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Abstract

Vision Transformers are at the heart of the current surge of interest in foundation models
for histopathology. They process images by breaking them into smaller patches following
a regular grid, regardless of their content. Yet, not all parts of an image are equally rel-
evant for its understanding. This is particularly true in computational pathology where
background is completely non-informative and may introduce artefacts that could mislead
predictions. To address this issue, we propose a novel method that explicitly masks back-
ground in Vision Transformers’ attention mechanism. This ensures tokens corresponding
to background patches do not contribute to the final image representation, thereby im-
proving model robustness and interpretability. We validate our approach using prostate
cancer grading from whole-slide images as a case study. Our results demonstrate that it
achieves comparable performance with plain self-attention while providing more accurate
and clinically meaningful attention heatmaps.
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1. Introduction

Adoption of whole-slide imaging technology in pathology has contributed to the growing
availability of large digitized datasets. This shift towards digital pathology has fostered
computer vision research to support and augment pathologists with deep learning algo-
rithms. However, conventional deep learning methods are ill-equipped to handle the enor-
mous sizes of whole-slide images (WSIs), which usually exceed the memory capacity of
graphics processing units. A popular approach to overcome this memory bottleneck in-
volves partitioning WSIs into smaller, more manageable patches (Campanella et al., 2019).
This technique aligns well with the operational mechanics of Vision Transformers (ViTs)
(Dosovitskiy et al., 2021), sparking increased interest in their application within computa-
tional pathology (Shao et al., 2021; Chen et al., 2022, 2024).

While ViTs process images by breaking them into smaller patches following a regular grid,
they do not account for the fact that all parts of an image are not equally relevant or
informative. Uniform background areas are often less informative than more cluttered,
dense areas. In computational pathology, background is not only low-informative but fun-
damentally devoid of any diagnostic value. Including tokens that correspond to background
areas may introduce artefacts that could mislead predictions and compromise model inter-
pretability, possibly resulting in clinically irrelevant hotspots in attention maps. To address
this issue, we propose a simple method that explicitly masks background in the attention

© 2024 CC-BY 4.0, C. Grisi, J.v.d. Laak & G. Litjens.

https://creativecommons.org/licenses/by/4.0/


Grisi Laak Litjens

mechanism of ViTs. By doing so, we ensure tokens corresponding to background do not
contribute to the final image representation. Omitting visually present but diagnostically
irrelevant information should not only sharpen the signal-to-noise ratio, but also result in
attention heatmaps that are both more visually coherent and easier to interpret.

2. Proposed Method

Hierarchical Vision Transformer. The inherent hierarchical structure within whole-
slide images spans across various scales, from tiny cell-centric regions containing fine-grained
information, up to the entire slide which exhibits the overall intra-tumoral heterogeneity of
the tissue microenvironment. Drawing inspiration from this layered structure, our model
consists of a Hierarchical Vision Transformer that processes whole-slide images at three
nested scales (Grisi et al., 2023). Slides are unrolled into non-overlapping 2048 × 2048
regions, capturing macro-scale interactions between clusters of cells. These are further
unrolled into non-overlapping 256 × 256 patches, depicting cell-to-cell interactions. A pre-
trained ViT-S/16 is used to embed these patches into feature vectors. Then, a second
Transformer aggregates the representations of 256× 256 patches within larger 2048× 2048
regions. Finally, a third Transformer pools region-level tokens into a slide-level representa-
tion that is projected to class logits for loss computation (Appendix A, Figure 2).

Masked Attention. When extracting regions from whole-slide images, only those con-
taining tissue are retained as fully background regions contain no informative content.
However, when these regions are further unrolled into non-overlapping 256 × 256 patches,
some patches may still contain no tissue (Appendix C, Figure 4). To ensure that region-
level representations are exclusively derived from patches containing tissue, we propose a
novel masked attention method. By leveraging fine-grained tissue segmentation masks, our
approach explicitly nullifies the contribution of entirely background patches during self-
attention, thereby enhancing the quality of extracted features. We provide a pseudo code
implementation in Appendix B.

3. Experimental Results

Dataset. To assess the robustness of the proposed method, we use the PANDA dataset
(Bulten et al., 2022). It is the largest publicly available dataset of H&E stained prostate
WSIs to date, with 11, 554 prostate biopsies curated from two different sites. All slides are
provided at a pixel spacing close to 0.50 µm, together with their ISUP score (Appendix D).

Data Preprocessing & Evaluation Metric. We used an internally developed model
to automatically segment tissue in each slide, from which we extract non-overlapping
2048 × 2048 regions at the resolution closest to 0.50 µm (Appendix C). We split PANDA
development set into 5 cross-validation folds, stratifying on the ISUP score. To evaluate
the model’s classification performance, we report averaged quadratic weighted kappa scores
on the tuning set, as well as on the combined public and private test sets.

Prostate Cancer Grading. For each fold, we pretrain the first Transformer on the train-
ing set via the student-teacher knowledge distillation framework DINO (Caron et al., 2021).
This Transformer is used as a feature extractor to embed each slide into a (M2048

i , 64, 384)
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feature vector, where Mi stands for the number of 2048 × 2048 regions extracted in the
i-th slide. The last two Transformers are then jointly trained to map these sequences to
ISUP scores. We formulate the classification problem as a regression task and use the Mean
Squared Error loss to leverage the ordinal nature of the ISUP scores. Classification results
are summarized in Table 1. Masked self-attention achieves comparable performance with
plain self-attention.

Attention Mechanism Tune Score Combined Test Score

Plain self-attention 0.945 ± 0.003 0.899 ± 0.008
Masked self-attention 0.946 ± 0.003 0.899 ± 0.009

Table 1: ISUP score classification results. We report quadratic weighted kappa, averaged
over the 5 cross-validation folds.

Model Interpretability. Attention heatmaps offer a streamlined form of model inter-
pretability by revealing the specific image features that the model has learned to associate
with particular classes. Figure 1 shows attention heatmaps for the region-level Trans-
former. While some background patches display high attention values in plain self-attention
heatmaps (Figure 1(b)), all background patches are given no attention in masked self-
attention heatmaps (Figure 1(c)). Additional visualizations at the slide level are provided
in Appendix E.

(a) tissue segmentation (b) plain self-attention (c) masked self-attention

Figure 1: Region-level attention maps.

4. Conclusion

In conclusion, our proposed masked attention strategy improves model interpretability by
explicitly excluding irrelevant patches from contributing to self-attention in Vision Trans-
formers. This approach is particularly beneficial in computational pathology where the
inclusion of non-informative background content can introduce artefacts that can compro-
mise model reliability. Our results demonstrate that masked attention achieves comparable
performance with plain self-attention while providing more accurate and clinically mean-
ingful heatmaps. This method has the potential to enhance the accuracy, robustness, and
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interpretability of ViT-based models in digital pathology, ultimately contributing to im-
proved diagnostic accuracy.
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Appendix A. Architecture Overview

Figure 2 shows the multi-stage Hierarchical Vision Transformer architecture we use in this
work. It features three Vision Transformers, followed by a simple linear classifier that
projects the slide-level embedding onto the desired number of classes.
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Figure 2: Overview of our Hierarchical Vision Transformer for whole-slide image analysis.
This figure illustrates the multi-scale processing of whole-slide images.

Appendix B. Masked Attention Pseudo Code

The masked attention module expects the input sequence x – of shape (M2048
i , 64, 384) –

as well as a pct tensor of shape (M2048
i , 1, 64) containing the tissue percentage for each

256× 256 patch within each 2048× 2048 regions in a slide.

Algorithm 1: Nullifying the contribution of background patches

Input: x of shape (M, 64, 384), pct of shape (M, 1, 64)
Output: xattended, the attended tensor
q, k, v ← self.qkv(x)
raw attn ← (q @ k.T ) * scale
pct ← pct.unsqueeze(1).expand(-1, self.num heads, -1, -1)
masked attn ← raw attn.masked fill(pct == 0, float(“-inf”))
attn ← masked attn.softmax(dim=-1)
xattended ← (attn @ v).T

The full code is publicly available at github.com/computationalpathologygroup/hvit.
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Appendix C. Data Preprocessing

Figure 3 shows an example result of our tissue segmentation and region extraction algorithm.
Due to potential tissue segmentation irregularities, regions containing fewer than 10% tissue
were discarded.

(a) tissue segmentation (b) 2048×2048 regions at 0.50 µm

Figure 3: Example result of data preprocessing pipeline

Figure 4: Unrolling a 2048× 2048 region into non-overlapping 256× 256 patches
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Appendix D. PANDA Dataset Details

In Table 2, we provide a summary of the main characteristics of the PANDA dataset.

Table 2: PANDA dataset summary

Center Scanner Spacing (µm) # dev # public test # private test

Radboud 3DHistech 0.48 5160 195 333
Karolinska Leica 0.50 2193 97 150
Karolinska Hamamatsu 0.45 3263 101 62

Pathologists classify tumors into different growth patterns by analyzing the histological
architecture of the tumor tissue. Tissue specimens are then categorized into one of five
groups based on the distribution of these patterns in the tumor. Figure 5 shows the grade
group distribution for the development set, the public test set and the private test set.
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Figure 5: PANDA label distribution
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Appendix E. Stitched Attention Heatmaps

Stitched attention heatmaps provide a comprehensive visualisation of the model attention,
offering a more intuitive understanding of which parts of the slide contribute most signifi-
cantly to the model’s decision-making process.

(a) tissue segmentation (b) plain self-attention (c) masked self-attention

Figure 6: Stitched region-level attention heatmaps
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