

000 001 002 003 004 005 DEEPPERSONA: A GENERATIVE ENGINE FOR SCALING 006 DEEP SYNTHETIC PERSONAS 007

008 **Anonymous authors**
009

010 Paper under double-blind review
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

031 ABSTRACT 032

033 Simulating human profiles by instilling personas into large language models
034 (LLMs) is rapidly transforming research in agentic behavioral simulation, LLM
035 personalization, human-AI alignment, etc. However, most existing synthetic per-
036 sonas remain shallow and simplistic, capturing minimal attributes and failing to
037 reflect the rich complexity and diversity of real human identities. We introduce
038 DEEPPERSONA, a scalable generative engine for synthesizing narrative-complete
039 synthetic personas through a two-stage, taxonomy-guided method. First, we al-
040 gorithmically construct the largest-ever human-attribute taxonomy, comprising
041 over hundreds of hierarchically-organized attributes, by mining thousands of real
042 user-ChatGPT conversations. Second, we progressively sample attributes from
043 this taxonomy, conditionally generating coherent and realistic personas, averaging
044 hundreds of structured attributes and roughly 1 MB of narrative text, two orders
045 of magnitude deeper than prior works. Intrinsic evaluations confirm significant
046 improvements in attribute diversity (32% higher coverage) and profile uniqueness
047 (44% greater) compared to state-of-the-art baselines. Extrinsically, our personas
048 enhance GPT-4.1-mini’s personalized Q&A accuracy by 11.6% average on ten
049 metrics, and substantially narrow (by 31.7%) the gap between simulated LLM
050 “citizens” and authentic human responses in social surveys. Our generated “national
051 citizens” reduced the performance gap on the Big Five personality test by 17% rela-
052 tive to LLM-simulated citizens. DEEPPERSONA thus provides a rigorous, scalable,
053 and privacy-free platform for high-fidelity human simulation and personalized AI
054 research.

055 1 INTRODUCTION 056

057 Generating synthetic personas via large language models (LLMs) has rapidly gained popularity,
058 powering applications across personalized assistance Yuan et al. (2023), social and behavioral
059 simulations Lu et al. (2025), interactive role-playing agents Qiu & Lan (2024), and alignment
060 research Castricato et al. (2025). The flexibility and generative power of modern LLMs allow
061 researchers to effortlessly produce large volumes of synthetic human-like profiles, enabling studies
062 and experiments otherwise limited by data scarcity or privacy concerns.

063 Despite widespread adoption, current synthetic personas often remain shallow and simplistic, failing
064 to capture the depth, diversity, and realism of actual human profiles Ge et al. (2024). Existing
065 approaches typically rely on a handful of manually-defined traits or brief, templated descriptions,
066 which fundamentally limit their complexity Wang et al. (2025b). Moreover, naively using Large
067 Language Models (LLMs) to expand upon seed attributes is fraught with substantial limitations:
068 the resulting narratives frequently lack genuine diversity, exhibit stereotypical or overly optimistic
069 portrayals inherited from training data, and fail to capture the semantic richness and nuanced
070 complexity observed in real individuals Li et al. (2025); Wang et al. (2024a).

071 To bridge this critical gap, it is necessary to establish rigorous methods capable of systematically
072 scaling synthetic user profiles. An ideal profile generation approach should satisfy several key
073 desiderata. Specifically, it must: (1) scale the coverage of the broad spectrum of real-world human
074 attributes, from demographics to life experiences; (2) scale diversity to capture nuanced, non-
075 stereotypical variations among individuals; and (3) maintain rigorous internal consistency and
076 narrative coherence, while remaining customizable for specific user cohorts or application domains.
077 However, existing methodologies rarely satisfy these requirements simultaneously, revealing a
078 fundamental gap in the scalable generation of deep synthetic personas.

To address these challenges, we introduce DEEPPERSONA, a novel two-stage generative engine to synthesize detailed, diverse, and customizable synthetic user personas. In the 1st stage, we construct a comprehensive human attribute taxonomy by mining thousands of real-world multi-turn conversations from user-ChatGPT interactions. Leveraging natural questions that elicit extensive human self-disclosure, we algorithmically extract and merge attribute phrases into a unified hierarchical structure, resulting in a taxonomy with 8000+ human attribute nodes—far exceeding prior manually-curated persona datasets Hasenfeld (2010). In the 2nd stage, we introduce a progressive attribute sampling algorithm: starting from customizable anchor traits, our method iteratively selects informative attributes conditioned on the existing persona context, incrementally building profiles that maintain internal consistency and narrative realism. This structured, iterative approach enables researchers to precisely control persona generation, systematically explore the space of human attributes, and generate profiles at depth and scale unattainable by naïve LLM sampling Wang et al. (2025b).

We evaluate DEEPPERSONA intrinsically and extrinsically. Intrinsically, we assess attribute coverage, uniqueness, and actionability, showing substantial gains over state-of-the-art persona resources such as PersonaHub Ge et al. (2024) and Open-Character Wang et al. (2025b). Externally, we test DEEPPERSONA in two downstream tasks: (1) personalized prompting, where conditioning GPT models Achiam et al. (2023) on deeper personas yields up to 11.6% higher response accuracy; and (2) human-population simulation, where synthetic populations answer World Values Survey questions Tao et al. (2024), reducing deviation from real responses by 31.7%, outperforming strong baselines. (3) In the Big Five personality test, our generated “national citizens” reduced the deviation from ground-truth data by 17% compared to LLM-simulated citizens.

These results demonstrate that DEEPPERSONA synthesizes realistic human identities, enabling scalable, privacy-preserving, and high-fidelity user modeling.

2 RELATED WORK

Synthetic Persona Generation. Early persona-conditioned dialogue models represented users as short descriptive statements, often limited to a few manually-crafted attributes Zhang et al. (2018). The advent of Large Language Models (LLMs) enabled synthetic persona generation at unprecedented scale: PersonaHub Ge et al. (2024) utilized GPT-4 to produce over one billion brief, attribute-sparse personas, emphasizing quantity rather than semantic depth. OpenCharacter Wang et al. (2025b) extended this by pairing short GPT-generated personas with style-tuned dialogues, enhancing interaction fidelity yet maintaining limited persona depth. Recent intrinsic analyses highlight pervasive issues across these methods, such as insufficient lexical diversity, positivity biases, and demographic under-representation Li et al. (2025). In contrast, DEEPPERSONA systematically addresses these limitations through a taxonomy-guided sampling strategy, enhancing persona depth.

LLM Personalization. Personalization in Large Language Models (LLMs) aims to tailor model outputs to individual user identities, preferences, or interaction histories. Prominent approaches include retrieval-augmented prompting Jiang et al. (2025), parameter-efficient user embedding fine-tuning Wang et al. (2024b); Braga (2024), and hybrid architectures integrating external user memory stores. A fundamental bottleneck across these strategies is the superficial nature of existing persona representations, typically limited to brief, shallow attribute sets Wang et al. (2024b); Li et al. (2025). By contrast, DEEPPERSONA generates personas with orders-of-magnitude greater coverage,

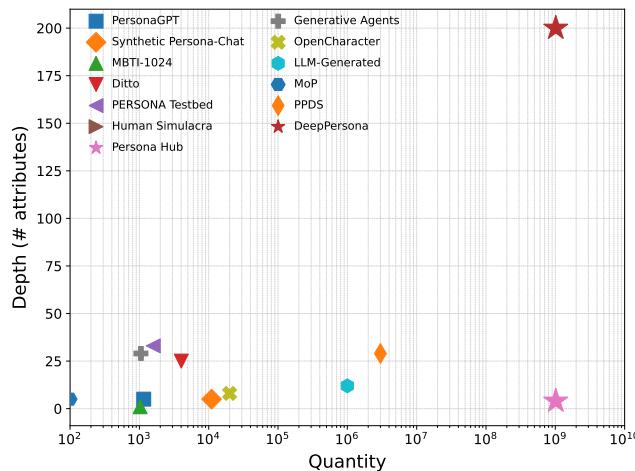


Figure 1: Current persona generation methods face a trade-off between quantity and depth. While approaches like PersonaHub Ge et al. (2024) achieve massive scale with shallow depth, DEEPPERSONA uniquely scales both, automatically enriching PersonaHub’s billion profiles with hundreds of structured attributes.

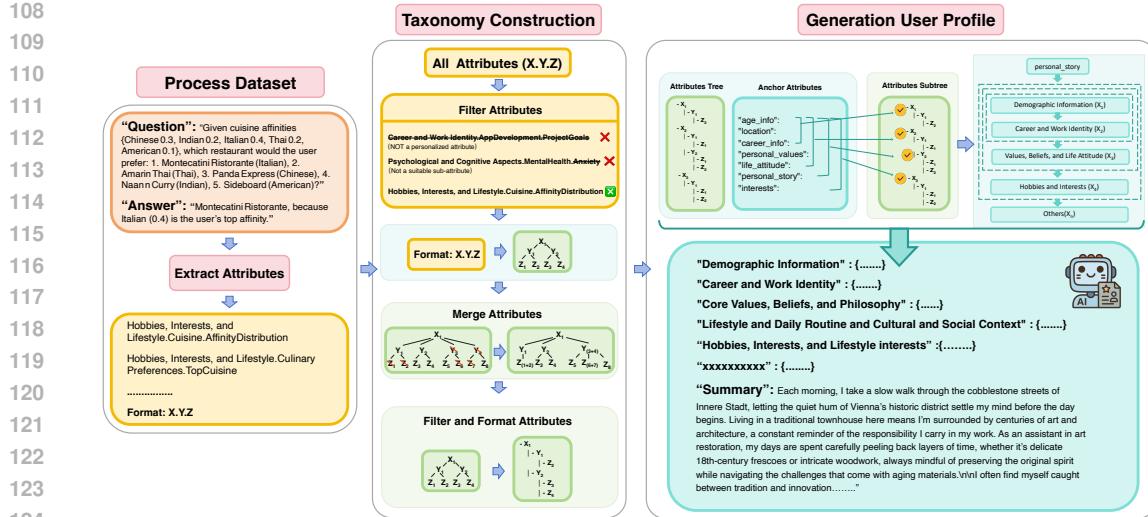


Figure 2: **DEEPPERSONA Overview.** Stage 1 builds a comprehensive Human-Attribute Tree by mining self-disclosure QA (left) and merging semantically validated paths (middle). Stage 2 anchors core traits, samples tree nodes, and fills values via LLM, yielding a narrative-complete profile (right). providing user context that significantly boosts downstream personalization tasks while remaining fully synthetic and privacy-preserving.

Social Simulation. Agent-based social simulations employ computational agents to emulate complex societal behaviors, such as opinion diffusion, cultural dynamics, and policy impacts Bonabeau (2002). Recent studies leveraging Large Language Models (LLMs) as agent backbones have demonstrated promising results, effectively capturing realistic human-like interactions Park et al. (2024); Argyle et al. (2023); Aher et al. (2023); Horton (2023); Wang et al. (2025a). However, a persistent limitation remains the superficial nature of agent initialization, typically just a short paragraph of background information, which quickly leads to stereotypical, overly optimistic, and homogenized behaviors that fail to represent minority viewpoints accurately Li et al. (2025). By contrast, DEEPPERSONA directly tackles this bottleneck by providing narrative-complete synthetic personas, systematically generated from an extensive human-attribute taxonomy. This structured approach endows simulation agents with coherent life histories, nuanced value systems, and rich demographic diversity, enhancing realism and enabling more faithful replication of authentic societal phenomena.

3 METHODOLOGY

Problem Formulation. Let $\mathcal{A} = \{a_1, \dots, a_m\}$ denote the universe of *human-descriptive attributes* (e.g., age, birthplace, hobbies, etc). Each attribute $a \in \mathcal{A}$ possesses an admissible value space \mathcal{V}_a (e.g., categorical label, free-text, list, etc). A synthetic person is a finite attribute-value set:

$$P = \{\langle a_i, v_i \rangle \mid a_i \in \mathcal{A}, v_i \in \mathcal{V}_{a_i}, i = 1, \dots, k\}, \quad (1)$$

We say a persona is **narrative-complete** when

- **Depth.** $k > 10^2$ attributes and its text mass $\text{Narr}(P)$ summarizes P accurately
- **Diversity.** The marginal distribution of attributes and values across a population of personas approximates that of real humans.
- **Consistency.** The induced set of facts is logically non-contradictory.

Recent progress has partially alleviated two of the three criteria above. Diversity can now be scaled almost arbitrarily, e.g., PersonaHub generates one billion five-line profiles by sampling from open-world text Ge et al. (2024). Consistency errors have likewise decreased as frontier LLMs improve long-range coherence, although careful design remains necessary. Depth, however, remains the critical bottleneck. Nearly all existing synthetic persona pipelines instantiate < 30 manually curated attributes Wang et al. (2025b), yielding profiles that fail to capture the richness of real-human profiles. Depth is thus the primary obstacle to narrative-complete personas and the focus of our work.

Formally, let $S = \{\langle a, v \rangle\} \subseteq \mathcal{A} \times \mathcal{V}$ be an *anchor set* supplied by the user, either a handful of attribute–value pairs (e.g., age = 35, occupation = “nurse”) or a short free-text biography (e.g., bio = “A

162 software developer who is ...”). Our goal is to learn a **synthesis function**, $\mathbf{f}_{\theta,T} : (S, k) \mapsto P$,
 163 which returns a narrative-complete persona P of target depth k while respecting all anchors $S \subseteq P$.
 164 The function $\mathbf{f}_{\theta,T}$ is parameterized by

165 • An LLM with parameters θ that generates attribute values and free-text narrative, and
 166 • A *universal and practical attribute taxonomy* $T \subseteq \mathcal{A}$ that organizes the human-descriptive space
 167 and guides attribute selection.

169 Specifically, we model persona generation as sampling from a structured distribution

$$171 P \sim \mathcal{F}_{\theta,T}(\cdot | S, k) = \prod_{i=1}^k \underbrace{\Pr(a_i | S, P_{<i}, T)}_{\text{selector}} \cdot \underbrace{\Pr_{\theta}(v_i | a_i, S, P_{<i})}_{\text{generator}} \quad (2)$$

174 where $P_{<i}$ denotes the partial persona constructed so far. The instantiated taxonomy T supplies the
 175 attribute-selector with coverage priors and hierarchical constraints, while the LLM θ generates each
 176 value v_i conditioned on the evolving context to ensure global coherence.

177 Note that directly extending k by naive LLM sampling provably saturates in diversity and drifts
 178 towards high-stereotypes Wang et al. (2025b). In contrast, an explicit taxonomy T (i) exposes the
 179 long-tail of human attributes, (ii) constrains the selector to balanced coverage, and (iii) enables
 180 controllable anchoring. Depth is thus achieved by *structured exploration* of T , not by length alone.

181 The remainder of § 3 details our implementation of $\mathcal{F}_{\theta,T}$, consisting of two stages (Figure 2): Stage 1,
 182 Human-Attribute Taxonomy construction (§ 3.1) builds a ~8k node tree from self-disclosure dialogue;
 183 and Stage 2, Progressive Attribute Sampling (§ 3.2) for human profiles generation.

185 3.1 HUMAN-ATTRIBUTE TAXONOMY CONSTRUCTION

186 A taxonomy is the control surface of our engine: it dictates which attributes can be sampled and
 187 how coverage is balanced. Ideally, human attributes can be infinite, yet we can still construct $T \in \mathcal{A}$
 188 that satisfies the desiderata in § 3, long-tail coverage, diversity, and controllability. Therefore, T
 189 must be (i) *data-driven* rather than hand-enumerated, (ii) *hierarchically organized* so broad traits
 190 lead naturally to finer details, (iii) *semantically validated* to avoid contradiction and redundancy, and
 191 (iv) contain only attributes that *genuinely personalize* an individual. Our attribute generation and
 192 processing pipeline can be found in Figure 2 and Algorithm 2 in the Appendix

193 **Personalized Attribute Extraction.** We build the taxonomy from real-world human-Chatbot
 194 interactions, which will arguably reflect the true distributions of human attributes when interacting
 195 with the Chatbot. Specifically, we first identified conversational turns that reliably elicit personalized
 196 information. To do this systematically, we chose 3,000 dialogues from the Puffin dataset¹, 1,000
 197 dialogues from the prefeval_implicit_persona dataset², and 60,000 samples derived from Llama-3.2-
 198 3B-HiCUPID.³ consisting of human interactions with GPT-4.1, and asked GPT-4.1-mini to classify
 199 each QA pair into three categories: *Non-personalizable*, *Partially Personalizable*, and *Personalizable*,
 200 along with explicit rationales (prompt details in Appendix A2). This rigorous labeling yielded 62,224
 201 high-quality personalized Q-A pairs serving as a grounded basis for taxonomy generation later (see
 202 Figure 6 for data structure).

203 **Hierarchical Structuring and Merging.** To manage complexity while maintaining diversity, we
 204 manually seeded the taxonomy with 12 broad first-level attribute categories (e.g., *Demographics*,
 205 *Health*, *Core Values*, full list in Appendix A2). We used GPT-4.1-mini to recursively extract and
 206 organize fine-grained attributes from each personalized QA pair into structured hierarchies such
 207 as *Lifestyle* → *Food Preference* → *Vegan*. We found that most human attributes rarely extend
 208 beyond three hierarchical levels; deeper chains degenerate into idiosyncratic leaf nodes (e.g., “Brand
 209 → Shoes → 2019 Retro-88”), which harms coverage balance and introduces sparsity. Multiple
 210 candidate hierarchies generated by LLMs were merged based on semantic similarity thresholds (see
 211 Algorithm 1), yielding a dense and hierarchical *Human-Attribute Tree* with 8496 unique nodes.

212 **Semantic Validation and Filtering.** Given that LLM-generated outputs can contain redundancies
 213 and semantic inaccuracies, we implemented a two-stage filtering process before and after tree merging.

214 ¹<https://huggingface.co/datasets/LDJnr/Puffin>

215 ²https://huggingface.co/datasets/siyanzhao/prefeval_implicit_persona

216 ³<https://huggingface.co/12kimih/Llama-3.2-3B-HiCUPID>

216 First, we validated attribute quality by ensuring each extracted node was personalizable, semantically
 217 coherent, and appropriately abstract (e.g., excluding overly specific instances like a particular brand or
 218 product). After tree merging, we conducted a final filtering step, removing duplicate or semantically
 219 redundant branches, rectifying incorrect parent-child relationships, and ensuring consistency. The
 220 prompts used in the filtering stages are shared in the Appendix.

221 3.2 PROGRESSIVE ATTRIBUTE SAMPLING

223 With the comprehensive Human-Attribute Tree T in place, persona generation reduces to sampling
 224 $\Pr(a_i \mid S, P_{<i}, T) \cdot \Pr_\theta(v_i \mid a_i, S, P_{<i})$ iteratively, where the *attribute selector* chooses the next
 225 node a_i and the LLM θ acts as a *value generator*. However, naively filling in a_i with LLMs will
 226 reproduce mainstream cultural paradigms and high-frequency characteristics from their training data,
 227 yielding homogenised and stereotypical profiles. To achieve realistic depth and diversity, we adopt
 228 four key design choices. A pipeline illustration is also presented in Figure 2

229 **Anchor a stable core.** We first instantiate a small set of *core attributes*—*age, location, career, personal*
 230 *values, life attitude, personal story, hobbies and interests*. Our preliminary experiments show that
 231 fixing these roots prevents the selector from wandering into implausible or degenerate regions.

232 **Bias-free value assignment.** For some attributes (e.g., age, gender, occupation, location), we draw
 233 values from predefined tables, not the LLM, to avoid the well-documented tendency of θ to replicate
 234 majority-culture defaults and optimism bias. This guarantees demographic breadth before deeper
 235 sampling begins. We detailed the sources of sampling space in the Appendix. Moreover, we deploy
 236 a *life-story-driven approach* for sampling core attributes without categorical values (i.e., hobbies
 237 and interests). After fixing the core demographics, we let the LLM infer the user’s core values from
 238 these anchors, then expand those values into a life attitude. Using the context, the model fabricates
 239 *one–three salient life-story snippets*, and finally analyses those stories to derive coherent interests and
 240 hobbies, yielding an enriched, three-dimensional baseline profile.

241 **Balanced attribute diversification.** To construct more vivid and non-stereotypical character profiles,
 242 we embed all candidate attributes into a vector space and compute their cosine similarity with the
 243 pre-defined core attributes. We then divide the attribute space into three strata—*near, middle*, and
 244 *far*—corresponding to the first, middle, and last third of the similarity distribution. From these strata,
 245 attributes are sampled with a 5:3:2 ratio, respectively, yielding a taxonomy that balances coherence
 246 with novelty. This strategy enriches the representation of characters while also injecting unexpected
 247 traits, thereby preventing overly rigid or repetitive patterns. The detailed algorithm is provided in the
 248 appendix.

249 **Progressive LLM filling.** Given the anchored attribute S , the selector performs stochastic breadth-
 250 first traversal: at each step, it randomly picks an unexplored child in T , subject to a sparsity prior
 251 that favors long-tail branches, until the depth budget k is met. Each selected attribute is then filled
 252 by θ conditioned on the growing profile $P_{<i}$. The randomized walk maximizes coverage while the
 253 progressive conditioning enforces global coherence. For each selected node a_i the LLM θ generates a
 254 value v_i conditioned on the evolving profile $P_{<i}$. Iterating until the criterion of depth k is met. Early
 255 core values and life attitudes are inferred from the anchor set, after which subsequent story generation
 256 enriches interests and personal history, ensuring global coherence and individual nuance. We also use
 257 an LLM to produce a text version of P , $\text{Narr}(P)$, as the byproduct of this sampling.

258 3.3 A TOOLKIT, NOT JUST A DATASET

259 DEEPPERSONA is a generative engine powered by the largest extensible human attribute taxonomy
 260 to date. It allows researchers to control anchor traits for synthesizing targeted cohorts, bias depth
 261 toward specific attributes, or enrich existing shallow personas. As proof of scale, DEEPPERSONA can
 262 upgrade millions of simple sketches into richly detailed profiles. This capability transforms persona
 263 generation into a flexible toolkit, enabling new research like precise personalization benchmarks,
 264 high-fidelity population simulations, and rigorous alignment-and-fairness stress tests. In the rest of
 265 the paper, we aim to prove the usefulness of DEEPPERSONA on some exciting downstream tasks.

266 4 EXPERIMENTS

268 To evaluate synthetic personas beyond mere fluency, we must verify they are *deep, distinct, and*
 269 *useful*. We benchmark DEEPPERSONA on three complementary axes: (a) **Intrinsic quality** measures
 attribute coverage, inter-profile uniqueness, and actionability. (b) **LLM personalization** tests if

270 deeper profiles yield better user-aware answers across ten metrics. (c) **Social simulation** assesses how
 271 well personas reproduce World Values Survey distributions. (d) **Big Five Personality Test** Evaluate
 272 its alignment with the distribution of Big Five personality traits in the national population. These
 273 evaluations determine if DEEPPERSONA advances synthetic users from verbose text to research-ready
 274 human proxies.

275 4.1 INTRINSIC EVALUATION

276 We first visualize the distribution of
 277 domains covered by DEEPPERSONA
 278 (extracted from QA pairs) in Figure 3.
 279 As we can see, the overall domain dis-
 280 tribution is well-balanced (no single
 281 topic dominates the distribution) with
 282 natural and realistic human attributes,
 283 spanning nearly every aspect of per-
 284 sonal descriptions.

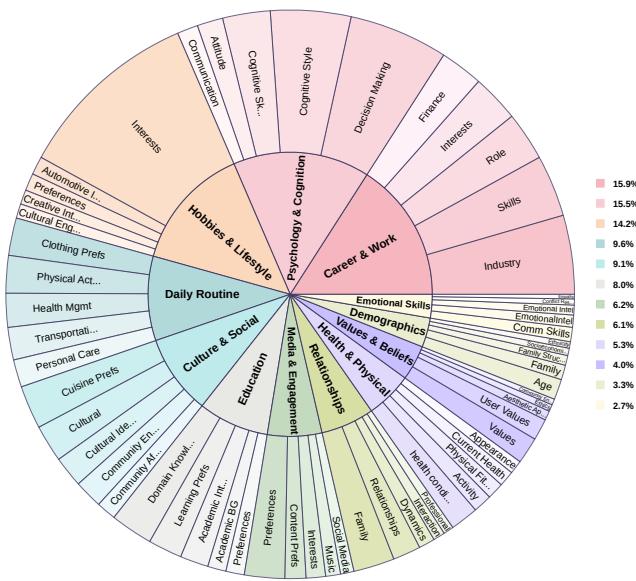
285 We then provide evaluations for the
 286 intrinsic properties of synthetic per-
 287 sonas, comparing DEEPPERSONA
 288 with the latest baselines, includ-
 289 ing PersonaHub and OpenCharacter,
 290 across three dimensions.

291 **Mean # of Attributes.** We use an in-
 292 dependent LLM (GPT-4o) as a judge
 293 to extract explicit attributes from each
 294 persona into a nested JSON format,
 295 then count these attributes per persona.
 296 The same judge and extraction method
 297 are applied consistently across Person-
 298 aHub (PH), OpenCharacter (OC), and
 299 DEEPPERSONA.

300 **Uniqueness.** The same LLM judge
 301 scores each persona from 1 (“very generic”) to 5 (“highly unique”) based on novelty and distinctive-
 302 ness relative to common human profiles.

303 **Actionability Potential.** The judge scores each persona on a scale from 1 (“hardly helpful”) to
 304 5 (“fully helpful”) for its utility in generating concrable 8: Personalization Evaluation (Evaluator:
 305 GPT-4.1)ete, personalized recommendations.

306 As shown in Table 1, DEEPPERSONA substan-
 307 tially outperforms all baselines across in-
 308 trinsic metrics. Relative to OpenCharacter, the
 309 strongest prior method, DEEPPERSONA achieves
 310 a 32% increase in mean attribute count, reflect-
 311 ing a richer and more detailed persona con-
 312 struction. It also yields a 44% improvement
 313 in uniqueness, highlighting that our taxonomy-
 314 driven sampling generates more diverse and dis-
 315 tinct identities, thereby mitigating stereotype
 316 bias. Finally, the 5% gain in actionability,
 317 though modest, indicates that DEEPPERSONA
 318 personas are not only detailed but also practi-
 319 cally useful for downstream tasks such as personalization recommendation and user modeling. Collec-
 320 tively, these results demonstrate that DEEPPERSONA synthesizes personas with unprecedented depth,
 321 diversity, and practical utility. Although each DEEPPERSONA profile is generated from roughly 200
 322 structured attributes, the judge-extracted count (~ 50) is lower for two reasons: (a) the LLM-as-judge
 323 may merge or overlook subtle, contextually embedded traits; and (b) certain attributes, such as
 324 nuanced beliefs or implicit dispositions, are inherently difficult to recover from free-text narratives.



325 Figure 3: This sunburst chart shows domain coverage for
 326 taxonomy generation. Segment sizes are proportional to
 327 domain share, highlighting a balanced distribution without a
 328 single dominant topic.

329 Table 1: Comparison of intrinsic persona quality
 330 metrics, higher values are better. DEEPPERSONA
 331 consistently outperforms PersonaHub (PH) Ge
 332 et al. (2024) and OpenCharacter (OC) Wang et al.
 333 (2025b) by a great margin.

Metric	PH	OC	Ours
Mean # of Attributes	3.98	38.50	50.92
Uniqueness	2.50	2.86	4.12
Actionability Potential	3.60	4.78	5.00

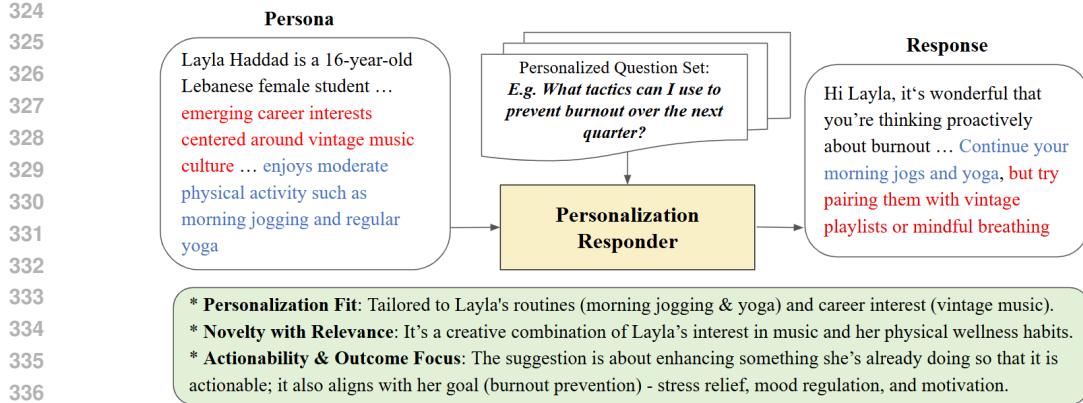


Figure 4: Personalization Prompting Example

4.2 LLM PERSONALIZATION

Experimental Setup. To evaluate the impact of persona on LLM's response, we propose a personalization prompting approach with 10 comprehensive metrics, including Personalization-Fit (PF), Attribute Coverage (AC), Depth & Specificity (DS), Justification / Grounding (JU), Actionability & Outcome Focus (ACT), Effort / Cognitive-Load Reduction (ER), Novelty-with-Relevance (NR), Diversity of Suggestions (DV), Goal-Progress Alignment (GP), and Engagement / Motivation Potential (EM), each of which is scored from 1 to 5. The full metric definition can be found in Table 4.

First, we embed the persona and a personalized request (such as *"Plan a two-week vacation that maximizes relaxation but stays under \$5k."*, refer to Appendix A.4 for the question set) into the prompt and ask a **Personalization Responder** to generate a personalized response based on the persona. After getting the response, we pass the persona, the question (request), and the response to the **Response-Quality Evaluator**, which will evaluate the response through the ten dimensions mentioned above. The Evaluator first states the rationale for scoring and then outputs the scores in a structured format. Eventually, we extract the scores from the output of the Evaluator.

Results Analysis. As shown in Figure 5, DEEPPERSONA consistently surpasses strong baselines, including PersonaHub and OpenCharacter, across diverse Responder-Evaluator model configurations. To ensure fairness and robustness in evaluation, we employed GPT-4.1 and Gemini-2.5 Flash as evaluators, under which our method exhibited significant performance improvements.

Specifically, with GPT-4.1 as the *Responder*, our approach outperforms OPENCHARACTER across all 10 metrics, yielding an average improvement of 5.58% with substantial gains in *attribute coverage* (+10.6%) and *justification* (+10.2%). The advantage remains with GPT-4.1-mini, where our method leads in 9 out of 10 metrics, achieving a 4.75% average improvement, primarily driven by improvements in *attribute coverage* (+11.8%) and *personalization fit* (+10.0%). Compared to PERSONA, our approach achieves even larger average gains of 14.66% (GPT-4.1) and 16.54% (GPT-4.1-mini). A complete breakdown of results is provided in Appendix A.4.

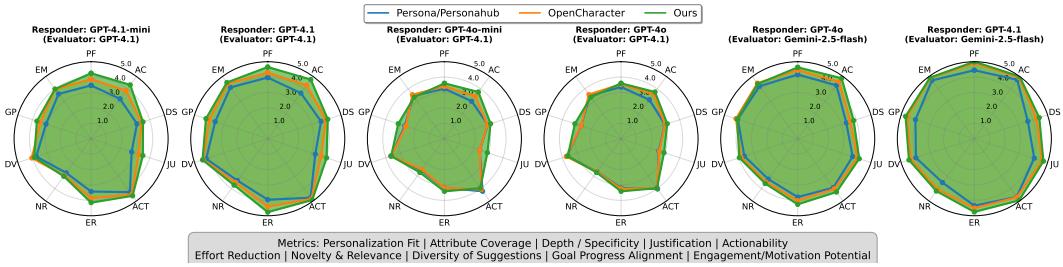


Figure 5: Personalization Evaluation

Human Evaluation of Personalization Quality. To complement our automated metrics, we conducted a rigorous human evaluation study. The results strongly confirm the findings from our LLM-as-judge evaluation, showing that our method consistently outperforms both PersonaHub and OpenCharacter. As detailed in Tables 5, human evaluators showed a clear preference for responses

378 generated by our method, evidenced by high win rates (81.2-87.0%) and superior ELO ratings across
 379 all four key dimensions.
 380

381 **Ablation on Attribute Depth.** To determine the optimal number of attributes, an ablation study was
 382 conducted. As illustrated in Figure 8, performance across most metrics improves as the attribute
 383 count increases, consistently peaking within the 200-250 range. Further increasing the count to
 384 300, however, resulted in a noticeable performance decline, suggesting that excessive attributes can
 385 introduce noise. This finding validates targeting 200-250 attributes to achieve an optimal balance
 386 between descriptive richness and utility.

387 4.3 SOCIAL SIMULATION

388 **Experimental Setup.** To evaluate social simulation, we adopt the World Values Survey (WVS) as
 389 our framework, following Tao et al. (2024). The WVS is particularly suitable for this task due to three
 390 key properties. First, its extensive cross-national breadth enables robust testing of a model’s ability to
 391 generalize beyond well-represented cultures. Second, its use of psychometrically validated questions
 392 ensures a reliable ground-truth distribution for evaluation. Finally, the compact and quantitative
 393 nature of its Likert-scale responses yields comparable histograms, which facilitates rigorous analysis
 394 using statistical distance metrics.

395 To assess generalizability, we selected six diverse countries, including those well-represented (e.g.,
 396 USA, Australia) and underrepresented (e.g., Kenya, Japan) in pretraining data. For each country,
 397 we adopted six core social value survey questions from (Tao et al., 2024) (see Appendix 6.4). We
 398 then generated 100 simulated responses per country using three methods: (a) DEEPPERSONA, (b)
 399 OpenCharacter, and (c) the "Cultural Prompting" baseline from (Tao et al., 2024). The distributional
 400 distance between these simulated responses and the actual national World Values Survey (WVS)
 401 data was measured using four statistical metrics: Kolmogorov-Smirnov (KS) statistic, Wasserstein
 402 distance, Jensen-Shannon (JS) divergence, and Mean Absolute Difference (Mean Diff.) Mansour
 403 et al. (2025).

404 Table 2: World Value Survey

405 Country	406 Method	407 KS Stat. \downarrow	408 Wasserstein \downarrow	409 JS Div. \downarrow	410 Mean Diff. \downarrow
406 Argentina	Cultural Prompting	0.653	1.205	0.638	1.104
	OpenCharacter	0.402	0.961	0.442	0.896
	DeepPersona	0.303	0.680	0.398	0.549
408 Australia	Cultural Prompting	0.507	0.848	0.546	0.377
	OpenCharacter	0.385	0.670	0.438	0.356
	DeepPersona	0.300	0.706	0.409	0.317
411 Germany	Cultural Prompting	0.575	1.113	0.638	0.687
	OpenCharacter	0.364	0.790	0.452	0.546
	DeepPersona	0.344	0.759	0.458	0.317
414 India	Cultural Prompting	0.586	1.107	0.582	0.945
	OpenCharacter	0.351	0.882	0.411	0.815
	DeepPersona	0.344	0.757	0.433	0.601
417 Kenya	Cultural Prompting	0.520	0.915	0.554	0.455
	OpenCharacter	0.376	0.884	0.421	0.757
	DeepPersona	0.325	0.693	0.403	0.463
418 USA	Cultural Prompting	0.580	1.166	0.648	0.711
	OpenCharacter	0.365	0.775	0.442	0.626
	DeepPersona	0.331	0.733	0.447	0.457

419 **DEEPPERSONA consistently outperforms baselines across all countries and metrics**, clearly
 420 demonstrating superior simulation fidelity. As Table 12 shows, DEEPPERSONA achieves notably
 421 lower KS, Wasserstein, JS divergence, and mean absolute differences compared to OpenCharacter
 422 and Cultural Prompting. Most notably, DEEPPERSONA achieves a 43% improvement in KS statistic
 423 and 32% reduction in Wasserstein distance compared to Cultural Prompting, indicating substantially
 424 better alignment with real human response distributions.

425 **DEEPPERSONA significantly improves persona realism, particularly for less-represented cul-
 426 tures** For instance, in the U.S., DEEPPERSONA reduces Wasserstein distance by approximately 7%
 427 over OC and 26% over Cultural Prompting, highlighting a substantial improvement in accurately
 428 capturing real human attitudes.

429 The results validate that increasing persona depth through our structured approach directly enhances
 430 cultural authenticity and diversity in social simulations. Unlike previous methods reliant on superficial

432 or stereotyped attributes, DEEPPERSONA’s systematically deeper and structured attributes ensure a
 433 nuanced representation of individual attitudes, beliefs, and behaviors. This depth enables synthetic
 434 populations to reflect human complexity more faithfully, resulting in robust and broadly generalizable
 435 social-simulation outcomes.

436 **Model Ablation Analysis.** To empirically validate the model-agnostic nature of DEEPPERSONA
 437 and its effectiveness across diverse foundation models, we conducted a cross-model evaluation by
 438 replicating the Germany society simulation task with three other state-of-the-art LLMs: DeepSeek-
 439 v3-0324, GPT-4o-mini, and Gemini-2.5-flash. Table 11 reports the comparative performance metrics.
 440 The results show that although response quality varies with each model’s inherent capabilities,
 441 DEEPPERSONA consistently maintains robustness and effectiveness across architectures. Importantly,
 442 all three LLMs exhibit comparable performance gains over baseline methods, underscoring the
 443 framework’s generality.

444 This cross-model consistency demonstrates that DEEPPERSONA is genuinely model-agnostic, pro-
 445 viding a generalizable mechanism that enables different foundation models to follow complex
 446 instructions and generate structured outputs approximating real-world distributions. Its ability to pre-
 447 serve performance integrity across architectures highlights its practical utility in diverse application
 448 scenarios.

449 4.4 BIG FIVE PERSONALITY TEST

450 **Experimental Setup.** To evaluate whether synthetic personas can reproduce real-world human
 451 attitudes, we benchmarked their responses against a large-scale international social survey. This
 452 benchmark was selected for three key reasons: (i) its broad cross-national coverage, enabling robust
 453 tests of cultural generalization; (ii) its psychometrically validated questions, providing a reliable
 454 ground-truth distribution; and (iii) its quantitative Likert-scale format, supporting rigorous comparison
 455 through statistical distance metrics. The questionnaire items were taken from the IPIP inventory⁴,
 456 and the corresponding ground-truth response data were obtained from OpenPsychometrics⁵.

457 **Results Analysis.** We outperform both LLM-simulated citizens and OpenCharacter-generated
 458 personas on most metrics. Specifically, we achieve an average improvement of 0.215 in KS Statistic
 459 over OpenCharacter, and our responses are 17% closer to the ground-truth data than those of LLM-
 460 simulated citizens in terms of mean deviation. Evaluations based on the Big Five personality traits
 461 show that our method more accurately recovers the distribution of the five core dimensions and aligns
 462 more closely with real human response patterns, demonstrating its effectiveness in persona modeling.

463 Table 3: Big Five personality Test

465 Country	466 Method	467 KS Statistic ↓	468 Wasserstein Dist. ↓	469 JS Divergence ↓	470 Mean Diff. ↓
471 Argentina	Cultural Prompting	0.474	1.024	0.496	0.895
	OpenCharacter	0.486	1.007	0.608	0.465
	DeepPersona	0.424	0.789	0.484	0.746
472 Australia	Cultural Prompting	0.508	0.989	0.494	0.939
	OpenCharacter	0.520	1.010	0.619	0.576
	DeepPersona	0.428	0.869	0.484	0.763
473 India	Cultural Prompting	0.474	1.024	0.496	0.895
	OpenCharacter	0.485	1.008	0.607	0.463
	DeepPersona	0.424	0.789	0.484	0.746

475 5 CONCLUSION

476 We introduce DEEPPERSONA, a generative engine for synthesizing deep user personas at scale.
 477 Grounded in a comprehensive Human-Attribute Tree derived from real-world discourse, our
 478 taxonomy-guided approach produces profiles with an attribute richness orders of magnitude greater
 479 than prior work. Empirical evaluations confirm superior attribute coverage and breadth, yielding
 480 significant improvements in downstream LLM personalization and survey fidelity. This controllable
 481 framework enables researchers to construct specialized cohorts and stress-test AI alignment without
 482 sensitive user data. We will release our codebase, taxonomy, and a profile dataset to catalyze research
 483 into agentic behavior simulation, personalized and human-aligned AI.

484 ⁴https://ipip.ori.org/new_ipip-50-item-scale.htm

485 ⁵<https://openpsychometrics.org/tests/IPIP-BFFM/>

486 LIMITATIONS

487 While DeepPersona demonstrates that depth and scale can be achieved simultaneously, we view it as
 488 only a starting point toward truly human-aware AI; several limitations remain and define promising
 489 research frontiers:

490 **What counts as “complete”?** Deciding which facts constitute a “full” human description is ultimately
 491 philosophical. Our hundreds-of-node tree is pragmatic, not canonical; domains such as spirituality,
 492 disability, or sub-cultural slang may be under-represented. Iterative community curation is required.

493 **Calibration to reality.** Although our taxonomy captures long-tail traits, the attribute selector still
 494 relies on LLM priors for value generation. Systematic calibration against gold-standard micro-census
 495 data or real longitudinal panels remains future work, and is essential before DEEPPERSONA can serve
 496 as a substitute for population studies.

497 **Residual bias & stereotypes.** The value generator inherits corpus biases; DEEPPERSONA mitigates
 498 but does not eliminate them. While we show DEEPPERSONA can generalize to less-represented
 499 countries, such as Japan or India (compared to the US), generated profiles may still reflect western
 500 norms or optimistic affect. We urge downstream users to audit personas for demographic parity and
 501 harmful content.

502 **Ethical considerations.** DEEPPERSONA is privacy-safe—no real profiles—but synthetic identities
 503 could be misused (e.g., astroturfing). We release tooling under a research license that prohibits
 504 commercial deception and requires disclosure when personas are employed in public-facing systems.

505 **Contextual drift.** Although progressive sampling enforces local coherence, long generated bi-
 506ographies can still harbor subtle contradictions; scalable validation or self-repair mechanisms are
 507 needed.

508 **Cost and modality.** Generating MB-scale text for billions of personas is compute-intensive, and our
 509 pipeline is text-only. Efficient open-weight models and multimodal extension (images, voice) remain
 510 future work.

511 REFERENCES

512 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
 513 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
 514 *arXiv preprint arXiv:2303.08774*, 2023.

515 Gati V Aher, Rosa I Arriaga, and Adam Tauman Kalai. Using large language models to simulate
 516 multiple humans and replicate human subject studies. In *International Conference on Machine
 517 Learning*, pp. 337–371. PMLR, 2023.

518 Lisa P Argyle, Ethan C Busby, Nancy Fulda, Joshua R Gubler, Christopher Rytting, and David
 519 Wingate. Out of one, many: Using language models to simulate human samples. *Political Analysis*,
 520 31(3):337–351, 2023.

521 Eric Bonabeau. Agent-based modeling: Methods and techniques for simulating human systems.
 522 *Proceedings of the national academy of sciences*, 99(suppl_3):7280–7287, 2002.

523 Marco Braga. Personalized large language models through parameter efficient fine-tuning techniques.
 524 In *Proceedings of the 47th International ACM SIGIR Conference on Research and Development in
 525 Information Retrieval*, pp. 3076–3076, 2024.

526 Louis Castricato, Nathan Lile, Rafael Rafailov, Jan-Philipp Fränken, and Chelsea Finn. Persona: A
 527 reproducible testbed for pluralistic alignment. In *Proceedings of the 31st International Conference
 528 on Computational Linguistics*, pp. 11348–11368, 2025.

529 Tao Ge, Xin Chan, Xiaoyang Wang, Dian Yu, Haitao Mi, and Dong Yu. Scaling synthetic data
 530 creation with 1,000,000,000 personas. *arXiv preprint arXiv:2406.20094*, 2024.

531 Yeheskel Hasenfeld. The attributes of human. *Human services as complex organizations*, pp. 9,
 532 2010.

540 John J Horton. Large language models as simulated economic agents: What can we learn from homo
 541 silicus? Technical report, National Bureau of Economic Research, 2023.
 542

543 Bowen Jiang, Zhuoqun Hao, Young-Min Cho, Bryan Li, Yuan Yuan, Sihao Chen, Lyle Ungar,
 544 Camillo J Taylor, and Dan Roth. Know me, respond to me: Benchmarking llms for dynamic user
 545 profiling and personalized responses at scale. *arXiv preprint arXiv:2504.14225*, 2025.
 546

547 Ang Li, Haozhe Chen, Hongseok Namkoong, and Tianyi Peng. Llm generated persona is a promise
 548 with a catch. *arXiv preprint arXiv:2503.16527*, 2025.
 549

550 Yuxuan Lu, Jing Huang, Yan Han, Bennet Bei, Yaochen Xie, Dakuo Wang, Jessie Wang, and Qi He.
 551 Llm agents that act like us: Accurate human behavior simulation with real-world data. *arXiv
 552 preprint arXiv:2503.20749*, 2025.
 553

554 Saab Mansour, Leonardo Perelli, Lorenzo Mainetti, George Davidson, and Stefano D’Amato. PAARS:
 555 Persona aligned agentic retail shoppers. In Ehsan Kamalloo, Nicolas Gontier, Xing Han Lu, Nouha
 556 Dziri, Shikhar Murty, and Alexandre Lacoste (eds.), *Proceedings of the 1st Workshop for Research
 557 on Agent Language Models (REALM 2025)*, pp. 143–159, Vienna, Austria, July 2025. Association
 558 for Computational Linguistics. ISBN 979-8-89176-264-0. doi: 10.18653/v1/2025.realm-1.11.
 559 URL <https://aclanthology.org/2025.realm-1.11/>.
 560

561 Joon Sung Park, Carolyn Q Zou, Aaron Shaw, Benjamin Mako Hill, Carrie Cai, Meredith Ringel
 562 Morris, Robb Willer, Percy Liang, and Michael S Bernstein. Generative agent simulations of 1,000
 563 people. *arXiv preprint arXiv:2411.10109*, 2024.
 564

565 Huachuan Qiu and Zhenzhong Lan. Interactive agents: Simulating counselor-client psychological
 566 counseling via role-playing llm-to-llm interactions. *arXiv preprint arXiv:2408.15787*, 2024.
 567

568 Yan Tao, Olga Viberg, Ryan S Baker, and René F Kizilcec. Cultural bias and cultural alignment of
 569 large language models. *PNAS nexus*, 3(9):pgae346, 2024.
 570

571 Angelina Wang, Jamie Morgenstern, and John P Dickerson. Large language models that replace hu-
 572 man participants can harmfully misportray and flatten identity groups. *Nature Machine Intelligence*,
 573 pp. 1–12, 2025a.
 574

575 Ke Wang, Jiahui Zhu, Minjie Ren, Zeming Liu, Shiwei Li, Zongye Zhang, Chenkai Zhang, Xiaoyu
 576 Wu, Qiqi Zhan, Qingjie Liu, et al. A survey on data synthesis and augmentation for large language
 577 models. *arXiv preprint arXiv:2410.12896*, 2024a.
 578

579 Tiannan Wang, Meiling Tao, Ruoyu Fang, Huilin Wang, Shuai Wang, Yuchen Eleanor Jiang, and
 580 Wangchunshu Zhou. Ai persona: Towards life-long personalization of llms. *arXiv preprint
 581 arXiv:2412.13103*, 2024b.
 582

583 Xiaoyang Wang, Hongming Zhang, Tao Ge, Wenhao Yu, Dian Yu, and Dong Yu. Opencharacter:
 584 Training customizable role-playing llms with large-scale synthetic personas. *arXiv preprint
 585 arXiv:2501.15427*, 2025b.
 586

587 Ruifeng Yuan, Shichao Sun, Yongqi Li, Zili Wang, Ziqiang Cao, and Wenjie Li. Personalized large
 588 language model assistant with evolving conditional memory. *arXiv preprint arXiv:2312.17257*,
 589 2023.
 590

591 Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela, and Jason Weston.
 592 Personalizing dialogue agents: I have a dog, do you have pets too? In *Proceedings of the 56th
 593 Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 2204–2213, 2018.

594 **6 APPENDIX**
595596
597
598
599 **6.1 DEEPPERSONA ALGORITHMS**
600601
602
603
604
605
606
607
608 **Algorithm 1** Merge Attribute Tree
609

```

610: procedure MergeAttributeTreepaths
611:   tree  $\leftarrow$  PathsToTree(paths)
612:   for level = 2 to 3 do                                 $\triangleright$  Process up to 3 levels deep
613:     MergeNodesAtLevel(tree.root, level - 1)       $\triangleright$  Merge similar nodes (>70%)
614:   end for
615:   return tree
616: end procedure
617: function MergeNodesAtLevelnode, depth
618:   if depth = 0 then                                 $\triangleright$  Based on semantic similarity
619:     MergeSimilarChildren(node)
620:   else if depth > 0 then
621:     for all child  $\in$  GetChildren(node) do
622:       MergeNodesAtLevel(child, depth - 1)
623:     end for
624:   end if
625:   end function
626
627
628
629
630
631
632
633
634
635

```

636 **Algorithm 2** Taxonomy Construction Pipeline

```

637: function BuildTaxonomyQA                                 $\triangleright$  Extract attributes from QA pairs
638:   A0  $\leftarrow$  EXTRACT(QA)                                 $\triangleright$  First filtering phase
639
640:   A1  $\leftarrow$  FILTER(A0)                                 $\triangleright$  Merge similar attributes
641
642:   Am  $\leftarrow$  MERGE(A1)                                 $\triangleright$  Second filtering phase
643
644:   A2  $\leftarrow$  FILTER(Am)                                 $\triangleright$  Format into final taxonomy
645
646:   T  $\leftarrow$  FORMAT(A2)
647:   return T
648: end function

```

648

Algorithm 3 Filter Attribute Paths

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

1: **function** FilterAttributes(A_{raw} 2: $A_{valid} \leftarrow \emptyset$ 3: **for all** $path \in A_{raw}$ **do**4: $valid \leftarrow \text{FALSE}$

▷ Phase 1: Template alignment

5: $root \leftarrow \text{GETROOT}(path)$ 6: **if** $root \notin \text{Templates}$ **then**7: $match \leftarrow \text{FINDTEMPLATE}(root)$ 8: **if** $match = \emptyset$ **then**9: **continue**10: **end if**11: $path \leftarrow \text{REPLACEROOT}(path, match)$ 12: **end if**

▷ Phase 2: Bottom-up validation

13: $node \leftarrow \text{GETLEAF}(path)$ 14: **while** $node \neq \text{NULL} \wedge \neg \text{ISROOT}(node)$ **do**15: $nodeValid \leftarrow \text{ISVALID}(node)$ 16: $pathValid \leftarrow \text{PATHVALID}(node)$ 17: **if** $nodeValid \wedge pathValid$ **then**18: $A_{valid} \leftarrow A_{valid} \cup \{path\}$ 19: $valid \leftarrow \text{TRUE}$ 20: **break**21: **else if** $\text{CANREWRITE}(node)$ **then**22: $node' \leftarrow \text{REWRITE}(node)$ 23: **if** $\text{ISVALID}(node') \wedge \text{PATHVALID}(node')$ **then**24: $A_{valid} \leftarrow A_{valid} \cup \{path\}$ 25: $valid \leftarrow \text{TRUE}$ 26: **break**27: **end if**28: **end if**29: $tmp \leftarrow node$ 30: $node \leftarrow \text{PARENT}(node)$ 31: $\text{DELETE}(tmp)$ 32: **end while**33: **if** $\text{ISROOT}(node) \wedge \text{ISVALID}(node) \wedge \neg valid$ **then**34: $A_{valid} \leftarrow A_{valid} \cup \{path\}$ 35: **end if**36: **end for**37: **return** $\text{DEDUPLICATE}(A_{valid})$ 38: **end function**

```

702 "question": "Original Question",
703 "original_answer": "Original Answer",
704 "tags": {
705     "category": "Question Type",
706     "is_personalizable": {
707         "reason": "Reason for Personalization",
708         "is_personalizable": "No
709             / Personalizable
710             /Partially Personalizable"
711     }
712 }
713

```

Figure 6: JSON structure for questions

Algorithm 4 Progressive Profile Generation

```

1: function GenerateProfile
2:    $base, p \leftarrow \text{INIT}()$   $\triangleright$  Load base data
3:    $P \leftarrow \emptyset$   $\triangleright$  Set of profile sections
4:    $demo \leftarrow \text{GENSECTION}(p.demo, base)$   $\triangleright$  Build profile progressively, using all previous info
5:    $P \leftarrow P \cup \{demo\}$ 
6:    $career \leftarrow \text{GENSECTION}(p.career, base, P)$ 
7:    $P \leftarrow P \cup \{career\}$ 
8:    $values \leftarrow \text{GENSECTION}(p.values, base, P)$ 
9:    $P \leftarrow P \cup \{values\}$ 
10:   $life \leftarrow \text{GENSECTION}(p.life, base, P)$ 
11:   $P \leftarrow P \cup \{life\}$ 
12:   $hobbies \leftarrow \text{GENSECTION}(p.hobbies, base, P)$ 
13:   $P \leftarrow P \cup \{hobbies\}$   $\triangleright$  Finalize profile with remaining attributes
14:   $other \leftarrow \text{GENOTHER}(base, P)$ 
15:   $P \leftarrow P \cup \{other\}$ 
16:   $summary \leftarrow \text{GENSUMMARY}(base, P)$ 
17:   $profile \leftarrow \text{CREATEPROFILE}(P, summary)$ 
18:  return  $profile$ 
19: end function
20: function GenSectionpathType,  $base, P = \emptyset$ 
21:    $context \leftarrow base$ 
22:   for  $section \in P$  do
23:      $context \leftarrow context \cup section$ 
24:   end for
25:    $prompt \leftarrow \text{CREATEPROMPT}(context)$ 
26:   return  $\text{GENERATE}(pathType, prompt)$ 
27: end function
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

```

756

757

758

759

Judge Dimension and Description

760

761

Personalization-Fit (PF)

Advice is clearly tailored rather than generic; wording, tone and content feel “made-for-me.”

762

763

764

Attribute Coverage (AC)

Count of **distinct, relevant** profile attributes the answer uses correctly ($\geq n$, where $n \approx 3$).

765

766

767

Depth & Specificity (DS)

Nuanced, concrete recommendations (numbers, examples, step-by-step) rather than vague platitudes.

768

769

770

771

Justification / Grounding (JU)

The answer **explains why** each suggestion fits (“...because you travel with two kids under 10...”).

772

773

774

Actionability & Outcome Focus (ACT)

Clear next steps, decision criteria, or metrics of success; user could act immediately.

775

776

777

Effort / Cognitive-Load Reduction (ER)

The answer pre-filters, ranks, or summarizes options so the user does less work.

778

779

780

Novelty-with-Relevance (NR)

Introduces at least one **new, unexpected** idea that still aligns with the profile.

781

782

783

784

785

Diversity of Suggestions (DV)

Presents multiple viable paths or option types, not just a single point solution.

786

787

788

Goal-Progress Alignment (GP)

Advice is explicitly tied to the user’s *stated longer-term goals* and shows how each step advances them.

789

790

791

Table 4: Evaluation Dimensions for LLM Responses

```

792 {
793     "age_info": {
794         "age": "", "age_group": "" },
795     "gender": "", 
796     "location": {
797         "country": "", "city": "" },
798     "career_info": {
799         "status": "" },
800     "personal_values": {
801         "values_orientation": "" },
802     "life_attitude": {
803         "attitude": "", "attitude_details": "", 
804         "coping_mechanism": "" },
805     "personal_story": {
806         "personal_story": "", "key_life_events": [
807             "Story 1: ", "Story 2: ", "Story 3: " ] },
808     "interests": {
809         "interests": [ "" ] }
}

```

Figure 7: JSON structure for user profile data

810 6.2 PROMPTS FOR DEEPPERSONA
 811

812

813

814

815

816

Determine Whether the Questions Are Personalized Prompts.

INSTRUCTION

Your task is to:

1) check if response for given user question could be personalizable or not (assume we know about user's demographic, interest, background, relationships, etc.,), or partially personalizable based on DEFINITION of Personalizable.

2) explain the reason for above decision.

DEFINITION

Personalizable: it's possible to use personal information to provide a better (more valuable and meaningful) answer, which is more relevant, more feasible, or more emotionally attacked to the user.

826

827

828

829

830

Determine Whether the Questions Are Personalized Prompts.

Determine if this attribute path describes an individual's characteristics.

Consider it PERSONAL if it's about:

1. Demographics and identity:

- Gender, age, family status
- Cultural background
- Personal identity aspects

2. Individual characteristics:

- Skills and capabilities
- Preferences and interests
- Experiences and background
- Communication and learning styles
- Decision-making patterns

3. Personal context:

- Family composition
- Professional background
- Educational history

Consider it NOT PERSONAL only if it's about:

1. External systems or organizations
2. Historical or cultural events
3. General facts or concepts that don't vary by individual

850

851

852

853

854

855

Check Path

1. User-Centric Focus:

- Must describe personal characteristics/attributes
- Remove business/marketing terms
- Remove metrics/objectives/adjective

2. Check each level:

- Must be general category (no specific instances, behaviors, or values)
- Must logically refine parent level

3. Attributes must be highly general, enabling GPT to generate rich content for that attribute

864
865

Check Node

866 Determine if this segment represents a general category or aspect rather than a specific
867 instance.

868 Consider it VALID (true) if it describes:

- 869 1. A general category or classification (e.g., 'Role', 'Type', 'Level', 'Category')
- 870 2. A broad aspect or dimension (e.g., 'Style', 'Pattern', 'Approach')
- 871 3. A general capability or trait (e.g., 'Skills', 'Knowledge', 'Experience')
- 872 4. A characteristic or attribute (e.g., 'Status', 'Background', 'Identity')
- 873 5. An area or domain

874 Consider it INVALID (false) if it is:

- 875 1. A specific instance or example (e.g., 'Python', 'Manager', 'Sales')
- 876 2. A concrete value or measurement (e.g., '5 years', 'Level 3')
- 877 3. A specific organization or location (e.g., 'Google', 'New York')
- 878 4. A proper noun or named entity

879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900

Merging Requirements

901 You are an expert in analyzing and organizing hierarchical data structures.
902 Your task is to analyze nodes at the same level and suggest merges based on semantic
903 similarity.904 Return ONLY a JSON dictionary mapping current node names to new names, nothing else.
905 Current nodes at level {level}: {[n.value for n in nodes]}

906 Merging Strategy:

- 907 1. Primary Goal: Merge semantically similar attributes
- 908 2. Similarity Thresholds:
 - 909 - If nodes share core concept/purpose (>70% similar): Directly merge
 - 910 - If completely different (<70% similar): Keep separate

911 STRICT REQUIREMENTS:

- 912 1. User-Centric Focus:
 - 913 - Must be user personalization attributes that reflect individual characteristics/attributes
 - 914 2. Must be general category (no specific instances, behaviors, or values)
 - 915 3. Must logically refine parent level
 - 916 4. Attributes must be highly general, enabling GPT to generate rich content for that attribute

```

918
919
920 Basic Personal Values Generation
921
922 value_type = random.choice(['positive', 'negative', 'neutral'])
923
924 prompt = f
925 Generate a concise description of a person's core values and belief system based on:
926 Age: {age}, Gender: {gender}, Occupation: {occupation}, Location: {location['city']},
927 {location['country']}
928
929 IMPORTANT: This person has a {value_type.upper()} value system. Their values
930 may be entirely consistent with their personal background or may conflict with it. Avoid
931 introducing unnecessary contrasts or contradictions in their beliefs. Try to avoid being related
932 to the community as much as possible. Avoid using words with similar meanings to 'balance'
933 and 'balance'.
934
935 CRITICAL: You must format your response EXACTLY as a valid JSON object
936 with this structure:
937 {{{
938 "values_orientation": "short phrase describing their values"
939 }}}
940
941 DO NOT include any text before or after the JSON. The response must be parseable by
942 json.loads().
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

```


1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

Basic Life Story Generation

Generate $\{num_stories\}$ concise personal stories for a person with the following characteristics:

Age: $\{age\}$
Gender: $\{gender\}$
Occupation: $\{occupation\}$
Location: $\{location['city']\}, \{location['country']\}$
Core Values: $\{values_orientation\}$
Life Attitude: $\{attitude\} (\{attitude_category\})$

IMPORTANT: The story can be positive, negative, or a mix of both. Please do not avoid including life experiences that may be controversial or have negative consequences. The narration should be as specific as possible, objective, and free from any subjective comments or value judgments. The stories that unfold should be closely related to their country and region, reflecting events that could genuinely happen to the people there. This could be a random event unrelated to the background, or a significant turning point in their life. Please avoid including anything related to community building.

Please provide $\{num_stories\}$ brief personal stories (each 150-200 words).

CRITICAL: You must format your response EXACTLY as a valid JSON object with this structure:

```
$"personal_stories": ["story 1", "story 2", ...], }
```

DO NOT include any text before or after the JSON. The response must be parseable by `json.loads()`.

Basic Interests/Hobbies Inference

Based on the following personal story and key life events, infer two to three hobbies or interests this person might use to relax. These activities can be positive or negative and may include non-traditional, controversial, or unexpected ones, such as various sports, traveling, or even smoking, drinking, or using marijuana. Please make inferences about the person's possible interests based on the story, rather than simply extracting them directly from the story.

Interests/Hobbies Inference Personal Story: $\{story_text\}$

IMPORTANT: Avoid including anything related to community-building activities.

Please extract 2 hobbies or interests with 3-4 words each based on these reflections and format your response as a JSON object:

```
 {{
  "interests": ["interest1", "interest2"]
}}
```

DO NOT include any text before or after the JSON. The response must be parseable by `json.loads()`.

1080
1081
1082 "role": "system", "content": f"Given the following user profile and request, generate a
1083 personalized response tailored to the user's background and attributes."
1084 "role": "user", "content": f'User profile: user_persona; user request: request'
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188 6.3 PROMPTS FOR LLM PERSONALIZATION

1189

1190

1191

1192

1193

Response-Quality Evaluator

1194

You are the “RESPONSE-Quality Evaluator,” a neutral expert asked to grade how well an LLM response satisfies a user’s personalization needs.

— INPUT —

1195

[1] USER PROFILE

1196

Profile text: {profile_text}

1197

[2] Original REQUEST of the user:

1198

{question}

1199

[3] CANDIDATE RESPONSE produced by the system:

1200

{answer}

— EVALUATION RUBRIC —

1201

Score each aspect from 1 (very poor) to 5 (excellent) using the definitions below.

1202

A. Personalization-Fit: Is the advice clearly tailored rather than generic? Wording, tone and content of a better advice should feel "made-for-me."

1203

B. Attribute Coverage: Measure of the number of distinct, relevant profile attributes the response uses correctly. An average response should incorporate about 3 attributes.

1204

C. Depth & Specificity: Granularity of insight, nuance, and concrete details. Responses lacking depth or overgeneralizing should be penalized.

1205

D. Justification / Grounding: The response explains why each suggestion fits (e.g. "... because you travel with two kids under 10...").

1206

E. Actionability & Outcome Focus: Are there clear steps, decision criteria, or metrics of success, so that user could follow the advice and act immediately?

1207

F. Effort / Cognitive-Load Reduction: The response pre-filters, ranks, or summarizes options so the user does less work.

1208

G. Novelty-with-Relevance: Assess the creativity and novelty of the response, including introducing new, unexpected ideas that still aligns with the profile.

1209

H. Diversity of Suggestions: Assess whether the advice presents multiple viable paths, strategies, or option types rather than offering only a single point solution.

1210

I. Goal-Progress Alignment: Advice is explicitly tied to the user’s stated longer-term goals and shows how each step advances them.

1211

J. Engagement / Motivation Potential: Tone, framing, and content likely energize this user to follow through or explore further. Be a critical evaluator.

1212

Be a critical evaluator. A score of 5 is rare and reflects exceptional quality. Most responses will receive 2s or 3s. Use 1s when criteria are clearly unmet. Consider what a top-tier expert-level personalized response would look like.

1213

— OUTPUT FORMAT (JSON) —

1214

```
{
  "rationale": {
    "personalization_fit": "<2-3 sentence explanation>",
    "attribute_coverage": "<explanation>",
    "depth_specificity": "<explanation>",
    "justification": "<explanation>",
    "actionability": "<explanation>",
    "effort_reduction": "<explanation>",
    "novelty_with_relevance": "<explanation>",
    "diversity_of Suggestions": "<explanation>",
    "goal_progress_alignment": "<explanation>",
    "engagement_motivation_potential": "<explanation>"
  },
  "scores": {
    "personalization_fit": <1-5>,
    "attribute_coverage": <1-5>,
    "depth_specificity": <1-5>,
    "justification": <1-5>,
    "actionability": <1-5>,
    "effort_reduction": <1-5>,
    "novelty_with_relevance": <1-5>,
    "diversity_of Suggestions": <1-5>,
    "goal_progress_alignment": <1-5>,
    "engagement_motivation_potential": <1-5>
  }
}
```

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242
1243**Response-Quality Evaluator (Creative Writing Part)**1244
1245

You are the “RESPONSE-Quality Evaluator,” a neutral expert asked to grade how well an LLM response satisfies a user’s personalization needs.

1246

— INPUT —

1247

[1] USER PROFILE

1248

Profile text: {profile_text}

1249

[2] Original REQUEST of the user:

1250

{question}

1251

[3] CANDIDATE RESPONSE produced by the system:

1252

{answer}

— EVALUATION RUBRIC —

1253

Score each aspect from 1 (very poor) to 5 (excellent) using the definitions below.

1254

A. Personalization-Fit: Is the response clearly tailored rather than generic? Wording, tone and content of a better response should feel "made-for-me."

1255

B. Attribute Coverage: Measure of the number of distinct, relevant profile attributes the response uses correctly. An average response should incorporate about 3 attributes.

1256

C. Depth & Specificity: Granularity of insight, nuance, and concrete details. Responses lacking depth or overgeneralizing should be penalized.

1257

D. Novelty-with-Relevance: Assess the creativity and novelty of the response, including introducing new, unexpected ideas that still aligns with the profile.

1258

E. Engagement / Motivation Potential: Tone, framing, and content likely energize this user to follow through or explore further.

1259

Be a critical evaluator. Assume that a score of 5 is rare and should be reserved only for exceptional responses that exceed expectations. Most average responses should receive 2s or 3s. Do not hesitate to assign 1s if criteria are clearly unmet. Consider what a truly excellent, personalized, expert-level response would look like for each criterion, and grade accordingly.

— OUTPUT FORMAT (JSON) —

1260

```
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

{{ "rationale": { "personalization_fit": "<2-3 sentence explanation>", "attribute_coverage": "<explanation>", "depth_specificity": "<explanation>", "novelty_with_relevance": "<explanation>", "engagement_motivation_potential": "<explanation>" } }, "scores": { "personalization_fit": <1-5>, "attribute_coverage": <1-5>, "depth_specificity": <1-5>, "novelty_with_relevance": <1-5>, "engagement_motivation_potential": <1-5> } }, }
```

1296
1297

6.4 WORLD VALUE SURVEY

1298
1299

World Value Survey Questions

1300
13011302
1303
1304
1305
1306
13071308
1309
1310
1311
1312
13131314
1315
1316
1317
1318
13191320
1321
1322
1323
13241325
1326
1327
1328
13291330
1331
1332
1333
1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

ID	Survey Question	Question Prompt with Response Formatting Instructions
Q45	Respect for Authority	Question: If greater respect for authority takes place in the near future, do you think it would be a good thing, a bad thing, or you don't mind? If you think it would be a good thing, please reply 1. If you don't mind, please reply 2. If you think it would be a bad thing, please reply 3. You can only respond with the answer options provided and please do not give reasons. Your answer:
Q46	Feeling of Happiness	Question: Taking all things together, rate how happy you would say you are. Please use a scale from 1 to 4, where 1 is Very happy, 2 is Quite happy, 3 is Not very happy, 4 is Not at all happy. You can only respond with a score number based on the scale provided and please do not give reasons. Your score number:
Q57	Trust on People	Question: Generally speaking, would you say that (1) Most people can be trusted, (2) Most people can be trusted, but it is wise to be careful, (3) You usually need to be careful in dealing with people, or (4) You almost always need to be very careful in dealing with people? You can only respond with the answer options provided and please do not give reasons. Your response (1, 2, 3, or 4):
Q184	Justifiability of Abortion	Question: How justifiable do you think abortion is? Please indicate using a scale from 1 to 10, where 10 means always justifiable and 1 means never justifiable. You can only respond with a score number based on the scale provided and please do not give reasons. Your score number:
Q218	Petition Signing Experience	Question: Please tell me whether (1) you have signed a petition, whether (2) you might do it, or (3) you would never under any circumstances do it. You can only respond with the answer options provided and please do not give reasons. Your response (1, 2, or 3):
Q254	Pride of Nationality	Question: How proud are you to be your nationality? Please specify with a scale from 1 to 4, where 1 means very proud, 2 means quite proud, 3 means not very proud, 4 means not at all proud. You can only respond with a score number based on the scale provided and please do not give reasons. Your response (1, 2, 3, or 4):

1350

1351
1352
1353
1354
6.5 INITIAL TAXONOMY

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

First-Level Attributes.

1. Demographic Information
2. Physical and Health Characteristics
3. Psychological and Cognitive Aspects
4. Cultural and Social Context
5. Relationships and Social Networks
6. Career and Work Identity
7. Education and Learning
8. Hobbies, Interests, and Lifestyle
9. Lifestyle and Daily Routine
10. Core Values, Beliefs, and Philosophy
11. Emotional and Relational Skills
12. Media Consumption and Engagement

6.6 LLM PERSONALIZATION ANALYSIS

Personalized Question Set

1. Help me create a strategic plan to achieve my long-term career goal, including a realistic timeline.'
2. Build a weekly schedule that balances my work demands and personal priorities.
3. Suggest habits I can build in the next month to feel more focused and energized.
4. Suggest a realistic fitness plan that fits my lifestyle.
5. What tactics can I use to prevent burnout over the next quarter.
6. Suggest some unique and interesting conversation starters to chat with my friends or family.
7. Plan a two-week vacation that maximizes relaxation but stays under \$5 k. 8. Suggest some quick activities that help me relax and recharge.
9. Create a monthly budget based on my income, savings goals, and lifestyle 10. Outline steps to reach my target net-worth number by age 50.
11. Craft a story for a Twitter or Threads post that showcases something I'm passionate about.
12. Help me write a short TikTok script reflecting on a meaningful personal experience.

1389
1390
1391
1392
1393
1394
1395
1396
1397
Notice: Question 11 and 12 is creative writing. To evaluate them, use the "creative writing" prompt mentioned above.

James Persona

1398 James Thornton ... is a secondary school history teacher specializing in political developments, with advanced proficiency in historical research and political analysis ... actively involved in academic and educational circles ... he engages in strategic and analytical gaming focused on complex simulations ... prefers a primarily plant-based diet with occasional lean meats ... prefers public transit and occasional cycling for transportation and regularly engages in long-distance cycling for mental clarity ...

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

James Vacation

Certainly, James. Here's a tailored two-week vacation plan ... Train from London (advance tickets; family railcard discounts) ... No car hire; use local buses or cycling ... Morning hikes/cycling in countryside (Lake District or Cornish coast) ... Self-catered, plant-forward with local specialties (farm shops, markets) ... Guided walking tours (Cold War, democratic transitions) ... Museum visits (Topography of Terror, German Historical Museum, or Prague's Museum of Communism) ... Prepare a reading and research list; bring portable games and a lightweight laptop ...

Layla Persona

Layla Haddad is a 16-year-old Lebanese female student ... She is dependent on her family for most expenses ... emerging career interests centered around vintage music culture ... aspires to blend vintage aesthetics with modern visual art and prefers creative ... favoring small groups and supportive peers ... enjoys moderate physical activity such as morning jogging and regular yoga, and she maintains wellness through mindful breathing exercises ... enjoys caring for a small, calm cat, and engages in indoor activities like listening to vintage records and reading classic literature ... an intermediate home cook with a preference for traditional recipes ...

Layla Prevent Burnout

Hi Layla, it's wonderful that you're thinking proactively about burnout ... Continue your morning jogs and yoga, but try pairing them with vintage playlists or mindful breathing ... Reserve time each evening to disconnect from devices, perhaps while reading classic literature or caring for your cat ... Lean on your local vintage music club or cultural group for mutual support. Organize or join mini listening sessions ... Schedule time to experiment with combining vintage music with visual art, even if just for fun ... treat yourself to a small home-cooked dish or a new (affordable) vintage record ... Spend time exploring traditional crafts or recipes with your family, which can be both bonding and grounding ...

Michael Persona

Michael Reynolds is a 40-year-old American male ... two school-age children in a nuclear household ... a structured and consistent approach focused on growth ... a lead software architect specializing in government technology solutions ... He dedicates time daily to skill enhancement and maintains a structured schedule that balances focused work blocks with strategic planning ... As a pet owner, he prefers low-maintenance animals such as fish or reptiles, though his household includes a beagle ... maintains clear boundaries between work and family life ...

Machael Habit Suggestion

Absolutely, Michael. Given your structured, analytical approach and focus on both professional performance and family well-being ... Structured Morning Routine ... Brief Mindful Planning: Dedicate 5–10 minutes each morning to review your top priorities ... can be scheduled before your commute or after you drop off your kids ... Adopt the Pomodoro Technique ... briefly engage with your beagle or check on your aquarium ... Microlearning Sessions: Dedicate 15 minutes daily to skill enhancement—reading a quick whitepaper, tackling a new coding challenge, or contributing to a professional forum ... Device-Free Family Dinner: Set a daily habit of a screen-free evening meal, fostering connection with your spouse and children and providing a mental reset from work

1458 6.7 ADDITIONAL RESULTS
14591460 Table 5: Human Evaluation Results across Different Dimensions
1461

1462 Dimension	1463 Model	1464 Wins	1465 Losses	1466 Battles	1467 Win Rate	1468 ELO Rating
1464 Personalization-Fit (PF)	1465 ours	1466 56	1467 13	1468 69	1469 81.2%	1470 1064.5
	1465 opencharacter	1466 31	1467 35	1468 66	1469 47.0%	1470 996.2
	1465 personahub	1466 13	1467 52	1468 65	1469 20.0%	1470 939.4
1467 Attribute Coverage (AC)	1468 ours	1469 56	1470 13	1471 69	1472 81.2%	1473 1067.7
	1468 opencharacter	1469 30	1470 36	1471 66	1472 45.5%	1473 990.9
	1468 personahub	1469 14	1470 51	1471 65	1472 21.5%	1473 941.4
1470 Diversity of Suggestions (DV)	1471 ours	1472 60	1473 9	1474 69	1475 87.0%	1476 1076.8
	1471 opencharacter	1472 31	1473 35	1474 66	1475 47.0%	1476 994.7
	1471 personahub	1472 9	1473 56	1474 65	1475 13.8%	1476 928.4
1473 Goal-Progress Alignment (GP)	1474 ours	1475 56	1476 13	1477 69	1478 81.2%	1479 1064.6
	1474 opencharacter	1475 32	1476 34	1477 66	1478 48.5%	1479 998.6
	1474 personahub	1475 12	1476 53	1477 65	1478 18.5%	1479 936.8

1476 Table 6: Personalization Evaluation (Evaluator: Gemini-2.5-flash)
1477

1479	1480 Responder: GPT-4o			1481 Responder: GPT-4.1		
	1482 Personahub	1483 Open Character	1484 Ours	1485 Personahub	1486 Open Character	1487 Ours
1481 personalization_fit	4.1658	4.4566	4.5336	4.4467	4.9071	4.9235
1482 attribute_coverage	4.2826	4.5707	4.6514	4.7317	4.9329	4.9622
1483 depth_specificity	3.3198	3.5997	3.6195	3.6517	4.2427	4.4311
1484 justification	3.7505	4.0676	4.1005	4.0880	4.6128	4.7139
1485 actionability	3.9270	4.0307	4.2780	4.6680	4.6936	4.8475
1486 effort_reduction	3.7890	4.0225	4.1603	4.3480	4.5072	4.7517
1487 novelty_with_relevance	3.2437	3.4877	3.5932	3.5167	4.0637	4.2000
1488 diversity_of Suggestions	3.6410	3.8730	3.9370	3.9920	4.3437	4.4618
1489 goal_progress_alignment	4.0933	4.2131	4.1260	4.0202	4.5797	4.6956
1490 engagement_motivation_potential	4.2149	4.4583	4.3992	4.6783	4.8778	4.9024

1489 Table 7: Personalization Evaluation (Evaluator: GPT-4.1)
1490

1491 Metric	1492 Responder: GPT-4.1-mini			1493 Responder: GPT-4.1			1494 Responder: GPT-4o-mini			1495 Responder: GPT-4o		
	1496 Persona	1497 OpenCharacter	1498 Ours	1496 Persona	1497 OpenCharacter	1498 Ours	1496 Persona	1497 OpenCharacter	1498 Ours	1496 Persona	1497 OpenCharacter	1498 Ours
1496 PF	3.4617	3.8633	4.2500	3.9717	4.2883	4.6528	3.2517	3.3967	3.5972	3.3600	3.5433	3.5972
1497 AC	3.2000	3.8633	4.3195	3.6617	3.9920	4.7500	3.0067	3.4067	3.7500	3.1283	3.5800	3.7500
1498 DS	3.1333	3.4383	3.5417	3.6383	3.9650	4.0972	2.9667	2.9483	3.1528	2.9950	3.0117	3.1528
1499 JU	2.7660	3.2500	3.5333	3.2420	3.6440	4.0167	2.4160	2.4080	2.9333	2.5740	2.6140	2.9333
1500 ACT	4.2880	4.4800	4.5833	4.7320	4.8280	4.9167	4.2140	4.0780	3.9667	4.0320	3.9580	3.9667
1501 ER	3.4280	3.8620	4.1500	3.9580	4.4120	4.7667	3.1980	3.2000	3.4167	3.1980	3.2520	3.4167
1502 NR	2.7400	2.9550	3.0139	3.3517	3.5333	3.7222	2.5300	2.4733	2.7084	2.6467	2.6550	2.7084
1503 DV	3.7440	3.8833	3.8833	4.2040	4.4000	4.4500	3.6540	3.6320	3.6333	3.7020	3.7400	3.6333
1504 GP	3.0800	3.4700	3.7000	3.5880	4.2167	4.2167	2.7000	2.6340	3.1500	2.7240	2.7300	3.1500
1505 EM	3.5917	3.9683	3.9861	4.1183	4.4167	4.5139	3.4367	3.5317	3.3333	3.4567	3.3333	3.5467

1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

1512

1513

1514

1515

Table 8: Ablation of Generation Methods(4.1-mini response, 4.1judge)

1516

1517

Metric (Abbr.)	All-in-one Generation	No Anchor Attributes	
personalization_fit (PF)	3.9758	4.1017	4.6528
attribute_coverage (AC)	4.3975	4.4555	4.7500
depth_specificity (DS)	3.5992	3.7092	4.0972
justification (JU)	3.437	3.54	4.0167
actionability (ACT)	4.632	4.725	4.9167
effort_reduction (ER)	4.134	4.256	4.7667
novelty_with_relevance (NR)	2.845	3.25	3.7222
diversity_ofSuggestions (DV)	4.159	4.193	4.4500
goal_progress_alignment (GP)	3.711	3.906	4.2167
engagement_motivation_potential (EM)	3.9192	3.8458	4.5139

1527

1528

1529

1530

1531

1532

1533

1534

Table 9: Ablation of Attribute Acquisition Methods (4.1-mini response, 4.1judge)

1535

1536

Indicator (Abbr.)	Generated by LLM	Ours
personalization_fit (PF)	4.0433	4.6528
attribute_coverage (AC)	4.185	4.7500
depth_specificity (DS)	3.6133	4.0972
justification (JU)	3.54	4.0167
actionability (ACT)	4.618	4.9167
effort_reduction (ER)	4.156	4.7667
novelty_with_relevance (NR)	3.0067	3.7222
diversity_ofSuggestions (DV)	4.014	4.4500
goal_progress_alignment (GP)	3.926	4.2167
engagement_motivation_potential (EM)	3.8383	4.5139

1546

1547

1548

1549

1550

1551

1552

1553

Table 10: Ablation Study on Summary Length(4.1-mini response, 4.1judge)

1554

Metric	Summary as Concise as Possible	Summary as Complex as Possible
Personalization Fit (PF)	3.5046	3.4861
Attribute Coverage (AC)	3.7037	3.6759
Depth Specificity (DS)	3.2130	2.8333
Justification (JU)	2.8278	2.4778
Actionability (ACT)	3.8556	3.8778
Effort Reduction (ER)	3.3000	3.2611
Novelty With Relevance (NR)	2.8657	2.4583
Diversity Of Suggestions (DV)	3.7722	3.4333
Goal Progress Alignment (GP)	2.9333	2.7556
Engagement Motivation Potential (EM)	3.3935	2.9028

1564

1565

1566

1567

1568

1569 Table 11: Model ablation on social simulation experiments. Comparing persona modeling methods
 1570 on World Values Survey responses from Germany. Lower values indicate better alignment with
 1571 human survey distributions across all metrics.

1572

Model	Method	KS Statistic ↓	Wasserstein Dist. ↓	JS Divergence ↓	Mean Diff. ↓
DeepSeek-v3	Cultural Prompting	0.468	1.015	0.570	0.576
	OpenCharacter	0.371	0.807	0.416	0.590
	DeepPersona	0.394	0.870	0.477	0.396
GPT-4o-mini	Cultural Prompting	0.575	1.113	0.638	0.687
	OpenCharacter	0.364	0.790	0.452	0.546
	DeepPersona	0.344	0.759	0.458	0.317
GPT-4.1	Cultural Prompting	0.578	1.120	0.640	0.690
	OpenCharacter	0.375	0.803	0.456	0.558
	DeepPersona	0.353	0.767	0.465	0.296
Gemini-2.5-Flash	Cultural Prompting	0.513	1.179	0.541	1.058
	OpenCharacter	0.397	0.978	0.454	0.969
	DeepPersona	0.367	1.022	0.436	1.001

1585

1586

1587

1588

1589

1590

Metric and Description	
Lower KS Statistic (Kolmogorov-Smirnov)	Defined as $D_{n,m} = \sup_x F_n(x) - G_m(x) ,$ where F_n and G_m are empirical cumulative distribution functions (ECDFs). A lower $D_{n,m}$ indicates stronger similarity between two samples.
Wasserstein Distance (Earth Mover's Distance)	For one-dimensional distributions P and Q with CDFs F and G , the 1-Wasserstein distance is $W_1(P, Q) = \int_{-\infty}^{\infty} F(x) - G(x) dx.$ It represents the minimal “cost” of transporting probability mass from P to Q .
Jensen-Shannon (JS) Divergence	A symmetrized and smoothed version of KL divergence: $JS(P \parallel Q) = \frac{1}{2} D_{KL}(P \parallel M) + \frac{1}{2} D_{KL}(Q \parallel M), \quad M = \frac{1}{2}(P + Q),$ with values bounded in $[0, \log 2]$. Smaller values indicate higher similarity.
Mean Absolute Difference (MAD)	Given two samples $\{x_i\}_{i=1}^n$ and $\{y_i\}_{i=1}^n$, $MAD = \frac{1}{n} \sum_{i=1}^n x_i - y_i .$ It directly quantifies average pairwise deviation.

1616

1617

1618

1619

Table 12: Formal Definitions of Distributional Comparison Metrics

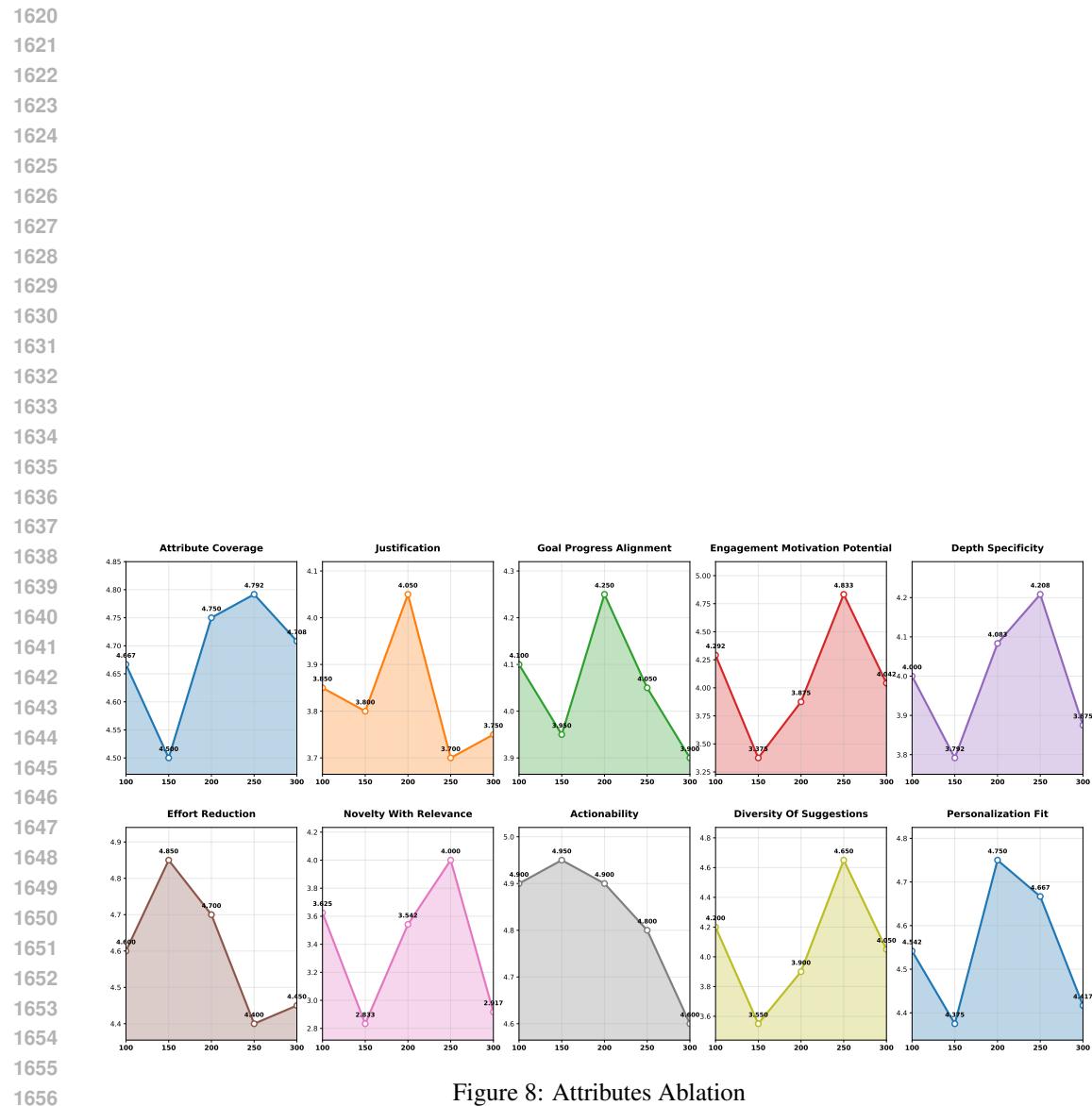


Figure 8: Attributes Ablation