, H. W. and Tucker,
A. W., 1951).
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Definition 3.3 (KKT point). A feasible point θ ∈ Rp of (MM) is a Karush-Kuhn-Tucker (KKT)
point, if there exist λ1, . . . , λm ≥ 0 such that:

1. ∂ 1
2∥θ∥

2 +
∑m
i=1 λi∂ (1− yif(xi;θ)) ∋ 0.

2. λi(1− yif(xi;θ)) = 0, ∀i ∈ [m].

Notice that the first so-called stationarity condition is defined using set addition, since we are dealing
with non-differentiable functions. See (Dutta et al., 2013) for more details on optimization problems
with non-smooth objectives/constraints. Under some regularity assumptions, the KKT conditions
become necessary conditions for global optimality and for non-convex problems like (MM) they
might be the best characterization of optimality we can hope for. See Lemma A.11 for details.

In the following definition of generalized KKT points, we relax the stationarity condition and pa-
rameterize it by a non-negative function.
Definition 3.4 (d-generalized KKT point). Let d : Rp×Rp → R+. A feasible point θ ∈ Rp of (MM)
is called a d-generalized KKT point if there exist λ1, . . . , λm ≥ 0, hi ∈ ∂f(xi;θ) and k ∈ ∂ 1

2∥θ∥
2

such that:

1. d (
∑m
i=1 λiyihi,k) = 0.

2. λi(1− yif(xi;θ)) = 0, ∀i ∈ [m].
Remark 3.5. When d in the definition of a d-generalized KKT point is any metric, we readily recover
the original definition of KKT point.

In Appendix B, we demonstrate how to construct a progress measure for optimization problems
leveraging the above notion of stationarity (as well as its approximate version - see Definition A.9).

As we will show, the function d, which in our case measures proximity of steepest flow to stationar-
ity, is a generalized Bregman divergence induced by the dual norm of the algorithm (squared).
Definition 3.6 (Generalized Bregman divergence). Let ψ : Rp → R with ψ(θ) = 1

2∥θ∥
2
⋆ for all

θ ∈ Rp. We define the (generalized) Bregman divergence Dm
1
2∥·∥2

⋆
(·, ·) : Rp × Rp → R induced by

ψ as follows:

Dm
1
2∥·∥2

⋆
(y, z) =

1

2
∥y∥2⋆ −

1

2
∥z∥2⋆ − ⟨m,y − z⟩ , (12)

where m ∈ ∂ 1
2 ∥z∥

2
⋆.

Remark 3.7. Notice that if the function ψ(θ) = 1
2∥θ∥

2
⋆ is differentiable, then the subdifferental

defined at any point collapses to a single element: the gradient of ψ. If, further, ψ is strictly convex,
then Equation 12 coincides with the usual Bregman divergence induced by ψ, defined asDψ(y, z) =
ψ(y) − ψ(z) − ⟨∇ψ(z),y − z⟩. Bregman divergences (Bregman, 1967) generalize the Euclidean
squared distance in different geometries and have found numerous applications in machine learning
(A. Nemirovskii and D. Yudin, 1983; Banerjee et al., 2005).

We are now ready to state our main result.
Theorem 3.8. Under assumptions (A1), (A2), (A3), consider steepest flow with respect to a norm
∥·∥ (Equation 3) on the exponential loss L(θ) =

∑m
i=1 e

−yif(xi;θ). Then, any limit point θ̄ of{
θt

∥θt∥

}
t≥0

is along the direction of a Dθ̃
1
2∥·∥2

⋆
-generalized KKT point, of the following optimization

problem:

min
θ∈Rp

1

2
∥θ∥2

s.t. yif(xi;θ) ≥ 1, ∀i ∈ [m],
(13)

where Dθ̃
1
2∥·∥2

⋆
is a (generalized) Bregman divergence induced by 1

2∥·∥
2
⋆ and θ̃ =(

mini∈[m] yif(xi; θ̄)
)− 1

L θ̄.

Theorem 3.8 states that the iterates induced by steepest flow have very specific, geometric proper-
ties: not only do they asymptotically approach (in direction) a generalized KKT point of a margin
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maximization problem, but also, as the proof of this theorem and, in particular, Proposition A.15
tells us, they implicitly make progress towards stationarity by decreasing a Bregman divergence be-
tween the gradient of the objective function and the gradient of the constraints of (MM). The full
proof can be found in Appendix A.

While the previous result is not strong enough to guarantee convergence to a KKT point for any
instantiation of the algorithm norm ∥·∥, it immediately implies it in the case of a norm whose square
is a smooth function. We can prove the following corollary for this special class of steepest flows.

Corollary 3.8.1. Under assumptions (A1), (A2), (A3), any limit point θ̄ of
{

θt

∥θt∥

}
t≥0

produced by

steepest flow (Equation 3) with respect to a norm ∥·∥, whose square is a smooth function, on the
exponential loss, is along the direction of a KKT point of the optimization problem (MM).

The proof relies on a fundamental relationship between smoothness of a function and strong con-
vexity of its convex conjugate (Proposition A.19), and can be found in Appendix A. The main con-
tribution of Lyu & Li (2020), which characterizes the implicit bias of gradient flow in homogeneous
deep networks, can be recovered by the above result when ∥·∥ = ∥·∥2. Additionally, Corollary 3.8.1
generalizes this result in at least the following cases of algorithm norms:

• Any ℓp norm with p ∈ [2,∞) – see, for example, Lemma 17 in Shalev-Shwartz (2007) for
a proof of its smoothness.

• Any norm induced by a positive definite symmetric matrix – i.e. f(x) = ⟨x,Ax⟩ ,x ∈
Rd,A ∈ Rd×d.

• Any (2, D)-smooth norm (i.e. a norm such that d2

dt2 ∥x+ tz∥2 ≤ 2D2∥z∥2 for all x, z and
for a D > 0) – see Kakade et al. (2008) for details.

To the best of our knowledge, this is a first result about the implicit bias of an algorithm in the
parameter space of deep homogeneous neural networks which is not about ℓ2-geometric margin
maximization.

4 Experiments

In this section, we train neural networks with various steepest descent algorithms (gradient descent-
GD, coordinate descent-CD, sign descent-SD) to confirm the validity and measure the robustness of
the theoretical claims, and to discuss the connection between Adam and steepest descent algorithms.
Amongst other quantities, we measure the three relevant geometric margins during training, which,
in the context of one-hidden layer neural networks with homogeneous activations and without biases,
become:

γ1 = min
i∈[m]

yif(xi;θ)

∥θ∥2∞
, γ2 = min

i∈[m]

yif(xi;θ)

∥θ∥22
, γ∞ = min

i∈[m]

yif(xi;θ)

∥θ∥21
. (14)

4.1 Teacher – Student Experiments

We first perform experiments in a controlled environment, where the generative process consists
of Gaussian data passed through a one-hidden layer (“teacher”) neural network, which is sparse.
Specifically:

x ∼ N (0, Id), y = sgn (fteacher(x;θ
⋆)) = sgn

 k∑
j=1

u⋆jσ
(〈
w⋆
j ,x
〉) , (15)

where σ(u) = max(u, 0) is the ReLU activation, sgn(·) returns the sign of a number, and ∥θ⋆∥0
is assumed to be small. We train (“student”) neural networks of the same architecture, but of
larger width and with randomly initialized weights: fstudent(x;θ) =

∑k′

j=1 ujσ (⟨wj ,x⟩) , with
width k′ > k and wjl ∼ U

[
−α
d ,

α
d

]
, j ∈ [k′], l ∈ [d], uj ∈ U

[
− α
k′ ,

α
k′

]
(for CD we use:

wjl ∼ U
[
− α
k′ ,

α
k′

]
, j ∈ [k′], l ∈ [d] in order to keep all the individual parameters to the same

scale at initialization). The magnitude of initialization α can control how fast the implicit bias of

7



102 103 104 105

10 1
102
105

m
in i

 y i
f(x

i;
)

102 103 104 105

10 2

100

m
in i

 y i
f(x

i;
)

2

102 103 104 105

Epochs

10 8

10 6

m
in i

 y i
f(x

i;
)

1

10 9 10 7 10 5

 margin

50

60

70

80

90

Te
st

 A
cc

ur
ac

y 
(%

)

CD
GD
SD

CD
GD
SD

GD CD
GD SD

=0.001

=0.01
=0.1

Figure 1: Evaluation of steepest descent algorithms in a teacher-student setup. Left: Geometric
margins (γ1, γ2, γ∞ in Equation 14) over the course of training (average over 20 different seeds).
Right: Final test accuracy vs final ℓ∞ margin (γ∞). Each point in the 2d space corresponds to a dif-
ferent run (only showing runs that did not diverge). Larger points correspond to larger initialization
scales α. The star points are produced by switching from GD to CD (red) or SD (green), right after
the point of perfect train accuracy.

the algorithm kicks in, with smaller values entering this so-called “rich” regime faster (Woodworth
et al., 2020). We compare the performance of (full batch) GD, CD and SD in minimizing the em-
pirical exponential loss, consisting of m independent points sampled from the generative process
of Equation 15. Section D contains full experimental details. According to Theorems 3.1, 3.8, we
expect GD to favor solutions with small ℓ2 norm. This is equivalent to a small sum of the product
of the magnitude of incoming and outcoming weights across all neurons (Theorem 1 in (Neyshabur
et al., 2015b)). On the other hand, CD will seek to minimize the ℓ1 norm of the parameters, which
translates to a narrow network with sparse 1st-layer weights. Finally, SD’s bias towards small ∥θ∥∞
solutions does not appear to be useful for generalizing from few samples in this task. Therefore, we
expect CD > GD > SD in terms of generalization.

Figure 1 displays our main findings. We summarize our key findings below:

(i) Margins increase past t0. As expected from Lemma 3.1, we observe that, right after
the point of separation, each algorithm implicitly increases its corresponding geometric
margin (Figure 1 left). Furthermore, we observe that the ordering of the algorithms is as
expected for each margin (SD attains larger ℓ1 margin than GD and CD, etc.), despite the
fact that Theorem 3.8 only guarantees convergence to a KKT point (at best) of the margin
maximization problem - note the log-log plot.

(ii) Smaller initialization produces larger geometric margin. A smaller magnitude of ini-
tialization α causes a larger eventual value of the geometric margin (see Figure 1 right for
CD and γ∞, where this effect is stronger, and Figure 4 in Appendix D for γ1, γ2).

(iii) Importance of early-stage dynamics for generalization. Figure 1, right, shows the final
test accuracy of the networks (20 different runs) vs the value of their final ℓ∞ margin (γ∞).
We observe that, while there exist more CD runs with good generalization (red circles),
these do not always coincide with larger γ∞. Furthermore, intervening in the algorithms
to encourage or discourage γ∞-maximization does not result in significant generalization
changes: after running GD until the point of perfect train accuracy, we switch to either
SD (green stars) or CD (red stars) to directly control the late stage geometric properties of
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the model. Switching to CD seems to bear marginal benefits in terms of generalization,
even though all the switched runs reach smaller values of ℓ∞ margin compared to the full,
no-switching, GD runs. These benefits, however, pale in comparison to the full CD runs.
Switching to SD, on the other hand, results in smaller γ∞ and similar or marginally worse
test accuracy. See also Figure 4 in Appendix D for test accuracy vs the other two geometric
margins. We conclude that it is unlikely that large generalization benefits can solely and
causally be linked to larger geometric margins in this setup, and it appears that the early
stage dynamics play an important role for generalization.

4.2 Connection between Adam and Sign-GD
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Figure 2: Accuracy, and ℓ1, ℓ2 mar-
gins during training for GD, SD and
Adam on MNIST (3 random seeds).
Adam is parameterized by a numerical
precision constant ϵ and two momen-
tum parameters (β1, β2) (defaulting to
10−8 and (0.9, 0.99)). We observe that
Adam behaves similar to SD for the pe-
riod right after the point of perfect train
accuracy.

Adaptive optimization methods like Adam (Kingma &
Ba, 2015) have been popular in deep learning applica-
tions, yet theoretically their value has been questioned
(Wilson et al., 2017) and their properties remain poorly
understood. Wang et al. (2021, 2022) studied the implicit
bias of Adam in homogeneous networks and concluded
that Adam shares the same asymptotic properties as GD.
More recently, this conclusion has been challenged, in the
sense that this asymptotic property crucially depends on
a precision parameter of the algorithm and does not cap-
ture realistic runs of the algorithm (see Section C.1 for
details). In particular, it was shown that in linear models,
Adam, without this precision parameter, implicitly max-
imizes the ℓ1-geometric margin (Zhang et al., 2024), a
property shared with SD and not GD. Indeed, it is easy to
see that Adam without momentum, and ignoring the pre-
cision parameters, is equivalent to SD (see Section C.1).
Setting the precision parameter to 0, on the other hand,
is not useful in applications, as small initial values of
the gradient result in divergence of the loss. A question
arises: what, then, are the relevant geometric properties
of Adam in practice?

Figure 2 provides some experimental answers to this
question, in light of Theorems 3.1, 3.8. On a pair of
digits extracted from MNIST we train two-layer neural
networks with GD, SD and Adam, with small initializa-
tion. See Section D for experimental details. We observe
that, as soon as the algorithms reach 100% train accuracy,
the margins start to increase (as Theorem 3.1 suggests);
SD reaches a larger value of γ1, while GD reaches a larger
value of γ2. Interestingly, Adamwith the default hyperpa-
rameters (precision ϵ = 10−8 and non-zero momentum), initially, behaves similar to SD, increasing
γ1, before it starts decreasing it, in order to slowly start increasing γ2! Curiously, larger values of ϵ
increase γ1 even further and start the second phase slower, but more aggressively. Notice, however,
that train and test accuracies have long converged, so it is unlikely that a typical run would have
lasted long enough to see the second phase of ℓ2-margin maximization (in particular, the loss value
needs to be smaller than 10−7 in order to observe such behavior). Similar observations hold for
Adam without momentum (recall that without momentum and for ϵ → 0, we recover SD). There-
fore, it appears that the ℓ1 bias of SD (Theorems 3.1, 3.8 for ∥·∥ = ∥·∥∞) more faithfully describes
a typical run of Adam in neural networks.

5 Conclusion

In our work, we considered the large family of steepest descent algorithms with respect to an ar-
bitrary norm ∥·∥ and provided a unifying theoretical analysis of their late-stage implicit bias when
training homogeneous neural networks. Furthermore, we introduced a notion of stationarity for op-
timization problems (defined with respect to a Bregman divergence induced by the algorithm norm),
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which, as we showed, captures the implicit progress of the algorithms and might be of indepen-
dent interest. Theorem 3.8 does not preclude the possibility that any steepest descent algorithm will
converge to a KKT point; and our positive result (Corollary 3.8.1) shows that this is the case for
smooth squared algorithm norm. It would be interesting and theoretically challenging to generalize
this result to any norm or show a counterexample.

Our results can reinforce several recent efforts that attempt to understand deep learning through the
lens of implicit bias. In particular, questions about generalization, robustness, and privacy can now
be asked more broadly: (a) is it possible to extract training samples from neural networks optimized
with Adam, leveraging its connection to sign gradient descent, similarly to what has been shown to
be possible for gradient descent (Haim et al., 2022)? (b) can we leverage our implicit bias results to
design more sample-efficient algorithms for robust training, as argued by Tsilivis et al. (2024)? (c)
is benign overfitting a general property of first-order methods, or are current results (e.g. Frei et al.
(2022); Shamir (2023)) specifically tailored to gradient descent?
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A Missing Proofs

In this section, we provide proofs for the results stated in the main text.

A.1 Steepest Flow

We first present a series of technical results, which are about steepest flow in the case of non-
differentiable loss functions. In what follows, we will denote with g⋆t any loss subderivative with
minimum ∥·∥⋆ norm, i.e. g⋆t ∈ argminu∈∂L(θt) ∥u∥⋆. In the case of subdifferentials, chain rule
holds as an inclusion:

Theorem A.1 (Theorem 2.3.9 and 2.3.10 in Clarke (1990)). Let z1, . . . , zn : Rd → R, f : Rn → R
be locally Lipschitz functions and define z = (z1, . . . , zn). Let (f ◦ z)(x) = f(z1(x), . . . , zn(x))
be the composition of z with f . Then, it holds:

∂(f ◦ z)(x) ⊆ conv

{
n∑
i=1

αihi : α ∈ ∂f(z1(x), . . . , zn(x)),hi ∈ ∂zi(x)

}
. (16)

To further analyze steepest flows and to guarantee loss monotonicity, we need a stronger chain rule
result. This can be achieved for a large class of locally Lipschitz functions, as per the following
theorem which is due to Davis et al. (2020).

Theorem A.2. (Theorem 5.8 in Davis et al. (2020)) If F : Rk → R is locally Lipschitz and Whitney
C1-stratifiable, then it admits a chain rule: for all arcs (functions which are absolutely continuous
on every compact subinterval) u : [0,∞) → Rk, almost all t ≥ 0, and all g ∈ ∂F (u(t)), it holds:

dF (u(t))

dt
=

〈
g,
du(t)

dt

〉
. (17)

Whitney C1-stratifiability includes a large family of functions, including functions defined in an
o-minimal structure which has been a standard assumption in the literature Ji & Telgarsky (2020).
It excludes some pathological functions - see, for instance, Appendix J in Lyu & Li (2020). This
version of chain rule allows us to derive the following central properties of steepest flows.

Proposition A.3. Let L : Rp → R and assume that L admits a chain rule. Then, for the steepest
flow iterates of Equation 1, it holds for almost any t ≥ 0:

dL
dt

= −
∥∥∥∥dθdt

∥∥∥∥2 ≤ 0, (18)

and 〈
dθ

dt
,−g⋆t

〉
=

∥∥∥∥dθdt
∥∥∥∥2 = ∥g⋆t ∥2⋆, (19)

where g⋆t ∈ argminu∈∂L(θt) ∥u∥⋆.

Proof. From Theorem A.2, for almost any t ≥ 0, it holds ∀ gt ∈ ∂L(θt):

dL
dt

=

〈
gt,

dθ

dt

〉
. (20)

Applying this for the element of ∂L(θt),g′
t, that corresponds to dθ

dt from the definition of steepest
flow Equation 3, we get:

dL
dt

=

〈
g′
t,
dθ

dt

〉
= −

∥∥∥∥dθdt
∥∥∥∥2 , (21)

where the last equality follows from the definition of the dual norm. But, Equation 20 for g⋆t ∈
argminu∈∂L(θt) ∥u∥⋆, yields:∣∣∣∣dLdt

∣∣∣∣ = ∣∣∣∣〈g⋆t , dθdt
〉∣∣∣∣ ≤ ∥g⋆t ∥⋆

∥∥∥∥dθdt
∥∥∥∥ . (22)
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Thus, combining Equation 21, Equation 22, we obtain:∥∥∥∥dθdt
∥∥∥∥ ≤ ∥g⋆t ∥⋆, (23)

which implies that the update rule Equation 3 iq equivalent to:

dθ

dt
∈

{
argmin

∥u∥≤∥gt∥⋆

⟨u,gt⟩ : g⋆t ∈ argmin
u∈∂L(θt)

∥u∥⋆

}
. (24)

Therefore, from the definition of the dual norm, we have:〈
dθ

dt
,−g⋆t

〉
=

∥∥∥∥dθdt
∥∥∥∥2 = ∥g⋆t ∥2⋆. (25)

Hence, under the mild assumptions of Theorem A.2, the loss is non-increasing during training.

A.2 Late Phase Implicit Bias

A useful standard characterization of the subdifferential of a norm is the following:
Lemma A.4.

∂∥x∥ = {v : ⟨v,x⟩ = ∥x∥, ∥v∥⋆ ≤ 1}

We present the proofs for our results about the late stage of training in steepest flow algorithms.
The next lemma quantifies the behavior of the smooth margin past the point t0 (where, recall, zero
classification error is achieved).
Theorem A.5 (Soft margin increases - full version). For almost any t > t0, it holds:

d log γ̃

dt
≥ L

∥∥∥∥dθdt
∥∥∥∥2
(

1

LL(θt) log 1
L(θt)

− 1

∥θt∥
∥∥dθ
dt

∥∥
)

≥ 0.

Proof. Let nt ∈ ∂∥θt∥. We have:
d log γ̃

dt
=

d

dt
log log

1

L(θt)
− L

d

dt
log ∥θt∥

=
d

dt
log log

1

L(θt)
− L

〈
nt
∥θt∥

,
dθ

dt

〉
(Chain rule)

≥ d

dt
log log

1

L(θt)
− L

∥∥dθ
dt

∥∥
∥θt∥

(definition of dual norm and ∥nt∥⋆ ≤ 1)

= −dL(θt)
dt

1

L(θt) log 1
L(θt)

− L

∥∥dθ
dt

∥∥
∥θt∥

(Chain rule)

=

∥∥∥∥dθdt
∥∥∥∥2
(

1

L(θt) log 1
L(θt)

− L

∥θt∥
∥∥dθ
dt

∥∥
)

(Equation 18).

(26)

But, the first term inside the parenthesis can be related to the second one via the following calcula-
tion. Recall that, by Theorem A.2, for any gt ∈ ∂L(θt) there exist h1 ∈ ∂y1f(x1;θt), . . . ,hm ∈
∂ymf(xm;θt) such that gt =

∑m
i=1 e

−yif(xi;θt)hi. Thus, for a minimum norm subderivative g⋆t ,
we have:

⟨θt,−g⋆t ⟩ =

〈
θt,

m∑
i=1

e−yif(xi;θt)h⋆i

〉

=

m∑
i=1

e−yif(xi;θt) ⟨θt,h⋆i ⟩

= L

m∑
i=1

e−yif(xi;θt)yif(xi;θt),

(27)
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where the last equality follows from Euler’s theorem for homogeneous functions (whose general-
ization for subderivatives can be found in Theorem B.2 in Lyu & Li (2020)). Now, observe that this
last term can be lower bounded as:

⟨θt,−g⋆t ⟩ ≥ L

m∑
i=1

e−yif(xi;θt) min
i∈[m]

yif(xi;θt) ≥ LL(θt) log
1

L(θt)
, (28)

where we used the fact e−mini∈[m] yif(xi;θt) ≤
∑m
i=1 e

−yif(xi;θt). We have made the first term
of Equation 26 appear. By plugging Equation 28 into Equation 26, we get:

d log γ̃

dt
≥
∥∥∥∥dθdt

∥∥∥∥2
(

L

⟨θt,−g⋆t ⟩
− L

∥θt∥
∥∥dθ
dt

∥∥
)

≥
∥∥∥∥dθdt

∥∥∥∥2
(

L

∥θt∥∥g⋆t ∥⋆
− L

∥θt∥
∥∥dθ
dt

∥∥
)

(definition of dual norm).

(29)

Noticing that ∥g⋆t ∥⋆ =
∥∥dθ
dt

∥∥ (from Proposition A.13) concludes the proof.

By extending Lemma B.6 of Lyu & Li (2020), we can further prove that the loss converges to 0 and,
thus, the norm of the iterates diverges to infinity.
Lemma A.6. As t→ ∞, L(θt) → 0 and ∥θt∥ → ∞.

Proof. We suppress the dependence of the loss and the iterates from time t, when it is obvious from
the context.

From the definition of the steepest flow update and chain rule (eq. Equation 18), we have

−dL
dt

=

∥∥∥∥dθdt
∥∥∥∥2 = ∥g⋆t ∥2⋆ ≥

1

∥θ∥2
⟨θ,−g⋆t ⟩

2
, (30)

where we applied Equation 19, Equation 18 and the definition of the dual norm. But, as we showed
in Equation 28, the above inner product can be upper bounded by a function of the loss, so, by
plugging in, we get:

−dL
dt

≥ L2

∥θ∥2

(
L log

1

L

)2

=
L2(

log 1
L
)2/L γ̃2/L(t)(L log

1

L

)2

≥ L2(
log 1

L
)2/L γ̃2/L(t0)(L log

1

L

)2

,

(31)
which follows from the definition of the margin (Equation 5) and its monotonicity (Lemma A.5).
By rearranging:

−dL
dt

1

L2

(
log

1

L

)2/L−2

≥ L2γ̃(t0)
2/L, (32)

and integrating over time from t0 to t > t0, we further have:∫ t

t0

(
log

1

L

)2/L−2
d

dt

1

L
dt ≥ L2γ̃(t0)

2/L(t− t0), (33)

or, by a change of variables,∫ 1/L(t)

1/L(t0)

(log u)
2/L−2

du ≥ L2γ̃(t0)
2/L(t− t0). (34)

The RHS diverges to infinity as t → ∞, hence so does the LHS, which can only happen if L → 0.

In order for L(θt) =
∑m
i=1 e

−yif(xi;θt) =
∑m
i=1 e

−yi∥θt∥Lf
(
xi;

θt
∥θt∥

)
to go to zero, it must be

∥θt∥ → ∞.

The following Lemma quantifies the connection between soft and hard margin.
Lemma A.7. For any θ, it holds:

mini∈[m] yif(xi;θ)

∥θ∥L
− logm ≤ γ̃ ≤

mini∈[m] yif(xi;θ)

∥θ∥L
. (35)
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Proof. Follows from:

e−mini∈[m] yif(xi;θ) ≤ L(θ) ≤ me−mini∈[m] yif(xi;θ). (36)

The last part of the proof consists of characterizing the (directional) convergence of the iterates in
relation to stationary points of the following optimization problem (re-introduced here for conve-
nience):

min
θ∈Rp

1

2
∥θ∥2

s.t. yif(xi;θ) ≥ 1, ∀i ∈ [m].
(37)

Under some regularity assumptions, the KKT conditions (Definition 3.3) become necessary for
global optimality (yet, not sufficient):
Definition A.8. We say that a feasible point of Equation 37 satisfies the Mangasarian-Fromovitz
Constraint Qualifications if there exists v ∈ Rp such that for all i ∈ [m] with 1 − yif(xi;θ) = 0
and for all h ∈ ∂ (1− yif(xi;θ)), it holds:

⟨v,h⟩ > 0. (38)

Our proof uses the following relaxed notion of stationarity.
Definition A.9 ((d, ϵ, δ)- approximate KKT point). Let d : Rp × Rp → R+. A feasible point θ
of equation 37 is called an (d, ϵ, δ)−approximate KKT point if there exist λ1, . . . , λm ≥ 0, hi ∈
∂f(xi;θ) and k ∈ ∂ 1

2∥θ∥
2 such that:

1. d (
∑m
i=1 λiyihi,k) ≤ ϵ

2.
∑m
i=1 λi(yif(xi;θ)− 1) ≤ δ.

We first show that we can always construct a feasible point of Equation 37 from a scaled version of
θt.

Lemma A.10. For any t > 0, θ̃t = θt

(mini∈[m] yif(xi;θt))
1
L

is a feasible point of Equation 37.

Proof. From the homogeneity of f , we have:

yif(xi; θ̃t) = yif

xi;
θt(

mini∈[m] yif(xi;θt)
) 1

L

 =
yif(xi;θt)

mini∈[m] yif(xi;θt)
≥ 1 (39)

for all i ∈ [m]. So θ̃t is a feasible point of Equation 37.

The next Lemma shows that Problem 37 satisfies the Mangasarian-Fromovitz Constraint Qualifica-
tions:
Lemma A.11. Problem 37 satisfies the Mangasarian-Fromovitz Constraint Qualifications at every
feasible point θ.

Proof. Let hi ∈ ∂(1− yif(xi;θ)) and v = −θ, then for all i ∈ [m] satisfying yif(xi;θ) = 1, we
have from Euler’s theorem for homogeneous functions:

⟨v,hi⟩ = Lyif(xi;θ) = L > 0. (40)

Our proof uses core ideas from the theory of conjugate functions and Fenchel’s duality.
Definition A.12 (Convex conjugate). Let ψ : Rp → R. We denote by ψ⋆(·) the convex conjugate of
ψ(·):

ψ⋆(ω) = sup
θ∈Rp

{⟨ω,θ⟩ − ψ(θ)}. (41)
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We will make use of the following properties of conjugate functions.

Proposition A.13. (Conjugate subgradient theorem - Theorem 23.5 in Rockafellar (1970), Theorem
4.20 in Beck (2017)) Let ψ : Rp → R be convex and closed. For any θ⋆ ∈ ∂ψ⋆(θ), it holds
∂ψ (θ⋆) ∋ θ.

Lemma A.14. (Fenchel-Young inequality) (Fenchel, 1949) For any ψ : Rp → R and ω,θ ∈ Rp, it
holds:

⟨θ,ω⟩ ≤ ψ(θ) + ψ⋆(ω). (42)

Next, we show that the scaled version of the iterates from Lemma A.10, θ̃t, is an(
Dθ̃t

1
2∥·∥2

⋆
, ϵ(t), δ(t)

)
-approximate KKT point for ϵ(t) and δ(t) that vanish as t increases.

Proposition A.15. For any t > t0, θ̃t = θt

(mini∈[m] yif(xi;θt))
1
L

is an
(
Dθ̃t

1
2∥·∥2

⋆
, ϵ(t), δ(t)

)
-

approximate KKT point of Equation 37, with:

ϵ(t) =
1

γ̃(t0)
2
L

(
1−

〈
θt
∥θt∥

,
−g⋆t
∥g⋆t ∥⋆

〉)
,

δ(t) =
m

eLγ̃(t0)
2
L log 1

L
,

(43)

with g⋆t ∈ argminu∈∂L(θt) ∥u∥⋆.

Proof. We suppress the dependence of the loss and the iterates from the time index t, when it is
obvious from the context. From Lemma A.10, we know that θ̃ is a feasible point. To simplify the
notation, let qmin = mini∈[m] yif(xi;θ). We will denote by k̃ ∈ ∂ 1

2∥θ̃∥
2 any subgradient of 1

2∥·∥
2

at θ̃. Let, as previously stated, g⋆t ∈ argminu∈∂L(θt) ∥u∥⋆ and h⋆i ∈ ∂f(xi;θ), i ∈ [m], such
that g⋆t = −

∑m
i=1 e

−yif(xi;θ)yih
⋆
i (whose existence is guaranteed from chain rule - Theorem A.1).

Finally, we define h̃⋆i = q
1
L−1

min h⋆i for all i ∈ [m], for which it holds: h̃⋆i ∈ ∂f(xi; θ̃) from Theorem
B.2(a) in Lyu & Li (2020).

Given all these definitions, we set λi = ∥θ∥
∥g⋆

t ∥⋆
q
1− 2

L

min e−yif(xi;θ) ≥ 0. The dual vector from the
(d, ϵ, δ)-stationarity definition can be simplified to:

m∑
i=1

λiyih̃
⋆
i =

m∑
i=1

λiq
1
L−1

min yih
⋆
i (Thm B.2(a) in Lyu & Li (2020))

=
∥θ∥

q
1
L

min∥g⋆t ∥⋆

m∑
i=1

e−yif(xi;θ)yihi

= − ∥θ∥g⋆t
q

1
L

min∥g⋆t ∥⋆
,

(44)

which is a scaled version of the (minimum norm) subderivative of the loss.

Let ψ(θ) = 1
2∥θ∥

2
⋆ be the potential function that we shall use in order to define our divergence. For

this specific ψ, it holds: ψ⋆(ω) = 1
2∥ω∥2 (see for instance Example 3.27 in Boyd & Vandenberghe

(2014) for a derivation). Recall that in the definition ofDm
1
2∥·∥2

⋆
(Equation 12) there is an extra choice

that we have to make; the one of the subderivative m. In what follows, we will specifically measure
“distance” between

∑m
i=1 λiyih̃i and k̃ using Dθ̃

1
2∥·∥2

⋆
(·, ·), i.e. by picking m = θ̃. This is possible,

since from Proposition A.13 it holds that θ̃ ∈ ∂ 1
2∥k̃∥

2
⋆. Finally, let r ∈ ∂∥θ̃∥ be the subgradient of

∥·∥ that stems from the chain rule of 1
2∥·∥

2 evaluated at θ̃. We calculate the divergence between the
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two vectors:

Dθ̃
1
2∥·∥2

⋆

(
m∑
i=1

λiyih̃i, k̃

)

=
1

2

∥∥∥∥∥− ∥θ∥g⋆t
q

1
L

min∥g⋆t ∥⋆

∥∥∥∥∥
2

⋆

− 1

2

∥∥∥k̃∥∥∥2
⋆
−

〈
θ

q
1
L

min

,− ∥θ∥g⋆t
q

1
L

min∥g⋆t ∥⋆
− k̃

〉

=
1

2

∥θ∥2

q
2
L

min

− 1

2

∥∥∥∥θ̃∥r∥∥∥2
⋆
−

〈
θ

q
1
L

min

,
−∥θ∥g⋆t
q

1
L

min∥g⋆t ∥⋆
− ∥θ̃∥r

〉
(Chain rule)

=
∥θ∥2

q
2
L

min

(
1

2
− 1

2
∥r∥2⋆ −

〈
θ

∥θ∥
,
−g⋆t
∥g⋆t ∥⋆

〉
+

〈
θ

∥θ∥
, r

〉)

≤ ∥θ∥2

q
2
L

min

(
1

2
− 1

2
∥r∥2⋆ −

〈
θ

∥θ∥
,
−g⋆t
∥g⋆t ∥⋆

〉
+

1

2

∥∥∥∥ θ

∥θ∥

∥∥∥∥2 + 1

2
∥r∥2⋆

)
(Equation 42)

=
∥θ∥2

q
2
L

min

(
1−

〈
θ

∥θ∥
,
−g⋆t
∥g⋆t ∥⋆

〉)
≤ 1

γ̃
2
L

(
1−

〈
θ

∥θ∥
,
−g⋆t
∥g⋆t ∥⋆

〉)
≤ 1

γ̃(t0)
2
L

(
1−

〈
θ

∥θ∥
,
−g⋆t
∥g⋆t ∥⋆

〉)
,

(45)

where the last 2 inequalities follow from the relation between smooth and hard margin (Lemma
A.7), and the monotonicity of the former. For the second condition of an approximate KKT point,
we have:

m∑
i=1

λi

(
yif(xi; θ̃)− 1

)
=

∥θ∥
∥g⋆t ∥⋆

m∑
i=1

q
1− 2

L

min e−yif(xi;θ)

(
yif(xi;θ)

qmin
− 1

)

=
∥θ∥

q
2
L

min∥g⋆t ∥⋆

m∑
i=1

e−yif(xi;θ) (yif(xi;θ)− qmin) .

(46)

From eq. Equation 30 and Equation 28, we can lower bound the dual norm of the subderivate:

∥g⋆t ∥⋆ ≥
L

∥θ∥
L log

1

L
≥ L

∥θ∥
e−qmin log

1

L
. (47)

By plugging in back to eq. Equation 46, we obtain
m∑
i=1

λi

(
yif(xi; θ̃)− 1

)
≤ ∥θ∥2

q
2
L

minLe
−qmin log 1

L

m∑
i=1

e−yif(xi;θ) (yif(xi;θ)− qmin)

=
∥θ∥2

q
2
L

minL log 1
L

m∑
i=1

e−(yif(xi;θ)−qmin) (yif(xi;θ)− qmin)

≤ 1

γ̃(t0)
2
LL log 1

L

m∑
i=1

e−(yif(xi;θ)−qmin) (yif(xi;θ)− qmin) (Lemmata A.7, A.5)

≤ m

eγ̃(t0)
2
LL log 1

L
,

(48)

since the function u 7→ e−uu, u > 0 has a maximum value of e−1.

Before we proceed with the main result, we state and prove two useful Lemmata. The first one lower
bounds the alignment between normalized iterates and normalized loss gradients. This Lemma is
key for showing that the alignment goes to 1 as t→ ∞.
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Lemma A.16. For all t2 > t1 ≥ t0, there exists t⋆ ∈ (t1, t2) such that: 1〈
θt⋆

∥θt⋆∥
,

−g⋆
t⋆

∥g⋆
t⋆∥⋆

〉 − 1

 ≤ 1

L

log γ̃(t2)
γ̃(t1)∫ t2

t1

∥∥dθt

dt

∥∥
∥θt∥

dt

, (49)

for all g⋆t⋆ ∈ argminu∈∂L(θt⋆ )
∥u∥⋆

Proof. From Lemma A.5, we have for all g⋆t ∈ argminu∈∂L(θt) ∥u∥⋆:

d log γ̃

dt
≥ L

∥∥∥∥dθtdt
∥∥∥∥2
(

1

⟨θt,−g⋆t ⟩
− 1

∥θt∥
∥∥dθt

dt

∥∥
)

= L

∥∥dθt

dt

∥∥
∥θt∥

 1〈
θt

∥θt∥ ,
−g⋆

t (θt)
∥g⋆

t ∥⋆

〉 − 1

 .

(50)

We then integrate the two sides from t1 to t2 > t1 > t0:∫ t2

t1

 1〈
θt

∥θt∥ ,
−g⋆

t

∥g⋆
t ∥⋆

〉 − 1

 ∥∥dθt

dt

∥∥
∥θt∥

dt ≤ 1

L
log

γ̃(t2)

γ̃(t1)
. (51)

The desired existential statement follows from a proof by contradiction.

Next, we bound the rate of change of the normalized iterates.
Lemma A.17. For any t > 0, it holds:∥∥∥∥∥d

θt

∥θt∥

dt

∥∥∥∥∥ ≤ 2

∥∥dθt

dt

∥∥
∥θt∥

. (52)

Proof. The rate of change of the normalized iterates can be written as follows:

d θt

∥θt∥

dt
=

1

∥θt∥
dθt
dt

+ θt

(
− 1

∥θt∥2
d∥θt∥
dt

)
=

1

∥θt∥
dθt
dt

+ θt

(
− 1

∥θt∥2

〈
nt,

dθt
dt

〉)
, (Chain rule)

(53)

where nt ∈ ∂∥θt∥. So, by the triangle inequality, its norm is bounded by:∥∥∥∥∥d
θt

∥θt∥

dt

∥∥∥∥∥ ≤
∥∥dθt

dt

∥∥
∥θt∥

+
1

∥θt∥

∣∣∣∣〈nt, dθtdt
〉∣∣∣∣

≤ 2

∥∥dθt

dt

∥∥
∥θt∥

. (definition of dual norm and ∥nt∥⋆ ≤ 1)

(54)

We are, now, ready to state and prove our main result.
Theorem A.18. For steepest flow (eq. Equation 3) on the exponential loss, under assumptions A1,
A2, A3, any limit point θ̄ of

{
θt

∥θt∥

}
t≥0

is along the direction of a Dθ̃
1
2∥·∥2

⋆
-generalized KKT point,

θ̃ := θ̄

(mini∈[m] yif(xi;θ̄))
1
L

, of the following optimization problem:

min
θ∈Rp

1

2
∥θ∥2

s.t. yif(xi;θ) ≥ 1, ∀i ∈ [m].
(55)
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Proof. Our strategy will be to consider any limit point θ̄ and construct
(
Dθ̃t

1
2∥·∥2

⋆
, ϵ(t), δ(t)

)
-

approximate KKT points that converge to it, with vanishing ϵ(t), δ(t).

Let ϵm = 1
m for any m > 0. We construct a sequence {tm}m≥0, by induction, in the following

sense. Suppose t1 < . . . < tm−1 have been constructed already. Since θ̄ is a limit point of the
normalized iterates and log γ̃t → log γ̃∞ < ∞ (as γ̃t is non-decreasing and bounded from above),
there exists sm > tm−1 such that:∥∥∥∥ θsm

∥θsm∥
− θ̄

∥∥∥∥ ≤ ϵm =
1

m
and

1

L
log

γ̃∞
γ̃sm

≤ ϵ2m =
1

m2
. (56)

Since d log ∥θt∥
dt ≤ ∥ dθt

dt ∥
∥θt∥ , we have that limt→∞

∫ t

tA

∥∥∥dθt′
dt′

∥∥∥
∥θt′∥

dt′ = ∞ for all tA > 0. Thus, there

exists s′m > sm such that
∫ s′m

sm

∥∥dθt

dt

∥∥
∥θt∥

dt =
1

m
. Now, from Lemma A.16, we know there exists

t⋆ ∈ (sm, s
′
m) with: 1〈

θt⋆

∥θt⋆∥
,

−g⋆
t

∥g⋆
t ∥⋆

〉 − 1

 ≤ 1

L

log
γ̃s′m
γ̃sm∫ s′m

sm

∥∥dθt

dt

∥∥
∥θt∥

dt

≤
1
m2

1
m

=
1

m
, (57)

which implies
〈

θt⋆

∥θt⋆∥
,

−g⋆
t

∥g⋆
t ∥⋆

〉
≥ 1

1+ 1
m

→ 1 as m → ∞. On the other hand, for the normalized
iterates we have:∥∥∥∥ θt⋆

∥θt⋆∥
− θ̄

∥∥∥∥ ≤
∥∥∥∥ θt⋆
∥θt⋆∥

− θsm
∥θsm∥

∥∥∥∥+ ∥∥∥∥ θsm
∥θsm∥

− θ̄

∥∥∥∥ eq. Equation 56
≤

∥∥∥∥ θt⋆
∥θt⋆∥

− θsm
∥θsm∥

∥∥∥∥+ 1

m
. (58)

To deal with the first term, we can leverage Lemma A.17 which bounds the rate of change of the
normalized iterates:∥∥∥∥ θt⋆

∥θt⋆∥
− θ̄

∥∥∥∥ ≤ 2

∫ t⋆

sm

∥∥dθt

dt

∥∥
∥θt∥

dt+
1

m
≤ 2

∫ s′m

sm

∥∥dθt

dt

∥∥
∥θt∥

dt+
1

m
=

3

m
→ 0. (59)

Hence, by picking tm as t⋆, we constructed a time sequence such that, for any limit point θ̄, θtm

∥θtm∥ →

θ̄ and also
〈

θtm

∥θtm∥ ,
−g⋆

t (θtm )
∥g⋆

t (θtm )∥
⋆

〉
→ 1.

Then, from Proposition A.15, we know that θ̃tm =
θtm

(mini∈[m] yif(xi;θtm ))
1
L

is an(
Dθ̃t

1
2∥·∥2

⋆
, ϵ(tm), δ(tm)

)
-approximate KKT point of Equation 37. But ϵ(tm) → 0 (since the align-

ment goes to 1) and δ(tm) → 0 as the loss goes to zero (Lemma A.6), thus the sequence satisfies
the conditions of Proposition A.20, which shows that the limit point of the sequence is a generalized
KKT point. This concludes the proof of our claim.

While the previous result is not strong enough to guarantee convergence to an approximate KKT
point for a general algorithm norm ∥·∥, it immediately implies it in the case of a smooth norm. The
proof relies on a fundamental relationship between smoothness of a function and strong convexity
of its convex conjugate.

Proposition A.19. (Conjugate Correspondence Theorem - Thm. 5.26 in Beck (2017)) Let σ > 0. If
ψ is a 1

σ -smooth convex function, then its conjugate ψ⋆ is σ-strongly convex.

We can prove the following corollary for a special class of steepest flows.

Corollary A.19.1. For steepest flow (eq. Equation 3) with respect to a norm ∥·∥, whose square
is a smooth function, on the exponential loss, under assumptions A1, A2, A3, any limit point θ̄ of{

θt

∥θt∥

}
t≥0

is along the direction of a KKT point of optimization problem Equation 37.
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Proof. From Proposition A.19, if 1
2∥·∥

2 is 1
σ -smooth w.r.t. ∥·∥, then the function 1

2∥·∥
2
⋆ is σ-strongly

convex w.r.t. ∥·∥⋆. Thus, the function Dθ
1
2∥·∥2

⋆
is defined with respect to a strongly convex function

and it becomes a proper Bregman divergence. Hence, from Theorem 5.24 in Beck (2017), for
h̃⋆i = q

1
L−1

min h⋆i , where h̃⋆i ∈ ∂f(xi; θ̃), i ∈ [m] such that g⋆t = −
∑m
i=1 e

−yif(xi;θ)yih
⋆
i and

k̃ ∈ ∂ 1
2∥θ̃∥

2, it holds:

Dθ̃
1
2∥·∥2

⋆

(
m∑
i=1

λiyih̃
⋆
i , k̃

)
≥ σ

∥∥∥∥∥
m∑
i=1

λiyih̃
⋆
i − k̃

∥∥∥∥∥
⋆

. (60)

In other words, if Dθ̃
1
2∥·∥2

⋆
(α,β) is 0, so is the difference α − b for any α, b. As a result, and

from the equivalence of the norms, the sequence θ̃tm =
θtm

(mini∈[m] yif(xi;θtm ))
1
L

from the proof of

Theorem A.18, induces a sequence of (ϵ(tm), δ(tm))-approximate KKT points, which converges to
a KKT point of Equation 37. By Theorem C.4 in Lyu & Li (2020) (which is itself based on a result
due to Dutta et al. (2013)), we get that θ̄

(mini∈[m] yif(xi;θt))
1
L

is a KKT point of Equation 37.

The following technical result was used in the proof of Theorem A.18.

Proposition A.20. Let (MM) be the following optimization problem:

min
θ∈Rp

1

2
∥θ∥2

s.t. yif(xi;θ) ≥ 1, ∀i ∈ [m].
(MM)

Let {θt}t≥0 be a sequence of feasible, (d, ϵt, δt)-approximate KKT points, with d := Dθt
1
2∥·∥2

⋆
with

ϵt ↓ 0, δt ↓ 0 and θt → θ̄. Assume that the Mangasarian-Fromovitz- Constraint Qualifications hold
at θ̄. Then, θ̄ is a Dθ̄

1
2∥·∥2

⋆
-generalized KKT point of (MM).

Proof. Our proof closely follows the proof of Theorem 3.6 in (Dutta et al., 2013), which is the direct
analog for (ϵ, δ)-approximate KKT points.

By the definition of the (d, ϵt, δt) stationarity, for each t > 0, there exist hti ∈ ∂f(xi;θt), i ∈
[m],kt ∈ ∂ 1

2∥θt∥
2 and λti ≥ 0, i ∈ [m] such that:

(i) Dθt
1
2∥·∥2

⋆
(
∑m
i=1 λ

t
iyih

t
i,k

t) ≤ ϵt.

(ii)
∑m
i=1 λ

t
i (yif(xi;θt)− 1) ≤ δt.

We will show that the sequence {λt}t≥0 is bounded. Assume on the contrary that is not. Consider
λ̂ = λt

∥λt∥ , which is bounded and wlog, it is: λ̂ → λ̃ with ∥λ̂∥ = 1. Note that the sequences
{hti}, {kt} are bounded, as elements of a subdifferential, by the Lipschitz constant of the corre-
sponding function. Hence, they also converge to, say, h̄i for all i ∈ [m] and k̄, respectively. From
condition (i), we have:

1

∥λt∥2
Dθt

1
2∥·∥2

⋆

(
m∑
i=1

λtiyih
t
i,k

t

)
≤ ϵt

∥λt∥2
, (61)

or
1

2

∥∥∥∥∥
m∑
i=1

λti
∥λt∥

yih
t
i

∥∥∥∥∥
2

⋆

− 1

2

∥∥∥∥ kt

∥λt∥

∥∥∥∥2
⋆

−

〈
θt

∥λt∥
,

m∑
i=1

λti
∥λ∥

yih
t
i −

kt

∥λ∥

〉
≤ ϵt

∥λt∥2
, (62)

hence, by taking t→ ∞, we get:

1

2

∥∥∥∥∥
m∑
i=1

λ̃iyih̄i

∥∥∥∥∥
2

⋆

≤ 0, (63)
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which implies that there exists λ̃ ̸= 0 such that
∑m
i=1 λ̃iyih̄i = 0, where recall h̄i ∈ ∂f(xi; θ̄).

An existence of such a vector is prohibited by the Mangasarian-Fromovitz-Constraint Qualifications
which hold at θ̄. Thus, {λt}t≥0 is bounded and λt → λ̄ for some λ̄ ∈ Rm. Hence, by taking the
limit t→ ∞, we have:

Dθ̄
1
2∥·∥2

⋆

(
m∑
i=1

λ̄iyih̄i, k̄

)
≤ 0, (64)

where h̄i ∈ ∂f(xi; θ̄), i ∈ [m] and k̄ ∈ ∂ 1
2∥θ̄∥. From (ii), we obtain

∑m
i=1 λ̄i

(
yif(xi; θ̄)− 1

)
≤

0. However, yif(xi; θ̄) − 1 ≥ 0 (θ̄ is a feasible point of (P)) and λ̄i ≥ 0 for all i ∈ [m], thus it
holds:

m∑
i=1

λ̄i
(
yif(xi; θ̄)− 1

)
= 0, (65)

which concludes the proof that θ̄ is a Dθ̄
1
2∥·∥2

⋆
-generalized KKT point.

A.3 Generalization to other losses

The previous results can be generalized to any loss with exponential tails. In particular, let us proceed
to the following definition:

Definition A.21. Let Φ : R → R. Assume that L(θ) =
∑m
i=1 e

−Φ(yif(xi;θ)),θ ∈ Rp, where
f : Rd → R, yi ∈ {±1}. We call the function l : R → R, l(u) := e−Φ(u), exponentially tailed, if
the following conditions hold:

(i) Φ is continuously differentiable.

(ii) Φ′(u) > 0 for all u ∈ R.

(iii) The function g(u) = Φ′(u)u is non-decreasing in [0,∞).

Notice that the definition above covers the exponential loss for Φ(u) = u and the logistic loss for
Φ(u) = − log log(1 + e−u). To accommodate different loss functions, Assumption A3 needs to be
adjusted as follows:

• There is a t0 > 0, such that L(θt0) < e−Φ(0).

See Section A in (Lyu & Li, 2020) for a more general, albeit technical, definition that allows the
extension of the full analysis to general exponentially-tailed losses.

Under these conditions, we can define the soft margin as follows:

γ̃ =
l−1(L)
∥θ∥L

=
Φ−1

(
log 1

L
)

∥θ∥L
,

and prove a strict generalization of Theorem 3.1.

Theorem A.22 (Soft margin increases - general loss function). For almost any t > t0, it holds:

d log γ̃

dt
≥ L

∥∥∥∥dθdt
∥∥∥∥2
 (

Φ−1
)′ (

log 1
L(θt)

)
LL(θt)Φ−1

(
log 1

L(θt)

) − 1

∥θt∥
∥∥dθ
dt

∥∥
 ≥ 0.
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Proof. Let nt ∈ ∂∥θt∥. We have:

d log γ̃

dt
=

d

dt
Φ−1

(
log

1

L(θt)

)
− L

d

dt
log ∥θt∥

=
d

dt
Φ−1

(
log

1

L(θt)

)
− L

〈
nt
∥θt∥

,
dθ

dt

〉
(Chain rule)

≥ d

dt
Φ−1

(
log

1

L(θt)

)
− L

∥∥dθ
dt

∥∥
∥θt∥

(definition of dual norm and ∥nt∥⋆ ≤ 1)

= −dL(θt)
dt

(
Φ−1

)′ (
log 1

L(θt)

)
L(θt)Φ−1

(
log 1

L(θt)

) − L

∥∥dθ
dt

∥∥
∥θt∥

(Chain rule)

=

∥∥∥∥dθdt
∥∥∥∥2
 (

Φ−1
)′ (

log 1
L(θt)

)
L(θt)Φ−1

(
log 1

L(θt)

) − L

∥θt∥
∥∥dθ
dt

∥∥
 (Equation 18).

(66)

But, the first term inside the parenthesis can be related to the second one via the following
calculation. Recall that, by the chain rule for locally Lipschitz functions (Theorem A.2), for
any gt ∈ ∂L(θt) there exist h1 ∈ ∂y1f(x1;θt), . . . ,hm ∈ ∂ymf(xm;θt) such that gt =∑m
i=1 e

−Φ(yif(xi;θt))Φ′(yif(xi;θt)))hi. Thus, for a minimum norm subderivative g⋆t , we have:

⟨θt,−g⋆t ⟩ =

〈
θt,

m∑
i=1

e−Φ(yif(xi;θt))Φ′(yif(xi;θt))h
⋆
i

〉

=

m∑
i=1

e−Φ(yif(xi;θt))Φ′(yif(xi;θt)) ⟨θt,h⋆i ⟩

= L

m∑
i=1

e−Φ(yif(xi;θt))Φ′(yif(xi;θt))yif(xi;θt),

(67)

where the last equality follows from Euler’s theorem for homogeneous functions (whose generaliza-
tion for subderivatives can be found in Theorem B.2 in Lyu & Li (2020)). But, now observe that as
per assumption, u→ Φ′(u)u is non-decreasing and this last term can be lower bounded as:

⟨θt,−g⋆t ⟩ ≥ L

m∑
i=1

e−Φ(yif(xi;θt))Φ′
(
Φ−1

(
log

1

L(θt)

))
Φ−1

(
log

1

L(θt)

)
, (68)

where we used the fact yif(xi;θt) ≤ Φ−1
(
log 1

L(θt)

)
for all i ∈ [m] (by the monotonicity of Φ

the definition of L). Leveraging the fundamental property between the derivative of a function and
its inverse’s, we further get:

⟨θt,−g⋆t ⟩ ≥ L

m∑
i=1

e−Φ(yif(xi;θt))
Φ−1

(
log 1

L(θt)

)
(Φ−1)

′
(
log 1

L(θt

) = LL(θt)
Φ−1

(
log 1

L(θt)

)
(Φ−1)

′
(
log 1

L(θt

) . (69)

We have made the first term of Equation 66 appear. By plugging Equation 69 into Equation 66, we
get:

d log γ̃

dt
≥
∥∥∥∥dθdt

∥∥∥∥2
(

L

⟨θt,−g⋆t ⟩
− L

∥θt∥
∥∥dθ
dt

∥∥
)

≥
∥∥∥∥dθdt

∥∥∥∥2
(

L

∥θt∥∥g⋆t ∥⋆
− L

∥θt∥
∥∥dθ
dt

∥∥
)

(definition of dual norm).

(70)

Noticing that ∥g⋆t ∥⋆ =
∥∥dθ
dt

∥∥ (from Proposition A.13) concludes the proof.
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)
= 0

θ1

θ2

θ3

Proximity to stationarityε1 ϵ2 ϵ3 0

Figure 3: An illustration of the reduction of the Bregman proximity measure. Once it separates
the training points, steepest descent in homogeneous networks implicitly makes progress towards
generalized stationary points θ⋆ of a margin maximization problem (Theorem A.18).

B Bregman proximity measure

In the proof of our main result (Theorem A.18), we constructed a sequence of approximate general-
ized KKT points (Definition A.9). However, in many cases, while solving (non-convex) optimization
problems, we only have feasible points without any evidence of optimality or stationarity. In such
cases, it is useful to come up with a progress measure of approximate stationarity that can also serve
as a stopping criterion for the optimization algorithm. Consider an optimization problem:

min
θ∈Rp

f(θ)

s.t. gi(θ) ≤ 0 ∀i ∈ [m],
(P)

where we assume that f, {gi}mi=1 are differentiable for the sake of brevity. For a feasible point θ′ of
(P) and a non-negative function d : Rp×Rp → R+, we define the d-Bregman proximity measure as
the solution of the following optimization problem:

min
ϵ,λ1,...,λm

ϵ

s.t. d

(
−

m∑
i=1

λi∇gi(θ′),∇f(θ′)

)
≤ ϵ,

m∑
i=1

λigi(θ
′) ≥ −ϵ,

λi ≥ 0 ∀i ∈ [m].

(71)

This definition mirrors and generalizes the definitions of (Dutta et al., 2013), which were inspired by
approximate KKT points (whose proximity is measured using the Euclidean distance as d). How-
ever, as we saw in our analysis, there are many cases of problems where a proximity measure would
be better defined using alternatives functions. Figure 3 conceptually illustrates the reduction of the
Bregman divergence in a possible converging path. The relaxation of the slackness constraints in the
form of

∑m
i=1 λigi(θ

′) ≥ −ϵ is essential for ensuring that the proximity measure captures proximity
to stationarity - see Section 3.2 in (Dutta et al., 2013) for a discussion.

25



C Relationship to Adam and Shampoo

The family of steepest descent algorithms includes simplified versions (momentum turned-off) of
two adaptive methods, Adam and Shampoo, which have been very popular for training deep neural
networks.

C.1 Adam

Adam (Kingma & Ba, 2015) is a popular adaptive optimization method, which is frequently used in
deep learning. Following our previous notation, the update rule of Adam amounts to:

mt = β1mt−1 + (1− β1)∇L(θt)
vt = β2vt−1 + (1− β2)∇L(θt)2

θt+1 = θt − ηt
mt√
vt + ϵ

,

(72)

where the √
, 2,÷ operations are overloaded to operate elementwise in vectors. Parameters β1, β2

control the memory of the update rule, while ϵ is a numerical precision parameter. Notice that for
β1 = β2 = ϵ = 0, we recover sign-gradient descent.

Wang et al. (2022)studied the implicit bias of (72) in linear networks establishing bias towards ℓ2
margin maximization, while Zhang et al. (2024) analyzed the case of ϵ = 0 and generic β1, β2 ∈
[0, 1) also in linear networks and showed bias towards ℓ∞ margin maximization.

C.2 Shampoo

Shampoo (Gupta et al., 2018) is an adaptive optimization algorithm, which has recently gained
popularity in deep learning applications. For each weight matrix Wt and its corresponding gradient
matrix Gt, the update rule of Shampoo without momentum amounts to (Bernstein & Newhouse,
2024):

Wt+1 = Wt − ηtUtV
T
t , (73)

where Ut,Vt contain the left and right singular vectors of Gt, i.e., Gt = UtΣtVt. Bernstein &
Newhouse (2024) recently noticed that this update corresponds to steepest descent (in matrix space)
with respect to the spectral norm σmax(·). This is equivalent to an architecture-dependent norm in
parameter space. For instance, if θ = (W1, . . . ,WL), then Shampoo without momentum corre-
sponds to steepest descent with respect to the norm ∥θ∥S := max (σmax(W1), . . . , σmax(WL)).

D Experimental Details

All experiments are implemented in PyTorch (Paszke et al., 2017).

Teacher-student experiments We use the following hyperparameters: d = 232, k = 64, k′ =

1024,m = 250, learning rate η = 6× 10−3 and density ∥θ⋆∥0

k′(d+1) = 0.0001 (3 coordinates active per
neuron). We vary the scale of initialization in {0.1, 0.01, 0.001} and we train for 105 epochs. Each
random seed affects the draw of the datasets and the initialization of the parameters of the network.
Test accuracy is estimated using 20,000 unseen data drawn from the same generative process.

MNIST We use a constant learning rate of 3× 10−3 and 1-hidden layer neural networks of width
128, optimizing the logistic loss. The digits that we extract are ’3’ and ’6’ (100 training points).
Each random seed corresponds to a different draw of the training dataset and different initialization.
Sign gradient descent runs were very effective in minimizing the training loss, and we stopped the
training early after the loss reached value smaller than 10−7 in order to avoid numerical issues. We
depict the final value, repeated for as many epochs as shown in the figures (as if the model has indeed
converged).

Figure 5 shows accuracy and margins for a different pair of digits (”2” vs ”7”).
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Figure 4: Geometric margins vs test accuracy in a teacher-student setup. Left: ℓ1 margin. Right:
ℓ2 margin. Each point corresponds to a different run (different random seed).
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Figure 5: Relationship between Adam and steepest descent algorithms. Digits ’2’ and ’7’.
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