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Abstract

Microstructures, i.e., architected materials, are designed today, typically, by
maximizing an objective, such as bulk modulus, subject to a volume constraint.
However, in many applications, it is often more appropriate to impose constraints
on other physical quantities of interest. In this paper, we consider such generalized
microstructural optimization problems where any of the microstructural quantities,
namely, bulk, shear, Poisson ratio, or volume, can serve as the objective,
while the remaining can serve as constraints. In particular, we propose here
a neural-network (NN) framework to solve such problems. The framework
relies on the classic density formulation of microstructural optimization, but
the density field is represented through the NN’s weights and biases. The main
characteristics of the proposed NN framework are: (1) it supports automatic
differentiation, eliminating the need for manual sensitivity derivations, (2)
smoothing filters are not required due to implicit filtering, (3) the framework can
be easily extended to multiple-materials, and (4) a high-resolution microstruc-
tural topology can be recovered through a simple post-processing step. The
framework is illustrated through a variety of microstructural optimization problems.

1 Introduction

Topology optimization is a computational strategy for distributing material within a design domain, to
optimize performance. It is now a mature field with multitude of methods, including homogenization,
density methods, level set, topological sensitivity and evolutionary [5, 32, 44, 11, 12, 41, 4, 18].

On the other hand, in microstructural optimization, one aims to find the optimal topology, within a
representative unit cell, that maximizes a localized material property. Through microstructural design,
one can customize various material behavior including bulk/shear modulus, Poisson’s ratio, thermal
expansion, elasticity tensor and other extremal properties[27, 20, 39, 45, 34, 31, 30].

There are many applications of microstructural optimization in engineering; for example, energy
dissipation [3], fluid applications [16], thermal applications [50], phononic applications [35], medical
implants [19], and so on. Further, with the advent of additive manufacturing, the fabrication of such
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Figure 1: Locally periodic microstructures and unit cells.

microstructures is possible today. These microstructures, also referred to as architected materials,
may be arranged in periodic arrays to “exhibit previously unattainable combinations of material
properties at the bulk scale." [27]. In a typical microstructural optimization problem, one attempts to
maximize a quantity of interest (such as bulk modulus), subject to a mass constraint (or equivalently,
volume-fraction constraint). However, in many applications, the desired mass is not known a priori.
Therefore, instead of imposing an arbitrary mass constraint, we consider imposing constraints on
other physical quantities. The main objective of this paper is to develop a framework for solving such
generalized microstructural optimization problems.

Further, it has been observed [30] that the design of negative Poisson ratio (NPR) materials, using
standard optimization techniques, can be particularly challenging. Either specialized methods need to
be developed [48] or heuristic parameters must be used [43]. Here, we show that standard L-BFGS
optimization can be used for the robust design of NPR materials.

The remainder of this paper is organized as follows. First, the critical concept of homogenization
is briefly reviewed in Section 2.1. Then, the current methods of microstructural optimization are
reviewed in Section 2.2, with an emphasis on the classic density-based formulation. Then, in Section
3.1, a generalized microstructural optimization problem. To solve such a class of problems, we
introduce a neural-network (NN) framework in Section 3.2 where the density field is represented
through the weights associated with the NN. This allows for automatic sensitivity computation
which is essential for solving generalized problems. In Section 3.3 the methodology to solve such
generalized problems is discussed followed by the proposed algorithm in Section A.1. Numerical
examples are presented in Section 4. Finally, conclusions and open issues are discussed in Section 5.

2 Background

2.1 Homogenization

In microstructural design, a common hypothesis is that the microstructure is locally periodic, and
there is scale separation. For example, Figure illustrates locally periodic microstructures and two
representative unit cells.

Given a unit cell (microstructure) in 2D, a forward problem is to find its homogenized elasticity
3 × 3 matrix CH . The theory of homogenization is well developed, for example, see [47, 18]. A
typical numerical strategy [1] for computing CH is to impose three independent periodic boundary
conditions (in 2D), and solve the resulting finite element problems; see Figure 2. The stresses and
strains from the three problems are then used to compute CH as described in [1].

Figure 2: Extracting the elasticity tensor.

Next, assuming isotropic, plane stress behavior[36], various quantities of interest, namely, bulk
modulus (K), shear modulus (G) and Poisson ratio (ν) can be extracted from CH as follows:
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1,2 + CH

2,1)/4 (1a)

G = CH
3,3 (1b)

ν = (CH
2,1 + CH

1,2)/(C
H
1,1 + CH

2,2) (1c)

2.2 Microstructural Optimization Methods

The inverse problem is to arrive at an optimal topology that maximizes or minimizes one of these
quantities of interest. There are several methods available today for optimizing microstructures; see,
for example, [27, 14, 39, 37, 21, 17].

In the popular density-based methods, one defines a pseudo-density ρe ∈ (0, 1] over the underlying
finite element mesh. Then the microstructural optimization problem, of say, maximizing the bulk
modulus, subject to a mass constraint (we prefer here a mass constraint over a volume constraint
since this generalizes more easily to multiple materials), may be posed as follows:

minimize
ρ

−K(ρ) (2a)

subject to K(ρ)ui = f i, i = 1, 2, 3 (2b)∑
e

ρeveλe = m̂ (2c)

0 < ρe ≤ 1 (2d)

where K is the stiffness matrix, ui and f i are the displacement vector and the external force vector
for the three problems in Figure 2, ve is the volume of the finite element, λe is the physical density
of the base material, and m̂ is the mass constraint. In addition, the solid isotropic material with
penalization (SIMP) penalization model is employed to link the density variables to the base material

E(ρe) = Emin + Eρpe (3)

The field can now be optimized using, for example, optimality criteria [6] or MMA [38], resulting
in the desired microstructural topology; see [43], for example. Similar problems can be posed, for
example, to minimize the Poisson ratio, subject to a mass constraint.

3 Proposed Framework

3.1 Generalized Microstructural Problems

As stated earlier, in many applications, the mass constraint m̂ (see Equation 2c) is not known a priori.
Instead, it may be more advantageous to impose constraints on physical quantities. In this paper, we
consider such generalized microstructural optimization problems of the form:

minimize
ρ

ϕ(CH(ρ)) (4a)

subject to K(ρ)ui = f i, i = 1, 2, 3 (4b)
hj(ρ) = 0, j = 1, 2, ... (4c)
0 < ρ ≤ 1 (4d)

where the objective ϕ(CH) represents one of the following: the bulk modulus (K), shear modulus
(G), Poisson ratio (ν), that depend on the density via the elasticity matrix, or mass (m) that depends
directly on the density, and hj are equality constraints involving these quantities.
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For example, the problem of maximizing the bulk modulus subject to a Poisson ratio constraint may
be posed as:

minimize
ρ

−K(ρ) (5a)

subject to K(ρ)ui = f i, i = 1, 2, 3 (5b)
ν(ρ)/ν̂ − 1 = 0 (5c)
0 < ρ ≤ 1 (5d)

where ν̂ is the desired Poisson ratio. Similarly, the problem of minimizing the mass subject to
constraints on the bulk modulus and Poisson ratio may be posed as:

minimize
ρ

m(ρ) (6a)

subject to K(ρ)ui = f i, i = 1, 2, 3 (6b)

K(ρ)/K̂ − 1 = 0 (6c)
ν(ρ)/ν̂ − 1 = 0 (6d)
0 < ρ ≤ 1 (6e)

where K̂ is the desired bulk modulus, and ν̂ is the desired Poisson ratio. In the remainder of this
paper, we will consider solving such problems.

3.2 Representing Density using Neural Networks

One of the challenges in solving such generalized problems is computing the sensitivities of the
objective and constraints. Manual derivation can be cumbersome and error-prone, especially when
the problem is recast within the context of augmented Lagrangian formulation (see Section 3.3).
We, therefore, propose here a neural-network (NN) framework that supports automatic sensitivity
computation for gradient-based optimization [8]. The framework not only eliminates the burden of
manual sensitivity calculations, it offers other computational advantages as discussed in the remainder
of the paper.

In particular, we employ a simple fully-connected feed-forward neural network [7]. The input to the
network are points (x, y) within the domain; the NN has a series of hidden layers associated with
activation functions [15], [24]. The output is the density ρ at that point; see Figure 3. Observe that
the final layer is a SoftMax activation function [7] that ensures that the density lies between 0 and 1.
The density will depend on the weights and bias, i.e., they serve as the design variables w.

Figure 3: Neural network architecture for representing the density field.

Thus, we can now repose the generalized problem as:

minimize
w

ϕ(CH(w)) (7a)

subject to K(w)ui = f i, i = 1, 2, 3 (7b)
hj(w) = 0, j = 1, 2, ...n (7c)

Observe that an explicit (bound) constraint on the density field is not needed since it is automatically
satisfied by the Softmax function.

To generalize the above framework to multiple materials, the output of the NN is increased to (M +1)
variables, where M is the number of non-void materials; see Figure 4. No other change is needed in
the framework, i.e., one can use exactly the same number of design variables w. Further, due to the
nature of Softmax function, the partition of unity condition:

M∑
m=0

ρm = 1 (8)
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is automatically satisfied, i.e., the sum of all densities is guaranteed to be unity. Finally, the SIMP
material model in Equation 3 is generalized to multiple materials as follows:

E(ρ) = Emin +

M∑
m=0

Emρpm (9)

Figure 4: Neural network architecture for representing multiple materials.

3.3 Augmented Lagrangian

To solve both the single and multi-material problems, we will use the augmented Lagrangian method
[26], i.e., let

L(w) = ϕ+

n∑
j=1,2...

αjh
2
j +

n∑
j=1,2...

µjhj (10)

where the penalty parameters αj and Lagrange multipliers µj are updated through iterations. First,
starting with a small value for αj and a zero value for µj the augmented Lagrangian is minimized
using the popular L-BFGS method [26]. Then, the coefficients α and µ are updated as follows (see
Section 4):

αj
(k+1) = αj

(k) +∆α (11a)

µj
(k+1) = µj

(k) + 2αj
(k+1)h

(k)
j (11b)

The optimization is repeated until convergence. For termination, we consider two quantities

ϵϕ =| (ϕ(k+1) − ϕ(k))/ϕ(k+1) | (12)

and

ϵh =

n∑
j=1,2...

| hj | (13)

The algorithm terminates when both quantities are less than a prescribed value (see Section 4 for
details). The overall framework is illustrated in Figure 5.

Figure 5: The optimization framework.

3.4 Automatic Differentiation

Since L-BFGS is a gradient-based optimizer, it requires sensitivities, i.e., derivative of the loss
function with respect to the design variables (weights of the NN). In the present framework, all
computations including FEA are captured using PyTorch (that supports automatic differentiation) as
illustrated in fig. 6. Thus, not only can we compute the spatial gradients of the density field, one can
also compute the sensitivities of the loss function with respect to the weights in an automated fashion
as illustrated.
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Figure 6: Automatic differentiation provides sensitivities for L-BFGS.

4 Numerical examples

In this section, we conduct several numerical experiments to illustrate the proposed algorithm (refer
Appendix for algorithm). The implementation is in Python, within the PyTorch environment. All
experiments were conducted on an Intel i9-11900K @ 3.50GHz GHz, equipped with 32 GB of RAM.
The default parameters are listed in Table 1. We use the popular SIMP continuation scheme [29]
for the material model. For the default NN configuration of 5 layers and 30 neurons per layer, the
number of design variables w (weight and bias) is 3872.

Parameter Description and default value
E, ν For base material: E = 1, ν = 0.3; for void: E = 0.001, ν = 0.3

λ(mass density) For base material: λ = 1; for void: λ = 0
NN Neural network: 5 layers and 30 neurons per layer, with Swish functions
α, µ Lagrangian parameters: α0 = 1,∆α = 5 and µ0 = 0

p SIMP continuation parameters: p0 = 2, ∆p = 0.5, pmax = 10
nx,ny Mesh elements: nx = 60, ny = 60
ϵ̂ϕ, ϵ̂h Convergence criteria for objective and constraints: ϵ̂ϕ = ϵ̂h = 0.025

Table 1: Default simulation parameters.

The default initial topology is a square block as illustrated in Figure 7.

Figure 7: Default initial topology.

Through the experiments, we investigate the following:

1. Validation: First, we consider classic mass constrained optimization of bulk modulus,
shear modulus, and Poisson ratio, and compare some of the computed values against well-
established theoretical results.

2. Convergence: The typical convergence of the algorithm is then illustrated.
3. Initial Topology: Next, we consider initial topologies different from the one in Figure 7 and

optimize for maximum bulk modulus.(Appendix)
4. Impact of NN Configuration: We then vary the NN size and consider its impact on Poisson

ratio minimization. (Appendix)
5. Impact of Mesh Size: We repeat the above experiment but vary the mesh size instead of the

NN size.(Appendix)
6. Generalized Problems: We then consider several generalized microstructural problems.
7. High Resolution Sampling: We then discuss the idea of high-resolution sampling that the

proposed framework supports.(Appendix)
8. Evaluation of Poisson Ratio: For designs with negative Poisson ratio, we compare the

predicted homogenized Poisson ratio against those predicted through a full-scale analysis
using ANSYS.(Appendix)

9. Multi-Material Design: Finally, we present results for multiple materials.(Appendix)
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4.1 Validation

First, we consider the classic problem of bulk modulus maximization subject to a mass-fraction
constraint of 0.3. The resulting topology, computed in 47 seconds, is illustrated in Figure 8a. Similarly,
Figure 8b illustrates a microstructure with maximal shear modulus for the same mass constraint,
computed in 53 seconds. Finally, Figure 8c illustrates the microstructure when the Poisson ratio is
minimized for the same mass constraint, computed in 55 seconds.

(a) Bulk modulus. (b) Shear modulus. (c) Poisson ratio.

Figure 8: Classic microstructural optimization problems.

Table 2 compares the computed bulk modulus for various mass fractions, against the Hashin-
Shtrikman upper bound.

m̂ K∗ KHS

0.1 0.020 0.0282
0.3 0.092 0.099
0.5 0.18 0.20
0.7 0.34 0.35

Table 2: Computed bulk modulus vs. HS upper bound.

4.2 Convergence

Recall that the error in the objective ϵϕ and error in the constraints ϵg, defined in Equation 12
and Equation 13 respectively, are computed at the end of every L-BFGS iteration. The algorithm
terminates when ϵϕ < ϵ̂ϕ and ϵg < ϵ̂g specified in Table 1. Figure 9a illustrates the objective error ϵϕ
and the constraint error ϵg for bulk modulus maximization, while Figure 9b illustrates the two errors
for Poisson ratio minimization.

(a) Bulk modulus. (b) Poisson ratio.

Figure 9: Objective and constraint errors after every L-BFGS iteration.

In the experiments, we observed that 3 to 20 L-BFGS iterations are sufficient. Further, each L-BFGS
iteration typically involves 2 to 10 inner iterations. The homogenized properties are recorded at the
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end of every inner iteration. Figure 10a illustrates these quantities for bulk modulus maximization,
and Figure 10b illustrates these for Poisson ratio minimization. The spikes observed in the two figures
correspond to the start of a new L-BFGS iteration when the penalty parameters are updated.

(a) Bulk modulus. (b) Poisson ratio.

Figure 10: Various homogenized quantities after every FE operation.

4.3 Generalized Problems

To illustrate the benefits of the proposed framework, we first used the MATLAB code published in
[43] to minimize the Poisson ratio to a mass constraint of m̂ = 0.5. The algorithm did not terminate;
the final topology, after a maximum allowable 450 FE operations (15 seconds), is illustrated in Figure
11a; it exhibits the following characteristics ν = −0.23, K = 0.015 and G = 0.002. Observe that
the microstructure is weak in bulk and shear.

In the proposed framework, the bulk modulus was maximized subject to ν = −0.23 and m̂ = 0.5,
i.e., the constraints are consistent with the results obtained above. The resulting topology, after 420
FE operations (52 seconds), illustrated in Figure 11b exhibits the following characteristics m = 0.5,
ν = −0.23, K = 0.027 and G = 0.012. Thus the proposed framework increases the bulk modulus
by a factor of about 2. For approximately the same number of finite element operations, the proposed
framework is slower due to the overhead of automatic differentiation.

Next, the shear modulus was maximized subject to ν = −0.23 and m̂ = 0.5. The resulting topology
after 560 FE operations (91 seconds), illustrated in Figure 11c exhibits the following characteristics
m = 0.5, ν = −0.23, K = 0.027 and G = 0.027, i.e., the bulk and shear moduli increased by a
factor of 10.

(a) Mass constrained. (b) Maximizing K. (c) Maximizing G.

Figure 11: Classic versus proposed framework.

One can also impose multiple physical constraints within the proposed framework. Consider the
minimization of the mass, subject to bulk modulus and Poisson ratio constraints. Figure 12 illustrates
three designs obtained for three different scenarios. The corresponding mass fractions are 0.34, 0.63,
and 0.82. One can also target a specific elasticity matrix Ĉ

H
. We consider a specific example from

[48]:

Ĉ
H

=

[
0.13 −0.03 0
−0.03 0.13 0

0 0 0.015

]
(14)
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(a) K̂ = 0.1, ν̂ = 0.1. (b) K̂ = 0.1, ν̂ = −0.1. (c) K̂ = 0.1, ν̂ = −0.2.

Figure 12: Minimizing mass with bulk modulus and Poisson ratio constraints.

Note that there may exist multiple solutions (with significantly different masses) with the same CH

[39]. Using our framework by imposing the target CH and a target mass as constraints, one can
obtain different designs; these are illustrated in Figure 13a and 13b, with mass target of 0.40 and 0.52,
respectively. A solution, with a mass of 0.37 was reported in [48]; see Figure 13c.

(a) m = 0.40 (b) m = 0.52 (c) m = 0.37 [48]

Figure 13: Designs obtained for a targeted Ĉ
H

.

5 Conclusions

This paper presents a generalized neural-network-based framework for microstructural optimization
where any of the microstructural quantities, namely, bulk, shear, Poisson ratio, volume or mass, can
serve as the objective, while the remaining can be subject to constraints. The NN-based representation,
which is independent of analysis finite element mesh, provides for greater design freedom. The
analytical representation also enables generation of high-resolution designs at no cost. Since the
sensitivities are computed in automated fashion, one can avoid the error-prone task of manual
derivations. This can be particularly useful, for example, when the material is non-linear. Further, we
avoided heuristics for designing NPR materials. Instead we relied on standard L-BFGS optimization
techniques. Experiments demonstrate that the proposed method is more robust than existing methods
for generalized problems. This supports repeatability and wider adaption of the framework as a
powerful design tool. Due to the overhead cost of automatic differentiation (AD), the framework was
found to be slower than, say, the MATLAB implementation presented in [43]. However, we believe
the benefits of AD outweigh the computational costs. We also noted that the designs were sensitive to
mesh discretization. Since this is not usually desirable in topology optimization, further investigation
is needed to study the interplay between the neural network and mesh discretization.

There are several directions for future research: extension to multi-physics [10], 3D [2], geometric
and material non-linearity [40], inclusion of stress constraints [9], multi-stable materials [46], and
inclusion of feature size and manufacturing constraints [13, 22, 49] within the NN framework.
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