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ABSTRACT

Cross-domain shifts present a significant challenge for decision transformer (DT)
policies. Existing methods typically rely on a single simple filtering criterion to se-
lect source trajectory fragments and stitch them together. They match either state
structure or action feasibility. However, the selected fragments still have poor
stitchability: state structures can misalign, the return-to-go (RTG) becomes in-
comparable when the reward or horizon changes, and actions may jump at trajec-
tory junctions. As a result, RTG tokens lose continuity, which compromises DT’s
inference ability. To tackle these challenges, we propose Data Fusion—Enhanced
Decision Transformer (DFDT), a compact pipeline that restores stitchability. Par-
ticularly, DFDT fuses scarce target data with selectively trusted source fragments
via a two-level filter, Maximum Mean Discrepancy (MMD) mismatch for state-
structure alignment and Optimal Transport (OT) deviation for action feasibility. It
then trains on a feasibility-weighted fusion distribution. Furthermore, DFDT re-
places RTG tokens with advantage-conditioned tokens, which improves the conti-
nuity of the semantics in the token sequence. It also applies a Q)-guided regularizer
to suppress junction value and action jumps. Theoretically, we provide bounds that
tie state value and policy performance gaps to MMD-mismatch and OT-deviation,
and show that the bounds tighten as these two measures shrink. We show that
DFDT improves return and stability over strong offline RL and sequence-model
baselines across gravity, kinematic, and morphology shifts on D4RL-style con-
trol tasks, and further corroborate these gains with token-stitching and sequence-
semantics stability analyses.

1 INTRODUCTION

Offline reinforcement learning (RL) promises to turn logged interactions into deployable policies
without further environment access, improving safety and sample efficiency in costly or risky do-
mains (Levine et al.| 2020). Sequence modeling approaches such as Decision Transformer (DT)
(Chen et al., [2021)) recast RL as conditional sequence prediction and achieve strong results by con-
ditioning actions on return-to-go (RTG) (Chen et al.| [2021} Janner et al.| [2021a)). However, cross-
domain deployment, when training and test dynamics differ, remains difficult (Wen et al.| [2024):
stitched fragments lose token continuity, state manifolds drift, actions become infeasible at junc-
tions, and RTG becomes incomparable under reward and horizon changes. In practice, DT-style
agents overfit source statistics and fail to generalize (Wu et al.|[2023; Wang et al., 2023)).

A pragmatic remedy is cross-domain offline RL that uses scarce target data to guide adaptation while
still exploiting rich source logs (Xu et al., 2023} |Liu et al., [2022). Many methods filter or reweight
source data to bias learning toward transitions closer to the target dynamics, e.g., contrastive repre-
sentation learning filtering (Wen et al., 2024), support-aware selection (Liu et al.,|2024), stationary
distribution regularization (Xue et al., |2023)), or optimal-transport alignment (Lyu et al.l 2025b).
These strategies help value-based and actor—critic pipelines (Konda & Tsitsiklis| [1999) but do not
act on sequence tokens that govern DT policies. In particular, they neither selectively trust fragments
by token-level stitchability nor repair token semantics (e.g., discontinuous RTG) under reward and
horizon shifts, leaving junction continuity unresolved. Supervised RL (RvS) variants (Emmons
et al.| 2022) inherit the same RTG fragility.
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Figure 1: An overview of our proposed framework. Credible source fragments are selected by
MMD state-alignment and OT action-feasibility filters, fused with scarce target data, and fed, to-
gether with advantage-conditioned A tokens, into a Decision Transformer whose attention heads
predict stable actions a; under cross-dynamics shifts.

Two classic tools are well-suited yet underused in DTs: kernel Maximum Mean Discrepancy
(MMD) to test state-distribution similarity (Gretton et al.| |2006), and Optimal Transport (OT) to
measure geometry-aware shifts in joint state—action transitions (Villani et al., 2008} [Peyré et al.,
2019). We unify them into a DT-compatible pipeline that explicitly restores token-level stitchability.

We propose Data Fusion-Enhanced Decision Transformer (DFDT), which fuses scarce target
data with selectively trusted source fragments. DFDT (i) gates fragments via MMD (state-structure
alignment) and assigns OT-derived credibility for action feasibility, (ii) trains critics on a feasibility-
weighted fusion distribution, (iii) replaces brittle RTG tokens with advantage-conditioned tokens
to stabilize conditioning across reward and horizon changes, and (iv) adds a lightweight Q)-guided
regularizer to suppress value and action jumps at stitch junctions. Theoretically, we formalize the
reweighted fusion measure and prove weighted Bellman-error transfer results, including TD-residual
shift, and the approximations of V' and ). Moreover, we prove that the target performance are
controlled by two measurable “stitchability radii” (1) an MMD-based state-structure radius and (2)
an OT transition radius.

We evaluate DFDT on D4RL continuous-control tasks (Fu et al., |2020) under gravity, kinematic,
and morphology shifts with scarce target data. DFDT consistently improves return and stability
over strong offline RL and DT-style baselines across diverse source—target pairs. Furthermore, we
report token-stitching and sequence-semantics stability analyses—tracking action jumps, $Q$-value
jumps, and local TD residuals at stitch junctions—which corroborate DFDT’s stability and help
explain its performance gains. More ablation results isolating the contributions of two-level filtering,
advantage conditioning, and () regularization are presented in Sec.[G.2}

2 PRELIMINARIES

Cross-domain Offline Reinforcement Learning. We consider two infinite-horizon Markov De-
cision Processes (MDPs), the source domain Mg := (S, A, Ps,rs,7, po) and the target domain
My = (S8, A, Pr,rp,v,po). The two domains share the same state space S, action space A, re-
ward function 7 : § X A — R (bounded by 7'ax), discount factor v € [0, 1), and initial distribution
po, but differ in their transition kernels Ps # Pp. For any MDP M and policy 7, let the normalized
discounted state and state-action occupancy measures be d7%,(s) := (1 — ) >~ 7" Py (s|t) and
Vi(s,a) == d},(s) m(a|s), and define the performance of 7 by Ja(7) 1= E (s aynug, [7(s: @) |-

Let Dyye = {(s,a,r,s’)} be an offline dataset from Mg and Dy, = {(s,a,r,s")} a much smaller
dataset from M. We aim to learn a policy 7* that maximises Jr(7) without online interaction
with M. The core challenge is the cross-domain shift Ps # Pr, which is especially harmful to DT
policies that rely on token-level continuity in RTG, state, and action: source and target state man-
ifolds misalign, RTG becomes incomparable under reward and horizon shifts, and actions feasible
under Pgs can be implausible under Pr, creating stitch discontinuities. This breaks local sequence
structure, induces exposure bias, and destabilizes RTG conditioning; using only Dy, extrapolates
invalid next tokens under Pr, while Dy,, alone lacks coverage. We therefore fuse D, and Dy,
to restore token continuity, aligning state structure, ensuring action feasibility, and replacing fragile
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RTG with a stable conditioning signal, hence Transformer policies generalize across domains while
controlling distributional mismatch.

Expectile Regression. For a response Y € R and covariates X € &, the (-expectile regres-
sion function (¢ € (0,1)) is the map m¢ : X — R that minimizes the asymmetric least-squares
(ALS) risk E[p(Y —m¢(X))] with pe(u |§ - 1{u < O}| , yielding a unique mini-
mizer under mild integrability by strict convex1ty Equivalently, m¢ satisﬁes the balance condi-
tion CE[(Y —m¢(X))+| X] = (1 — Q) E[(m¢(X) —Y)4+] X], (#)+ = max{z,0}. Expectiles
continuously interpolate tail emphasis: ( = % recovers the conditional mean, while ¢ — 1 (resp.
— 0) increases sensitivity to upper (resp. lower) tails; moreover, m¢(z) is nondecreasing in ¢ and
translation/scale equivariant, i.e., for a € R, b > 0, the expectile of a + bY equals a + bm¢(x).

3 CROSS-DOMAIN POLICY ADAPTATION OF DECISION TRANSFORMER

We start by introducing a two-level data filtering and reweighted fusion framework in Sec.
Sec. [3.2) analyses the policy performance difference bound under the proposed data fusion frame-
work. Moreover, we introduce our practical algorithm to fulfil the cross-domain DT-based policy
adaptation algorithm in Sec.

3.1 TWO-LEVEL DATA FILTERING AND REWEIGHTED FUSION FRAMEWORK

In this section, to enable stable data filtering, we start by proposing a two-level trajectory fragment
filtering technique and then formalize a feasibility-weighted fusion distribution.

3.1.1 FRAGMENT SELECTION VIA MMD AND WASSERSTEIN DISTANCE

To achieve more efficient and stable data augmentation of target domains using source datasets,
we perform the fragment selection in two consecutive stages: (i) state transition structure similar-
ity matching via Maximum Mean Discrepancy (MMD), and (ii) action credibility estimation via
Wasserstein distance. Based on our proposed two-level data filtering mechanism, we can conduct a
more precise selection of the trajectory segments while enabling suitable action weights.

MMD-based Fragment Selection. Let z = f¢(s) be a shared encoder for extracting the feature

information of states. For a source fragment 7° = (s7,af, 77, ..., 55 a3, rY) and a target fragment
= (sT ol rT, ..., s,Tn7 al rI), we compute the RBF-kernel MMD in latent space:

MMD? (7 =1Zkz,j Zkl,J—QZk“j (1)

where z7 = = fo(s; ) and k is an RBF kernel. This score measures structural similarity between
dynamlcs we keep the top-£% source fragments with the smallest values to form a pseudo-target
buffer Dgp,. Then, we define the state-structure MMD distance of 75 to the target dataset:

d"™(7%) = E,rMMDi({z = fo(s7) i1, {2] = fo(s7)}5), 2

and the hard gate I,,,(7%) := 1(d™ (1) < g¢) that retains the top-£% most similar fragments. This
gate removes fragments that induce large token discontinuities in the state space at stitch junctions.

OT-based Action Credibility. For each 75 € Dy, we use the OT (Villani et al.| [2008: Peyré
et al.L 2019) to evaluate how plausible its actions are under target dynamics. Define concatenations
vy = sy @af dry dsyyy and vf = sf @al @rl @sf, with v7 ~ Dy, vf ~ Diar. Given a
1-Lipschitz cost function C' and coupling p, the Wasserstein distance is defined as

|sz'c| IDtat'l

e s
W, = min oS e ol pew. (3)

t=1 t'=1
Suppose solving the optimization problem in Eq. 3| gives the OT p* (Kantorovich, 1942), we deter-
mine the deviation between a source domain data and the target domain dataset via:

‘Dtarl

== CO\vi) i, &)

t'=1
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which becomes larger when the source sample aligns well with the target behavior (i.e., lower trans-
port cost), and smaller otherwise. The OT credibility score prioritises actions whose transport cost
to the target behavior is small, improving action continuity across stitched tokens.

3.1.2 TWO-LEVEL REWEIGHTED DATA FUSION FRAMEWORK

This section formalises a two-level data filtering framework and introduces a reweighted data fusion
distribution. We write triples u = (s, a, s’) and suppose the distributions of triples ur and ug
are P and Pg induced form Pr and Pg, respectively. Then, the two-level reweighted data fusion
framework is expressed as follows:

Definition 3.1 (Two-level reweighted data fusion framework). For each triple u = (s, a, s") from a
gated source fragment, let d*(u) be the OT credibility score, and set the raw per-sample weight

w(u) = I (%) exp(nw d“(u)),

where 7,, > 0 is the weight temperature coefficient. Normalize and clip batch-wise: w(u) :=
w(u)

o e [w(a)]’ Define the reweighted source distribution and data fusion distribution:
g

Pg(u) x w(u)Pg(u) and PY, = (1-75)Pr + 8P, B €]0,1].

mix

Learning objective under reweighted data fusion distribution. We propose that training samples
are drawn from P, and we minimize weighted expectile and TD losses for () and V/, respectively

Ly = Epgix[pc (r(s,a) + 9V (s') — V(s))}, Lo = Eﬂmgix[[)% (r+V(s') —Q(s, a))}.

We train the policy with a weighted DT objective under P*. and a Q-regularized term:

mix

Lr=LEr—aEpu [Q(s,7(s))] (5)

3.2 THEORETICAL INTERPRETATIONS

In this section, we theoretically unpack the performance difference between the optimal policy in
the target domain and the learned one of the mixed dynamics P,;x. The derived performance bound
highlights the complementary nature of MMD fragment selection and OT credibility estimation: if
only one criterion is used (MMD or OT), the other term remains. To obtain our theoretical results,
we first define the estimation error for () and V.

Definition 3.2 (Estimation errors €y, £¢). Let the one—step TD residuals Ay (s, a, ') :=r(s,a) +
vV (s') = V(s)and Ag(s,a,s’) == r(s,a) + YV (s') — Q(s,a). We define the estimation errors

ev,&q as the conditional residual bounds under P, : ey :=sup,cgs |Epw [Av(s,a,s) | s] ’ and

mix-* mix

mix

£Q=SUP(s q)eSx A ‘E]pw [AQ(s,a, s s, a] ‘

In the following assumption, we formally consider that the bounds of €y, ¢ are finite, which is
reasonable due to the fitting ability of neural networks.

Assumption 3.1 (Finite estimation errors). Due to finite samples and function class complexity, the
fitted estimators satisfy finite errors, i.e., ey,eq < oo.

Given the fiber (preimage) of f; over z € Z that is defined as the level set f(b_l({z}) ={s€eS:
fo(s) = z }, we assume the value of V' over the set f¢_1 ({#}) is almost constant.

Assumption 3.2 (Approximate fiber-constancy of V). The value varies little within the fibers of fy:
Jeg > 0,sup{|V(s) = V(3)| :5,5€S, fo(s) = fs(3)} < en.

We define stitchability radii to measure the distance between the mixed data and the target domain.

Definition 3.3 (Stitchability radii). Let Ay, := sup,s.j, (rs)=1 d™(r%) and A, := W4(P¥, Pr),
which measures the residual state-structure MMD and the 1-Wasserstein distance between the
reweighted source triples and the target domain.
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Assumption 3.3 (Occupancy concentrability). Let d% and d** denote the normalized discounted
state—occupancy measures of 77 and 7,y in the target MDP. We assume absolute continuity and a
dd’;
ddpix

finite essential bound on the density ratio: d» < d** and  := H < oo.

o0
Theorem 3.1 (Performance bound under stitchability radii). Under Assumptions training
with P, vields the estimators V and Q). Vi and Qr are the state and state-action value functions
learned from the target dataset. Let 77, and Twix be any optimal policies learned from the target
MDP Pr and mixed MDP P, respectively. Let A} @}, be the normalized discounted state—action
occupancy of . under Py and Ay = Eyop,[||75(-|s) — Tmix(:|)||1]. Then, for some constants

C1,05,C3,Ch,Cr >0,
Clﬂ(Am-i-AU,) + 256}1 + ey

IV =Vrlip, < : ; (6)
-7
C Am + Aw + 2Ben + €
1Q —Qrllip, < 25 127 Pen + cq (7)
Moreover, by a performance difference bound,
* CB(]- + ’%) C7T
_ L) < I T Y )
Jr(7p) = Jr(Tmix) < 177 (B(Am +Ay) + CuBen + 5v> = Ar. (8)

The proof can be found in Appendix [E] The stitchability radii affect policy learning only via w in the
optimization objectives and the sampling distribution P, . If w =1or 3 =0,then A, = A, =0
and the bounds reduce to pure target-domain learning. If only one criterion is used (MMD or OT),
the other term remains, highlighting their complementarity.

3.3 PRACTICAL ALGORITHM

In this section, we implement a cross-domain DT-based policy adaptation algorithm utilizing our
proposed two-level data filtering and reweighted fusion framework. The complete algorithm flow
can be found in Algs. [T]and 2]

3.3.1 RTG RELABELING WITH VALUE CONSISTENCY FOR STATE STITCHING

To stabilize token semantics across fragments and mitigate horizon and reward mismatch at junc-
tions, we propose a reweighted advantage relabeling mechanism to treat the advantage function as a
structural surrogate for RTG.

Cross-Domain RTG-Relabeling ) and V' Function. We train a shared value function V,,(s) and
Q-function Q (s, a;) using a combined dataset of target domain samples and the selected source
fragments. Since selected fragments are structurally aligned with the target dynamics, the shared
Vi, (s) promotes a consistent reward structure across domains. Specifically, we estimate the value
function V,,(s) based on a new reweighted expectile regression as follows:

Ly =E_r [Pg(AV)] +E.s [eXP(nwdw)Ln(TS)PC(AV)] ’ ©)
and

Lo=E.r {p%(AQ)} +E,s [exp(nwd“’)lm(Ts)p (AQ)} ) (10)

where p1 := pe_1 and I,(7°) := 1(d™(7%) < g¢) is the hard gate function introduced in Defi-
nition The expectile function p¢ is defined in Section 2] The definition of Ay and Ag can be
found in Definition 3.2

1
2

Reweighted Advantage Policy Conditioning. For each state-action pair (s;,a;) in a selected
fragment 7 = (8¢, Gy, 7'ty -+, Stk Qttk, Tt+k ), WE generate a pseudo-return token as A(s;,a;) =
Q(si,a;) — V(s;). These reweighted advantage values replace the original (unavailable or inconsis-
tent) RTG signals. The resulting transformer token sequence

(StaataAt7~--a5t+k7at+k7At+k) (11)

forms the input for policy training. This process enforces reward continuity and structure-aware
return alignment, enabling stable cross-domain policy adaptation.
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3.3.2 REWEIGHTED Q-REGULARIZED TRANSFORMER TRAINING

To ensure continuity of action prediction and realise the stitching of cross-domain trajectory frag-
ments, based on the cross-domain reweighted advantage conditioning, we adopt a @Q-regularized
training loss for the transformer policy with the reweighted data fusion distribution.

Critic Network Update. The optimization of the parameter ¢ of the critic network ) is carried
out by minimizing the following equation:

~

EQ(d); Dtar) + T E

e Y Hexpmwd;”)(@Q@(si,ai))ﬂ, (12

i=t—K+1

ap~mgr
where Q; = 223 Y7y 4 A ming—y o Qg (s¢,Gy) is the multi-step TD estimation, and
L5(¢; Diar) is the original Q-network loss computed with multi-step TD estimation and mean

square error (MSE). We use the hard gate function I,,, and OT weight exp(n,,d}’) to adjust the
contribution of the source data in the loss function.

Cross-domain DT Loss. We use the conditional transformer policy DT that receives the relabeled
sequences as input and predicts the next action at each step. The model is trained using a behavior
cloning loss:

t

%I,H(TS) Z exp(nwdy) (ai — W(Ts)i)2‘| (13)

i=t—K+1

EgT = LDT(Q; Dtar) + ]ETS

where Lpr(6; D) denotes the original DT loss function computed with Dy,

Integrating Q-Value Regularization into the DT Loss Function. To bias the policy toward higher-
value actions and improve stitching at the action level, we incorporate a Q-value regularizer:

t

I’m S

Ly = L — o Erepupa. “() Y eplnd?)Quls w(s»] L s
i=t—K+1

where ()(s, a) is trained using conservative Q-learning or fitted Q-iteration, and L, (7) is the reg-

ularization term of 7.

4 EXPERIMENTS

In this section, we evaluate DFDT under gravity, kinematic, and morphology shifts, centring on
two research questions: (a) Does DFDT outperform strong prior baselines across gravity, kinematic,
and morphology shifts and across source and target dataset qualities? (b) Can DFDT provide stable
sequence semantics for policy adaptation?

4.1 MAIN RESULTS

Tasks and Datasets. We evaluate policy adaptation under three dynamics shifts, gravity, kinemat-
ics, and morphology, on four MuJoCo tasks (HalfCheetah, Hopper, Walker2d, Ant) in OpenAl Gym
Brockman et al|(2016). Gravity scales the magnitude of $g$; kinematics constrains joint ranges;
morphology changes link dimensions. We adopt the configurations of [Lyu et al.|(2025b). The setting
is cross-domain offline RL: abundant source data but scarce target data from shifted environments.
Sources are D4ARL “-v2” datasets (medium, medium-replay, medium-expert) (Fu et al.l [2020); tar-
gets are the D4RL-style datasets of |Lyu et al.|(2025b)) (medium / medium-expert / expert), each with
5,000 transitions. This low-data regime, known to challenge standard offline RL |Liu et al.| (2024);
Wen et al.| (2024); Lyu et al.| (2025b), yields 108 tasks across the three shift families.

Baselines. We compare DFDT with strong offline RL: IQL (Kostrikov et al., [2022) (expectile value
regression with advantage-weighted policy), and sequence-modelling baselines for cross-domain
adaptation: DT (Chen et al.|[2021) (return-to-go sequence model), QT (Hu et al.,2024)) (value-aware
DT), and a DADT variant (Kim et al.}[2022)) with dynamics-aware tokenisation but no filtering. We
also include recent cross-domain methods: DARA (Liu et al., [2022), IGDF (Wen et al., 2024), and
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Table 1: Performance comparison of cross-domain offline RL algorithms under morphology
shifts. half =halfcheetah, hopp =hopper, walk = walker2d, m = medium, r=replay, e =expert. The
‘Target’ column indicates target-domain offline data quality. We report normalized target-domain
performance (mean + s.d.) across source qualities {medium, medium-replay, medium-expert} and
target qualities {medium, medium-expert, expert}, averaged over five seeds; best per row is high-
lighted.

Source Target | IQL | DARA IGDF OTDF | DT QT DADT| DFDT

half-m medium 30.0 | 26.6 41.6 39.1 | 346 345 348 | 42.5£2.0
half-m medium-expert | 31.8 | 32.0 29.6 35.6 30.8 —1.3 36.5 | 42.5+1.9
half-m expert 8.5 9.3 10.0  10.7 4.7 0.8 11.5 | 69.0£7.3
half-m-r  medium 308 | 35,6 28.0 40.0 | 30.3 31.1 30.2 | 42.9+£2.0
half-m-r medium-expert | 12.9 16.9 12.0 344 19.4 246 25.7 | 42.8+0.6
half-m-r  expert 5.9 3.7 5.3 8.2 4.7 113 9.5 |53.0+18.7
half-m-e  medium 41.5 | 40.3 409 414 | 349 222 364 | 42.2+3.0
half-m-e medium-expert | 25.8 | 30.6 26.2 35.1 | 36.5 20.7 37.1 | 43.84+0.5
half-m-e  expert 7.8 8.3 7.5 9.8 7.7 7.6 5.4 73.7£7.0
hopp-m  medium 135 | 135 134 11.0 | 121 10.1 114 |44.7£16.5
hopp-m  medium-expert | 13.4 13.6 133 12.6 13.2 132 13.1 |36.0£20.5
hopp-m  expert 135 | 13.6 139 107 | 129 13.1 13,5 | 56.1+39.1
hopp-m-r medium 10.8 | 10.2 12.0 8.7 13.3 13.1 144 |53.2+21.5
hopp-m-r medium-expert | 11.6 10.4 8.2 9.7 124 156 12.2 | 79.9+£13.0
hopp-m-r expert 9.8 9.0 114 10.7 | 12.7 15.7 13.7 | 15.7+2.7
hopp-m-e medium 12.6 | 13.0 12.7 7.9 11.8 9.9 11.9 | 46.9+27.4
hopp-m-e medium-expert | 14.1 13.8 133 9.6 11.8 12,6 10.7 | 69.7£27.3
hopp-m-e expert 13.8 | 12.3 128 5.9 12.0 127 11.7 | 86.5+214
walk-m  medium 23.0 | 233 275 505 | 23.7 11.5 20.8 | 46.6+9.3
walk-m  medium-expert | 21.5 | 22.2 20.7 443 | 224 29.0 25.3 | 27.2+10.8
walk-m  expert 203 | 173 158 55.3 | 15.6 23.8 283 |70.3£22.1
walk-m-r  medium 11.3 | 109 134 374 | 123 30.1 283 | 44.8£5.0
walk-m-r medium-expert | 7.0 4.5 6.9 33.8 6.0 1.6 13.6 | 40.6£20.7
walk-m-r expert 6.3 4.5 5.5 415 | 10.1 1.1 9.5 |86.3+16.1
walk-m-e medium 24.1 | 31.7 275 499 | 17.8 19.7 277 | 38.3%7.1
walk-m-e medium-expert | 27.0 | 23.3 253 40.5 | 143 242 252 28.4+6.3
walk-m-e expert 224 | 25.2 247 457 | 10.2 21.8 26.7 | 85.5+£9.9
ant-m medium 38.7 | 41.3 409 394 | 379 38.6 425 | 42.61+0.6
ant-m medium-expert | 47.0 | 43.3 444 58.3 | 48.1 1.0 44.0 | 75.446.2
ant-m expert 36.2 | 485 414 8.4 | 228 —-1.0 23.7 |855£11.8
ant-m-r  medium 382 | 389 397 412 | 175 250 378 | 41.4+£13
ant-m-r  medium-expert | 38.1 | 334 373 50.8 | 28.6 8.2 39.0 | 78.3£8.9
ant-m-r  expert 24.1 | 245 236 672 | 21.2 83 25.9 | 75.0£15.8
ant-m-e  medium 329 | 40.2 36.1 399 | 41.3 351 274 | 42.0£0.5
ant-m-e ~ medium-expert | 35.7 | 36.5 30.7 65.7 | 57.3 12.8 43.1 |69.5+11.4
ant-m-e  expert 36.1 | 346 352 864 | 379 123 31.1 81.9£6.9

Total Score | 798.0 | 816.8 808.7 1274.3 | 760.8 570.6 859.6 | 2000.7

OTDF (Lyu et al.| |2025b)), covering reward reweighting, representation filtering, and OT-based data
fusion. For all baselines, we use the authors’ recommended hyperparameters and code, modifying
only the dataset and environment identifiers.

Evaluation Protocol We adopt the cross-domain setup in Sec. 2] using abundant D4RL source
logs (medium, medium-replay, medium-expert) and scarce target logs collected under gravity, kine-
matic, and morphology shifts. We report normalized target-domain returns (mean =+ std.) over five
seeds while sweeping all {source quality } x {target quality } pairs (3x3) across HalfCheetah, Hop-
per, Walker2d, and Ant. The computing method of normalized returns is described in Sec. All
methods train offline on the prescribed source and target logs. More detailed experimental settings
can be found in Sec.[H

Results. We train our method for 100k gradient updates with five random seeds and report normal-
ized target-domain scores. Summary comparisons of DFDT against baselines under morphology and



Under review as a conference paper at ICLR 2026

Table 2: Performance comparison of cross-domain offline RL algorithms under kinematic
shifts. Abbreviations are as in Table [l We report normalized target-domain performance (mean
=+ s.d.) over five seeds; best per row is highlighted.

Source Target | IQL | DARA IGDF OTDF | DT QT DADT| DFDT

half-m medium 12.3 10.6 23.6 40.2 | 321 146 145 | 41.240.5
half-m medium-expert | 10.8 129 9.8 10.1 224 6.2 21.4 | 40.8+1.5
half-m expert 12.6 12.1 12.8 8.7 139 5.0 15.8 | 27.5£5.0
half-m-r medium 10.0 11.5 11.6 37.8 11.6  10.7 8.8 40.84+0.3
half-m-r medium-expert | 6.5 9.2 8.6 9.7 7.5 40.1 6.0 41.4+1.6
half-m-r  expert 13.6 14.8 13.9 7.2 2.7 192 5.7 27.6+7.4
half-m-e  medium 21.8 25.9 21.9 30.7 | 17.5 187 145 | 41.2+£0.9
half-m-e  medium-expert | 7.6 9.5 8.9 10.9 13.1 3.7 11.4 | 35.5+12.1
half-m-e  expert 9.1 10.4 10.7 3.2 19.5 103 194 |26.0t14.2
hopp-m  medium 58.7 43.9 65.3 65.6 16.4 19.7 3.6 66.5+£0.9
hopp-m  medium-expert | 68.5 55.4 51.1 55.4 6.3 109 104 | 56.24+28.5
hopp-m  expert 79.9 83.7 87.4 35.0 3.5 7.8 3.5 57.6+£32.7
hopp-m-r medium 36.0 39.4 35.9 35.5 11.1 230 16.8 | 63.1+£34
hopp-m-r medium-expert | 36.1 34.1 36.1 47.5 3.8 540 353 | 23.7+17.6
hopp-m-r expert 36.0 36.1 36.1 49.9 9.8 199 6.7 |62.0£20.7
hopp-m-¢ medium 66.0 61.1 65.2 65.3 | 21.6 34 14.3 | 66.8+1.4
hopp-m-e medium-expert | 45.1 61.9 62.9 38.6 10.3  16.9 6.6 49.2+27.3
hopp-m-e expert 44.9 84.2 52.8 29.9 18.7 109 15,5 | 68.1£16.8
walk-m  medium 34.3 35.2 41.9 496 | 316 269 273 |557£11.0
walk-m medium-expert | 30.2 51.9 42.3 43.5 35.8 19.8 19.1 37.6+£8.2
walk-m  expert 56.4 40.7 60.4 46.7 | 354 50.2  38.2 55.7£8.0
walk-m-r medium 11.5 12.5 22.2 49.7 | 179 33.7 6.8 |54.2+£19.9
walk-m-r medium-expert 9.7 11.2 7.6 55.9 | 242 49.8 28.1 31.3+9.7
walk-m-r  expert 7.7 7.4 7.5 51.9 18.4 3.1 18.0 | 53.7£6.9
walk-m-e medium 41.8 38.1 41.2 446 | 386 5.6 78.9 | 60.1£4.9
walk-m-e medium-expert | 22.2 23.6 28.1 16.5 152 29.2 33.0 |51.44+21.2
walk-m-e expert 26.3 36.0 46.2 424 | 39.3 25.0 322 |56.8%£11.5
ant-m medium 50.0 42.3 54.5 55.4 | 31.2 22,5 17.7 | 53.2+5.9
ant-m medium-expert | 57.8 54.1 54.5 60.7 | 13.0 7.9 13.5 60.3+5.4
ant-m expert 59.6 54.2 494  90.4 7.0 7.0 11.7 | 88.7£8.9
ant-m-r  medium 43.7 42.0 41.4 52.8 | 31.1 224  30.3 51.7+4.6
ant-m-r medium-expert | 36.5 36.0 37.2 54.2 26.9 12.0 33.1 | 62.84+1.9
ant-m-r  expert 24.4 22.1 24.3 747 | 271 89 25.5 | 89.9+5.0
ant-m-e  medium 49.5 44.7 41.8 50.2 | 21.2 94 11.1 | 52.244.8
ant-m-¢  medium-expert | 37.2 33.3 41.5 48.8 16.5 10.8 13.6 | 55.6£3.2
ant-m-e  expert 18.7 17.8 14.4 78.4 7.2 8.0 11.7 | 88.5+10.3

Total Score | 1193.0 | 1219.8 1271.0 1547.6 | 679.4 647.2 680 | 1894.6

kinematic shifts are given in Tables|l|and [2} respectively; results for the gravity shifts are deferred
to Appendix |G| due to space limit.

For question (a): On both morphology and kinematic shifts, DFDT consistently surpasses
sequence-modelling baselines (DT, QT, DADT) with one exception and frequently outperforms
strong cross-domain offline RL methods (e.g., OTDF, DARA, IGDF) across all morphology and
kinematic shift tasks. Notably, DFDT achieves higher normalized scores than all baselines on 31
out of 36 tasks under the morphology shifts and 23 out of 36 tasks under the kinematic shifts. In
the few settings where a competing method attains the top score, DFDT typically ranks second with
a small gap, indicating broad robustness rather than narrow wins. The total normalized score im-
proves by 57.0% under morphology shifts and 12.0% under gravity shifts when using DFDT (both
relative to the second-best baseline, OTDF; for reference, the gains vs. IQL are 150.7% and 57.6 %,
respectively), providing strong evidence for the method’s effectiveness. Beyond these aggregates,
the improvements are broad across environments (HalfCheetah, Hopper, Walker2d, Ant) rather than
concentrated: for example, DFDT leads all 9 HalfCheetah configurations under both morphology
and kinematic shifts, and its margins are most pronounced on expert-target datasets where sequence
stitching yields especially high returns. Even in rows where another method briefly tops the table,
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DFDT’s mean typically sits within a few points while maintaining competitive seed-level stability,
reinforcing that DFDT’s gains reflect reliable cross-domain adaptation rather than isolated outliers.

4.2 TOKEN-STITCHING AND SEQUENCE-SEMANTICS STABILITY ANALYSES

Token-stitching analyses setups. To directly probe sequence semantics at stitch junctions, we
precompute the junction index set J for every relabeled training sequence (the boundary where
two fragments are concatenated, or a source — target switch). At each training checkpoint, we
evaluate three quantities on a fixed validation pool of such sequences: (i) the action jump J, =
Epeg||m(se) — m(see—1)||2; (i) the Q-jump Jg = Epeec 7|Q(str, m(84+)) — Q(spr—1, (s —1))]s
and (iii) the TD residual around junctions, computed as E¢cpr(z)|7e + YV (s¢41) — V (s¢)|, where
N@E) = {t: |t—¢] <w}n{l,...,T — 1} denotes a small temporal neighborhood around
the stitch junction index t* with a fixed radius w (in our experiments w = 2, i.e., two steps before or
after the junction). The TD residual is then averaged over this local window to reduce single—step
noise at the boundary. Curves in Fig. [2| report moving means over checkpoints for DFDT, DADT,
QT, and DT under the same backbone, budget, and data.

Results and answer to (b): DFDT exhibits uniformly lower-level variance on all three diagnostics
throughout training, indicating smoother token transitions and better local Bellman consistency at
stitch points. Concretely, its action-jump mean remains ~ 0.06~0.09 (vs. QT rising to 0.25~0.30
and DT/DADT ~ 0.10~0.16); @-jumps stay near 2~3 (vs. QT often 15~35 and DADT spikes
> 20); and TD residuals remain around 3~6 (vs. QT 15~30, DT/DADT 8~20). Beyond lower jump
means, DFDT’s trajectories show markedly fewer late-training spikes, suggesting that weighted
advantage conditioning and two-level filtering suppress junction value and action discontinuities as
learning progresses. These trends directly support (b): DFDT provides stable, value-consistent
sequence semantics for policy adaptation, particularly where stitching is challenging; competing
sequence models exhibit larger jumps and drift, reflecting unstable semantics across stitched tokens.

action jump mean Q jump mean TD residual mean
—— DADT 25

0.25
—— DADT

DFDT
— DT
— Q1

0.20
D 0.15

0.10

0 20k 40k 60k 80k 100k 0 20k 40k 60k 80k 100k 0 20k 40k 60k 80k 100k
Steps Steps Steps

Figure 2: Mean action jump, ()-value jump, and TD error when evaluation.

5 CONCLUSION

We analyzed why Decision Transformer (DT) fails under cross-domain stitching—returns are in-
comparable, rewards shift, and feasible actions change—and proposed DFDT to restore token conti-
nuity. DFDT couples two-level fragment filtering (MMD state-structure gating and OT-based action
credibility) with a reweighted fusion distribution and reweighted advantage conditioning, replacing
brittle RTG with a value-consistent signal, plus a lightweight () regularizer to suppress junction
value jumps. Our theory bounds the target performance gap via stitchability radii and estimation
errors, highlighting the complementarity of MMD and OT and clarifying that weights act through
sampling. Empirically, across morphology, kinematic, and gravity shifts, DFDT attains the best ag-
gregate scores, reduces action, (J-value, and TD jumps, and ablations confirm that both filtering and
advantage relabeling are key to stable sequence semantics. Limitations include sensitivity to trans-
port cost design and the risk of over-pruning when shifts are mostly scalar; adaptive, softer gates
alleviate this by preserving borderline fragments. Future work will jointly learn task-adaptive costs
with the encoder, align cross-domain rewards via value calibration, handle multi-source domain-
unlabeled data, and combine DFDT with diffusion-style augmentation or light, safety-aware online
fine-tuning.
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A RELATED WORK

Offline Reinforcement Learning. Offline RL (Yu et all 2020) seeks to learn high-performing
policies from fixed datasets without additional environment interaction, and thus must confront
distributional shift and overestimation on out-of-distribution (OOD) actions (Levine et al., [2020;
Kidambi et al., 2020). Constraint- or conservatism-based methods address this by penalising or
avoiding unsupported actions (Lyu et al., [2022), including CQL’s explicit value suppression for
OOD actions (Kumar et al.l | 2020), IQL’s advantage-weighted updates without importance sampling
(Kostrikov et al., 2022), and TD3+BC’s minimalist behavior-regularized regression (Fujimoto &
Gul, 2021). Earlier behavior-constrained approaches, such as BCQ and BEAR, limit the learned
policy’s deviation from the behavior policy to reduce extrapolation error (Fujimoto et al.l | 2019; Ku-
mar et al., |2019a); model-based variants (e.g., MOPO) leverage pessimistic rollouts to avoid com-
pounding model bias (Yu et al.| 2020). Benchmarks like D4RL standardise evaluation across tasks
and dataset qualities, and have also catalysed analyses contrasting value-learning and supervised,
return-conditioned paradigms (Fu et al., 2020; Brandfonbrener et al.| |[2022)).

Cross-Domain Reinforcement Learning. Cross-domain RL studies transfer under mismatched
dynamics, morphology, sensing, or rewards, where naively pooling data across domains induces
value bias and out-of-distribution actions. Early robustness strategies, domain and dynamics ran-
domisation for sim-to-real transfer and risk-averse ensemble training, remain foundational (Tobin
et al., 2017; [Peng et al., 2018} |Rajeswaran et al., 2017). More principled distribution alignment
narrows source—target gaps by matching states and transitions via kernel MMD or optimal transport
(OT) with geometry-aware costs (Gretton et al.,[2012; Courty et al.,[2017; |Villani et al., | 2008; Peyré
et al., 2019). From 2024-2025, several advances clarified data selection and evaluation in the offline
setting: supported cross-domain offline RL formalised the problem and constraints (Liu et al.,2024);
contrastive representation learning enabled domain-aware filtering without strong labels (Wen et al.,
2024])); the ODRL benchmark standardised off-dynamics evaluation across gravity, morphology, and
other shifts (Lyu et al 2024); and OTDF combined OT-based filtering with dataset constraints to
bound target bias (Lyu et al.,2025b). In parallel, generative augmentation synthesised stitching tran-
sitions to connect suboptimal and optimal fragments (L1 et al.| [2024)), domain-unlabeled formula-
tions relaxed per-transition domain tags (Nishimori et al., 2024)), and sim-real co-training explored
domain-invariant alignment and unbalanced OT when simulation greatly exceeds scarce real data
(Maddukuri et al.l 2025; |Cheng et al., [2025). Finally, sequence-modelling baselines increasingly
replace brittle return-to-go conditioning with value- or advantage-aware signals, e.g., advantage-
conditioned DT, critic-guided DT, and Q-regularized transformers that promote value-consistent
stitching across domains (Gao et al.,[2024; |Wang et al., 2023 [Hu et al., 2024)).
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Conditional Sequence Modelling for Decision Making. Viewing decision making as condi-
tional sequence modelling enables reuse of powerful generative backbones originating from reward-
/return-conditioned policies (Kumar et al., [2019b; |Schmidhuber, |2019). Decision Transformer con-
ditions on return-to-go (RTG) to autoregressively generate actions (Chen et al., 2021}, Trajectory
Transformer models trajectory tokens and performs planning-time search (Janner et al., | 2021b), and
Diffuser plans by denoising entire trajectories with diffusion models (Janner et al.l 2022). How-
ever, RTG conditioning can be brittle under reward scaling or horizon mismatch and may degrade
across domains; theory and empirical analyses clarify when return-conditioned supervised learning
is reliable and where it fails (Brandfonbrener et al., 2022). This motivates replacing or augment-
ing RTG with value/advantage signals that better reflect local action quality—such as advantage-
conditioned DT (Gao et al.,2024), critic-guided conditioning (Wang et al.,[2023)), and Q-regularized
transformers (Hu et al., 2024). Building on this line, we adopt reweighted advantage conditioning
with Q-regularization to mitigate value jumps at stitch junctions during cross-dynamics fusion and
to stabilize token-level conditioning.

B ADDITIONAL LEMMA [B.I]AND ITS PROOF

Assumption B.1 (Boundedness and Lipschitz). |rr| < Rmax. The state value function V' and
state-action value function () are Lipschitz in u with constants Ly, Ly under the given metric p.

Assumption B.2 (Encoder and kernel). || f5(s)|| < B, and the kernel & is bounded and induces an
RKHS with unit-norm ball {h : ||kl < 1}.

Assumption B.3 (Compact latent image and continuity). The encoder f, : S — Z is continuous

and the latent image K := f,(S) C R? is compact (e.g., via normalisation/clipping).

Assumption B.4 (Universal kernel on K'). The bounded kernel & is universal on K, i.e., the induced
RKHS H is dense in C(K) with respect to the uniform norm, where C(K) is the set of all real-
valued continuous functions on K.

Definition B.1 (Pushforward measure). Let (X, Y x) and (Y, Xy ) be measurable spaces, T : X —
Y measurable, and p a measure on (X,Xx). The pushforward of p by T, denoted T p, is the
measure on (Y, Xy ) defined by

(Tyu)(B) = u(T71(B)) VBe 3y,
equivalently, for integrable g : Y — R,

/gd(T#u):/ goT dp.
Y X

Definition B.2 (Kantorovich—-Rubinstein Duality). Let (X, d) be a metric space and let p, v be
probability measures on X’ with finite first moments. The 1-Wasserstein distance is defined by the
optimal transport (“primal”’) problem

Wi(uv) = inf / d(z,y) dr(z,y),
wEIl(p,v) XXX

where II(u, ) is the set of all couplings of x4 and v. The Kantorovich-Rubinstein (KR) duality
states that

Wi = s { [ pane [ pav il = s

IfllLip<1

A directly usable inequality derived from the Kantorovich—Rubinstein Duality can be expressed as
follows: For any L-Lipschitz function g : X — R,

[Bulgl ~E.lgl| < LWi(u0).

In particular, if g is 1-Lipschitz, then

‘]Eu[g] —]El,[g]‘ < Wip,v).

14
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Lemma B.1 (Expectation deviation under the reweighted data fusion). For any 1-Lipschitz g(u) and
any h with ||h||y < 1, we have !E]P#)’ixg - IE]pTg’ < BAy and |]Ep;:ixh - EpTh‘ < BAnL.

Proof. Letm, : U — Z map u = (s, a,s’) to the latent state z = f,(s). Denote the pushforward
marginals by p7 := m.4P7 and p¥ = 7, 4P¥. For each retained fragment 7% (i.e., I,,(7°) = 1),
let p- be its latent-state (empirical or normalized) distribution.

Step 1 (Lipschitz part via Kantorovich-Rubinstein duality). By linearity of expectation under
the convex mixture, we have

Epw g=(1—B)Ep,g+ BEpyg = Epv g—Ep,g=B(Eppg —Ep,9).

Taking absolute values and applying the Kantorovich-Rubinstein duality on (i, p),

sup ‘]E]pévg — EpTg| =Wi(PY,Pr) = Ay.
Lip(g)<1

Hence, for any 1-Lipschitz g,
|Epw g —Ep,g| < BA.

Step 2 (RKHS/MMD part on latent states). For h € # acting on z, expectations under triple
distributions reduce to those under their latent pushforwards: Eph := E.~_,p[h(2)]. As above,

Epw h—Ep.h = B(Epph — Epph) = B(E,ph —E, h).

Taking the supremum over the unit RKHS ball and using the kernel mean embedding characterisa-
tion of MMD,
sup |Euwh —E,u h| = MMDy(ud, pr).
IAll2 <1

Therefore, for any || Al < 1,

Epw h—Ep,h| < SMMDy (1, pur).

Step 3 (Bounding MMDy, (1§, i) by Ay,). Since P places mass only on retained fragments, its
latent marginal is a convex combination p& = ZTS:Im(TS):l ar pr Witha, >0, a, =1. As
an IPM, MMD is convex in its first argument; thus,

MMDk(ZaTuT, w) < Y o, MMDy(pr, pr) < sup  MMDy(pir, pr) = A
r T Tl (T)=1

Hence MMDy, (1&g, 7)) < Ay, and therefore
[Beyy o= Berh| < BAm, ¥kl < 1.
Combining the Lipschitz/Wasserstein bound (Step 1) and the RKHS/MMD bound (Steps 2-3) yields
|Epw g —Ep,g| < B8Au, |Epw h —Ep,h| < BAn,

as claimed. ]

C ADDITIONAL LEMMA AND ITS PROOF

Definition C.1 (Polish space). A topological space (X, 7) is called Polish if it is

 separable: there exists a countable dense subset D C X, and

* completely metrizable: there exists a metric d that generates 7 and under which (X, d) is
complete.

Equivalently, a Polish space is a separable, complete metric space (up to homeomorphism). Typical

examples: R™ with the Euclidean topology, any closed subset of a Polish space, and countable
products of Polish spaces.

15
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Definition C.2 (Quotient map and induced map). Let f4 : S — Z be a continuous map. Define an
equivalence relationon S by s ~ § <= f,(s) = f4(5), and let ¢ : S — S/~ be the canonical
quotient map ¢(s) = [s]. Write K := f4(S) C Z for the image (with the subspace topology).

There is a unique map ~ ~

fo8/~— K,  f([s]) = fs(s),
such that fs = f o q. The map f is a bijection. Equipping S/~ with the quotient topology (induced
by q), f is a homeomorphism iff fe is a quotient map onto K (equivalently, the subspace topology
on K agrees with the quotient topology via f4). In this case, we (canonically) identify K with the
quotient S/~ and call ¢ the quotient map associated with f.

Lemma C.1 (Continuity of the quotient map and induced factor). Let (S, 7s) be a topological space
and ~ an equivalence relation on S. Equip S/~ with the quotient topology
UCS/~ isopen <= ¢ "(U) € 7s,
where ¢ : § = S/~, q(s) = [s], is the canonical projection. Then q is continuous.
Moreover, let fy : S — Z be continuous and define s ~ § <= fy(s) = f4(8). Writing
K := f4(S) C Z with the subspace topology, there exists a unique map
fiS/~— K, f([s]) = fo(s),

such that fy = foq, and f is continuous.

Proof. By the definition of the quotient topology, for every open U C S/~ we have ¢~ (U) € 7s,
hence ¢ is continuous.

For the second part, the definition of f is well-posed because s ~ 5 implies f4(s) = f,(3). Unique-

ness follows from f, = f o ¢q. To prove continuity of f, let O C K be open (in the subspace
topology). Then

¢ (f7H(0) ={s€8: flals)) €O} ={s €S fo(s) €O} = f;1(0),
which is open in S since fy is continuous. By the quotient definition, this implies f~1(O) is open
inS/~, i.e., fis continuous. O

Lemma C.2 (Approximate value-in-RKHS from universality and latent sufficiency). Under As-

sumptions|[B.1] and|[3.2) for every n > 0 there exists hy € H such that
sup [V(s) = hv(fo(s)] < em +n.
s€

Proof. By Assumption V is Lipschitz in u = (s, a, s’), hence in s; thus V' is continuous on S.
By Assumption fo is continuous and K = f,(S) is compact; hence the quotient map induces
a continuous function on K up to the fibre variation. Define a (measurable) section o : K — &
with fy(0o(z)) = z (e.g., choose any representative in each fibre) and set V(z) := V(o(z)). For any
s € Swith z = fy(s),

V(s) = V(fo(s))| = [V(s) = V(o(2)] < en
by Assumption [3.2] Therefore,

sup |V (s) —V(fs(s))| < en.

Now V € C(K) because V and f, are continuous and K is compact, where C(K) is the set of
all real-valued continuous functions on K. By universality (Assumption [B.4), for any > 0 there
exists hy € M such that sup, .z |V (2) — hy(z)| < . Combining the two displays gives

sup [V(s) = hv (fo(s))| < sup[V(s) - V(fs(s))| + sup V(2) = hv(2)| < em+n,

s€ s ze

as claimed. The RKHS norm bound || hy || < Cy (n) follows from standard RKHS approximation
estimates and can be absorbed into constants elsewhere. O

Remark C.1. If f, is value-sufficient (ie., V(s) = V(f¢(s)) exactly), then ey = 0. In practice,
en can be made small by training f, to preserve value-relevant information (e.g., adding an auxil-
iary head s — V/(s) or contrastive/value-aware objectives) and by normalizing the latent K to be
compact.

16
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D ADDITIONAL LEMMA [D.I] AND ITS PROOF

Lemma D.1 (Weighted Bellman error transfer). Let y = r(s,a) + vV (s'). There exist constants
R1, Ro, R3 > 0 (depending on Ry,ax, Ly and the encoder/kernel bounds) such that

|Epw [y —V(s)] —Epsly—V(s)]] < B(R1Am+R2Ay) + 28em,  (15)

mix

EP"’ [y - Q(S, a)] - EIP’T [y - Q(S, CL)]’ < 5 (Rl Am + R3 Aw) + 2/6 EH- (16)

mix

Proof. Step 1 (Bounding the V' (s) term). Write the one-step TD residual as
R(u) = y=V(s) = rr(s,a) +7V(s) = V(s), u=(s,a5).
By linearity of expectation under the mixture,
Epw R—Ep,.R= B(EP;R —Ep, R).
Hence
[Bey, B~ Ee, R| < 8( [Erzy — Er,y| + [EpyV(s) —Ep, V(5)| ). (17)

@ 1I

Term I: Bounding the (rr + V') term via the Wy distance. According to Assumption [B.1] 77 is
L.-Lipschitz in (s, a) (or bounded by Rp,.x and L, finite) and V' is Ly -Lipschitz in s’ under the
given metric p on triples u = (s, a, s’). Then the function

fu) = ro(s,a) +V(s)
is Ly-Lipschitz with Ly < L, + vLy . By the Kantorovich-Rubinstein duality,
|E]p§!f — IEH»Tf| < LyWh(PS,Pr) =Ly A,.
Absorb L, into a constant 5 > 0 to obtain
|Epw[rr(s,a) + 7V (s')] — Ep,[ro(s,a) + 4V (s)]| < Rz Ay (18)

Term II: Bounding the V (s) term via MMD. Let z = f4(s) be the latent state and let 7, (u) = z.
Denote the latent pushforwards i = 7. 4P and p§’ = 7.4P§ . Then by Lemma[B.Tjand[C.2]

|]EP§”V(S) - E]P’TV(S)| < |]Ez~u§“hv(z) - EZNMThv(Z” + 2y
< lhv [l MMDy (g, pr) + 261
< Cy MMDk(p,gj,y,T) + 2egy.

Since P§ is supported on retained fragments and 1§’ is their convex combination, MMD convexity
yields MMDy, (¢ &', pr) < A,,, hence

|EpeV(s) —Ep, V(s)| < Cv Ay, + 2. (19)
Let Ry := Cy and plug Eq. (I8) and Eq. (T9) into Eq. gives
|Epw R —Ep, R| < B(RyAp + Ro Ay + 2e5), (20)

which is the desired bound about V.

Step 2 (Bounding the Q(s,a) term). We want to bound the distributional shift of the Q—residual
y(u) — Q(s,a) between P and Pp. Introduce and subtract V (s):

y—Q=(y—V(s) + (V(s) — Q(s,a)).

O (1)

Hence, by the triangle inequality,
Eep [y — Q) — Be,ly — Q)| < [Ery [y~ V(s)] — Be,ly — V(s)
Term (I)

+ |Epw [V(s) — Q(s,a)] —Ep,.[V(s) — Q(s,a)]|-

mix

Term (II)

17
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Term (1). This is exactly the value—residual transfer term handled in Step 1.

Term (II). Let g(u) := V(s) — Q(s,a). According to Assumptation[B.1] g is Lipschitz in u under
the metric p, so that Lip(g) < Ly + L. By the Kantorovich—Rubinstein duality,

[Ees lo] - Ee.lg]| < Lin(g) WP, Pr) = BFa A, an

with Eg := Ly + Lg absorbed into constants.

Combining (I) and (IT) and taking a supremum over (s, a) (or dropping the conditioning) yields
[y [y~ Q1 = Bely— QI < 8(RiAn + (B2 + Ra) Au) + 282
Renaming R3 < Ry + Ry gives the stated form

‘EP“’ [y_Q(S7a)] _EPT[y_Q(S7a)]‘ S B(Rl Am"_‘RS Aw) + 2ﬂ5H-

mix

O

Corollary D.1 (Weighted Bellman transfer for 7). Lety = r7(s,a) +~yV (s') as in Lemma
For any measurable ¢ : S — R with ||¢||cc < 1, there exist constants Ry, Ry > 0 (depending only
on Ryax, Ly and the encoder/kernel bounds, absorbed into the same symbols) such that

]E(sﬁa,s’)NIP’;mix [90<5> y] - IE(s a s’)w]P’m]X[ (S) y] ‘ < B (RlAm + R2Aw) + Qﬂ €H-

Proof sketch. Apply Lemmal|D.1|to (s, a, s") := ¢(s) y(s, a, s") (bounded by |||/ < 1) and note
that the target-side law is IP’;‘“"‘. O

E PROOF OF THEOREM

Definition E.1 (Occupancy—weighted L; norms). For any policy 7, let d7. be the normalized dis-
counted state—occupancy on S and dT ® 7 the corresponding state—action occupancy on S X A.
T ‘= E s~df [ |g(s,a)\ ]

Define
s~dT, [1f(s)]],
a~m(-s)

Definition E.2 (Radon-Nikodym derivative). Let (€2, F) be a measurable space and let v, 11 be o-
finite measures with v < p (i.e., u(A) = 0 = v(A) = 0forall A € .7-') The Radon—Nikodym
derivative of v with respect to p is the (a.e.-unique) measurable functlon : © — [0, oo] such that

/ du forall A € F.

Equivalently, for any p-integrable g,

oo~ ot

Lemma E.1 (Radon—Nikodym). If v, u are o-finite and v < p, then the derlvanve exzsts and is
unique -almost everywhere.

Lemma E.2 (Performance—difference lemma (discounted MDP) [Schulman et al.| (2015); [Kakade
& Langford| (2002)). Consider a discounted MDP M = (S, A, P,r,~) with v € [0,1) and an
initial-state distribution p on S. For any policies 7,7, define

V7(s) = E[thr(shat)
>0
Q"(s,a) := r(s,a) +YE[V"(s) | 5, ],

and the advantage A™(s,a) := Q™ (s,a) — V™ (s). Let the (discounted) performance be J(7) :=
Esy~p[V™(50)]- Define the normalized discounted state-occupancy of '

S0 =S, Q¢ ~ W("St)7 St+1 ™~ P("Stvat)}»

dg/(s) = (1—1) th Pr(s; = s|so ~p, ©').
=0

18
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Then .
J(W/) - J(7T) = ﬁ Eswd;r’7aNTr’(~|s)[A7T(8aa)]
In particular, if ™ is deterministic, this reduces to
1 ™
J(’]Tl) —J(’]T) = EESNd;/[A (377{/(3))]_

Lemma E.3 (Bellman operator is a «y-contraction). Let B(S) denote the bounded real-valued func-
tions on S equipped with the norm || - ||. Fix v € [0,1) and a target-domain Markov kernel
P(s' | s,a). Let w(a | s) be any (possibly stochastic) conditional law of actions given s. De-
fine the target Bellman operator

(T)(s)=E a~w((-||s) )[TT(Sa a) +~f(s")].
s'~P(-|s,a
Then, for all f, g € B(S),
|Tf="Tgll <AIf =gl

Consequently, T is a vy-contraction and has a unique fixed point V* € B(S).

Proof. Forany s € S,

(Tf—=Ta)(s) =7vE[f(s) — g(s') | 5]
Hence |(T f—Tg)(s)| <~ ||f—gll, and taking the supremum over s gives || T f —Tg| < [ f—gll.
By the Banach fixed-point theorem, 7 admits a unique fixed point V*. O

Assumption E.1 (Occupancy-to-sampling concentrability). There exists a constant xy € (0, c0)
such that for every stationary policy 7, the normalized discounted occupancy satisfies d}. < P and

H dd7 < x.

dPr o

All such density-ratio constants are absorbed into numerical constants below.

Lemma E.4 (Policy mismatch for evaluation residuals). Let By := Rpax + V||V ||co- Then for any
two stationary policies 1, T2,

177V = T7*Viier < By - Esepr[llmi(ls) — m2(ls)lh]-

In particular, with A, := ESNPT[||7T}(-|8) — 7rmix(-|s)||1],

|T77V = TF=>*V|l1p, < By Ag.

Proof. For each s, [Eanr, [95(a)] = Eann, [95(a)]] < [|gsloc Im1(:]s) — m2(-[s)
Elrr(s,a) + YV (s') | s, a] satisfies ||gs||co < By. Average over s ~ Pr.

Theorem 3.1 (Performance bound under stitchability radii). Under Assumptions[B.IH3.2} training
with P¥. vields the estimators V and Q. Vi and Qr are the state and state-action value functions

mix
learned from the target dataset. Let 77, and Twix be any optimal policies learned from the target
MDP Pr and mixed MDP P, respectively. Let A QmT. be the normalized discounted state—action

mix’

occupancy of . under Py and Ay := Egup,[||75(:|s) — Tmix(:|8)|[1]. Then, for some constants
C1,0Cs,05,Cy, Cr > 0,

1, where gs(a) :=
O

Clﬂ(Am-i-AU,) + 256}1 + ev

IV =Vrlip, < : ; (6)

-

CoB(Am +Ay) + 2Beny + €

Q- Qrllip, < 2B 1 ) Bex 2. (7)

-

Moreover, by a performance difference bound,
« Cg(l + H) Cﬂ—
— L) o< =2 - Y R — .

Tr() = Jr(ms) < S (BAm +Au) + CuBen + 2v) + T A ®
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Proof. Step 1 (One-step residual under the target domain). Define the (conditional) TD residuals
oy (s) == EPT[’I‘T(S, a)+yV (s)=V(s) | s], dg(s,a) == EPT[T‘T(S,CL)—F’YV(S/)—Q(S,CL) ’ s, a].
Add and subtract the mixed-distribution residuals and apply the triangle inequality:

[0v

mi )

e < [Brp ly— V)| + [Berly = V()] — Ery, [y - V()
(B

< ey by Assumption[3.1]

where y = r¢(s,a) + vV (s’). Taking sup, and using that conditional deviations are bounded by
unconditional ones,

Ioviler < ev + [Eegly— V() = Eey, [y — V(s)]| en

mix

An identical argument yields

I6allier < cq + [Ergly = Qls,a)] — Bey, [y — Q(s, )| 22)

Step 2 (Stitchability transfer). By Lemma[D.I] there exist constants Ry, Ry > 0 such that
Er by~ V)~ Eerly~ V)| < B(RiAn+ B2du) + 2em, (@)

and

mix

Plugging Eq. (23) into Eq. 2I) and Eq. (24) into Eq. (22) gives
10v]ipr <ev+ B (RiAm + R2Ay) +2B€m, (25)
0@ Ilipr <eq+ B(R1Am+ R3Ay) +2B8¢eq. (26)

Ery, Iy = Qs,0)] ~ Erly — Qs 0)l| < B(R1 A+ BsAy) + 28 24)

Step 3 (Contraction to fixed-point errors). Let 7y, be the (target) Bellman operator associated with

y. ie., (T f)(s) :== Ep,[rr(s,a) + vf(s')| s]. By Lemma[E.3] Ty is a y-contraction in || - [|1 p,
with unique fixed point V. Note that §yy = TV — V pointwise, hence

[TvV =Vl v [1,p
V= Vrlie, < Pr _ Pz
I Tlier < [ -~

Using Eq. produces the inequality in Eq. (€) with Cy := max{R1, Ry} (absorbing constants).

For @, define the (evaluation) Bellman operator (7 f)(s,a) := Ep, [rr(s,a) + vV (s') | s, al, for
any f, g,

(Tof)(s,a) =rr(s,a) + yE[V(s') | s,a] does not depend on f at all,

hence (7o f) — (Tog) = 0and || To f — Toglli,pr = 0 < || f — gll1,p,. Therefore Tg, is (trivially)
a ~y-contraction with fixed point Q)1 for the target problem tied to VP_-] Since g = ToQ — Q, we

obtain 5 A o 2
10~ rlhe, < l0ohze ¢ 2ot ISt Rad) 25

which yields the second inequality in Eq. (7) (renaming the constant to C).

Step 4 (Performance bound). By the performance—difference lemma in occupancy form,

1 . 1 .
Jr(7p) — Jr(Tmix) < = IVE =V la < m(”vif = Vlla; + IV = VFIXHW,}).
: 27)
For the second term, change measure to d’7™* by Assumption
. . dd*
IV = V™ lay < &IV =V, #i= | ks

'Any standard control/evaluation choice can be used so long as the associated Bellman operator is a -y-
contraction with a unique fixed point; the constants absorb the specific choice.
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Next, relate value gaps to evaluation residuals along the corresponding policy (standard residual-to-
value inequality):

T 1 s *
Vi =Vl < i |T7V = Vlliag, 7€ {7, Tmix}

Therefore, from Eq. 27),

1
(1—7)?
Use Assumption[E.I]to transfer both norms to Pr:

[T7V = Vllvag < xI77V =Vlie,, ™ € {77, T}

Jr(n7) — Jr(Tmix) < (||7:FTV —Vllia; + [TV - V||1,d33ix)- (28)

Fix m € {7}, Tmix } and decompose (now with m iy defined as the Bellman operator under 7pix):

IT7V = Vliiier < |TFV =T Ve, + 1T7V = Eew [yl slllier + [EBex [y]s] = V(s)ll1pr,
policy mismatch distribution shift estimation
(29)

where y = r7(s,a) + ¥V (s'). The policy-mismatch term is bounded by LemmalE.4}
Hmv—ﬁmixVHLPT < By AT{’ By = RIIlax+’Y||V||007 ATK' = ESN]P’T[HW;“('|5)_ﬂ'mix('|5)||1]-

(For m = ¢ this term is 0.) The distribution-shift term is controlled by Corollary via the L!
duality with bounded test functions:

[TV —Epw [y lslllipr < B(RiAm + RoAw) +28¢H.

mix -

For the estimation term, Assumption[3.1|gives an £y bound under P ;. ; changing the measuring law
to P introduces only a bounded multiplicative factor (absorbed into constants). Hence, uniformly
in T,

ITFV = Viier < Buds + C(B(Am+Au) + Ben +ev).

Putting this into Eq. (28)) and absorbing the multiplicative constants (including x and those from
Lemma[D.)) into C5, Cyy, Cr, we obtain

03(1 + H)
(1—79)?

If one additionally assumes a mild policy proximity condition (e.g., A, < Cs (A, +
a stitchability consequence), the A, term can be absorbed into the existing 3(A,, + A,,) term,
recovering the original shape of Eq. (§).

JT(ﬂ';) _JT(ﬂ'mix) S (ﬁ(A7rl+Aw) —+ CHBSH + €V) 4+ —

This completes the proof. O

F ALGORITHM DETAILS OF DFDT

Computing method of normalized scores. Because raw returns are not directly comparable
across environments, we follow D4ARL (Fu et al., [2020) and report the Normalized Score (NS):

NS = I e 100, (30)
Jexp — Jrand

where J is the empirical return of the learned policy, jexp is the expert policy’s empirical return,

and Jyynq is the empirical return of a random policy. By construction, NS = 100 corresponds to
expert-level performance and NS = 0 corresponds to random performance. See Appendix C.1 of

Lyu et al.| (2025b) for dataset details about jrand and Jexp.
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Algorithm 1 DFDT Training

Require: Source domain dataset Dy,, target domain dataset D;,,, batch size N, sequence length

K, data filtering proportion &, target update rate 7exp

1: Initialize DT policy 7y, critic networks ()4, target critic networks )4/, state value networks V,,
and state-action value network @), for computing weighted advantage-conditioned tokens, and
command network C,,

2: // Offline cost computation

3: Pre-compute the MMD distance {d™}!P=<| using Eq. (2) and optimal transport distance
{d®}Perel using Eq.

4: Use the distance information {d™ }|P=r<l and {d"}/P=r<| to augment the source dataset Dy, and
get Dyre = {(s¢, as, 11, 5, timesteps, masks, ', d) }

5: // Compute weighted advantage-conditioned tokens

6: Train the state and state-action value networks using Eq. (I0) and Eq. (9), respectively

7

8

: Compute the advantage A of each state-action pair in Dg;. and Dy,y
: // Train the command network
9: Train the command network C, using the advantage information A and MSE loss.
10: // Main training loop
11: for:=1,2,...do
12:  Sample mini-batch by, := {(s, a,r, s, timestep, mask, d™, d*)} with size % from Dare
13:  Sample mini-batch by, := {(s, a,r, s, timesteps, masks)} with size % from ﬁtar
14:  Normalize the deviations d* via Eq. to obtain normalized deviations d*
15:  // Two-level data filtering
16:  Rank the deviations of the sampled source domain data according to d”* and admit the top
£% of them
17:  Compute the weights for the remaining source domain data via exp(nwdw)
18:  Optimize the state-action value function () on bge U by via:

EQ (¢a Dtar) + TNI%src

dt ~Tgt

Im(TS) § Hexp(ﬁwd?’)(@ — Q¢ (si5 ai)) Hﬂ :

i=t—K+1

19:  Update the target network via ¢ < Nexp® + (1 — Nexp )@’
20:  // Policy adaptation
21:  Optimize the policy 7 on bg U by, using the Q-guided loss function:

t

I, 5 w
Lo = L8 a-Erepum. [ u )i_tzmexpmdi )Q¢(sm(5))] .

22: end for

Normalisation of OT-based deviations. To make the OT-derived deviations d;’ numerically sta-
ble across tasks and batches, we apply a min—max normalisation that shifts the range to [—1, 0]:

N d¥ — max; dav
d;ﬂ _ i JE€Dsre ¥y (31)

maxjep,,. d¥ — minjep,, d¥’

src ) src ]

This mapping guarantees d}" € [—1, 0], hence the exponential weights
w; = exp(Nuw CZ;”) € [e_"w, 1] (32)

are bounded, preventing gradient explosion while still down-weighting OT-distant (less feasible)
source fragments. Practically, Eq. (3I) makes weighting scale-free across domains and robust to
outliers in d*. We use w; both in critic fitting and in weighted DT losses on the source batch (see
blue terms in Alg. [I)).

Command network C, trained via expectile regression. The command network C,, produces
a value-consistent command token that serves as an RTG replacement during inference. Concretely,
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Algorithm 2 DFDT Inference

Require: Trained DT policy 7y, trained command network C,,, sequence length K, (optional)
normalization stats (p 4,0 4) from training, environment M
1: // No critics or OT/MMD are needed at test time. We only use C, to produce command tokens
and 7 to act.
2: Initialise circular buffers for the last K tokens:

S« [, A<, C«[, T«][, M«+]

Reset environment; receive initial state s; and sett < 1
while episode not terminal do
// Compute command token from the current state
AW — C,(st)
if training used standardized advantages (cf. Eq. ( )) then c¢; + * else ¢ <+

raw
end if

A
oA +¢€

/I Update rolling context (pad left with zeros and mask invalid tokens)

9: Appends;toS, ¢;toC, ttoT, and 1to M; keep only the last K entries of each

10:  LetSi—gy1.4, Ciokat1:4r Ti— k14 My 11.¢ be the length-K sequences after left-padding
with zeros;

11:  Define Ai_k41.+—1 as the last K — 1 actions (left-padded with zeros); if ¢ = 1 then
At_K1.¢4—1 is all zeros and the first mask entries in M are 0

12:  // Policy inference with command-conditioned tokens

130 ap < 7T¢(St—K+1:t7 A ktt:i-15 Cogt1i, Ti—K+1: Mt—K—H:t)

14:  Execute a; in My; observe (ry, S441)

15:  Append a; to A (keep last K —1); sett <— t + 1 and sy < s¢

16: end while

17: return trajectory 7 = {(s¢, az,7¢) };

A A

(o]

we first form per-token advantages from the auxiliary value estimators:
Ai = Q¢(8i7ai) — V¢(Si), (33)
optionally standardized within Dy, to improve numerical stability:

N A —
A, = DT HA (34)

oate’
with (pa,04) the mean and std of {A;}. We then train C,, to predict a high-expectile summary
of the advantage distribution conditioned on the current state, using the asymmetric least-squares
(ALS) loss from expectile regression:

‘CC(W) = E(si,ai)NDmrU’Dsrc |: ’C - 1{147 - Cw(si) < 0}| (Av - Cw(Sv))2 : (Im(TS) w?):|; (35)

where ¢ € (0.5,1) (e.g., 0.7~0.9) emphasises the upper tail of advantages to encode optimistic but
value-grounded commands, I,,,(7°) gates source fragments based on MMD distances, and w; is the
OT-based weight from Eq. (32). The ALS penalty p(u) = | —1{u < 0}|u® makes over-predicting
low-advantage states costly while being tolerant to under-predicting high-advantage noise, improv-
ing robustness to cross-domain reward and horizon shifts.

Usage of C,, at inference. At test time, we compute ¢; = C,,(s;) and feed it as the conditioning
token to the DT in place of RTG. Because c¢; summarises the state-conditional advantage landscape
learned from mixed (but filtered & reweighted) data, it supplies a reward- and horizon-agnostic guid-
ance signal that remains consistent under cross-domain shifts, stabilizing token-level conditioning
and mitigating stitching artifacts.

Hyperparameter overview. Table [3] summarises a compact Transformer backbone for DFDT
(multi-head attention with moderate depth, width, and context length), trained with standard opti-
mization and stabilisation choices (Adam, dropout, ReL.U, soft target updates, and a fixed discount).
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Method-specific settings for DFDT include pretrained critics and a command network and an OT-
based filtering module (cosine cost) coupled with a fixed fragment-filtering ratio and a source—target
mixing coefficient. We adopt asymmetric batch sizes to emphasise target-domain learning while still
leveraging filtered source fragments. The defaults were chosen from small grids over context length
and mixing strength and found robust across seeds and tasks.

Table 3: Default hyperparameter setup for DFDT.

Hyperparameter Value
Number of layers 4

Number of attention heads 4
Embedding dimension 256
Context length K {5,10,20}
Dropout 0.1
Learning rate 3x 1074
Optimizer Adam (Kingma & Ba, 2015)
Discount factor 0.99
Nonlinearity ReLU
Target update rate 5x 1073
Pretrained Q network hidden size 256
Pretrained V network hidden size 256
Command network hidden size 256
Number of sampled latent variables M 10
Standard deviation of Gaussian distribution /0.1

OT Cost function cosine
Data filtering ratio £¢% 25%
Policy coefficient 3 {0.5,0.6,0.7}
Source domain Batch size 64

Target domain Batch size 128

G WIDER EXPERIMENTAL RESULTS

G.1 EXPERIMENTAL RESULTS UNDER GRAVITY SHIFTS

We further report comprehensive results for gravity shifts in Table |4l DFDT attains the best mean
performance on 20 out of 36 tasks and achieves the highest total normalized score of 1300.2, ex-
ceeding IQL by 57.6% (1300.2 vs. 825.0), the second-best approach OTDF by 12.0% (1300.2
vs. 1160.7), and the strong sequence baseline QT by 27.4% (1300.2 vs. 1020.3). Breaking down
by environment family, DFDT dominates Hopper (wins 8 out of 9) and Ant (wins 9 out of 9),
remains competitive on Walker2d (wins 2 out of 9), while HalfCheetah is largely led by QT. No-
tably, DFDT delivers large margins in challenging settings such as hopp-m-e/expert ( 75.4 £+ 19.0
) and ant-m/medium ( 61.0 + 8.7 ), reflecting robust cross-dynamics stitching. Overall, these re-
sults corroborate DFDT’s offline policy adaptation strength under gravity shifts, complementing its
competitiveness on the remaining tasks.

G.2 EXTRA ABLATION EXPERIMENTS

Ablation setup. To test whether DFDT stabilizes sequence semantics, we ablate its two key com-
ponents while keeping the backbone, training budget, and evaluation protocol fixed. (i) Two-level
filtering: we replace the full MMD + OT gate with MMD-only, OT-only, or NONE (no filtering).
(ii) Advantage relabeling: we replace DFDT’s weighted advantage tokens with either a critic-only
target learned from the mixed data (no advantage tokens) or an advantage variant that computes
ACT-style advantages without any filtering when estimating advantages (Gao et al., [2024). We re-
port normalized scores on four representative tasks spanning gravity, morphology, and kinematics
(Table [5). Because the MMD+OT filtering leaves noncontiguous, cross-dynamics fragments with
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Table 4: Performance comparison of cross-domain offline RL algorithms given gravity shifts.
The meanings of each abbreviation are the same as those listed in Table[I] We bold and highlight

the best cell.

Source Target | IQL | DARA IGDF OTDF | DT QT DADT | DFDT

half-m medium 39.6 41.2 36.6 40.7 28.4 40.2 36.6 7.3+4.3
half-m medium-expert | 39.6 40.7 38.7 28.6 45.1 62.1 34.7 7.8+£24
half-m expert 424 39.8 39.6 36.1 41.8 49.1 45.7 13.8£11.7
half-m-r medium 20.1 17.6 14.4 21.5 18.3 51.6 25.3 5.9+2.5
half-m-r medium-expert | 17.2 20.2 10.0 14.7 17.2 2.1 27.1 5.7£24
half-m-r expert 20.7 22.4 15.3 11.4 7.8 2.5 23.6 17.9+10.0
half-m-e  medium 38.6 37.8 37.7 39.5 35.1 69.3 44.0 5.6£2.6
half-m-e = medium-expert | 39.6 39.4 40.7 324 38.2 67.0 32.0 6.0£2.9
half-m-e  expert 43.4 45.3 41.1 26.5 40.7 68.5 37.8 21.9£8.3
hopp-m medium 11.2 17.3 15.3 324 19.7 16.1 12.8 48.44+16.3
hopp-m medium-expert | 14.7 15.4 15.1 24.2 11.6 12.8 11.6 56.7£23.3
hopp-m expert 12.5 19.3 14.8 33.7 11.0 12.3 12.7 22.7+11.2
hopp-m-r  medium 13.9 10.7 15.3 31.1 14.2 19.9 22.6 58.8+27.5
hopp-m-r  medium-expert | 13.3 12.5 15.4 24.2 13.7 22.3 16.6 66.4+17.7
hopp-m-r  expert 11.0 14.3 16.1 31.0 19.6 18.7 21.5 42.44+16.6
hopp-m-e  medium 19.1 18.5 22.3 26.4 13.0 14.3 11.6 54.0£21.6
hopp-m-e  medium-expert | 16.8 16.0 16.6 28.3 13.6 14.4 11.7 39.2£27.8
hopp-m-e  expert 20.9 23.9 26.0 44.9 13.1 14.0 13.2 75.4+19.0
walk-m medium 28.1 28.4 22.1 36.6 36.2 29.5 374 43.1£7.2
walk-m medium-expert | 35.7 30.7 35.4 44.8 38.2 45.2 29.1 21.54+4.5
walk-m expert 37.3 36.0 36.2 44.0 46.4 44.0 54.0 22.6£5.7
walk-m-r  medium 14.6 14.1 11.6 32.7 28.6 18.9 24.8 44.1+2.9
walk-m-r  medium-expert | 15.3 15.9 13.9 31.6 26.9 20.0 29.8 22.7£7.0
walk-m-r  expert 15.8 15.7 15.2 31.3 28.0 28.6 20.1 26.7£11.8
walk-m-e  medium 39.9 41.6 33.8 30.2 42.5 56.7 45.5 41.4+3.2
walk-m-e  medium-expert | 49.1 45.8 44.7 53.3 394 55.8 30.6 23.6+5.1
walk-m-e  expert 40.4 56.4 45.3 61.1 39.6 47.4 34.5 23.6+8.9
ant-m medium 10.2 9.4 11.3 45.1 22.0 15.3 12.4 61.0£8.7
ant-m medium-expert 9.4 10.0 9.4 33.9 17.7 14.1 14.0 52.8+15.7
ant-m expert 10.2 9.8 9.7 33.2 18.9 15.7 13.7 58.3+5.8
ant-m-r medium 18.9 21.7 19.6 29.6 18.8 13.9 21.4 66.9£8.5
ant-m-r medium-expert | 19.1 18.3 20.3 25.4 13.9 13.6 18.5 44.945.5
ant-m-r expert 18.5 20.0 18.8 24.5 14.6 10.6 17.7 38.8+11.1
ant-m-e medium 9.8 8.1 8.9 18.6 11.3 11.6 20.6 63.9£2.1
ant-m-e medium-expert 9.0 6.4 7.2 34.0 18.0 12.2 15.2 45.7+18.0
ant-m-e expert 9.1 10.4 9.2 23.2 11.6 10.0 15.3 41.24+11.9

Total Score | 825.0 | 851.0 803.6 1160.7 | 874.7 1020.3 895.7 | 1300.2

inconsistent horizons and reward scales, traditional RTG is ill-defined on the filtered source data and

thus not comparable with DEDT.

Answer to (b): Does DFDT provide stable sequence semantics for policy adaptation? Yes.
Ablations that isolate two—level filtering from reweighted advantage relabeling show that under kine-
matic shifts, removing either sequence-aware conditioning or the MMD+OT gate yields clear drops;
both are needed to keep actions feasible and stitch junctions smooth. For morphology, all variants
cluster tightly, indicating semantics are already coherent and DFDT preserves this stability. Under
gravity, occasional wins by “no filtering” suggest over-pruning; a softer retention works better there.
Overall, DFDT provides stable, value-consistent token semantics for adaptation-use the full model
on challenging dynamics, and a softened gate in gravity-dominant regimes.

H LLM USAGE

The authors acknowledge that LLMs were used in the following scenarios:
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Table 5: Ablation of two-level filtering and advantage relabeling.

Filtering Relabeling
Source  Target Shift | DEDT MMD OT None | DFDT Value Advantage
ant-m-e  expert gravity 46.5 48.2 414  52.0 46.5 47.4 44.6
half-m-r medium morph 43.6 43.0 436 43.6 43.6 43.8 43.2
hop-m-r medium kinematic 64.6 647 612 614 64.6 54.4 50.7
walk-m  medium  gravity 39.9 422 445 494 39.9 38.6 40.2

* Ablation experiments: ChatGPT (OpenAl, 2025) provided the suggestion to use action
jumps, @-value jumps, and TD residuals to show the stable, value-consistent sequence
semantics of DFDT. The code generated by the LLM was adapted by the authors to be

included in the code.

* Code generation: Various models accessed through GitHub Copilot (GitHub, 2025) were
used to write sections of the code base, including documentation and utilities for conducting
experiments. Visualization scripts, including the code for producing Figure[2] Copilot’s

autocomplete feature was also used throughout the code base for general assistance.

 Paper writing: Templates for tables and algorithms were generated using ChatGPT, based
on screenshots of previous work such as figures from (Lyu et all [2025a). The values
inside these tables have been reviewed to ensure that they are correct. Furthermore, we

use ChatGPT to polish the language in the paper.
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