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DECONET: an Unfolding Network
for Analysis-based Compressed Sensing

with Generalization Error Bounds
Vicky Kouni and Yannis Panagakis

Abstract—We present a new deep unfolding network for
analysis-sparsity-based Compressed Sensing. The proposed net-
work coined Decoding Network (DECONET) jointly learns a
decoder that reconstructs vectors from their incomplete, noisy
measurements and a redundant sparsifying analysis operator,
which is shared across the layers of DECONET. Moreover, we
formulate the hypothesis class of DECONET and estimate its
associated Rademacher complexity. Then, we use this estimate
to deliver meaningful upper bounds for the generalization error
of DECONET. Finally, the validity of our theoretical results is
assessed and comparisons to state-of-the-art unfolding networks
are made, on both synthetic and real-world datasets. Experimen-
tal results indicate that our proposed network outperforms the
baselines, consistently for all datasets, and its behaviour complies
with our theoretical findings.

Index Terms—Compressed Sensing, analysis sparsity, unfold-
ing network, generalization error, Rademacher complexity.

I. INTRODUCTION

Compressed Sensing (CS) [1] is a modern technique to
reconstruct signals x ∈ Rn from few linear and possibly
corrupted observations y = Ax + e ∈ Rm, m < n. Iterative
methods applied on CS are by now widely used [2, 3, 4].
Nevertheless, deep neural networks (DNNs) have become
popular for tackling sparse recovery problems like CS [5,
6], since they significantly reduce the time complexity and
increase the quality of the reconstruction. A new line of
research lies on merging DNNs and optimization algorithms,
leading to the so-called deep unfolding/unrolling [7, 8]. The
latter pertains to interpreting the iterations of well-known
iterative algorithms as layers of a DNN, which reconstructs
x from y.

Deep unfolding networks have become increasingly popular
in the last few years [9], [10], [11], [12] because – in contrast
with traditional DNNs – they are interpretable [13], integrate
prior knowledge about the signal structure [14], and have
relatively few trainable parameters [15]. Especially in the case
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of CS, unfolding networks have proven to work particularly
well. For example, [16], [17], [18], [19], [20], [21], [22]
interpret the iterations of well-studied optimization algorithms
as layers of a neural network, which learns a decoder for
CS, i.e., a function that reconstructs x from y. Additionally,
some of these networks jointly learn a sparsifying transform
for x. This sparsifier may either be a nonlinear transform
[18] or an orthogonal matrix [22] – integrating that way a
dictionary learning technique. The latter has shown promising
results when employed in model-based CS [23, 24, 25]; hence,
it looks appealing to combine it with unfolding networks.
Furthermore, research community focuses lately on the gener-
alization error [26, 27] of deep unfolding networks [28], [22],
[29], [30]. Despite recent results of this kind, estimating the
generalization error of unfolding networks for CS is still in its
infancy.

In fact, generalization error bounds are only provided for
unfolding networks that promote synthesis sparsity in CS, by
means of the dictionary learning technique. On the other hand,
the analysis sparsity model differs significantly [31] from its
synthesis counterpart and it can be more advantageous for
CS [32]. For example, the redundancy of so-called analysis
operators can lead to a more flexible sparse representation
of the signals of interest, compared to orthogonal sparsifying
transforms (see Sections II-A and II-B for a detailed com-
parison between the two sparsity models). To the best of our
knowledge, only one unfolding network [33] takes advantage
of analysis sparsity in CS, in terms of learning a redundant
sparsifying analysis operator. Nevertheless, the generalization
ability of [33] is not mathematically explained.

In this paper, we are inspired by the articles [20], [22],
[28], [29], [33]. These publications propose ISTA-based [2],
reweighted FISTA-based [34] and ADMM-based [4] unfold-
ing networks, which jointly learn a decoder for CS and a
sparsifying transform. Particularly, the learnable sparsifiers
of [20, 22, 28, 29] promote synthesis sparsity, while [33]
employs its handier analysis counterpart. The deficiency of
[20, 33] lies on the fact that their proposed frameworks are not
accompanied by a generalization analysis, whereas [22, 28, 29]
provide generalization error bounds for the proposed networks.
Similarly, we develop a new unfolding network based on
an optimal analysis-l1 algorithm [35] and call it Decoding
Network (DECONET). The latter jointly learns a decoder for
CS and a redundant sparsifying analysis operator; thus, we
address the CS problem under the analysis sparsity model.
Our novelty lies on estimating the generalization error of the
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DUN Iterative Scheme Sparsity Model Gen. Error Bounds
ISTA-net [22] Iterative Soft Thresholding Algorithm [2] Synthesis Yes

SISTA-RNN [19] Sequential Iterative Soft Thresholding Algorithm [39] Synthesis No
Reweighted-RNN [29] Reweighted l1 − l1 algorithm [29] Synthesis Yes

AMP-Net [16] Approximate Message Passing [40] Synthesis No
ADMM-net [20] Alternating Direction Method of Multipliers [4] Synthesis No

ADMM-DAD [33] Alternating Direction Method of Multipliers [4] Analysis No
DECONET (proposed) Analysis-l1 [35] Analysis Yes

Table I: Comparisons among some example unfolding networks for CS. Categorizations are based on a) the associated
optimization algorithm b) the employed sparsity model c) the study of generalization error.

proposed analysis-based unfolding network. To that end, we
upper bound the generalization error of DECONET in terms of
the Rademacher complexity [36] of the associated hypothesis
class. In the end, we numerically test the validity of our theory
and compare our proposed network to the state-of-the-art
(SotA) unfolding networks of [22] and [33], on real-world and
synthetic data. In all datasets, our proposed neural architecture
outperforms the baselines in terms of generalization error,
which scales in accordance with our theoretical results.

Our key contributions are listed below.
1) After differentiating synthesis from analysis sparsity in

CS and presenting example unfolding networks in Section
II, we develop in Section III a new unfolding network
dubbed DECONET. The latter jointly learns a decoder
that solves the analysis-based CS problem and a redun-
dant sparsifying analysis operator W ∈ RN×n, n < N ,
that is shared across the layers of DECONET.

2) We introduce in Section IV the hypothesis class – pa-
rameterized by W – of all the decoders DECONET can
realize and restrict W to be bounded in this class, so that
we impose a realistic structural constraint on the operator.

3) Later in Section IV, we estimate the generalization error
of DECONET using a chaining technique. Our results
showcase that the redundancy N of W and the number
of layers L affect the generalization ability of DECONET;
roughly speaking, the generalization error scales like√
NL (see Theorem IV.12 and Corollary IV.13). To

the best of our knowledge, we are the first to study
the generalization ability of an unfolding network for
analysis-based CS.

4) We confirm the validity of our theoretical guarantees in
Section V, by testing DECONET on a synthetic dataset
and two real-world image datasets, i.e., MNIST [37] and
CIFAR10 [38]. We also compare DECONET to two SotA
unfolding networks: a recent variant of ISTA-net [22] and
ADMM-DAD net [33]. Our experiments demonstrate that
a) the generalization error of DECONET scales correctly
with our theoretical findings b) DECONET outperforms
both baselines, consistently for all datasets.

Notation. We denote the set of real, positive numbers by
R+. For a sequence an that is upper bounded by M > 0, we
write {an} ≤M . For a matrix A ∈ Rn×n, we write ∥A∥2→2

for its operator/spectral norm and ∥A∥F for its Frobenius
norm. Moreover, we write ∥A∥2→2 ≈ 1 if ∥A∥2→2 ≥ 1, but
there exists C > 0 such that C∥A∥2→2 ≤ 1. For a family of
vectors (wi)

N
i=1 in Rn, its associated analysis operator is given

by Wf := {⟨f, wi⟩}Ni=1, where f ∈ Rn. For square matrices

A1, A2 ∈ RN×N , we denote by [A1;A2] ∈ R2N×N their
concatenation with respect to the first dimension, while we
denote by [A1 |A2] ∈ RN×2N their concatenation with respect
to the second dimension. Similarly, for non-square matrices
A1 ∈ Rm1×n, A2 ∈ Rm2×n, A3 ∈ Rm×n1 , A4 ∈ Rm×n2 , we
denote by [A1;A2] ∈ R(m1+m2)×n the concatenation of A1

and A2 with respect to the first dimension, while we denote
by [A3 |A4] ∈ Rm×(n1+n2) the concatenation of A3 and A4

with respect to the second dimension. We write ON×N for
a real-valued N × N matrix filled with zeros and IN×N for
the N × N identity matrix. We denote by diag(α) a square
diagonal matrix having α ∈ R in its main diagonal and zero
elsewhere. For x ∈ R, τ > 0, the soft thresholding operator
Sτ : R 7→ R is defined as

Sτ (x) = S(x, τ) =

{
sign(x)(|x| − τ), |x| ≥ τ
0, otherwise,

(1)

or in closed form S(x, τ) = sign(x)max(0, |x| − τ). For x ∈
Rn, the soft thresholding operator acts component-wise, i.e.
(Sτ (x))i = Sτ (xi), and is 1-Lipschitz with respect to x. For
y ∈ Rn, τ > 0, the mapping

PG(τ ; y) = argminx∈Rn

{
τG(x) +

1

2
∥x− y∥22

}
, (2)

is the proximal mapping associated to the convex function G.
For G(·) = ∥ · ∥1, (2) coincides with (1). For x ∈ R, τ > 0,
the truncation operator Tτ : R 7→ R is defined as

Tτ (x) = T (x, τ) =

{
τsign(x), |x| ≥ τ
x, otherwise

, (3)

or in closed form T (x, τ) = sign(x)min{|x|, τ}. For x ∈ Rn,
the truncation operator acts component-wise and is 1-Lipschitz
with respect to x. For two functions f, g : Rn 7→ Rn, we
write their composition as f ◦g : Rn 7→ Rn and if there exists
some constant C > 0 such that f(x) ≤ Cg(x), then we write
f(x) ≲ g(x). For the ball of radius t > 0 in Rn with respect
to some norm ∥ · ∥, we write Bn

∥·∥(t). The covering number
N (T, ∥ · ∥, t) of a space T , equipped with a norm ∥ · ∥, at
level t > 0, is defined as the smallest number of balls Bn

∥·∥(t)

required to cover T . The set of all matrices W ∈ RN×n with
operator norm bounded by some 0 < Λ < ∞, is defined as
BΛ = {W ∈ RN×n : ∥W∥2→2 ≤ Λ}.

II. RELATED WORK:
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FROM MODEL-BASED TO DATA-DRIVEN CS

The main idea of CS is to reconstruct a vector x ∈ Rn from
measurements y = Ax+ e ∈ Rm, m < n, where A is the so-
called measurement matrix [41] and e ∈ Rm, with ∥e∥ ≤ ε,
corresponds to noise. In order to ensure exact/approximate
reconstruction of x, CS relies on two principles. First, A must
meet some conditions, for example the restricted isometry
property or the null space property [41]. In particular, random
Gaussian matrices A ∈ Rm×n have proven to be nice candi-
dates for CS, since they satisfy such conditions [41]. Second,
we assume x is (approximately) sparse. Sparse data models
are split in synthesis and analysis sparsity [42].

A. Synthesis Sparsity in CS and ISTA-based Unfolding

Under the synthesis sparsity model [41, 43, 44, 45], signals
are considered to be sparse when synthesized by a few column
vectors taken from a large matrix called dictionary, which
is typically assumed to be orthogonal, i.e. D ∈ Rn×n, with
DDT = In×n (e.g. D may be the discrete cosine transform),
so that x = Dz. Employing synthesis sparsity in CS, we aim
to recover x from y. A common way to do so is by solving
the l1-minimization problem

min
z∈Rn

∥z∥1 s. t. ∥y −ADz∥2 ≤ ε. (4)

Towards that end, numerous iterative algorithms [2, 3, 46]
have emerged. Typically, they consist of an iterative scheme
that incorporates a proximal mapping and after a number of
iterations and under certain conditions, they converge to a
minimizer x̂ of (4). For example, ISTA uses the proximal
mapping (2) to yield the following iterative scheme

zk+1 =Sτλ(zk + τ(AD)T (y −ADz))
=Sτλ((I −DTATAD)z + τ(AD)T y), (5)

for k = 0, 1, . . . , z0 = 0, with τ, λ > 0 being parameters of the
algorithm. If τ∥AD∥22→2 ≤ 1 [2], zk converges to a minimizer
ẑ of (4), so that the reconstructed x̂ is simply given by x̂ = Dẑ.
As stated in [22], under the assumption that D is learned from
a training set, the iterative scheme of (5) can be interpreted
as a layer of a neural network (whose trainable parameters
are the entries of D) with weight matrix I −DTATAD, bias
τ(AD)T y and activation function Sτλ. Then, the composition
of a given number of layers and the consequent application
of D constitutes the decoder implemented by the ISTA-based
network, which outputs x̂ ≈ x.

B. Analysis Sparsity in CS and ADMM-based Unfolding

Despite its success, synthesis sparsity has a “twin”, i.e., the
analysis sparsity model [47, 48, 49], in which one assumes
that there exists a redundant analysis operator W ∈ RN×n,
n < N , so that Wx is sparse. For example, W may be the
analysis operator associated to a frame [50, 51] or a finite
difference operator [52]. The associated optimization problem
for CS is the analysis l1-minimization problem

min
x∈Rn

∥Wx∥1 s. t. ∥Ax− y∥2 ≤ ε. (6)

From now on, whenever we speak about the redundancy of an
analysis operator, we mean the number of its rows N .
Analysis sparsity has become popular, due to some benefits
it has compared to its synthesis counterpart. For example, it
is computationally more appealing to solve the optimization
algorithm of analysis-based CS, since the actual optimization
takes place in the ambient space [53] and the algorithm in-
volved may need less measurements for perfect reconstruction,
if one uses a redundant transform instead of an orthogonal one
[48]. Nevertheless, choosing the appropriate iterative algorithm
for solving (6) may be a tricky task. The reason is that most
thresholding algorithms cannot handle analysis sparsity, since
the proximal mapping associated to ∥W (·)∥1 does not have a
closed-form type. To tackle this issue and solve (6), one may
employ the so-called ADMM [4] algorithm, which uses the
following iterative scheme

xk+1 = (ATA+ ρWTW )−1(AT y + ρWT (zk − uk)) (7)

zk+1 = Sλ/ρ(Wxk+1 − uk) (8)

uk+1 = uk +Wxk+1 − zk+1, (9)

with k ∈ N, dual variables z, u ∈ RN , initial points
(x0, z0, u0) = (0, 0, 0), penalty parameter ρ > 0 and regu-
larization parameter λ > 0. As shown in [4], the iterates (7)
– (9) converge to a solution p⋆ of

min
x∈Rn

1

2
∥Ax− y∥22 + λ∥z∥1 s. t. Wx− z = 0. (10)

In [33], the updates (7) - (9) are formulated as a neural network
(whose trainable parameters are the entries of W ) with L
layers, defined as

g1(y) = I1b(y) + I2Sλ/ρ(b(y)), (11)

gk(v) = Θ̃v + I1b+ I2Sλ/ρ(Θv + b), k = 2, . . . , L, (12)

with v ∈ R2N×1 being an intermediate variable, weight
matrices Θ̃, Θ (depending on A, W , ρ), bias b (depending on
A, W , ρ, y) and activation function Sλ/ρ. The resulting learned
decoder that reconstructs x from y emerges by applying an
affine map on the composition of a given number of layers.

III. DECONET: A NEW UNFOLDING NETWORK
FOR ANALYSIS-BASED CS

The generic ADMM-based unfolding network of [33]
seems promising, but it involves the costly computation of
(ATA + ρWTW )−1. On the other hand, ADMM-based un-
folding networks may deal with the bottleneck of the inverses’
computation by leveraging some structure of the problem
[54] or imposing specific constraints [55]. Nevertheless, such
unfolding networks are synthesis-based and thus they cannot
treat analysis sparsity. Therefore, in order to address both
aspects, we opt for solving (6) with the optimal first-order
analysis-l1 algorithm described in [35], which uses transposes
– instead of inverses – of the involved matrices. We will
briefly describe the steps leading to the derivation of the
aforementioned algorithm, as these are stated in [35]. First,
an equivalent to (6) smoothed formulation is given as follows:

min
x∈Rn

∥Wx∥1 +
µ

2
∥x− x0∥22 s. t. ∥y −Ax∥2 ≤ ε, (13)
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where µ ∈ R+ is the so-called smoothing parameter and
x0 ∈ Rn is an initial guess on x. Second, the dual of (13)
is determined to be

maxz2∈Rm ⟨y, z2⟩ − ε∥z2∥2
s. t. AT z2 −WT z1 = 0, ∥z1∥∞ ≤ 1,

(14)

where z1 ∈ RN , z2 ∈ Rm are dual variables. The afore-
described formulations – combined with a collection of ar-
guments and computations – lead to Algorithm 1, which
constitutes a variant of an optimal first-order method. For
reasons of convenience, we call this algorithm analysis conic
form (ACF) from now on. ACF also involves step sizes
{t1k}, {t2k} > 0 and a step size multiplier 0 < {θk}. A standard
setup for ACF employs update rules such that 0 < {t1k}k≥0,
{ t2k}k≥0 ≤ 1, 0 < {θk}k≥0 ≤ 1.

Algorithm 1: ACF

Input : x0 ∈ Rn, z10 ∈ RN , z20 ∈ Rm, µ ∈ R+, step
sizes {t1k}, { t2k}

Output: solution x̂µ of (13)
1 θ0 ← 1, u10 = z10 , u

2
0 = z20 ;

2 for iterations k = 0, 1, . . . do
3 xk ← x0 + µ−1((1− θk)WTu1k + θkW

T z1k − (1−
θk)A

Tu2k − θkAT z2k);
4 z1k+1 ← T ((1−θk)u1k+θkz1k−θ

−1
k t1kWxk, θ

−1
k t1k);

5 z2k+1 ←
S((1− θk)u2k + θkz

2
k − θ

−1
k t2k(y −Axk), θ

−1
k t2kε);

6 u1k+1 ← (1− θk)u1k + θkz
1
k+1;

7 u2k+1 ← (1− θk)u2k + θkz
2
k+1;

8 θk+1 ← 2/(1 + (1 + 4/(θk)
2)1/2);

9 end

The dual function gµ corresponding to (14) has a Lipschitz
continuous gradient, hence ACF converges [35] to a solution
x̂µ of (13), for which we have x̂µ

µ→0−→ x̂, where x̂ is an
optimal solution of (6). The authors of [35] clarify that when
they speak about the optimal solution x̂, they refer to this
uniquely determined value. Additionally, they argue that there
are situations where x̂ and x̂µ coincide. Henceforward, we
stick to their formulation and speak about the solution x̂.

We consider a standard scenario for the ACF, where z10 =
u10 = 0, z20 = u20 = 0, t10 = t20 = θ0 = 1, 0 <
{t1k}, { t2k}, {θk} ≤ 1, µ > 1, x0 = AT y and A ∈ Rm×n is
an appropriately normalized random matrix (which constitutes
a typical choice for CS), with ∥A∥2→2 ≈ 1. We substitute
first x−update into z1− and z2−updates and second z1−
and z2− into u1− and u2−updates, respectively, concatenate
z1k, z

2
k, u

1
k, u

2
k in one vector vk, i.e. vTk = (z1k, z

2
k, u

1
k, u

2
k)

T ∈
R(1×p), p = 2N + 2m, for k ≥ 0, with v0 = 0, and do the
calculations, so that

vk+1 = Dkvk +Θk


T (G1

kvk − b1k, θ
−1
k t1k)

S(G2
kvk − b2k, θ

−1
k t2kε)

T (G1
kvk − b1k, θ

−1
k t1k)

S(G2
kvk − b2k, θ

−1
k t2kε)

 , (15)

where

b1k = θ−1
k t1kWx0 ∈ RN , (16)

b2k = θ−1
k t2k(y −Ax0) ∈ Rm, (17)

Θk = diag( θ0, . . . , θ0︸ ︷︷ ︸
(N+m) times

, θk, . . . , θk︸ ︷︷ ︸
(N+m) times

) ∈ Rp×p, (18)

Dk = (Ip×p −Θk) ∈ Rp×p, (19)

G1
k =(θk(I − θ−1

k t1kµ
−1WWT ) | t1kµ−1WAT

| (1− θk)(I − θ−1
k t1kµ

−1WWT ) (20)

| (1− θk)θ−1
k t1kµ

−1WAT ) ∈ RN×p,

G2
k =(t2kµ

−1AWT | θk(I − θ−1
k t2kµ

−1AAT )

| (1− θk)θ−1
k t2kµ

−1AWT | (1− θk)
· (I − θ−1

k t2kµ
−1AAT )) ∈ Rm×p. (21)

We observe that (15) can be interpreted as a layer of a neural
network, with weights G1, G2, biases b1, b2 and activation
functions T (·, ·), S(·, ·). Nevertheless, this interpretation of
ACF as a DNN does not account for any trainable parameters.
We cope with this issue by considering W to be unknown and
learned from a training sequence S = {(xi, yi)}si=1 with i.i.d.
samples drawn from an unknown distribution1 Ds. Hence,
the trainable parameters are the entries of W . Additionally,
we make the realistic assumption that W is bounded with
respect to the operator norm, i.e., W ∈ BΛ. Based on (15),
we formulate ACF as a neural network with L layers/iterations,
defined as

f1(y) = σ1(y) (22)
fk(v) = Dk−1v +Θk−1σk−1(v), k = 2, . . . , L, (23)

where

σ1(y)
T = (T (−t10Wx0, t

1
0),S(t20(y −Ax0), t20ε),

T (−t10Wx0, t
1
0),S(t20(y −Ax0), t20ε))T , (24)

σk(v)
T = (T (G1

kv − b1k),S(G2
kv − b2k),

T (G1
kv − b1k),S(G2

kv − b2k))T , (25)

for k = 2, . . . , L. We denote the composition of L such layers
(all having the same W ) as

fLW (y) = fL ◦ fL−1 ◦ · · · ◦ f1(y). (26)

The latter constitutes the realization of a neural network with
L layers, that reconstructs the intermediate variable v from
y. Thus, we call (26) intermediate decoder. Motivated by the
x-update of ACF, we apply an affine map ϕ : Rp×1 7→ Rn×1

after the last layer L, yielding the desired solution x̂:

x̂ := ϕ(v) = Φv + x0, (27)

where

Φ = (µ−1θLW
T | − µ−1θLA

T | µ−1(1− θL)WT

| − µ−1(1− θL)AT ) ∈ Rn×p.
(28)

1Formally speaking, this is a distribution over the xi and then yi = Axi+e,
with fixed A, e



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 5

Fig. 1: Schematic illustration of (22), (23), (26) and (27).
Note that y is passed as input into every subsequent layer
k = 2, . . . , L, but for notational simplification, we only write
the intermediate variable v. The operators “ ··· ” and “ +++ ”
denote matrix-vector multiplication and vector-vector addition,
respectively, while the activation functions σ1(·) and σk(·)
(k = 2, . . . , L) are defined as in (24) and (25), respectively.

Moreover, in order to clip the output ϕ(fLW (y)) in case its
norm falls out of a reasonable range, we apply an extra
function ψ : Rn → Rn after ϕ and define it as

ψ(x) =

{
x, ∥x∥2 ≤ Bout

Bout
x

∥x∥2
, otherwise , (29)

for some constant Bout > 0. For fixed L, the desired learnable
decoder is written as

decLW (y) = ψ(ϕ(fLW (y))). (30)

We call Decoding Network (DECONET) the network that
implements such a decoder, which is parameterized by W .

IV. GENERALIZATION ANALYSIS OF DECONET

In this Section, we deliver meaningful – in terms of L and
N – upper bounds on the generalization error of DECONET.
We do so in a series of steps presented in the next subsections.

A. Hypothesis Class of DECONET and Associated
Rademacher Complexity

We introduce the hypothesis class

HL = {h : Rm 7→ Rn : h(y) = ψ(ϕ(fLW (y))), W ∈ BΛ},
(31)

parameterized by W and consisting of all the func-
tions/decoders DECONET can implement. Given (31) and
the training set S, DECONET yields a function hS ∈ HL

that aims at reconstructing x from y. For a loss function
ℓ : HL ×Rn ×Rm 7→ R+, the empirical loss of a hypothesis
h ∈ HL is the reconstruction error on the training set, i.e.

L̂train(h) =
1

s

s∑
i=1

ℓ(h, xi, yi). (32)

In this paper, we choose as loss function ℓ the squared l2-norm;
hence, (32) takes the form of the training mean-squared error
(MSE):

L̂train(h) =
1

s

s∑
j=1

∥h(yj)− xj∥22. (33)

The true loss is

L(h) = E(x,y)∼D(∥h(y)− x∥22). (34)

The generalization error is given as the difference2 between
the empirical and true loss

GE(h) = |L̂train(h)− L(h)|. (35)

A typical way to estimate (35) consists in upper bounding
it in terms of the Rademacher complexity [56, Definition 2].
The empirical Rademacher complexity is defined as

RS(ℓ ◦ HL) = E sup
h∈HL

1

s

s∑
i=1

ϵi∥h(yi)− xi∥22, (36)

where ϵ is a Rademacher vector, that is, a vector with i.i.d.
entries taking the values ±1 with equal probability. Then, the
Rademacher complexity is defined as

Rs(ℓ ◦ HL) = ES∼Ds(RS(ℓ ◦ HL)). (37)

In this paper, we solely work with (36). We rely on the
following Theorem that estimates (35) in terms of (36).

Theorem IV.1 ([26, Theorem 26.5]). Let H be a family of
functions, S the training set drawn from Ds, and ℓ a real-
valued bounded loss function satisfying |ℓ(h, z)| ≤ c, for all
h ∈ H, z ∈ Z. Then, for δ ∈ (0, 1), with probability at least
1− δ, we have for all h ∈ H

L(h) ≤ L̂(h) + 2RS(ℓ ◦ H) + 4c

√
2 log(4δ)

s
. (38)

In order to use the previous Theorem, the loss function
must be bounded. Towards this end, we make two typical –
for the machine learning literature – assumptions regarding
the training set S = {(xi, yi)}si=1. Let us suppose that with
overwhelming probability we have

∥yi∥2 ≤ Bin, (39)

for some constant Bin > 0, i = 1, . . . , s. Moreover, we assume
that for any h ∈ HL, with overwhelming probability over yi
chosen from D, the following holds

∥h(yi)∥2 ≤ Bout, (40)

by definition of ψ, for some constant Bout > 0, for all i =
1, . . . , s. Hence, ∥ · ∥22 is bounded as ∥h(yi)− xi∥22 ≤ (Bin +
Bout)

2, i = 1, . . . , s. Following the previous assumptions, it is
easy to check that ∥ · ∥22 is a Lipschitz continuous function,
with Lipschitz constant Lip∥·∥2

2
= 2Bin + 2Bout; hence, we

can employ the so-called (vector-valued) contraction principle,
which allows us to study RS(H) alone:

Lemma IV.2 ([57, Corollary 4]). Let H be a set of function
h : X 7→ Rn, f : Rn 7→ Rn a K-Lipschitz function and
S = {xi}si=1. Then

E sup
h∈H

s∑
i=1

ϵif ◦ h(xi) ≤
√
2KE sup

h∈H

s∑
i=1

n∑
k=1

ϵikhk(xi), (41)

2Some of the existing literature denotes the true loss as the generalization
error, but the definition we give in (35) is more convenient for our purposes
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where (ϵi), (ϵik) are both Rademacher sequences.

Applying Lemma IV.2 in RS(ℓ ◦ H) yields:

RS(l ◦ HL) ≤
√
2Lip∥·∥2

2
RS(HL)

=
√
2Lip∥·∥2

2
E sup

h∈HL

s∑
i=1

n∑
k=1

ϵikhk(xi)

=Bout
in E sup

h∈HL

s∑
i=1

n∑
k=1

ϵikhk(xi), (42)

where Bout
in =

√
2(2Bin+2Bout). We return to estimating (42)

in Section IV-D, after presenting the adequate mathematical
tools in Sections IV-B and IV-C.

B. Boundedness of DECONET’s Outputs

We take into account the number of training samples and
pass to matrix notation. Due to (39) and the Cauchy-Schwartz
inequality, we get ∥Y ∥F ≤

√
sBin. Similarly, the application

of the Cauchy-Schwartz inequality in (40) yields

∥h(Y )∥F = ∥ψ(ϕ(fLW (Y )))∥F ≤
√
sBout. (43)

Assumption IV.3. Since there exist redundant analysis oper-
ators W for which Λ may be relatively small [50, Corollary
6.2.3.], [58, Section V], [59, Proposition 5.1], [60, Lemma 1],
we may reasonably assume that c1,kΛ ≤ 1 and c1,kΛ

2 ≤ 1,
for all k ≥ 0. This simplifying assumption will hold for the
remainder of this paper.

The next Lemma presents bounds on a quantity we will
encounter more often in the sequel.

Lemma IV.4 (Proof in the supplementary material). Let k ≥
0. For any W ∈ BΛ, step sizes 0 < {t1k}, {t2k} ≤ 1 with
t10 = t20 = 1, step size multiplier 0 < {θk} ≤ 1 with θ0 = 1,
and smoothing parameter µ > 1, the following holds for the
matrices G1

k, G
2
k defined in (20), (21), respectively:

2∥G1
k∥2→2 + 2∥G2

k∥2→2 + 1 ≤ Γk, (44)

where

Γk = 2
[
c1,kΛ

2 + c2,k∥A∥22→2

+ 2∥A∥2→2Λ(c1,k + c2,k)
]
+ 1,

(45)

with {c1,k} = {θ−1
k µ−1t1k} ≤ 1, {c2,k} = {θ−1

k µ−1t2k} ≤
1, for all k ≥ 0. Moreover, if c1,kΛ ≤ 1, c1,kΛ2 ≤
1, c2,k∥A∥22→2 ≤ 1, then Γk ≤ γ for all k ≥ 0, with
γ = 4(Λ + ∥A∥2→2 + 1) + 1.

Apart from (43), we can upper-bound the output fkW (Y )
with respect to the Frobenius norm, after any number of layers
k and especially for k < L, so that ϕ and ψ are not applied
after the final layer L.

Lemma IV.5. Let k ∈ N. For any W ∈ BΛ, step sizes 0 <
{t1k}, {t2k} ≤ 1 with t10 = t20 = 1, t1−1 = t2−1 = 0, step size
multiplier 0 < {θk} ≤ 1 with θ0 = θ−1 = 1, and smoothing

parameter µ > 1, the following holds for the output of the
functions fkW defined in (22) - (23):

∥fkW (Y )∥F ≤ 2µ∥Y ∥F

(
k−1∑
i=0

Qi−1

k−1∏
j=i

Γj

+Qk−1

)
,

(46)

where Qk = ∥A∥2→2(c1,kΛ + c2,k∥A∥2→2) + c2,k, k ≥ 0,
with Q−1 = 0 and {Γk}k≥0, {c1,k}k≥0, {c2,k}k≥0 ≤ 1 are
defined as in Lemma IV.4. Moreover, if c1,kΛ ≤ 1, c1,kΛ2 ≤
1, c2,k∥A∥22→2 ≤ 1, then we have the simplified upper bound

∥fkW (Y )∥F ≤ 2µ∥Y ∥F (∥A∥2→2 + 1)(ζk + 1), (47)

where ζk = γk−1
γ−1 , with γ defined as in Lemma IV.4.

Proof. By definition of (1) and (3), S(·, ·) and T (·, ·) are
1-Lipschitz functions with respect to their first parameter,
respectively. For the matrices Θk and Dk in (18) and (19)
respectively, we have ∥Dk∥2→2 ≤ 1 and ∥Θk∥2→2 = 1, for
any k ≥ 1, since 0 < {θk} ≤ 1 and θ0 = 1. We use the
previous statements, along with (22) and (23), to prove (46)
via induction. For k = 1, we have

∥f1W (Y )∥F ≤2t10Λ∥X0∥F + 2t20(∥Y ∥F + ∥A∥2→2∥X0∥F )
=2µc1,0Λ∥A∥2→2∥Y ∥F
+ 2µc2,0(∥Y ∥F + ∥A∥22→2∥Y ∥F )

=2µ∥Y ∥F
(
∥A∥2→2(c1,0Λ + c2,0∥A∥2→2) + c2,0

)
.

Suppose (46) holds for k. Then, for k + 1:

∥fk+1
W (Y )∥F <∥fkW (Y )∥F + 2∥G1

kf
k
W (Y )−B1

k∥F
+ 2∥G2

kf
k
W (Y )−B2

k∥F
≤∥fkW (Y )∥F (2∥G1

k∥2→2 + 2∥G2
k∥2→2 + 1)

+ 2(∥B1
k∥F + ∥B2

k∥F )
≤Γk∥fkW (Y )∥F + 2µ∥X0∥F (c1,kΛ
+ c2,k∥A∥2→2) + 2µc2,k∥Y ∥F

≤Γk2µ∥Y ∥F
k−1∑
i=0

((
Qi−1

) k−1∏
j=i

Γj

)
+ Γk2µ∥Y ∥FQk−1 + 2µ∥Y ∥FQk

=2µ∥Y ∥F

[
k∑

i=0

(
Qi−1

k∏
j=i

Γj

)
+Qk

]
,

where in the forth inequality we set Qk = ∥A∥2→2(c1,kΛ +
c2,k∥A∥2→2) + c2,k for all k ≥ 0 and applied Lemma IV.4.
Therefore, we proved that (46) holds for any k ∈ N. Under the
additional assumptions c1,kΛ ≤ 1, c1,kΛ2 ≤ 1, c2,k∥A∥22→2 ≤
1, for any k ≥ 0, we may apply Lemma IV.4 on (46), yielding

∥fkW (Y )∥F ≤ 2µ∥Y ∥F (∥A∥2→2 + 1)

(
k−1∑
i=0

k−1∏
j=i

γ + 1

)

= 2µ∥Y ∥F (∥A∥2→2 + 1)

(
k∑

i=1

γi + 1

)
= 2µ∥Y ∥F (∥A∥2→2 + 1)(ζk + 1),

with ζk = γk−1
γ−1 and γ defined as in Lemma IV.4.
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C. Lipschitzness Results

In the next Theorem, we prove that the intermediate decoder
(26) is Lipschitz continuous with respect to W and explicitly
calculate the Lipschitz constants, which depend on L.

Theorem IV.6 (Proof in the supplementary material). Let fLW
defined as in (26), L ≥ 2, dictionary W ∈ BΛ, step sizes
0 < {t1k}k≥0, {t2k}k≥0 ≤ 1 with t10 = t20 = 1, t1−1 = t2−1 = 0,
step size multiplier 0 < {θk}k≥0 ≤ 1 with θ0 = θ−1 = 1, and
smoothing parameter µ > 1. Then, for any W1,W2 ∈ BΛ, we
have

∥fLW1
(Y )− fLW2

(Y )∥F ≤ KL∥W1 −W2∥2→2, (48)

where

KL =2µ∥Y ∥F

[
µ−1∥A∥2→2 +

L∑
k=2

((
max

0≤l≤L−1
Γl

)L−k

·
k−2∑
i=0

2

(
Qi−1

k−2∏
j=i

Γj

)
+ 2Qk−1(2Λc1,k−1 + ∥A∥2→2

· (c1,k−1 + c2,k−1)) + c1,k−1∥A∥2→2

)]
, (49)

with {Qk}k≥0 (Q−1 = 0) defined as in Lemma IV.5,
{Γk}k≥0, {c1,k}k≥0, {c2,k}k≥0 defined as in Lemma IV.4
and c1,−1 = c2,−1 = 0. Moreover, if c1,kΛ ≤ 1, c1,kΛ2 ≤
1, c2,k∥A∥22→2 ≤ 1, for all k ≥ 0, then we have the simplified
upper bound

KL ≤2µ∥Y ∥F
[
∥A∥2→2(L− 1 + µ−1)

+ 2(∥A∥2→2 + 1)(∥A∥2→2 + 3)κL

]
,

(50)

where

κL = γL
(

L− 1

γ(γ − 1)
+
γ(γ − 2)

(γ − 1)2

)
− γ2(γ − 2)

(γ − 1)2
, (51)

with γ as in Lemma IV.4.

We also prove below the Lipschitzness of the main decoder
defined in (30).

Corollary IV.7. Let h ∈ HL defined as in (31), L ≥ 2, and
dictionary W ∈ BΛ. Then, for any W1,W2 ∈ BΛ, we have:

∥ψ(ϕ(fLW2
(Y )))− ψ(ϕ(fLW1

(Y )))∥F
≤ µ−1(Λ + ∥A∥2→2)KL∥W2 −W1∥F , (52)

with KL as in Theorem IV.6.

Proof. By definition, ψ is a 1-Lipschitz function. Moreover,
as an affine map, ϕ is Lipschitz continuous with Lipschitz
constant Lipϕ = ∥Φ∥2→2, with Φ defined as in (28). We
evaluate ∥Φ∥2→2:

∥Φ∥2→2 ≤µ−1θL∥W∥2→2 + µ−1θL∥A∥2→2

+ µ−1(1− θL)∥W∥2→2 + µ−1(1− θL)∥A∥2→2

≤µ−1(Λ + ∥A∥2→2).

Combining the previous estimate with Theorem IV.6, we get

∥ψ(ϕ(fLW2
(Y )))− ψ(ϕ(fLW1

(Y )))∥F
≤ ∥ϕ(fLW2

(Y ))− ϕ(fLW1
(Y ))∥F

≤ ∥Φ∥2→2∥fLW2
(Y )− fLW1

(Y )∥F
≤ µ−1(Λ + ∥A∥2→2)KL∥W2 −W1∥F .

D. Covering Numbers and Dudley’s Inequality

For a fixed number of layers L ∈ N, we define the set
M⊂ Rn×s corresponding to the hypothesis class HL to be

M : = {(h(y1)|h(y2)| . . . |h(ys)) ∈ Rn×s : h ∈ HL}
= {ψ(ϕ((fLW (Y ))) ∈ Rn×s : W ∈ BΛ}. (53)

The column elements of each matrix in M are the recon-
structions given by a decoder h ∈ HL when applied to the
measurements yi. Since M is parameterized by W like HL

is, we may rewrite (42) as

RS(l ◦ HL) ≤ Bout
in E sup

M∈M

1

s

s∑
i=1

n∑
k=1

ϵikMik. (54)

Thus, we are left with estimating the Rademacher process
in the right hand side of (54). The latter has subgaussian
increments, hence we use Dudley’s inequality [41, Theorem
8.23], [61, Theorem 5.23] to upper bound it in terms of the
covering numbers of M. Towards that end, we calculate the
radius of M, that is,

∆(M) = sup
h∈HL

√√√√E

(
s∑

i=1

n∑
k=1

ϵikhk(yi)

)2

≤ sup
h∈HL

√√√√E
s∑

i=1

n∑
k=1

ϵik(hk(yi))2

≤ sup
h∈HL

√√√√ s∑
i=1

∥h(yi)∥22
(43)
≤
√
sBout. (55)

With (55) in hand, applying Dudley’s inequality to (54) yields

RS(l ◦ HL) ≤16(Bin +Bout)

s

·
∫ √

sBout
2

0

√
logN (M, ∥ · ∥F , ε)dε.

(56)

Lemma IV.8.

N (BN×n
∥·∥2→2

(Λ), ∥ · ∥2→2, ε) ≤
(
1 +

2Λ

ε

)Nn

. (57)

Proof. For | · | denoting the volume in RN×n, the following is
an adaptation of a well-known result [62, Proposition 4.2.12],
connecting covering numbers and volume in RN×n:

N (BN×n
∥·∥2→2

(Λ), ∥ · ∥2→2, ε) ≤
|BN×n

∥·∥2→2
(Λ) + ( ε2 )B

N×n
∥·∥2→2

(1)|
|( ε2 )B

N×n
∥·∥2→2

(1)|

=
|(Λ + ε

2 )B
N×n
∥·∥2→2

(1)|
|( ε2 )B

N×n
∥·∥2→2

(1)|
.
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Hence,

N (BN×n
∥·∥2→2

(Λ), ∥ · ∥2→2, ε) ≤
(
1 +

2Λ

ε

)Nn

.

We employ the previous Lemma, in order to estimate (56).

Proposition IV.9. The following estimate holds for the cover-
ing numbers of M:

N (M, ∥ · ∥F , ε) ≤
(
1 +

2Λ(Λ + ∥A∥2→2)KL

µε

)Nn

. (58)

Proof. Due to Lemma IV.8, we can upper bound the covering
numbers of BΛ as follows:

N (BΛ, ∥ · ∥2→2, ε) ≤
(
1 +

2Λ

ε

)Nn

. (59)

Therefore, for the covering numbers of M we have

N (M, ∥ · ∥F , ε) ≤ N (ρKLBΛ, ∥ · ∥2→2, ε)

= N (BΛ, ∥ · ∥2→2, ε/ρKL)

≤
(
1 +

2ΛρKL

ε

)Nn

,

where ρ = µ−1(Λ + ∥A∥2→2).

E. Generalization Error Bounds

We are now in position to deliver generalization error
bounds for DECONET.

Theorem IV.10. Let HL be the hypothesis class defined in
(31). With probability at least 1 − δ, for all h ∈ HL, the
generalization error is bounded as

L(h) ≤L̂(h) + 8(Bin +Bout)Bout

√
Nn

s

·

√
log

(
e

(
1 +

4µ−1Λ(Λ + ∥A∥2→2)KL√
sBout

))
+ 4(Bin +Bout)

2

√
2 log(4/δ)

s
, (60)

with KL defined in (49).

Proof. We apply Proposition IV.9 to (56), yielding:

RS(l ◦ HL)

≤16(Bin +Bout)

s

∫ √
sBout

2

0

√
logN (M, ∥ · ∥F , ε)dε

≤16(Bin +Bout)

s

·
∫ √

sBout
2

0

√
Nn log

(
1 +

2Λ(Λ + ∥A∥2→2)KL

µε

)
dε

≤8(Bin +Bout)Bout

√
Nn

s

·

√
log

(
e

(
1 +

4Λ(Λ + ∥A∥2→2)KL

µ
√
sBout

))
,

where in the last step we used the inequality3∫ a

0

√
log

(
1 +

b

t

)
dt ≤ a

√
log(e(1 + b/a)), a, b > 0.

The proof follows by employing Theorem IV.1 with the upper
bound c = (Bin +Bout)

2 for the loss function ∥ · ∥22.

If we further assume that it holds {c1,kΛ}k≥0 ≤ 1,
{c1,kΛ2}k≥0 ≤ 1, {c2,k∥A∥22→2}k≥0 ≤ 1, for {c1,k}k≥0 =
{t1k/µθk}k≥0 ≤ 1, {c2,k}k≥0 = {t2k/µθk}k≥0 ≤ 1, we obtain:

Corollary IV.11. Let HL be the hypothesis class defined in
(31) and assume that c1,kΛ ≤ 1, c1,kΛ2 ≤ 1, c2,k∥A∥22→2 ≤
1, for all k ≥ 0, with {c1,k}, {c1,k} ≤ 1 defined as in Lemma
IV.4. With probability at least 1 − δ, for all h ∈ HL, the
generalization error is bounded as

L(h) ≤L̂(h) + 8(Bin +Bout)

(
Bout

√
Nn

s

·

√
log

(
e

(
1 +
∥Y ∥F (p+ qL+ rκL)√

sBout

))
+

√
2 log(4/δ)

s

)
, (61)

with κL as in Theorem IV.6 and p, q, r > 0 constants
depending on ∥A∥2→2,Λ, µ.

Proof. The estimate easily follows from Theorems IV.6 and
IV.10, if we set p := Λ(Λ+∥A∥2→2)∥A∥2→2, q := p(µ−1−1)
and r := 2p(∥A∥2→2 + 1)(∥A∥2→2 + 3).

All the previous results are summarized in

Theorem IV.12. Let HL be the hypothesis class defined
in (31). Assume there exist pair-samples {(xi, yi)}si=1, with
yi = Axi + e, ∥e∥2 ≤ ε, for some ε > 0, that are drawn
i.i.d. according to an unknown distribution D, and that it
holds ∥yi∥2 ≤ Bin almost surely with Bin = Bout in (29).
Let us further assume that for step sizes 0 < {t1k}k≥0,
{t2k}k≥0 ≤ 1, step size multiplier 0 < {θk}k≥0 ≤ 1 and
smoothing parameter µ > 1, we have µ−1θ−1

k t1kΛ ≤ 1,
µ−1θ−1

k t1kΛ
2 ≤ 1, µ−1θ−1

k t2k∥A∥2→2 ≤ 1, for all k ≥ 0.
Then with probability at least 1 − δ, for all h ∈ HL, the
generalization error is bounded as

L(h) ≤L̂(h) + 16B2
out

√
Nn

s

·

√
log

(
e

(
1 +
∥Y ∥F (p+ qL+ rκL)√

sBout

))
(62)

+ 16Bout

√
2 log(4/δ)

s
,

with κL as in Theorem IV.6 and constants p, q, r > 0 as in
Corollary IV.11.

We also state below a key remark, regarding the general-
ization error bound as a function of L,N and s.

3The interested reader may refer to [41, Lemma C.9] for a detailed proof
of this inequality
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Corollary IV.13 (Informal). According to (51), we have that
L enters at most exponentially in the definition of κL. If we
consider the dependence of the generalization error bound
(62) only on L,N, s and treat all other terms as constants,
we roughly have

|L(h)− L̂(h)| ≲
√
NL

s
. (63)

Comparison with related work: Similarly to Theorem IV.12,
the result obtained in [22, Theorem 2] demonstrates that the
generalization error of the proposed synthesis-sparsity-based
ISTA-net roughly scales like

√
(n logL)(n+m)/s. The latter

estimate is slightly better in terms of L than our theoretical
results. On the other hand, as depicted in Theorem IV.12, our
bound does not depend on m, which makes it tighter in terms
of the number of measurements.

V. NUMERICAL EXPERIMENTS

In this Section, we examine whether our theory regarding
the generalization error of DECONET is consistent to real-
world applications of our framework.

A. Experimental Setup

We train and test DECONET on a synthetic dataset of
random vectors, drawn from the normal distribution (70000
training and 10000 test examples), and two real-world image
datasets: MNIST (60000 training and 10000 test 28 × 28
image examples) and CIFAR10 (50000 training and 10000
test 32 × 32 coloured image examples). For the CIFAR10
dataset, we transform the images into grayscale ones. For both
datasets, we consider the vectorized form of the images. We
examine DECONET with varying number of layers L. We
consider two CS ratios, i.e. m/n = 25% and m/n = 50%. We
choose a random Gaussian measurement matrix A ∈ Rm×n

and appropriately normalize it, i.e., Ã = A/
√
m. We add zero-

mean Gaussian noise e with standard deviation std = 10−4 to
the measurements y, so that y = Ãx+e. We set ε = ∥y−Ãx∥2
and x0 = AT y, which are standard algorithmic setups. We
take different values of N and perform two different initializa-
tions for W ∈ RN×n: normal initialization and initialization
based on Beta distribution [63], with varying values of Beta’s
parameters a and b. We set µ = 100, initial step sizes
t10 = t20 = 1 and step size multiplier θ0 = 1. For t1k, t2k, θk, we
apply the following update rules: t1k = αt1k−1, t2k = βt2k−1,
θk = θk−1 · θ′, k = 1, . . . , L, where (α, β) ∈ (0, 1) × (0, 1),

Test MSE

Method
Dataset MNIST CIFAR10 Synthetic

ACF (Wavelet) 0.2515 0.3174 0.1585
ACF (TV) 0.1978 0.3141 0.1051

DECONET (learnable) 0.0571 0.0298 0.7523 · 10−2

Table II: Comparison of MSEs achieved by DECONET with
its learnable analysis operator, ACF with a redundant Haar
wavelet transform and ACF with a total variation operator, on
all datasets, with 10 layers/iterations. Bold letters indicate the
best performance among three methods.

θ′ =
1−
√

µ/L̃

1+
√

µ/L̃
, respectively, and L̃ is an upper bound on the

smoothing parameter µ; we set L̃ = 1000. All networks are
implemented in PyTorch [64] and trained using Adam [65]
algorithm, with batch size 128. Adam constitutes a stochastic
optimization method which can adaptively estimate lower-
order moments of the gradient of (33). We employ the Pytorch
implementation of Adam and set the initial learning rates to
ηM = 10−2, ηC = 10−3 and ηS = 10−4, for the MNIST,
CIFAR10 and synthetic datasets, respectively; the rest of
Adam’s parameters are set to their default values. For our
experiments, we report the test MSE defined by

Ltest =
1

d

d∑
i=1

∥h(ỹi)− x̃i∥22, (64)

where D = {(ỹi, x̃i)}di=1 is a set of d test data, not used in
the training phase. We also report the empirical generalization
error (EGE) defined by

Lgen = |Ltest − Ltrain|, (65)

where Ltrain is the train MSE defined in (33). Since test
MSE approximates the true loss, we use (65) – which can
be explicitly computed – to approximate the generalization
error of (35). We train all networks, on all datasets, employing
an early stopping technique [66] with respect to (65). We
repeat all the experiments at least 10 times and average
the results over the runs. We compare the reconstruction
quality offered by DECONET, to the MSE achieved by the
original optimization algorithm4, namely ACF (see Section
III), with a similar structure. To that end, we choose as
predefined sparsifiers a redundant Haar wavelet transform
and a finite difference operator. The latter is associated to
the popular method of total variation [52], while redundant
wavelets constitute standard choices of sparsifying transforms
for analysis-based inverse problems [48], [42]. Finally, we
compare the EGE of DECONET to the EGE achieved by two
SotA unfolding networks serving as baselines: a recent variant
of ISTA-net [22] and ADMM-DAD net [33]. Both baselines
jointly learn a decoder for CS and a sparsifying transform.
Nevertheless, ISTA-net solves the CS problem employing
synthesis sparsity, since the learnable sparsifier is orthogonal,
while ADMM-DAD involves analysis sparsity, by learning a
redundant analysis operator. Our choice of the aforementioned
baselines is attributed to our interest of considering one SotA
unfolding network from each sparsity “category”, so that we
examine a) how the EGE is affected by each of the two sparsity
models and b) if DECONET outperforms5 ADMM-DAD. For
both baselines, we set the best hyper-parameters proposed by
the original authors. From a complexity perspective, the most
costly computation of both DECONET and ISTA-net consists
in the multiplication of a matrix with its transpose (N × n

4One of the motivations for unrolling iterative schemes to corresponding
neural networks relies on the fact that the latter yield a smaller reconstruction
error, than their original iterative schemes [16]

5To the best of authors’ knowledge, ADMM-DAD is the only unfolding
network, apart from DECONET, that entails analysis sparsity for solving the
CS problem
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(a) Average test MSEs with normal (top) and Beta (bottom) distributions

(b) Empirical generalization errors with normal (top) and Beta (bottom) distributions

Fig. 2: Performance plots for 10- and 50-layer DECONET, m = n/4, tested on MNIST (left) and CIFAR10 (right) datasets.

with n × N for DECONET, n × m with m × n for ISTA-
net), so that the dominant part per layer L is of the order
of O(N2n) and O(n2m), respectively. ADMM-DAD has a
cubic complexity – with respect to n – per layer L, since
its “heavier” computation involves the inversion of a n × n
matrix. Overall, the computational complexities of DECONET,
ISTA-net and ADMM-DAD are of the order of O(LN2n),
O(Ln2m) and O(Ln3), respectively.

B. Experimental Results

We test DECONET on all datasets under multiple experi-
mental scenarios.

1) Fixed CS ratio with varying N/n and L, for different
initializations, on image datasets: We examine the perfor-
mance of 10- and 50-layer DECONET for a fixed 25%
CS ratio, varying redundancy ratio N/n and both normal
and Beta initializations for W . We report the results for
MNIST and CIFAR10 in Fig. 2. As illustrated in Fig. 2a,
the test MSEs, achieved by 10- and 50-layer DECONET
on both datasets, drop as L and N/n increase, for both
types of initialization. The decays seem reasonable, if one
considers a standard analysis CS scenario: the reconstruction
quality and performance of the analysis-l1 algorithm, typically
benefit from the (high) redundancy offered by the involved
analysis operator, especially as the number of iterations/layers
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Fig. 3: Performance plots for DECONET with 50% CS ratio,
tested on MNIST (top) and CIFAR10 (bottom) datasets.

Fig. 4: Performance plots for DECONET, tested on a synthetic
dataset, under different settings.

increases. Furthermore, Fig. 2b demonstrates that the EGE of
DECONET increases as both L and N/n increase, for both
normal and Beta initialization. For the latter, we observe that
the different values of its parameters affect the generalization
ability of DECONET on both image datasets. The overall
performance of DECONET confirms our theoretical results
depicted in Section IV-E, since EGEs seem to scale like

√
NL.

Fig. 5: Performance plot for all decoders, with fixed m, n, N ,
on a synthetic dataset.

2) Fixed CS ratio, with varying N and L, on image
datasets: We examine the generalization ability of DECONET
for m = n/2, with increasing number of layers L, under
different choices of N and normal initialization. Inspired by
frames with redundancy ratio N/n /∈ N [67], we consider N
of the form

N = pn+ q, p, q ∈ N. (66)

We report the results in Fig. 3 for MNIST and CIFAR10.
Similarly to Section V-B1, we observe that the empirical
generalization error increases in L and N , for both datasets.
Even though the upper bound in (62) depends on other terms
too, the empirical generalization error appears to grow at the
rate of

√
NL. The behaviour of DECONET again conforms

with our theoretical results presented in Section IV. One may
also notice that – in general – we choose different N for each
of the two datasets. This is simply due to (66), i.e., N depends
on the vectorized ambient dimension n, which is different for
each of the two datasets.

3) Fixed CS ratio with varying n, N , L, on synthetic
dataset: Similarly to Sections V-B1 and V-B2, we examine the
generalization error that DECONET achieves on a synthetic
dataset of random vectors, with a normally initialized W . We
present the results in Fig. 4 (and note that all plots regarding
the synthetic data are made in logarithmic scale). Particularly,
the top plot of Fig. 4 demonstrates how the EGE for 10-
layer DECONET scales, for different values of the ambient
dimension n, with 25% CS ratio, as N/n increases. On the
other hand, as depicted in the bottom plot of Fig. 4, we
revisit the experimental reasoning of Section V-B2, with fixed
n = 300 and m = n/2. In both subplots, we see that the
EGEs achieved by DECONET comply with our theory.

4) Comparison between DECONET and ACF: We inves-
tigate the reconstruction quality – on all datasets – offered
by DECONET with a learnable analysis operator satisfying
N/n = 50, to the test MSE achieved by ACF, with two differ-
ent redundant analysis operators: wavelets and total variation
operator. We set m = n/4, L = 10 (for all methods) and
fix n = 100 for the synthetic dataset. We present our results
in Table II, which showcases that the test MSE achieved by
both instances of ACF is larger than DECONET’s, consistently
for all three datasets. This behaviour complies with the mo-
tivation for interpreting iterative methods as neural networks,
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25% CS ratio
Dataset MNIST CIFAR10

Decoder
Layers

L = 10 L = 20 L = 30 L = 10 L = 20 L = 30

DECONET 0.000033 0.000110 0.000314 0.000066 0.000058 0.000100
ADMM-DAD 0.000212 0.000284 0.000394 0.000086 0.000102 0.000168

ISTA-net 0.013408 0.015099 0.007874 0.007165 0.005045 0.004120

50% CS ratio
Dataset MNIST CIFAR10

Decoder
Layers

L = 10 L = 20 L = 30 L = 10 L = 20 L = 30

DECONET 0.000131 0.000183 0.000241 0.000024 0.000039 0.000063
ADMM-DAD 0.000224 0.000455 0.000332 0.000094 0.000046 0.000087

ISTA-net 0.016547 0.011624 0.009311 0.009274 0.006739 0.005576

Table III: Empirical generalization errors for 10-, 20- and 30-layer decoders, with 25% and 50% CS ratios, and fixed N = 37145
for DECONET’s and ADMM-DAD’s sparsifiers. Bold letters indicate the best performance among the three decoders.

since the latter are able to achieve a smaller reconstruction
error than their iterative schemes, for the same number of
layers/iterations.

5) Comparison to baselines: We examine how analysis
and synthesis sparsity models affect the generalization ability
of CS-oriented unfolding networks. Towards this end, we
compare the proposed DECONET’s decoder to ISTA-net’s
and ADMM-DAD’s decoders. For the image datasets, the
comparisons are made for 10, 20 and 30 layers, with 25% and
50% CS ratio, and fixed N = 37145 for both DECONET’s and
ADMM-DAD’s sparsifiers. For the synthetic dataset, we fix
N = 12000 (for both DECONET’s and ADMM-DAD’s sparsi-
fiers), n = 300, m = n/2, and vary L. We report the empirical
generalization errors for the image datasets in Table III and for
the synthetic dataset in Fig. 5. We conjecture that DECONET
should outperform ISTA-net in terms of EGE. Our speculation
is attributed to similar (albeit limited) experimental findings in
[33, Section 4], which indicate that analysis sparsity can affect
the generalization ability of unfolding networks. This is indeed
the case according to Table III and Fig. 5, which demonstrate
that our proposed decoder outperforms both baseline decoders,
consistently for all datasets. In fact, both DECONET and
ADMM-DAD outperform the synthesis-sparsity-based ISTA-
net. This behaviour showcases that learning a redundant sparsi-
fier instead of an orthogonal one, improves the performance of
a CS-oriented unfolding network. Additionally, our proposed
network outperforms ADMM-DAD, which is considered to
be a SotA unfolding network for analysis-based CS. Finally,
our theoretical results on the generalization error of DE-
CONET seem to align with the experiments, since the EGE
of DECONET increases as L also increases. Interestingly, we
observe that the EGE of DECONET on the CIFAR10 dataset
decreases as the number of measurements m increases. This
behaviour is not reflected by our theoretical results (which are
independent of m), but it could serve as a potential line of
future work.

VI. CONCLUSION AND FUTURE WORK

In this paper we derived DECONET, a new deep unfolding
network for solving the analysis-sparsity-based Compressed
Sensing problem. DECONET jointly learns a decoder for CS
and a redundant sparsifying analysis operator. Furthermore,
we estimated the generalization error of DECONET, in terms

of the Rademacher complexity of the associated hypothesis
class. Our generalization error bounds roughly scale like the
square root of the product between the number of layers and
the redundancy of the learnable sparsifier. To the best of our
knowledge, this is the first result of its kind for unfolding
networks solving the analysis-based CS problem. Furthermore,
we conducted experiments that confirmed the validity of our
theoretical results and compared DECONET to state-of-the-
art CS-oriented unfolding networks. Our proposed network
outperformed the baselines, consistently for synthetic and real-
world datasets. As a future direction, we would like to exam-
ine the performance of our proposed framework on speech
datasets and experiment with different values of the non-
learnable parameters. Additionally, it would be interesting to
further characterize (e.g. in terms of structure) the sparsifying
transform that DECONET learns. Last but not least, it would
be intriguing to investigate the tightness of our delivered
generalization error bounds. For example, we could employ
techniques presented in [68], [69], in order to examine whether
our bounds could be independent of the number of layers
and/or the redundancy of the learnable sparsifying transform.
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information and tightening generalization bounds”. In:
Advances Neural Inf. Process. Sys. 31 (2018).

Vicky Kouni received her B.Sc. and M.Sc. in Mathematics, from the Dep.
of Mathematics, National & Kapodistrian University of Athens, Greece. She
is currently a PhD student at the Dep. of Informatics & Telecommunications,
National & Kapodistrian University of Athens, Greece. She has received
scholarships and awards for her studies and research, including the recent
Scholarship for Senior Doctorate Students by the greek State Scholarships
Foundation (IKY). Her research interests are mainly focused on deep un-
folding, learning theory, compressed sensing, sparse representations, applied
harmonic analysis, and their applications in audio and image processing.



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 15

Yannis Panagakis received his PhD and MSc from the Dep. of Informatics,
Aristotle University of Thessaloniki, and his B.Sc. in Informatics & Telecom-
munications from the National & Kapodistrian University of Athens, Greece.
He previously held research and academic positions at the Samsung AI
Centre, Cambridge, U.K., Middlesex University London, and Imperial College
London, U.K. He is currently an Associate Professor of machine learning and
signal processing in the Dep. of Informatics & Telecommunications, National
& Kapodistrian University of Athens, Greece. He has received prestigious
scholarships and awards for his studies and research, including the Marie-
Curie Fellowship in 2013. His research interests include: machine learning
and its interface with tensor methods, deep learning, computer vision, signal
processing and mathematical optimization. He has published over 80 articles
in leading journals and conferences.


	Introduction
	Related work: From model-based to data-driven CS
	Synthesis Sparsity in CS and ISTA-based Unfolding
	Analysis Sparsity in CS and ADMM-based Unfolding

	DECONET: a New Unfolding Network for Analysis-based CS
	Generalization Analysis of DECONET
	Hypothesis Class of DECONET and Associated Rademacher Complexity
	Boundedness of DECONET's Outputs
	Lipschitzness Results
	Covering Numbers and Dudley's Inequality
	Generalization Error Bounds

	Numerical Experiments
	Experimental Setup
	Experimental Results
	Fixed CS ratio with varying N/n and L, for different initializations, on image datasets
	Fixed CS ratio, with varying N and L, on image datasets
	Fixed CS ratio with varying n, N, L, on synthetic dataset
	Comparison between DECONET and ACF
	Comparison to baselines


	Conclusion and Future Work
	Biographies
	Vicky Kouni
	Yannis Panagakis


