
DEGREE: A Data-Efficient Generation-Based Event Extraction Model

Anonymous ACL submission

Abstract

Due to the high cost of human annotations,001
learning a data-efficient event extraction model002
that can be trained with only a few labeled ex-003
amples has become a crucial challenge. In004
this paper, we focus on low-resource end-to-005
end event extraction. We propose DEGREE,006
a model that formulates event extraction as a007
conditional generation problem. Given a pas-008
sage and a manually designed prompt, DEGREE009
learns to summarize the event happening in the010
passage into a natural sentence that follows a011
predefined pattern. The final event structure012
predictions are then extracted from the gener-013
ated sentence with a deterministic algorithm.014
DEGREE has the following advantages to learn015
well with less training data. First, with our016
design of prompts, DEGREE obtains seman-017
tic guidance by leveraging label semantics and018
thus better captures the argument roles. In ad-019
dition, the proposed model is capable of us-020
ing additional weakly-supervised information,021
such as the description of events. Finally, learn-022
ing triggers and argument roles in an end-to-023
end manner encourages the model to better024
utilize the shared knowledge and dependencies025
between them. Our experimental results and026
ablation studies demonstrate the strong perfor-027
mance of DEGREE for low-resource event ex-028
traction.029

1 Introduction030

Event extraction (EE) aims to extract different031

types of events, each of which includes a trigger032

and several participants (arguments) with specific033

roles, from the given passage. For example, in Fig-034

ure 1, a Justice:Execute event is triggered by the035

word “execution” and this event contains three ar-036

gument roles, including an Agent (Indonesia) who037

carries out the execution, a Person been executed038

(convicts), and a Place where the event occurs (not039

mentioned in the passage). Prior works usually040

divide EE into two subtasks (Wadden et al., 2019;041

Lin et al., 2020; Fincke et al., 2021): (1) event042

Passage: Indonesia will delay the execution of six convicts including an Indian on 

death row after five of them appealed to the Supreme Court for a second review.

Justice:Execute

Justice:Appeal

Person

Plaintiff

Agent

AdjudicatorPlace

Justice:Execute

Agent : Indonesia

Person : convicts

Place : None

Justice:Appeal

Plaintiff : five

Prosecutor : None

Adjudicator : Supreme Court

Place : Indonesia

Figure 1: Two examples of events (Justice:Execute and
Justice:Appeal) extracted from the given passage.

detection, which identifies the event triggers and 043

their types, and (2) event argument extraction, 044

which extracts the participants (arguments) of the 045

event and their roles when given an event type and 046

the corresponding event trigger. 047

Several previous EE approaches rely on a large 048

amount of annotated data for training (Nguyen 049

and Grishman, 2015; Nguyen et al., 2016; Du and 050

Cardie, 2020; Paolini et al., 2021). However, these 051

high-quality event annotations are expensive to be 052

obtained. For example, the ACE 2005 corpus (Dod- 053

dington et al., 2004), one of the most common EE 054

datasets, requires two rounds of annotations by lin- 055

guistics experts. The high annotation costs make 056

these models hard to be extended to new domains 057

and new event types. Therefore, how to learn a 058

data-efficient EE model trained with only a few 059

annotated examples is a crucial research question. 060

In this paper, we focus on low-resource event ex- 061

traction, where only a small amount of training ex- 062

amples are available during training. As illustrated 063

in Figure 2, we propose DEGREE (Data-Efficient 064

GeneRative Event Extraction), a generation-based 065

model that takes a passage and a manually designed 066

prompt as the input, and learns to summarize the 067

passage into a natural sentence following a prede- 068

fined template. The event triggers and arguments 069

can then be extracted from the generated sentence 070

by using a deterministic algorithm. 071

DEGREE enjoys the following three advantages 072

to learn well with less training data. First, the gen- 073
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Prompt

Event Type Description The event is related to conflict and some violent physical act.

Event Keywords Similar triggers such as war, attack, terrorism.

E2E Template
Event trigger is <Trigger>. \n 

some attacker attacked some facility, someone, or some organization by some way in somewhere.

Output Text

Event trigger is detonated. \n Palestinian attacked jeep and soldiers by bomb in Gaza Strip.

Encoder Decoder

Passage Prompt[SEP]

Output Text
Event Trigger detonated

Attacker Palestinian

Target jeep, soldiers

Instrument bomb

Place Gaza Strip

Passage:   Earlier Monday , a 19-year-old Palestinian riding a bicycle detonated a 30-kilo ( 66-pound ) bomb near a 

military jeep in the Gaza Strip , injuring three soldiers.

Query Type:
Conflict:Attack

Figure 2: An illustration of DEGREE for predicting a Contact:Attack event. The input of DEGREE consists of
the given passage and our design prompt that contains a event type description, some event keywords, and a
E2E template. DEGREE is trained to generate an output to fill in the placeholders (underlined words) in the
E2E template with triggers and arguments. The final event prediction is then decoded from the generated output.

eration framework provides label semantics with074

the help of the designed template in the prompts.075

As the example in Figure 2 shows, the word “some-076

where” in the prompt guides the model to predict077

words being similar to location for the role Place.078

Also, the word “attacked” in the prompt depicts the079

relationship between the role Attacker and the role080

Target. With these kinds of guidance, DEGREE can081

make accurate predictions without many training082

examples. Second, the prompts can be further ex-083

tended to include additional weakly-supervised in-084

formation about the task, such as the description of085

the event and similar keywords.1 This information086

facilitates DEGREE to learn under the low-resource087

situation. Finally, DEGREE is designed for end-to-088

end event extraction and can solve event detection089

and event argument extraction at the same time.090

Utilizing the shared knowledge and dependencies091

between the two tasks makes DEGREE more data-092

efficient.093

Prior approaches on EE usually have only one094

or two above-mentioned advantages. For exam-095

ple, previous classification-based models (Nguyen096

et al., 2016; Wang et al., 2019; Yang et al.,097

2019; Wadden et al., 2019; Lin et al., 2020) are098

hard to handle label semantics and utilize the099

weakly-supervised information. Recently proposed100

generation-based models solve event extraction in101

a pipeline fashion; therefore, they cannot leverage102

1These resources are usually readily available. In our
experiments, we take the weak supervision signals from the
annotation guideline, which is provided along with the dataset.

the shared knowledge between subtasks (Paolini 103

et al., 2021; Li et al., 2021). In addition, their 104

generated outputs are not natural sentences, which 105

hinders the utilization of label semantics (Paolini 106

et al., 2021; Lu et al., 2021). As a result, DEGREE 107

can achieve significantly better performance than 108

prior approaches on low-resource event extraction, 109

as we will demonstrate in Section 3. 110

Our contributions can be summarized as follows: 111

• We propose DEGREE, a generation-based end- 112

to-end event extraction model that learns well 113

with less data by better incorporating label se- 114

mantics and shared knowledge (Section 2). 115

• We conduct experiments on ACE 2005 (Dod- 116

dington et al., 2004) and ERE-EN (Song et al., 117

2015) to demonstrate the strong performance of 118

DEGREE in the low-resource setting (Section 3). 119

• We present comprehensive ablation studies in 120

both the low-resource setting and high-resource 121

setting to better understand the advantages and 122

the disadvantages of our model (Section 4). 123

2 Data-Efficient Event Extraction 124

We introduce DEGREE, a generation-based model 125

for low-resource event extraction. Unlike previ- 126

ous works (Wadden et al., 2019; Lin et al., 2020), 127

which separate event extraction into two pipelined 128

tasks (event detection and event argument extrac- 129

tion), DEGREE is designed for the end-to-end event 130

extraction and makes trigger predictions and argu- 131

ment predictions at the same time. 132
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2.1 DEGREE133

We formulate event extraction as a conditional gen-134

eration problem. As illustrated in Figure 2, given a135

passage and our designed prompt, DEGREE gener-136

ates an output following a particular format. The137

final predictions of event triggers and argument138

roles can be then parsed from the generated output139

with a deterministic algorithm. Compared to the140

previous classification-based models (Wang et al.,141

2019; Yang et al., 2019; Wadden et al., 2019; Lin142

et al., 2020), the generation framework provides143

a flexible way to include additional information144

and guidance. By designing appropriate prompts,145

we encourage DEGREE to better capture the depen-146

dencies between entities and therefore reduce the147

number of needed training examples.148

The desired prompt not only provides informa-149

tion but also defines the output format. As shown150

in Figure 2, it contains the following components:151

• Event type definition describes the definition152

for the given event type.2 For example, “The153

event is related to conflict and some violent phys-154

ical act.” describes a Conflict:Attack event.155

• Event keywords presents some words that are156

semantically related to the given event type. For157

instance, war, attack, and terrorism are three158

event keywords for the Conflict:Attack event. In159

practice, we collect three words that appear as160

the triggers in the example sentences from the161

annotation guidelines.162

• E2E template defines the expected output for-163

mat and can be separated into two parts. The164

first part is called ED template, which is de-165

signed as “Event trigger is <Trigger>”, where166

“<Trigger>” is a special token serving as a place-167

holder. The second part is the EAE template,168

which differs based on the given event type. For169

example, in Figure 2, the EAE template for the170

Conflict:Attack event is “some attacker attacked171

some facility, someone, or some organization172

by some way in somewhere”. Each underlined173

string starting with “some-” serves as a place-174

holder corresponding to an argument role in the175

Conflict:Attack event. For instance, “some way”176

corresponds to the role Instrument and “some-177

where” corresponds to the role Place. Notice178

that every event type has its own EAE template.179

The full list of EAE templates and the construct-180

ing details can be found in Appendix A.181

2The definition can be derived from the annotation guide-
lines, which are provided along with the datasets.

Training. The training objective of DEGREE is to 182

generate an output that replaces the placeholders in 183

E2E template with the gold labels. Take Figure 2 184

as an example, DEGREE is expected to replace 185

“<Trigger>” with the gold trigger (detonated), re- 186

place “some attacker” with the gold argument for 187

role Attacker (Palestinian), and replace “some way” 188

with the gold argument for role Instrument (bomb). 189

If there are multiple arguments for the same role, 190

they are concatenated with “and”; if there is no 191

predicted argument for one role, the model should 192

keep the corresponding placeholder (i.e, “some-” 193

in the E2E template). For the case that there are 194

multiple triggers for the given event type, DEGREE 195

will generate the E2E template multiple times such 196

that each E2E template corresponds to each trig- 197

ger and its argument roles. We put more training 198

details in Appendix B. 199

Inference. We enumerate all event types and gen- 200

erate an output for each event type. Then, we com- 201

pare the generated output with the placeholders in 202

E2E template to determine the predicted trigger 203

spans and predicted argument spans. Finally, we 204

apply string matching to convert the word spans 205

to the offsets in the passage. If the predicted span 206

appears in the passage multiple times, we choose 207

all that match for trigger predictions and choose 208

the one being closest to the given trigger span for 209

argument predictions. 210

Discussion. Notice that the E2E template plays 211

an important role for DEGREE. First, it serves as 212

the control signal and defines the expected out- 213

put format. Second, it provides label semantics to 214

help DEGREE make accurate predictions. Those 215

placeholders (words starting with “some-”) in the 216

E2E template give DEGREE some hints about the 217

entity types of arguments. For instance, when see- 218

ing “somewhere”, DEGREE tends to generate a lo- 219

cation rather than a person. In addition, the words 220

other than “some-” describe the relationships be- 221

tween roles. For example, DEGREE knows the rela- 222

tion between the role Attacker and the role Target 223

(who is attacking and who is attacked) because of 224

the word “attacked” in E2E template. This guid- 225

ance makes DEGREE learn the dependencies be- 226

tween entities well with less training data. 227

Unlike previous generation-based approaches 228

(Paolini et al., 2021; Li et al., 2020), we intention- 229

ally write the E2E templates in natural sentences. 230

This not only utilizes label semantics better but also 231
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makes the model easier to leverage the knowledge232

from the pre-trained decoder. In Section 4, we will233

provide experiments to demonstrate the advantage234

of using natural sentences.235

We want to point out one advantage of using236

generation-based models under the low-resource237

scenario compared to previous classification-based238

event extraction models — generation-based mod-239

els do not require named entity annotations (Sha240

et al., 2018; Lin et al., 2020). The pre-trained de-241

coder inherently identifies reasonable entity spans,242

which makes generation-based models become a243

good choice when annotations are expensive.244

Cost of template constructing. DEGREE does245

require human effort to design the templates; how-246

ever, writing those templates is much easier and247

more effortless than collecting complicated event248

annotations. As shown in Appendix A, we keep249

the EAE templates as simple and short as possi-250

ble. Therefore, it takes only about one minute for251

people who are not linguistic experts to compose252

a template. In fact, several prior works (Liu et al.,253

2020; Du and Cardie, 2020; Li et al., 2020) also use254

constructed templates as weakly-supervised signals255

to improve models. In Section 4, we will study how256

different templates affect the performance.257

2.2 DEGREE in Pipeline Framework258

DEGREE is flexible and can be easily modified259

to DEGREE(PIPE), which first focuses event de-260

tection (ED) and then solves event argument ex-261

traction (EAE). DEGREE(PIPE) consists of two262

models: (1) DEGREE(ED), which aims to exact263

event triggers for the given event type, and (2) DE-264

GREE(EAE), which identifies argument roles for265

the given event type and the corresponding trig-266

ger. DEGREE(ED) and DEGREE(EAE) are similar267

to DEGREE but with different prompts and output268

formats. We describe the difference as follows.269

DEGREE(ED). The prompt of DEGREE(ED)270

contains the following components:271

• Event type definition is the same as the ones272

for DEGREE.273

• Event keywords is the same as the one for DE-274

GREE.275

• ED template is designed as “Event trigger is276

<Trigger>”. It is actually the first part of the277

E2E template.278

Similar to DEGREE, the objective of DEGREE(ED)279

is to generate an output that replaces “<Trigger>”280

in the ED template with event triggers. 281

DEGREE(EAE). The prompt of DEGREE(EAE) 282

contains the following components: 283

• Event type definition is the same as the one 284

for DEGREE. 285

• Query trigger is a string that indicates the trig- 286

ger word for the given event type. For example, 287

“The event trigger word is detonated” points out 288

that “detonated” is the given trigger. 289

• EAE template is an event-type-specific tem- 290

plate mentioned previously. It is actually the 291

second part of the E2E template. The full list 292

of EAE templates can be found in Appendix A. 293

Similar to DEGREE, the goal for DEGREE(EAE) is 294

to generate an outputs that replace the placeholders 295

in EAE template with event arguments. 296

In Section 3, we will compare DEGREE with 297

DEGREE(PIPE) to study the benefit of dealing with 298

event extraction in an end-to-end manner under the 299

low-resource setting. 300

3 Experiments 301

We conduct experiments for low-resource event 302

extraction to study how DEGREE performs. 303

3.1 Experimental Settings 304

Datasets. We consider ACE 2005 (Doddington 305

et al., 2004) and follow the pre-processing in Wad- 306

den et al. (2019) and Lin et al. (2020), resulting 307

in two variants: ACE05-E and ACE05-E+. Both 308

contain 33 event types and 22 argument roles. In 309

addition, we consider ERE-EN (Song et al., 2015) 310

and adopt the pre-processing in Lin et al. (2020), 311

which keeps 38 event types and 21 argument roles. 312

Data split for low-resource setting. We gener- 313

ate different proportions (1%, 2%, 3%, 5%, 10%, 314

20%, 30%, and 50%) of training data to study the 315

influence of the size of training set and use the orig- 316

inal dev set and test set for evaluation. Appendix C 317

lists more details about the split generating process 318

and the data statistics. 319

Evaluation metrics. We consider the same crite- 320

ria in prior works (Wadden et al., 2019; Lin et al., 321

2020). (1) Trigger F1-score: an trigger is correctly 322

identified (Tri-I) if its offset matches the gold one; 323

it is correctly classified (Tri-C) if its event type also 324

matches the gold one. (2) Argument F1-score: an 325

argument is correctly identified (Arg-I) if its offset 326
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Trigger Classification F1-Score (%)

Model Type ACE05-E ACE05-E+ ERE-EN
1% 3% 5% 10% 20% 30% 1% 3% 5% 10% 20% 30% 1% 3% 5% 10% 20% 30%

BERT_QA Cls 20.5 40.2 42.5 50.1 61.5 61.3 - - - - - - - - - - - -
OneIE Cls 38.5 52.4 59.3 61.5 67.6 67.4 39.0 52.5 60.6 58.1 66.5 66.4 11.0 36.9 46.7 48.8 51.8 53.5
Text2Event Gen 14.2 35.2 46.4 47.0 55.6 60.7 15.7 38.4 43.9 46.3 56.5 62.0 6.3 25.6 33.5 42.4 46.7 50.1
TANL Gen 34.1 48.1 53.4 54.8 61.8 61.6 30.3 50.9 53.1 55.7 60.8 61.7 5.7 30.8 43.4 45.9 49.0 49.3
DEGREE(PIPE) Gen 55.1 62.8 63.8 66.1 64.4 64.4 56.4 62.5 61.1 62.3 62.5 67.1 32.7 44.5 41.6 50.6 51.1 53.5
DEGREE Gen 55.4 62.1 65.8 65.8 68.3 68.2 49.5 63.5 62.3 68.5 67.6 66.9 27.9 45.5 47.0 53.0 51.7 53.5

Argument Classification F1-Score (%)

Model Type ACE05-E ACE05-E+ ERE-EN
1% 3% 5% 10% 20% 30% 1% 3% 5% 10% 20% 30% 1% 3% 5% 10% 20% 30%

BERT_QA Cls 4.7 14.5 26.9 27.6 36.7 38.8 - - - - - - - - - - - -
OneIE Cls 9.4 22.0 26.8 26.8 42.7 47.8 10.4 20.6 29.7 35.5 46.7 48.0 2.6 20.3 29.7 35.1 40.7 43.0
Text2Event Gen 3.9 12.2 19.1 24.9 32.3 39.2 5.7 16.5 21.3 26.4 35.2 42.1 2.3 15.2 23.6 28.7 35.7 38.7
TANL Gen 8.5 17.2 24.7 29.0 34.0 39.2 8.6 22.3 30.4 29.2 34.6 39.0 1.4 20.2 29.5 30.1 35.6 36.9
DEGREE(PIPE) Gen 13.1 26.1 27.6 42.1 40.7 44.0 16.0 26.4 29.9 39.5 41.3 48.5 12.2 29.7 31.4 39.4 41.9 42.2
DEGREE Gen 21.7 30.1 35.5 41.6 46.2 48.7 18.7 34.0 35.7 43.6 48.9 51.2 14.5 28.9 33.4 41.7 42.9 45.5

Table 1: Trigger classification F1-scores and argument classification F1-scores for low-resource event extraction.
Highest scores are in bold and the second best scores are underlined. “Cls” and “Gen” represent classification-
based models and generation-based models, respectively. If the model is a pipelined model, then its argument
predictions are based on its predicted triggers. DEGREE achieves a much better performance than other baselines.
The performance gap becomes more significant for the extremely low-resource situation.
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Figure 3: Trigger classification F1-scores and argument classification F1-scores for low-resource event extraction.
DEGREE achieves a much better performance than other baselines. The performance gap becomes more significant
for the extremely low-resource situation.

and event type match the gold ones; it is correctly327

classified (Arg-C) if its role matches as well.328

Compared baselines. We consider the follow-329

ing classification-based models: (1) OneIE (Lin330

et al., 2020), the current state-of-the-art (SOTA) EE331

model trained with designed global features. (2)332

BERT_QA (Du and Cardie, 2020), which views333

EE tasks as a sequence of extractive question an-334

swering problems. Since it learns a classifier to335

indicate the position of the predicted span, we336

view it as a classification model. We also consider337

the following generation-based models: (3) TANL 338

(Paolini et al., 2021), which treats EE tasks as trans- 339

lation tasks between augmented natural languages. 340

(4) Text2Event (Lu et al., 2021), a sequence-to- 341

structure model that convert the input passage to 342

a tree-like event structure. Notice that the outputs 343

of both generation-based baselines are not natural 344

sentences. Therefore, it is more difficult for them 345

to utilize the label semantics. All the implementa- 346

tion details can be found in Appendix D. It is worth 347

noting that we train OneIE with named entity an- 348
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notations, as the original papers suggest, while the349

other models are trained without entity annotations.350

3.2 Main Results351

Table 1 shows the trigger classification F1-scores352

and the argument classification F1-scores across353

three datasets with different proportions of training354

data. The results are visualized in Figure 3. Since355

our task is end-to-end event extraction, the argu-356

ment classification F1-score is the more important357

metric that we considered when comparing models.358

From the figure and the table, we can observe359

that both DEGREE and DEGREE(PIPE) outperform360

all other baselines when using less than 10% of the361

training data. The performance gap becomes much362

more significant under the extremely low data situ-363

ation. For example, when only 1% of training data364

is available, DEGREE and DEGREE(PIPE) achieve365

more than 15 points of trigger classification F1-366

scores improvement and more than 5 points of ar-367

gument classification F1-scores. This demonstrates368

the effectiveness of our design. The generation-369

based model with carefully designed prompts is370

able to utilize the label semantics and the addi-371

tional weakly-supervised signals, thus, helps the372

learning under the low-resource regime.373

Another interesting finding is that DEGREE and374

DEGREE(PIPE) seem to be more beneficial to ar-375

gument prediction than trigger prediction. For376

instance, OneIE, the strongest baseline, requires377

20% of training data to achieve competitive per-378

formance on trigger prediction to DEGREE and379

DEGREE(PIPE); however, it requires about 50% of380

training data to achieve competitive performance381

on argument prediction. The reason is that the abil-382

ity to capture dependencies becomes more impor-383

tant for argument prediction than trigger prediction384

since arguments are usually strongly dependent on385

each other compared to triggers. Therefore, the im-386

provements of our models for argument prediction387

are more significant.388

Finally, we observe that DEGREE is slightly bet-389

ter than DEGREE(PIPE) under the low-resource set-390

ting. We hypothesize that DEGREE jointly predicts391

triggers and arguments and therefore can better392

take advantage of the output dependencies.393

3.3 High-Resource Event Extraction394

While we focus on data-efficient learning for low-395

resource event extraction, to better understand the396

advantages and disadvantages of our model and397

make sure that it is indeed more data-efficient,398

Model Type ACE05-E ACE05-E+ ERE-EN
Tri-C Arg-C Tri-C Arg-C Tri-C Arg-C

dbRNN* Cls 69.6 50.1 - - - -
DyGIE++ Cls 70.0 50.0 - - - -
Joint3EE* Cls 69.8 52.1 - - - -
BERT_QA* Cls 72.4 53.3 - - - -
MQAEE* Cls 71.7 53.4 - - - -
OneIE* Cls 74.7 56.8 72.8 54.8 57.0 46.5
TANL Gen 68.4 47.6 68.6 46.0 54.7 43.2
Text2Event* Gen 71.9 53.8 71.8 54.4 59.4 48.3
BART-Gen* Gen 71.1 53.7 - - - -
DEGREE(PIPE) Gen 72.2 55.8 71.7 56.8 57.8 50.4
DEGREE Gen 73.3 55.8 70.9 56.3 57.1 49.6

Table 2: Results for high-resource event extraction.
Highest scores are in bold and the second best scores are
underlined. *We report the numbers from the original
paper. DEGREE has a competitive performance to the
SOTA model (OneIE) and outperform other baselines.

Model Type ACE05-E ACE05-E+ ERE-EN
Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C

DyGIE++ Cls 66.2 60.7 - - - -
BERT_QA* Cls 68.2 65.4 - - - -
OneIE Cls 73.2 69.3 73.3 70.6 75.3 70.0
TANL Gen 65.9 61.0 66.3 62.3 75.6 69.6
BART-Gen* Gen 69.9 66.7 - - - -
DEGREE(EAE) Gen 76.0 73.5 75.2 73.0 80.2 76.3

Table 3: Results for high-resource event argument ex-
traction. Models predict arguments based on the given
gold triggers. Best scores are in bold. *We report
the numbers from the original paper. DEGREE(EAE)
achieves a new state-of-the-art performance on event
argument extraction.

rather than simply a stronger model, we addition- 399

ally study DEGREE in the high-resource setting for 400

controlled comparisons. 401

Compared baselines. In addition to the pre- 402

viously mentioned EE models: OneIE (Lin 403

et al., 2020), BERT_QA (Du and Cardie, 2020), 404

TANL (Paolini et al., 2021), and Text2Event 405

(Lu et al., 2021), we also consider the follow- 406

ing baselines focusing on the high-resource set- 407

ting. dbRNN (Sha et al., 2018) is classification- 408

based model that adds dependency bridges for 409

event extraction. DyGIE++ (Wadden et al., 2019) 410

is a classification-based model with span graph 411

propagation technique. Joint3EE (Nguyen and 412

Nguyen, 2019) is classification-based model jointly 413

trained with entity, trigger, and argument annota- 414

tions. MQAEE (Li et al., 2020) converts EE to 415

a series of argument extraction question answer- 416

ing problems. BART-Gen (Li et al., 2021) is a 417

generation-based model focusing on only event ar- 418

gument extraction.3 Appendix D shows the imple- 419

mentation details. 420

3We follow the original paper and use TAPKEY as their
event detection model.
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Results for event extraction. Table 2 shows the421

results of high-resource event extraction. In terms422

of trigger predictions (Tri-C), DEGREE and DE-423

GREE(PIPE) outperforms all the baselines except424

for OneIE, the current state-of-the-art model. For425

argument predictions (Arg-C), our models have426

slightly better performance than OneIE in two out427

of the three datasets. When enough training exam-428

ples are available, models can learn more sophisti-429

cated features from data, which do not necessarily430

follow the learned dependencies. Therefore, the ad-431

vantage of DEGREE over DEGREE(PIPE) becomes432

less obvious. This result justifies our hypothesis433

that DEGREE has better performance for the low-434

resource setting because of its ability to better cap-435

ture dependencies.436

Results for event argument extraction. In Ta-437

ble 3, we additionally study the performance for438

event argument extraction task, where the model439

makes argument predictions with the gold trigger440

provided. Interestingly, DEGREE(EAE) achieves441

pretty strong performance and outperforms other442

baselines with a large margin. Combining the re-443

sults in Table 2, we hypothesize that event argu-444

ment extraction is a more challenging task than445

event trigger detection and it requires more train-446

ing examples to learn well. Hence, our proposed447

model, which takes the advantage of using label se-448

mantics to better capture dependencies, achieves a449

new state-of-the-art for event argument extraction.450

4 Ablation Study451

In this section, we present comprehensive ablation452

studies to justify our design. To better understand453

the contribution of each component in the designed454

prompt and their effects on the different tasks, we455

ablate DEGREE(EAE) and DEGREE(ED) for both456

low-resource and high-resource situations.457

Impacts of components in prompts. Table 4458

lists the performance changes when removing the459

components in the prompts for event detection460

on ACE05-E. The performance decreases when-461

ever removing any one of event type definition,462

event keywords, and ED template. The results sug-463

gest that three components are all necessary.464

Table 5 demonstrates how different compo-465

nents in prompts affect the performance of event466

argument extraction on ACE05-E. Removing467

any one of event type definition, query trigger,468

and EAE template leads to performance drops,469

Model 10% Data 100% Data
Tri-I Tri-C Tri-I Tri-C

Full DEGREE(ED) 69.3 66.1 75.4 72.2
- w/o Event type definition 67.9 64.4 73.5 70.1
- w/o ED template 68.8 65.8 74.0 70.5
- w/o Event keywords 68.2 64.0 73.5 69.1
- only Event type definition 66.3 63.5 72.6 68.9
- only Event keywords 69.2 63.8 70.8 66.2

Table 4: Ablation study for the components in the
prompt on event detection with ACE05-E.

Model 10% Data 100% Data
Arg-I Arg-C Arg-I Arg-C

Full DEGREE(EAE) 63.3 57.3 76.0 73.5
- w/o Event type definition 60.3 54.4 74.5 71.1
- w/o EAE template 57.0 51.9 73.8 70.4
- w/o Query trigger 55.2 49.9 71.4 69.0
- only Query trigger 51.9 48.1 71.2 69.4
- only EAE template 51.2 46.9 71.4 68.6
- only Event type definition 46.7 42.3 71.4 68.2

Table 5: Ablation study for the components in the
prompt on event argument extraction with ACE05-E.

which validates their necessity. We observe that 470

query trigger plays the most important role among 471

the three and when less training data is given, 472

the superiority of leveraging any of these weakly- 473

supervised signal becomes more obvious. 474

Effects of different template designs. To ver- 475

ify the importance of using natural sentences as 476

outputs, we study three variants of EAE templates: 477

• Natural sentence. Our proposed templates de- 478

scribed in Section 2, e.g., “somebody was born 479

in somewhere.”, where “somebody” and “some- 480

where” are placeholders that can be replaced by 481

the corresponding arguments. 482

• Natural sentence with special tokens. It is sim- 483

ilar to the natural sentence one except for using 484

role-specific special tokens instead of “some-” 485

words. For example, “<Person> was born in 486

<Place>.” We consider this to study the label 487

semantics of roles. 488

• HTML-like sentence with special tokens. To 489

study the importance of using natural sentence, 490

we also consider HTML-like sentence, e.g., 491

“<Person> </Person> <Place> </Place>”. 492

The model aims to put argument predictions be- 493

tween the corresponding HTML tags. 494

The results of all variants of EAE templates on 495

ACE05-E are shown in Table 6. We notice that 496

writing templates in a natural language style get 497

better performance, especially when only a few 498

data is available (10% of data). This shows our de- 499

sign’s capability to leverage pre-trained knowledge 500
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Model 10% Data 100% Data
Arg-I Arg-C Arg-I Arg-C

OneIE 48.3 45.4 73.2 69.3
BART-Gen - - 69.9 66.7
Natural sentence 63.3 57.3 76.0 73.5
Natural sentence w/ special tokens 59.8 55.5 74.7 72.3
HTML-like sentence w/ special tokens 60.8 51.9 74.6 71.4

Table 6: The performances of DEGREE(EAE) on
ACE05-E with different types of templates.

Model 10% Data 100% Data
Arg-I Arg-C Arg-I Arg-C

OneIE 48.3 45.4 73.2 69.3
BART-Gen - - 69.9 66.7
DEGREE(EAE) 63.3 57.3 76.0 73.5
DEGREE(EAE) + variant template 1 61.6 55.5 73.4 70.4
DEGREE(EAE) + variant template 2 63.9 56.9 75.5 72.5

Table 7: Study on the effect of different template con-
structing rules. Experiments is conducted on ACE05-E.

in the generation process. Additionally, there are501

over 1 F1 score performance drops when replacing502

natural language placeholders with special tokens.503

This confirms that leveraging label semantics for504

different roles is beneficial.505

Sensitivity to template design. Finally, we study506

how sensitive our model is to the template. In ad-507

dition to the original design of templates for event508

argument extraction, we compose other two sets509

of templates with different constructing rules (e.g.,510

different word choices and different orders of roles).511

Table 7 shows the results of using different sets of512

templates. We observe a performance fluctuation513

when using different templates, which indicates514

that the quality of templates does affect the perfor-515

mance to a certain degree. Therefore, we need to be516

cautious when designing templates. However, even517

though our model could be sensitive to the template518

design, it still outperforms OneIE and BART-Gen,519

which are the best classification-based model and520

the best generation-based baseline, respectively.521

5 Related Work522

Fully supervised event extraction. Event ex-523

traction has been studied for over a decade (Ahn,524

2006; Ji and Grishman, 2008) and most tradi-525

tional event extraction works follow the fully su-526

pervised setting (Nguyen et al., 2016; Sha et al.,527

2018; Nguyen and Nguyen, 2019; Yang et al.,528

2019; Lin et al., 2020; Liu et al., 2020; Li et al.,529

2020). Many of them use classification-based mod-530

els and use pipeline-style frameworks to extract531

events (Nguyen et al., 2016; Yang et al., 2019; Wad-532

den et al., 2019). To better leverage shared knowl-533

edge in event triggers and arguments, some works534

propose to incorporate global features to jointly 535

decide triggers and arguments (Lin et al., 2020; Li 536

et al., 2013; Yang and Mitchell, 2016). Recently, 537

few generation-based event extraction models have 538

been proposed. TANL (Paolini et al., 2021) treats 539

event extraction as translation tasks between aug- 540

mented natural languages. Their predicted target— 541

augmented language embed labels into the input 542

passage via using brackets and vertical bar sym- 543

bols, hindering the model from fully leveraging 544

label semantics. BART-Gen (Li et al., 2021) is also 545

a generation-based model focusing on document- 546

level event argument extraction. Yet, similar to 547

TANL, they solve event extraction with a pipeline, 548

which prevents knowledge sharing across subtasks. 549

All these fully supervised methods can achieve sub- 550

stantial performance with a large amount of anno- 551

tated data. However, their designs are not specific 552

for low-resource scenarios, hence, these models 553

can not enjoy all the benefits that DEGREE obtains 554

for low-resource event extraction at the same time, 555

as we mentioned in Section 1. 556

Low-resource event extraction. It has been a 557

rising interest in event extraction under less data 558

scenario. Liu et al. (2020) uses a machine reading 559

comprehension formulation to conduct event ex- 560

traction in a low-resource regime. Text2Event (Lu 561

et al., 2021), a sequence-to-structure generation 562

paradigm, first presents events in a linearized for- 563

mat, and then trains a generative model to generate 564

the linearized event sequence. Text2Event’s unnat- 565

ural output format hinders the model from fully 566

leveraging pre-trained knowledge. Hence, their 567

model falls short on the cases with only extremely 568

low data being available (as shown in Section 3). 569

Another thread of works are using meta-learning 570

to deal with the less label challenge (Deng et al., 571

2020; Shen et al., 2021; Cong et al., 2021). How- 572

ever, their methods can only be applied to event 573

detection, which differs from our main focus on 574

studying end-to-end event extraction. 575

6 Conclusion 576

In this paper, we present DEGREE, a data-efficient 577

generation-based event extraction model. DEGREE 578

requires less training data because it better utilizes 579

label semantics as well as weakly-supervised infor- 580

mation, and captures better dependencies by jointly 581

predicting triggers and arguments. Our experimen- 582

tal results and ablation studies show the superiority 583

of DEGREE for low-resource event extraction. 584
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A EAE Template Constructing742

Our strategy to create an EAE template is first iden-743

tifying all valid argument roles for the event type,4744

such as Attacker, Target, Instrument, and Place745

roles. Then, for each argument role, according to746

the semantics of the role type, we select natural747

and fluent words to form its placeholder (e.g., some748

way for Instrument). This design aims to provide a749

simple way to help the model learn both the roles’750

label semantics and the event structure. Finally, we751

create a natural language sentence that connects all752

these placeholders. Notice that we try to keep the753

template as simple and short as possible. Table 8754

lists all designed EAE templates for ACE05-E and755

ACE05-E+. The EAE templates of ERE-EN can756

be found in Table 9.757

B Training Details of Proposed Model758

Given a passage, its annotated event types are con-759

sider as positive event types. During training, we760

additionally sample m event types that are not761

related to the passage as the negative examples,762

where m is a hyper-parameter. In our experiments,763

m is usually set to 13 or 15.764

For all of DEGREE, DEGREE(ED), and DE-765

GREE(EAE), we fine-tune the pre-trained BART-766

large (Lewis et al., 2020) with Huggingface pack-767

age (Wolf et al., 2020). The number of parameters768

is around 406 millions. We train DEGREE with769

our machine that equips 128 AMD EPYC 7452 32-770

Core Processor, 4 NVIDIA A100 GPUs, and 792G771

RAM. We consider AdamW optimizer (Loshchilov772

and Hutter, 2019) with learning rate set to 10−5 and773

the weight decay set to 10−5. We set the batch size774

to 6 for DEGREE(EAE) and 32 for DEGREE(ED)775

and DEGREE. The number of training epochs is 45.776

It takes around 2 hours, 18 hours, 22 hours to train777

DEGREE(EAE), DEGREE(ED), and DEGREE, re-778

spectively.779

We do hyper-parameter search on m,780

the number of negative examples, from781

{3, 5, 7, 10, 13, 15, 18, 21}, and our prelimi-782

nary trials shows that m less than 10 are usually783

less useful. For the learning rate and the weight784

decay, we tune it based on our preliminary785

experiment for event argument extraction from786

{10−5, 10−4}, while they are both fixed to 10−5787

for all the experiments.788

4The valid roles for each event type are predefined in the
event ontology for each dataset, or can be decided by the user
of interest.

C Datasets 789

We consider ACE 20055 (Doddington et al., 2004) 790

and ERE6 (Song et al., 2015). Both consider LDC 791

User Agreement for Non-Members7 as the licenses. 792

Both datasets are created for entity, relation, and 793

event extraction while our focus is only event ex- 794

traction in this paper. In the original ACE 2005 795

dataset, it contains data for English, Chinese, and 796

Arabic and we only take the English data for our 797

experiment. In the original ERE dataset, it contains 798

data for English, and Chinese and we only take the 799

English data for our experiment as well. 800

Because both datasets contain event like Jus- 801

tice:Execute and Life:Die, it is possible that some 802

offensive words (e.g., killed) would appear in the 803

passage. Also, some real names may appear in the 804

passage as well (e.g., Palestinian president, Mah- 805

moud Abbas). How to accurately identify these 806

kinds of information is part of the goal of the 807

task. Therefore, we do not take any changes on 808

the datasets for protecting or anonymizing. 809

We split the training data based on documents, 810

which is a more realistic setup compared to splitting 811

data by instance. Table 10 lists the statistics of 812

ACE05-E, ACE05-E+, and ERE-EN. Specifically, 813

we try to make each proportion of data contain as 814

many event types as possible. 815

D Implementation Details 816

This section describes the implementation details 817

for all baselines we use. We run the experiments 818

with three different random seeds and report the 819

best value. 820

• DyGIE++: we use their released pre-trained 821

model8 for evaluation. 822

• OneIE: we use their provided code9 to train the 823

model with default parameters. 824

• BERT_QA: we use their provided code10 to 825

train the model with default parameters. 826

• TANL: we use their provided code11 to train the 827

5https://catalog.ldc.upenn.edu/
LDC2006T06

6https://catalog.ldc.upenn.edu/
LDC2020T19

7https://catalog.ldc.upenn.edu/
license/ldc-non-members-agreement.pdf

8https://github.com/dwadden/dygiepp
9http://blender.cs.illinois.edu/

software/oneie/
10https://github.com/xinyadu/eeqa
11https://github.com/amazon-research/

tanl

11

https://catalog.ldc.upenn.edu/LDC2006T06
https://catalog.ldc.upenn.edu/LDC2006T06
https://catalog.ldc.upenn.edu/LDC2020T19
https://catalog.ldc.upenn.edu/LDC2020T19
https://catalog.ldc.upenn.edu/license/ldc-non-members-agreement.pdf
https://catalog.ldc.upenn.edu/license/ldc-non-members-agreement.pdf
https://github.com/dwadden/dygiepp
http://blender.cs.illinois.edu/software/oneie/
http://blender.cs.illinois.edu/software/oneie/
https://github.com/xinyadu/eeqa
https://github.com/amazon-research/tanl
https://github.com/amazon-research/tanl


model. We conduct the experiments with two828

variations: (1) using their default parameters,829

and (2) using their default parameters but with830

more training epochs. We observe that the sec-831

ond variant works better. As a result, we report832

the number obtained from the second setting.833

• Text2Event: we use their official code12 to train834

the model with the provided parameter setting.835

• dbRNN: we directly report the experimental836

results from their paper.837

• Joint3EE: we directly report the experimental838

results from their paper.839

• MQAEE: we directly report the experimental840

results from their paper.841

• BART-Gen: we report the experimental results842

from their released appendix13.843

12https://github.com/luyaojie/
Text2Event

13https://github.com/raspberryice/
gen-arg/blob/main/NAACL_2021_Appendix.
pdf

12

https://github.com/luyaojie/Text2Event
https://github.com/luyaojie/Text2Event
https://github.com/raspberryice/gen-arg/blob/main/NAACL_2021_Appendix.pdf
https://github.com/raspberryice/gen-arg/blob/main/NAACL_2021_Appendix.pdf
https://github.com/raspberryice/gen-arg/blob/main/NAACL_2021_Appendix.pdf


Event Type EAE Template
Life:Be-Born somebody was born in somewhere.
Life:Marry somebody got married in somewhere.
Life:Divorce somebody divorced in somewhere.

Life:Injure somebody or some organization led to some victim injured by some way in some-
where.

Life:Die somebody or some organization led to some victim died by some way in somewhere.

Movement:Transport something was sent to somewhere from some place by some vehicle. somebody or
some organization was responsible for the transport.

Transaction:Transfer-Ownership someone got something from some seller in somewhere.
Transaction:Transfer-Money someone paid some other in somewhere.
Business:Start-Org somebody or some organization launched some organzation in somewhere.
Business:Merge-Org some organzation was merged.
Business:Declare-Bankruptcy some organzation declared bankruptcy.
Business:End-Org some organzation dissolved.

Conflict:Attack some attacker attacked some facility, someone, or some organization by some way
in somewhere.

Conflict:Demonstrate some people or some organization protest at somewhere.
Contact:Meet some people or some organization met at somewhere.
Contact:Phone-Write some people or some organization called or texted messages at somewhere.

Personnel:Start-Position somebody got new job and was hired by some people or some organization in
somewhere.

Personnel:End-Position somebody stopped working for some people or some organization at somewhere.
Personnel:Nominate somebody was nominated by somebody or some organization to do a job.

Personnel:Elect somebody was elected a position, and the election was voted by some people or
some organization in somewhere.

Justice:Arrest-Jail somebody was sent to jailed or arrested by somebody or some organization in
somewhere.

Justice:Release-Parole somebody was released by some people or some organization from somewhere.

Justice:Trial-Hearing somebody, prosecuted by some other, faced a trial in somewhere. The hearing was
judged by some adjudicator.

Justice:Charge-Indict somebody was charged by some other in somewhere. The adjudication was judged
by some adjudicator.

Justice:Sue somebody was sued by some other in somewhere. The adjudication was judged by
some adjudicator.

Justice:Convict somebody was convicted of a crime in somewhere. The adjudication was judged by
some adjudicator.

Justice:Sentence somebody was sentenced to punishment in somewhere. The adjudication was judged
by some adjudicator.

Justice:Fine some people or some organization in somewhere was ordered by some adjudicator
to pay a fine.

Justice:Execute somebody was executed by somebody or some organization at somewhere.

Justice:Extradite somebody was extradicted to somewhere from some place. somebody or some
organization was responsible for the extradition.

Justice:Acquit somebody was acquitted of the charges by some adjudicator.
Justice:Pardon somebody received a pardon from some adjudicator.
Justice:Appeal some other in somewhere appealed the adjudication from some adjudicator.

Table 8: All EAE templates for ACE05-E and ACE05-E+.
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Event Type EAE Template
Life:Be-Born somebody was born in somewhere.
Life:Marry somebody got married in somewhere.
Life:Divorce somebody divorced in somewhere.

Life:Injure somebody or some organization led to some victim injured by some way in some-
where.

Life:Die somebody or some organization led to some victim died by some way in somewhere.

Movement:Transport-Person somebody was moved to somewhere from some place by some way. somebody or
some organization was responsible for the movement.

Movement:Transport-Artifact something was sent to somewhere from some place. somebody or some organization
was responsible for the transport.

Business:Start-Org somebody or some organization launched some organzation in somewhere.
Business:Merge-Org some organzation was merged.
Business:Declare-Bankruptcy some organzation declared bankruptcy.
Business:End-Org some organzation dissolved.

Conflict:Attack some attacker attacked some facility, someone, or some organization by some way
in somewhere.

Conflict:Demonstrate some people or some organization protest at somewhere.
Contact:Meet some people or some organization met at somewhere.
Contact:Correspondence some people or some organization contacted each other at somewhere.

Contact:Broadcast some people or some organization made announcement to some publicity at some-
where.

Contact:Contact some people or some organization talked to each other at somewhere.
Manufacture:Artifact something was built by somebody or some organization in somewhere.

Personnel:Start-Position somebody got new job and was hired by some people or some organization in
somewhere.

Personnel:End-Position somebody stopped working for some people or some organization at somewhere.
Personnel:Nominate somebody was nominated by somebody or some organization to do a job.

Personnel:Elect somebody was elected a position, and the election was voted by somebody or some
organization in somewhere.

Transaction:Transfer-Ownership The ownership of something from someone was transferred to some other at some-
where.

Transaction:Transfer-Money someone paid some other in somewhere.
Transaction:Transaction someone give some things to some other in somewhere.

Justice:Arrest-Jail somebody was sent to jailed or arrested by somebody or some organization in
somewhere.

Justice:Release-Parole somebody was released by somebody or some organization from somewhere.

Justice:Trial-Hearing somebody, prosecuted by some other, faced a trial in somewhere. The hearing was
judged by some adjudicator.

Justice:Charge-Indict somebody was charged by some other in somewhere. The adjudication was judged
by some adjudicator.

Justice:Sue somebody was sued by some other in somewhere. The adjudication was judged by
some adjudicator.

Justice:Convict somebody was convicted of a crime in somewhere. The adjudication was judged by
some adjudicator.

Justice:Sentence somebody was sentenced to punishment in somewhere. The adjudication was judged
by some adjudicator.

Justice:Fine some people or some organization in somewhere was ordered by some adjudicator
to pay a fine.

Justice:Execute somebody was executed by somebody or some organization at somewhere.

Justice:Extradite somebody was extradicted to somewhere from some place. somebody or some
organization was responsible for the extradition.

Justice:Acquit somebody was acquitted of the charges by some adjudicator.
Justice:Pardon somebody received a pardon from some adjudicator.
Justice:Appeal somebody in somewhere appealed the adjudication from some adjudicator.

Table 9: All EAE templates for ERE-EN.
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Dataset Split #Docs #Sents #Events #Event Types #Args #Arg Types

ACE05-E

Train (full) 529 17172 4202 33 4859 22
Train (1%) 5 103 47 14 65 16
Train (2%) 10 250 77 17 104 16
Train (3%) 15 451 119 23 153 17
Train (5%) 25 649 212 27 228 21
Train (10%) 50 1688 412 28 461 21
Train (20%) 110 3467 823 33 936 22
Train (30%) 160 5429 1368 33 1621 22
Train (50%) 260 8985 2114 33 2426 22
Dev 28 923 450 21 605 22
Test 40 832 403 31 576 20

ACE05-E+

Train (full) 529 19216 4419 33 6607 22
Train (1%) 5 92 49 15 75 16
Train (2%) 10 243 82 19 129 16
Train (3%) 15 434 124 24 203 19
Train (5%) 25 628 219 27 297 21
Train (10%) 50 1915 428 29 629 21
Train (20%) 110 3834 878 33 1284 22
Train (30%) 160 6159 1445 33 2212 22
Train (50%) 260 10104 2231 33 3293 22
Dev 28 901 468 22 759 22
Test 40 676 424 31 689 21

ERE-EN

Train (full) 396 14736 6208 38 8924 21
Train (1%) 4 109 61 14 78 16
Train (2%) 8 228 128 21 183 19
Train (3%) 12 419 179 26 272 19
Train (5%) 20 701 437 31 640 21
Train (10%) 40 1536 618 37 908 21
Train (20%) 80 2848 1231 38 1656 21
Train (30%) 120 4382 1843 38 2632 21
Train (50%) 200 7690 3138 38 4441 21
Dev 31 1209 525 34 730 21
Test 31 1163 551 33 822 21

Table 10: Dataset statistics. Our experiments are conducted in sentences, which were split from documents. In
the table, “#Docs” means the number of documents; “#Sents” means the number of sentences, “#Events” means
the number of events; “#Event Types” means the number of event types in total; “#Args” means the number of
argument in total; “#Arg Types” means the number of argument role types in total.
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E Few-Shot and Zero-Shot Event844

Extraction845

In order to further test our models’ generaliabil-846

ity, we additionally conduct zero-shot and few-847

shot experiments on the ACE05-E dataset with848

DEGREE(ED) and DEGREE(EAE).849

Settings. We first select the top n common event850

types as “seen” types and use the rest as “un-851

seen/rare” types, where the top common types852

are listed in Table 11. To simulate a zero-shot853

scenario, we remove all events with “unseen/rare”854

types from the training data. To simulate a few-shot855

scenario, we keep only k event examples for each856

“unseen/rare” type (denoted as k-shot). During the857

evaluation, we calculate micro F1-scores only for858

these “unseen/rare” types.859

n Seen Event Types for Training/Development

5 Conflict:Attack, Movement:Transport, Life:Die,
Contact:Meet, Personnel:Elect

10
Conflict:Attack, Movement:Transport, Life:Die,
Contact:Meet, Personnel:Elect, Life:Injure,
Personnel:End-Position, Justice:Trial-Hearing,
Contact:Phone-Write, Transaction:Transfer-Money

Table 11: Common event types in ACE05-E.

Compared baselines. We consider the following860

baselines: (1) BERT_QA (Du and Cardie, 2020)861

(2) OneIE (Lin et al., 2020) (3) Matching base-862

line, a proposed baseline that makes trigger predic-863

tions by performing string matching between the864

input passage and the event keywords. (4) Lemma-865

tization baseline, another proposed baseline that866

performs string matching on lemmatized input pas-867

sage and the event keywords. (Note: (3) and (4)868

are baselines only for event detection tasks.)869

Experimental results. Figure 4, Table 12, and870

Table 13 show the results of n = 5 and n = 10.871

From the two subfigures in the left column, we see872

that DEGREE(ED) achieves promising results in873

the zero-shot setting. In fact, it performs better874

than BERT_QA trained in the 10-shot setting and875

OneIE trained in the 5-shot setting. This demon-876

strates the great potential of DEGREE(ED) to dis-877

cover new event types. Interestingly, we observe878

that our two proposed baselines perform surpris-879

ingly well, suggesting that the trigger annotations880

in ACE05-E are actually not diverse. Despite their881

impressive performance, DEGREE(ED) still out-882

performs the matching baseline by over 4.7% ab-883

solute trigger classification F1 in both n = 5 and884

n = 10 cases in zero-shot scenario. Additionally, 885

with only one training instance for each unseen 886

type, DEGREE(ED) can outperform both proposed 887

baselines. 888

Next, we compare the results for the event ar- 889

gument extraction task. From the two middle sub- 890

figures, we observe that when given gold triggers, 891

our model performs much better than all baselines 892

with a large margin. Lastly, we train models for 893

both trigger and argument extraction and report the 894

final argument classification scores in the two right 895

subfigures. We justify that our model has strong 896

generalizability to unseen event types and it can 897

outperform BERT_QA and OneIE even when they 898

are both trained in 5-shot settings. 899
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(a) Results for top common 5 event types.
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(b) Results for top common 10 event types.

Figure 4: The zero/few-shot experimental results. Left: The result for the models on event detection task with the
scores reported in trigger classification F1. Middle: The models are tested under the scenario of given gold trigger
and evaluated with argument classification criterion. Right: The results for the models to perform event extraction
task, which aims to predict triggers and their corresponding arguments (we report the argument classification F1).
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Event Extraction

Trigger Argument Common 5 Common 10
Tri-I Tri-C Arg-I Arg-C Tri-I Tri-C Arg-I Arg-C

Matching Baseline 42.7 42.1 - - 46.3 46.3 - -
Lemmatization Baseline 51.5 50.2 - - 56.6 56.0 - -
BERT_QA 1-shot 10.0 1.4 1.3 1.3 8.2 1.6 1.1 1.1
BERT_QA 5-shot 14.0 12.6 11.1 10.8 20.8 15.4 14.6 13.9
BERT_QA 10-shot 37.8 33.5 22.9 22.1 32.0 27.8 19.5 18.6
OneIE 1-shot 4.2 4.2 1.5 1.5 4.1 2.7 2.0 2.0
OneIE 5-shot 39.3 38.5 24.8 22.8 41.9 41.9 29.7 27.2
OneIE 10-shot 54.8 53.3 36.0 34.9 61.5 57.8 41.4 39.2
DEGREE(ED) 0-shot DEGREE(EAE) 0-shot 53.3 46.8 29.6 25.1 60.9 54.5 42.0 31.4
DEGREE(ED) 1-shot DEGREE(EAE) 1-shot 60.1 53.3 38.8 31.6 61.2 60.9 41.1 34.7
DEGREE(ED) 5-shot DEGREE(EAE) 5-shot 57.8 55.5 40.6 36.1 65.8 64.8 45.3 42.7
DEGREE(ED) 10-shot DEGREE(EAE) 10-shot 63.8 61.2 46.0 42.0 72.1 68.8 52.5 48.4
OneIE (Full) 72.7 70.5 52.3 49.9 74.5 73.0 51.2 48.9
DEGREE(ED) (Full) DEGREE(EAE) (Full) 68.4 66.0 51.9 48.7 72.0 69.8 52.5 49.2

Table 12: Full results of zero/few-shot event extraction on ACE05-E.

Event Argument Extraction

Trigger Argument Common 5 Common 10
Tri-I Tri-C Arg-I Arg-C Tri-I Tri-C Arg-I Arg-C

Gold Triggers BERT_QA 0-shot 100.0 100.0 55.8 37.9 100.0 100.0 57.2 46.7
Gold Triggers BERT_QA 1-shot 100.0 100.0 55.8 44.3 100.0 100.0 57.8 47.2
Gold Triggers BERT_QA 5-shot 100.0 100.0 56.6 49.6 100.0 100.0 59.1 50.6
Gold Triggers BERT_QA 10-shot 100.0 100.0 58.8 52.9 100.0 100.0 60.5 52.8
Gold Triggers OneIE 1-shot 100.0 100.0 40.9 36.5 100.0 100.0 48.3 44.2
Gold Triggers OneIE 5-shot 100.0 100.0 55.6 51.4 100.0 100.0 58.6 55.0
Gold Triggers OneIE 10-shot 100.0 100.0 59.4 56.7 100.0 100.0 62.0 59.5
Gold Triggers DEGREE(EAE) 0-shot 100.0 100.0 56.1 48.0 100.0 100.0 66.5 53.3
Gold Triggers DEGREE(EAE) 1-shot 100.0 100.0 65.2 55.2 100.0 100.0 65.4 54.7
Gold Triggers DEGREE(EAE) 5-shot 100.0 100.0 70.9 62.2 100.0 100.0 68.0 61.7
Gold Triggers DEGREE(EAE) 10-shot 100.0 100.0 71.1 64.2 100.0 100.0 71.6 64.3
Gold Triggers BERT_QA (Full) 100.0 100.0 63.1 57.9 100.0 100.0 62.1 56.5
Gold Triggers OneIE (Full) 100.0 100.0 70.8 66.4 100.0 100.0 67.9 64.1
Gold Triggers DEGREE(EAE) (Full) 100.0 100.0 74.5 70.6 100.0 100.0 73.6 68.9

Table 13: Full results of zero/few-shot event argument extraction on ACE05-E.
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F Limitations and Potential Risks900

Limitations. DEGREE assumes that some901

weakly-supervised information (the description902

of events, similar keywords, and human-written903

templates) is accessible and not expensive. We904

believe this assumption holds for most of common905

NLP tasks. However, for some specific domains,906

such as the biomedical domain, acquiring this907

information can be a bit difficult (e.g., needs to hire908

experts to write down templates), which increases909

the cost of training DEGREE. In addition, our910

proposed model is based on pre-trained language911

models. DEGREE performs well because it is912

able to leverage the prompts and the pre-trained913

knowledge. However, if the downstream domain is914

far from the pre-trained corpus, the advantage of915

leveraging knowledge becomes restricted.916

Due to the high cost of annotations, there are917

not many public datasets for event extraction. DE-918

GREE achieves a good performance on two datasets919

(ACE 2005 and ERE-EN), which are more related920

to news-styled passages. When considering other921

downstream domains, it is possible that the im-922

provement is not as significant as it is for the two923

datasets we use in the paper. The reason is the924

gap between the downstream domain knowledge925

and the pre-trained knowledge, as mentioned in the926

previous paragraph.927

Potential risks. DEGREE fine-tunes the pre-928

trained generative language model (Lewis et al.,929

2020). Therefore, the generated output is poten-930

tially affected by the corpus for pre-training. Al-931

though with a low possibility, it is possible for932

our model to accidentally generate some malicious,933

counterfactual, and biased sentences, which may934

cause ethics concerns. We suggest carefully exam-935

ining those potential issues before deploying the936

model in any real-world applications.937
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