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ABSTRACT

Cross-domain shifts present a significant challenge for decision transformer (DT)
policies. Existing methods typically rely on a single simple filtering criterion to se-
lect source trajectory fragments and stitch them together. They match either state
structure or action feasibility. However, the selected fragments still have poor
stitchability: state structures can misalign, the return-to-go (RTG) becomes in-
comparable when the reward or horizon changes, and actions may jump at trajec-
tory junctions. As a result, RTG tokens lose continuity, which compromises DT’s
inference ability. To tackle these challenges, we propose Data Fusion–Enhanced
Decision Transformer (DFDT), a compact pipeline that restores stitchability. Par-
ticularly, DFDT fuses scarce target data with selectively trusted source fragments
via a two-level filter, Maximum Mean Discrepancy (MMD) mismatch for state-
structure alignment and Optimal Transport (OT) deviation for action feasibility. It
then trains on a feasibility-weighted fusion distribution. Furthermore, DFDT re-
places RTG tokens with advantage-conditioned tokens, which improves the conti-
nuity of the semantics in the token sequence. It also applies aQ-guided regularizer
to suppress junction value and action jumps. Theoretically, we provide bounds that
tie state value and policy performance gaps to MMD-mismatch and OT-deviation,
and show that the bounds tighten as these two measures shrink. We show that
DFDT improves return and stability over strong offline RL and sequence-model
baselines across gravity, kinematic, and morphology shifts on D4RL-style con-
trol tasks, and further corroborate these gains with token-stitching and sequence-
semantics stability analyses.

1 INTRODUCTION

Offline reinforcement learning (RL) promises to turn logged interactions into deployable policies
without further environment access, improving safety and sample efficiency in costly or risky do-
mains (Levine et al., 2020). Sequence modeling approaches such as Decision Transformer (DT)
(Chen et al., 2021) recast RL as conditional sequence prediction and achieve strong results by con-
ditioning actions on return-to-go (RTG) (Chen et al., 2021; Janner et al., 2021a). However, cross-
domain deployment, when training and test dynamics differ, remains difficult (Wen et al., 2024):
stitched fragments lose token continuity, state manifolds drift, actions become infeasible at junc-
tions, and RTG becomes incomparable under reward and horizon changes. In practice, DT-style
agents overfit source statistics and fail to generalize (Wu et al., 2023; Wang et al., 2023).

A pragmatic remedy is cross-domain offline RL that uses scarce target data to guide adaptation while
still exploiting rich source logs (Xu et al., 2023; Liu et al., 2022). Many methods filter or reweight
source data to bias learning toward transitions closer to the target dynamics, e.g., contrastive repre-
sentation learning filtering (Wen et al., 2024), support-aware selection (Liu et al., 2024), stationary
distribution regularization (Xue et al., 2023), or optimal-transport alignment (Lyu et al., 2025b).
These strategies help value-based and actor–critic pipelines (Konda & Tsitsiklis, 1999) but do not
act on sequence tokens that govern DT policies. In particular, they neither selectively trust fragments
by token-level stitchability nor repair token semantics (e.g., discontinuous RTG) under reward and
horizon shifts, leaving junction continuity unresolved. Supervised RL (RvS) variants (Emmons
et al., 2022) inherit the same RTG fragility.

1
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Figure 1: An overview of our proposed framework. Credible source fragments are selected by
MMD state-alignment and OT action-feasibility filters, fused with scarce target data, and fed, to-
gether with advantage-conditioned A tokens, into a Decision Transformer whose attention heads
predict stable actions ât under cross-dynamics shifts.

Two classic tools are well-suited yet underused in DTs: kernel Maximum Mean Discrepancy
(MMD) to test state-distribution similarity (Gretton et al., 2006), and Optimal Transport (OT) to
measure geometry-aware shifts in joint state–action transitions (Villani et al., 2008; Peyré et al.,
2019). We unify them into a DT-compatible pipeline that explicitly restores token-level stitchability.

We propose Data Fusion–Enhanced Decision Transformer (DFDT), which fuses scarce target
data with selectively trusted source fragments. DFDT (i) gates fragments via MMD (state-structure
alignment) and assigns OT-derived credibility for action feasibility, (ii) trains critics on a feasibility-
weighted fusion distribution, (iii) replaces brittle RTG tokens with advantage-conditioned tokens
to stabilize conditioning across reward and horizon changes, and (iv) adds a lightweight Q-guided
regularizer to suppress value and action jumps at stitch junctions. Theoretically, we formalize the
reweighted fusion measure and prove weighted Bellman-error transfer results, including TD-residual
shift, and the approximations of V and Q. Moreover, we prove that the target performance are
controlled by two measurable “stitchability radii” (1) an MMD-based state-structure radius and (2)
an OT transition radius.

We evaluate DFDT on D4RL continuous-control tasks (Fu et al., 2020) under gravity, kinematic,
and morphology shifts with scarce target data. DFDT consistently improves return and stability
over strong offline RL and DT-style baselines across diverse source–target pairs. Furthermore, we
report token-stitching and sequence-semantics stability analyses—tracking action jumps, $Q$-value
jumps, and local TD residuals at stitch junctions—which corroborate DFDT’s stability and help
explain its performance gains. More ablation results isolating the contributions of two-level filtering,
advantage conditioning, and Q regularization are presented in Sec. G.2.

2 PRELIMINARIES

Cross-domain Offline Reinforcement Learning. We consider two infinite-horizon Markov De-
cision Processes (MDPs), the source domain MS := (S,A, PS , rS , γ, ρ0) and the target domain
MT := (S,A, PT , rT , γ, ρ0). The two domains share the same state space S, action space A, re-
ward function r : S ×A → R (bounded by rmax), discount factor γ ∈ [0, 1), and initial distribution
ρ0, but differ in their transition kernels PS ̸= PT . For any MDPM and policy π, let the normalized
discounted state and state-action occupancy measures be dπM(s) := (1− γ)

∑∞
t=0 γ

t PπM(s | t) and
νπM(s, a) := dπM(s)π(a |s), and define the performance of π by JM(π) := E(s,a)∼νπ

M
[ r(s, a) ].

Let Dsrc = {(s, a, r, s′)} be an offline dataset fromMS and Dtar = {(s, a, r, s′)} a much smaller
dataset from MT . We aim to learn a policy π⋆ that maximises JT (π) without online interaction
withMT . The core challenge is the cross-domain shift PS ̸=PT , which is especially harmful to DT
policies that rely on token-level continuity in RTG, state, and action: source and target state man-
ifolds misalign, RTG becomes incomparable under reward and horizon shifts, and actions feasible
under PS can be implausible under PT , creating stitch discontinuities. This breaks local sequence
structure, induces exposure bias, and destabilizes RTG conditioning; using only Dsrc extrapolates
invalid next tokens under PT , while Dtar alone lacks coverage. We therefore fuse Dsrc and Dtar

to restore token continuity, aligning state structure, ensuring action feasibility, and replacing fragile
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RTG with a stable conditioning signal, hence Transformer policies generalize across domains while
controlling distributional mismatch.

Expectile Regression. For a response Y ∈ R and covariates X ∈ X , the ζ-expectile regres-
sion function (ζ ∈ (0, 1)) is the map mζ : X → R that minimizes the asymmetric least-squares
(ALS) risk E

[
ρζ
(
Y −mζ(X)

)]
with ρζ(u) =

∣∣ζ − 1{u < 0}
∣∣u2, yielding a unique mini-

mizer under mild integrability by strict convexity. Equivalently, mζ satisfies the balance condi-
tion ζ E[(Y −mζ(X))+ | X] = (1 − ζ)E[(mζ(X)− Y )+ | X], (z)+ = max{z, 0}. Expectiles
continuously interpolate tail emphasis: ζ = 1

2 recovers the conditional mean, while ζ → 1 (resp.
→ 0) increases sensitivity to upper (resp. lower) tails; moreover, mζ(x) is nondecreasing in ζ and
translation/scale equivariant, i.e., for a ∈ R, b > 0, the expectile of a+ bY equals a+ bmζ(x).

3 CROSS-DOMAIN POLICY ADAPTATION OF DECISION TRANSFORMER

We start by introducing a two-level data filtering and reweighted fusion framework in Sec. 3.1.
Sec. 3.2 analyses the policy performance difference bound under the proposed data fusion frame-
work. Moreover, we introduce our practical algorithm to fulfil the cross-domain DT-based policy
adaptation algorithm in Sec. 3.3.

3.1 TWO-LEVEL DATA FILTERING AND REWEIGHTED FUSION FRAMEWORK

In this section, to enable stable data filtering, we start by proposing a two-level trajectory fragment
filtering technique and then formalize a feasibility-weighted fusion distribution.

3.1.1 FRAGMENT SELECTION VIA MMD AND WASSERSTEIN DISTANCE

To achieve more efficient and stable data augmentation of target domains using source datasets,
we perform the fragment selection in two consecutive stages: (i) state transition structure similar-
ity matching via Maximum Mean Discrepancy (MMD), and (ii) action credibility estimation via
Wasserstein distance. Based on our proposed two-level data filtering mechanism, we can conduct a
more precise selection of the trajectory segments while enabling suitable action weights.

MMD-based Fragment Selection. Let z = fϕ(s) be a shared encoder for extracting the feature
information of states. For a source fragment τS = (sS1 , a

S
1 , r

S
1 , . . . , s

S
n , a

S
n , r

S
n) and a target fragment

τT = (sT1 , a
T
1 , r

T
1 , . . . , s

T
m, a

T
m, r

T
m), we compute the RBF-kernel MMD in latent space:

MMD2
k(τ

S , τT ) = 1
n2

∑
i,j

k(zSi , z
S
j ) +

1
m2

∑
i,j

k(zTi , z
T
j )− 2

nm

∑
i,j

k(zSi , z
T
j ), (1)

where zSi = fϕ(s
S
i ) and k is an RBF kernel. This score measures structural similarity between

dynamics; we keep the top-ξ% source fragments with the smallest values to form a pseudo-target
buffer Dsim. Then, we define the state-structure MMD distance of τS to the target dataset:

dm(τS) = EτTMMDk
(
{zSi = fϕ(s

S
i )}ℓi=1, {zTj = fϕ(s

T
j )}ℓj

)
, (2)

and the hard gate Im(τS) := 1
(
dm(τS) ≤ qξ

)
that retains the top-ξ% most similar fragments. This

gate removes fragments that induce large token discontinuities in the state space at stitch junctions.

OT-based Action Credibility. For each τS ∈ Dsrc, we use the OT (Villani et al., 2008; Peyré
et al., 2019) to evaluate how plausible its actions are under target dynamics. Define concatenations
vSt = sSt ⊕aSt ⊕rSt ⊕sSt+1 and vTt = sTt ⊕aTt ⊕rTt ⊕sTt+1, with vSt ∼ Dsrc, vTt ∼ Dtar. Given a
1-Lipschitz cost function C and coupling µ, the Wasserstein distance is defined as

W1 = min
µ∈M

|Dsrc|∑
t=1

|Dtar|∑
t′=1

C(vSt , v
T
t′ )µt,t′ . (3)

Suppose solving the optimization problem in Eq. 3 gives the OT µ∗ (Kantorovich, 1942), we deter-
mine the deviation between a source domain data and the target domain dataset via:

dw(ut) = −
|Dtar|∑
t′=1

C(vSt , v
T
t′ )µ

∗
t,t′ , (4)

3
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which becomes larger when the source sample aligns well with the target behavior (i.e., lower trans-
port cost), and smaller otherwise. The OT credibility score prioritises actions whose transport cost
to the target behavior is small, improving action continuity across stitched tokens.

3.1.2 TWO-LEVEL REWEIGHTED DATA FUSION FRAMEWORK

This section formalises a two-level data filtering framework and introduces a reweighted data fusion
distribution. We write triples u = (s, a, s′) and suppose the distributions of triples uT and uS
are PT and PS induced form PT and PS , respectively. Then, the two-level reweighted data fusion
framework is expressed as follows:

Definition 3.1 (Two-level reweighted data fusion framework). For each triple u = (s, a, s′) from a
gated source fragment, let dw(u) be the OT credibility score, and set the raw per-sample weight

w(u) := Im(τS) exp
(
ηw d

w(u)
)
,

where ηw > 0 is the weight temperature coefficient. Normalize and clip batch-wise: w̃(u) :=
w(u)

Eu∼PS [w(u) ] , Define the reweighted source distribution and data fusion distribution:

PwS (u) ∝ w̃(u)PS(u) and Pwmix = (1− β)PT + β PwS , β ∈ [0, 1].

Learning objective under reweighted data fusion distribution. We propose that training samples
are drawn from Pwmix and we minimize weighted expectile and TD losses for Q and V , respectively

LV = EPw
mix

[
ρζ
(
r(s, a) + γV (s′)− V (s)

)]
, LQ = EPw

mix

[
ρ 1

2

(
r + γV (s′)−Q(s, a)

)]
.

We train the policy with a weighted DT objective under Pwmix and a Q-regularized term:

Lπ = LwDT − αEPw
mix

[
Q(s, π(s))

]
(5)

3.2 THEORETICAL INTERPRETATIONS

In this section, we theoretically unpack the performance difference between the optimal policy in
the target domain and the learned one of the mixed dynamics Pmix. The derived performance bound
highlights the complementary nature of MMD fragment selection and OT credibility estimation: if
only one criterion is used (MMD or OT), the other term remains. To obtain our theoretical results,
we first define the estimation error for Q and V .

Definition 3.2 (Estimation errors εV , εQ). Let the one–step TD residuals ∆V (s, a, s
′) := r(s, a) +

γ V (s′) − V (s) and ∆Q(s, a, s
′) := r(s, a) + γ V (s′) − Q(s, a). We define the estimation errors

εV , εQ as the conditional residual bounds under Pwmix: εV := sups∈S

∣∣∣EPw
mix

[
∆V (s, a, s

′) | s
]∣∣∣ and

εQ :=sup(s,a)∈S×A

∣∣∣EPw
mix

[
∆Q(s, a, s

′) |s, a
]∣∣∣.

In the following assumption, we formally consider that the bounds of εV , εQ are finite, which is
reasonable due to the fitting ability of neural networks.

Assumption 3.1 (Finite estimation errors). Due to finite samples and function class complexity, the
fitted estimators satisfy finite errors, i.e., εV , εQ <∞.

Given the fiber (preimage) of fϕ over z ∈ Z that is defined as the level set f−1
ϕ ({z}) = { s ∈ S :

fϕ(s) = z }, we assume the value of V over the set f−1
ϕ ({z}) is almost constant.

Assumption 3.2 (Approximate fiber-constancy of V ). The value varies little within the fibers of fϕ:
∃ εH ≥ 0, sup

{
|V (s)− V (s̃)| : s, s̃ ∈ S, fϕ(s) = fϕ(s̃)

}
≤ εH .

We define stitchability radii to measure the distance between the mixed data and the target domain.

Definition 3.3 (Stitchability radii). Let ∆m := supτS :Im(τS)=1 d
m(τS) and ∆w := W1

(
PwS , PT

)
,

which measures the residual state-structure MMD and the 1-Wasserstein distance between the
reweighted source triples and the target domain.

4
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Assumption 3.3 (Occupancy concentrability). Let d∗T and dmix
T denote the normalized discounted

state–occupancy measures of π∗
T and πmix in the target MDP. We assume absolute continuity and a

finite essential bound on the density ratio: d∗T ≪ dmix
T and κ :=

∥∥∥ dd∗T
ddmix

T

∥∥∥
∞
<∞.

Theorem 3.1 (Performance bound under stitchability radii). Under Assumptions B.1–3.2, training
with Pwmix yields the estimators V and Q. VT and QT are the state and state-action value functions
learned from the target dataset. Let π∗

T and πmix be any optimal policies learned from the target
MDP PT and mixed MDP Pwmix, respectively. Let d∗T⊗π∗

T be the normalized discounted state–action
occupancy of π∗

T under PT and ∆π := Es∼PT

[
∥π∗

T (·|s) − πmix(·|s)∥1
]
. Then, for some constants

C1, C2, C3, CH , Cπ > 0,

∥V − VT ∥1,PT
≤ C1 β (∆m +∆w) + 2β εH + εV

1− γ
, (6)

∥Q−QT ∥1,PT
≤ C2 β (∆m +∆w) + 2β εH + εQ

1− γ
. (7)

Moreover, by a performance difference bound,

JT (π
∗
T )− JT (πmix) ≤

C3(1 + κ)

(1− γ)2
(
β(∆m +∆w) + CH β εH + εV

)
+

Cπ
(1− γ)2

∆π. (8)

The proof can be found in Appendix E. The stitchability radii affect policy learning only via w in the
optimization objectives and the sampling distribution Pwmix. If w ≡ 1 or β = 0, then ∆m = ∆w = 0
and the bounds reduce to pure target-domain learning. If only one criterion is used (MMD or OT),
the other term remains, highlighting their complementarity.

3.3 PRACTICAL ALGORITHM

In this section, we implement a cross-domain DT-based policy adaptation algorithm utilizing our
proposed two-level data filtering and reweighted fusion framework. The complete algorithm flow
can be found in Algs. 1 and 2.

3.3.1 RTG RELABELING WITH VALUE CONSISTENCY FOR STATE STITCHING

To stabilize token semantics across fragments and mitigate horizon and reward mismatch at junc-
tions, we propose a reweighted advantage relabeling mechanism to treat the advantage function as a
structural surrogate for RTG.

Cross-Domain RTG-Relabeling Q and V Function. We train a shared value function Vφ(s) and
Q-function Qψ(st, at) using a combined dataset of target domain samples and the selected source
fragments. Since selected fragments are structurally aligned with the target dynamics, the shared
Vφ(s) promotes a consistent reward structure across domains. Specifically, we estimate the value
function Vφ(s) based on a new reweighted expectile regression as follows:

LV = EτT [ρζ(∆V )] + EτS

[
exp(ηwd

w)Im(τS)ρζ(∆V )
]
, (9)

and

LQ = EτT

[
ρ 1

2
(∆Q)

]
+ EτS

[
exp(ηwd

w)Im(τS)ρ 1
2
(∆Q)

]
, (10)

where ρ 1
2
:= ρζ= 1

2
and Im(τS) := 1

(
dm(τS) ≤ qξ

)
is the hard gate function introduced in Defi-

nition 3.1. The expectile function ρζ is defined in Section 2. The definition of ∆V and ∆Q can be
found in Definition 3.2.

Reweighted Advantage Policy Conditioning. For each state-action pair (si, ai) in a selected
fragment τ = (st, at, rt, . . . , st+k, at+k, rt+k), we generate a pseudo-return token as A(si, ai) =
Q(si, ai)−V (si). These reweighted advantage values replace the original (unavailable or inconsis-
tent) RTG signals. The resulting transformer token sequence

(st, at, At, . . . , st+k, at+k, At+k) (11)

forms the input for policy training. This process enforces reward continuity and structure-aware
return alignment, enabling stable cross-domain policy adaptation.

5
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3.3.2 REWEIGHTED Q-REGULARIZED TRANSFORMER TRAINING

To ensure continuity of action prediction and realise the stitching of cross-domain trajectory frag-
ments, based on the cross-domain reweighted advantage conditioning, we adopt a Q-regularized
training loss for the transformer policy with the reweighted data fusion distribution.

Critic Network Update. The optimization of the parameter ϕ of the critic network Qϕ is carried
out by minimizing the following equation:

LQ(ϕ;Dtar) + E
T ∼Dsrc
ât∼πθ′

[
Im(τS)

t−1∑
i=t−K+1

∥∥∥exp(ηwdwi )(Q̂i −Qϕi(si, ai)
)∥∥∥2] , (12)

where Q̂i =
∑t−1
j=i γ

j−irj + γt−imini=1,2Qϕ′
i
(st, ât) is the multi-step TD estimation, and

LQ(ϕ;Dtar) is the original Q-network loss computed with multi-step TD estimation and mean
square error (MSE). We use the hard gate function Im and OT weight exp(ηwdwi ) to adjust the
contribution of the source data in the loss function.

Cross-domain DT Loss. We use the conditional transformer policy DT that receives the relabeled
sequences as input and predicts the next action at each step. The model is trained using a behavior
cloning loss:

LwDT = LDT(θ;Dtar) + EτS

[
1

K
Im(τS)

t∑
i=t−K+1

exp(ηwd
w
i )

(
ai − π(τS)i

)2]
(13)

where LDT(θ;Dtar) denotes the original DT loss function computed with Dtar.

Integrating Q-Value Regularization into the DT Loss Function. To bias the policy toward higher-
value actions and improve stitching at the action level, we incorporate a Q-value regularizer:

Lπ = LwDT − α · Eτ∈Dtar∪Dsrc

[
Im(τS)

K

t∑
i=t−K+1

exp(ηwd
w
i )Qϕ(s, π(s))

]
, (14)

where Q(s, a) is trained using conservative Q-learning or fitted Q-iteration, and Lreg(π) is the reg-
ularization term of π.

4 EXPERIMENTS

In this section, we evaluate DFDT under gravity, kinematic, and morphology shifts, centring on
two research questions: (a) Does DFDT outperform strong prior baselines across gravity, kinematic,
and morphology shifts and across source and target dataset qualities? (b) Can DFDT provide stable
sequence semantics for policy adaptation?

4.1 MAIN RESULTS

Tasks and Datasets. We evaluate policy adaptation under three dynamics shifts, gravity, kinemat-
ics, and morphology, on four MuJoCo tasks (HalfCheetah, Hopper, Walker2d, Ant) in OpenAI Gym
Brockman et al. (2016). Gravity scales the magnitude of $g$; kinematics constrains joint ranges;
morphology changes link dimensions. We adopt the configurations of Lyu et al. (2025b). The setting
is cross-domain offline RL: abundant source data but scarce target data from shifted environments.
Sources are D4RL “-v2” datasets (medium, medium-replay, medium-expert) (Fu et al., 2020); tar-
gets are the D4RL-style datasets of Lyu et al. (2025b) (medium / medium-expert / expert), each with
5,000 transitions. This low-data regime, known to challenge standard offline RL Liu et al. (2024);
Wen et al. (2024); Lyu et al. (2025b), yields 108 tasks across the three shift families.

Baselines. We compare DFDT with strong offline RL: IQL (Kostrikov et al., 2022) (expectile value
regression with advantage-weighted policy), and sequence-modelling baselines for cross-domain
adaptation: DT (Chen et al., 2021) (return-to-go sequence model), QT (Hu et al., 2024) (value-aware
DT), and a DADT variant (Kim et al., 2022) with dynamics-aware tokenisation but no filtering. We
also include recent cross-domain methods: DARA (Liu et al., 2022), IGDF (Wen et al., 2024), and

6
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Table 1: Performance comparison of cross-domain offline RL algorithms under morphology
shifts. half=halfcheetah, hopp=hopper, walk=walker2d, m=medium, r= replay, e=expert. The
‘Target’ column indicates target-domain offline data quality. We report normalized target-domain
performance (mean ± s.d.) across source qualities {medium, medium-replay, medium-expert} and
target qualities {medium, medium-expert, expert}, averaged over five seeds; best per row is high-
lighted.

Source Target IQL DARA IGDF OTDF DT QT DADT DFDT

half-m medium 30.0 26.6 41.6 39.1 34.6 34.5 34.8 42.5±2.0
half-m medium-expert 31.8 32.0 29.6 35.6 30.8 −1.3 36.5 42.5±1.9
half-m expert 8.5 9.3 10.0 10.7 4.7 0.8 11.5 69.0±7.3
half-m-r medium 30.8 35.6 28.0 40.0 30.3 31.1 30.2 42.9±2.0
half-m-r medium-expert 12.9 16.9 12.0 34.4 19.4 24.6 25.7 42.8±0.6
half-m-r expert 5.9 3.7 5.3 8.2 4.7 11.3 9.5 53.0±18.7
half-m-e medium 41.5 40.3 40.9 41.4 34.9 22.2 36.4 42.2±3.0
half-m-e medium-expert 25.8 30.6 26.2 35.1 36.5 20.7 37.1 43.8±0.5
half-m-e expert 7.8 8.3 7.5 9.8 7.7 7.6 5.4 73.7±7.0

hopp-m medium 13.5 13.5 13.4 11.0 12.1 10.1 11.4 44.7±16.5
hopp-m medium-expert 13.4 13.6 13.3 12.6 13.2 13.2 13.1 36.0±20.5
hopp-m expert 13.5 13.6 13.9 10.7 12.9 13.1 13.5 56.1±39.1
hopp-m-r medium 10.8 10.2 12.0 8.7 13.3 13.1 14.4 53.2±21.5
hopp-m-r medium-expert 11.6 10.4 8.2 9.7 12.4 15.6 12.2 79.9±13.0
hopp-m-r expert 9.8 9.0 11.4 10.7 12.7 15.7 13.7 15.7±2.7
hopp-m-e medium 12.6 13.0 12.7 7.9 11.8 9.9 11.9 46.9±27.4
hopp-m-e medium-expert 14.1 13.8 13.3 9.6 11.8 12.6 10.7 69.7±27.3
hopp-m-e expert 13.8 12.3 12.8 5.9 12.0 12.7 11.7 86.5±21.4

walk-m medium 23.0 23.3 27.5 50.5 23.7 11.5 20.8 46.6±9.3
walk-m medium-expert 21.5 22.2 20.7 44.3 22.4 29.0 25.3 27.2±10.8
walk-m expert 20.3 17.3 15.8 55.3 15.6 23.8 28.3 70.3±22.1
walk-m-r medium 11.3 10.9 13.4 37.4 12.3 30.1 28.3 44.8±5.0
walk-m-r medium-expert 7.0 4.5 6.9 33.8 6.0 1.6 13.6 40.6±20.7
walk-m-r expert 6.3 4.5 5.5 41.5 10.1 1.1 9.5 86.3±16.1
walk-m-e medium 24.1 31.7 27.5 49.9 17.8 19.7 27.7 38.3±7.1
walk-m-e medium-expert 27.0 23.3 25.3 40.5 14.3 24.2 25.2 28.4±6.3
walk-m-e expert 22.4 25.2 24.7 45.7 10.2 21.8 26.7 85.5±9.9

ant-m medium 38.7 41.3 40.9 39.4 37.9 38.6 42.5 42.6±0.6
ant-m medium-expert 47.0 43.3 44.4 58.3 48.1 1.0 44.0 75.4±6.2
ant-m expert 36.2 48.5 41.4 85.4 22.8 −1.0 23.7 85.5±11.8
ant-m-r medium 38.2 38.9 39.7 41.2 17.5 25.0 37.8 41.4±1.3
ant-m-r medium-expert 38.1 33.4 37.3 50.8 28.6 8.2 39.0 78.3±8.9
ant-m-r expert 24.1 24.5 23.6 67.2 21.2 8.3 25.9 75.0±15.8
ant-m-e medium 32.9 40.2 36.1 39.9 41.3 35.1 27.4 42.0±0.5
ant-m-e medium-expert 35.7 36.5 30.7 65.7 57.3 12.8 43.1 69.5±11.4
ant-m-e expert 36.1 34.6 35.2 86.4 37.9 12.3 31.1 81.9±6.9

Total Score 798.0 816.8 808.7 1274.3 760.8 570.6 859.6 2000.7

OTDF (Lyu et al., 2025b), covering reward reweighting, representation filtering, and OT-based data
fusion. For all baselines, we use the authors’ recommended hyperparameters and code, modifying
only the dataset and environment identifiers.

Evaluation Protocol We adopt the cross-domain setup in Sec. 2, using abundant D4RL source
logs (medium, medium-replay, medium-expert) and scarce target logs collected under gravity, kine-
matic, and morphology shifts. We report normalized target-domain returns (mean ± std.) over five
seeds while sweeping all {source quality}×{target quality} pairs (3×3) across HalfCheetah, Hop-
per, Walker2d, and Ant. The computing method of normalized returns is described in Sec. All
methods train offline on the prescribed source and target logs. More detailed experimental settings
can be found in Sec. F.

Results. We train our method for 100k gradient updates with five random seeds and report normal-
ized target-domain scores. Summary comparisons of DFDT against baselines under morphology and
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Table 2: Performance comparison of cross-domain offline RL algorithms under kinematic
shifts. Abbreviations are as in Table 1. We report normalized target-domain performance (mean
± s.d.) over five seeds; best per row is highlighted.

Source Target IQL DARA IGDF OTDF DT QT DADT DFDT

half-m medium 12.3 10.6 23.6 40.2 32.1 14.6 14.5 41.2±0.5
half-m medium-expert 10.8 12.9 9.8 10.1 22.4 6.2 21.4 40.8±1.5
half-m expert 12.6 12.1 12.8 8.7 13.9 5.0 15.8 27.5±5.0
half-m-r medium 10.0 11.5 11.6 37.8 11.6 10.7 8.8 40.8±0.3
half-m-r medium-expert 6.5 9.2 8.6 9.7 7.5 40.1 6.0 41.4±1.6
half-m-r expert 13.6 14.8 13.9 7.2 2.7 19.2 5.7 27.6±7.4
half-m-e medium 21.8 25.9 21.9 30.7 17.5 18.7 14.5 41.2±0.9
half-m-e medium-expert 7.6 9.5 8.9 10.9 13.1 3.7 11.4 35.5±12.1
half-m-e expert 9.1 10.4 10.7 3.2 19.5 10.3 19.4 26.0±14.2

hopp-m medium 58.7 43.9 65.3 65.6 16.4 19.7 3.6 66.5±0.9
hopp-m medium-expert 68.5 55.4 51.1 55.4 6.3 10.9 10.4 56.2±28.5
hopp-m expert 79.9 83.7 87.4 35.0 3.5 7.8 3.5 57.6±32.7
hopp-m-r medium 36.0 39.4 35.9 35.5 11.1 23.0 16.8 63.1±3.4
hopp-m-r medium-expert 36.1 34.1 36.1 47.5 3.8 54.0 35.3 23.7±17.6
hopp-m-r expert 36.0 36.1 36.1 49.9 9.8 19.9 6.7 62.0±20.7
hopp-m-e medium 66.0 61.1 65.2 65.3 21.6 3.4 14.3 66.8±1.4
hopp-m-e medium-expert 45.1 61.9 62.9 38.6 10.3 16.9 6.6 49.2±27.3
hopp-m-e expert 44.9 84.2 52.8 29.9 18.7 10.9 15.5 68.1±16.8

walk-m medium 34.3 35.2 41.9 49.6 31.6 26.9 27.3 55.7±11.0
walk-m medium-expert 30.2 51.9 42.3 43.5 35.8 19.8 19.1 37.6±8.2
walk-m expert 56.4 40.7 60.4 46.7 35.4 50.2 38.2 55.7±8.0
walk-m-r medium 11.5 12.5 22.2 49.7 17.9 33.7 6.8 54.2±19.9
walk-m-r medium-expert 9.7 11.2 7.6 55.9 24.2 49.8 28.1 31.3±9.7
walk-m-r expert 7.7 7.4 7.5 51.9 18.4 3.1 18.0 53.7±6.9
walk-m-e medium 41.8 38.1 41.2 44.6 38.6 5.6 78.9 60.1±4.9
walk-m-e medium-expert 22.2 23.6 28.1 16.5 15.2 29.2 33.0 51.4±21.2
walk-m-e expert 26.3 36.0 46.2 42.4 39.3 25.0 32.2 56.8±11.5

ant-m medium 50.0 42.3 54.5 55.4 31.2 22.5 17.7 53.2±5.9
ant-m medium-expert 57.8 54.1 54.5 60.7 13.0 7.9 13.5 60.3±5.4
ant-m expert 59.6 54.2 49.4 90.4 7.0 7.0 11.7 88.7±8.9
ant-m-r medium 43.7 42.0 41.4 52.8 31.1 22.4 30.3 51.7±4.6
ant-m-r medium-expert 36.5 36.0 37.2 54.2 26.9 12.0 33.1 62.8±1.9
ant-m-r expert 24.4 22.1 24.3 74.7 27.1 8.9 25.5 89.9±5.0
ant-m-e medium 49.5 44.7 41.8 50.2 21.2 9.4 11.1 52.2±4.8
ant-m-e medium-expert 37.2 33.3 41.5 48.8 16.5 10.8 13.6 55.6±3.2
ant-m-e expert 18.7 17.8 14.4 78.4 7.2 8.0 11.7 88.5±10.3

Total Score 1193.0 1219.8 1271.0 1547.6 679.4 647.2 680 1894.6

kinematic shifts are given in Tables 1 and 2, respectively; results for the gravity shifts are deferred
to Appendix G due to space limit.

For question (a): On both morphology and kinematic shifts, DFDT consistently surpasses
sequence-modelling baselines (DT, QT, DADT) with one exception and frequently outperforms
strong cross-domain offline RL methods (e.g., OTDF, DARA, IGDF) across all morphology and
kinematic shift tasks. Notably, DFDT achieves higher normalized scores than all baselines on 31
out of 36 tasks under the morphology shifts and 23 out of 36 tasks under the kinematic shifts. In
the few settings where a competing method attains the top score, DFDT typically ranks second with
a small gap, indicating broad robustness rather than narrow wins. The total normalized score im-
proves by 57.0% under morphology shifts and 12.0% under gravity shifts when using DFDT (both
relative to the second-best baseline, OTDF; for reference, the gains vs. IQL are 150.7% and 57.6%,
respectively), providing strong evidence for the method’s effectiveness. Beyond these aggregates,
the improvements are broad across environments (HalfCheetah, Hopper, Walker2d, Ant) rather than
concentrated: for example, DFDT leads all 9 HalfCheetah configurations under both morphology
and kinematic shifts, and its margins are most pronounced on expert-target datasets where sequence
stitching yields especially high returns. Even in rows where another method briefly tops the table,
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DFDT’s mean typically sits within a few points while maintaining competitive seed-level stability,
reinforcing that DFDT’s gains reflect reliable cross-domain adaptation rather than isolated outliers.

4.2 TOKEN-STITCHING AND SEQUENCE-SEMANTICS STABILITY ANALYSES

Token-stitching analyses setups. To directly probe sequence semantics at stitch junctions, we
precompute the junction index set J for every relabeled training sequence (the boundary where
two fragments are concatenated, or a source→ target switch). At each training checkpoint, we
evaluate three quantities on a fixed validation pool of such sequences: (i) the action jump Ja =
Et⋆∈J ∥π(st⋆) − π(st⋆−1)∥2; (ii) the Q-jump JQ = Et⋆∈J |Q(st⋆ , π(st⋆)) −Q(st⋆−1, π(st⋆−1))|;
and (iii) the TD residual around junctions, computed as Et∈N (t⋆)|rt + γV (st+1) − V (st)|, where
N (t⋆) = { t : |t − t⋆| ≤ w } ∩ {1, . . . , T − 1} denotes a small temporal neighborhood around
the stitch junction index t⋆ with a fixed radius w (in our experiments w = 2, i.e., two steps before or
after the junction). The TD residual is then averaged over this local window to reduce single–step
noise at the boundary. Curves in Fig. 2 report moving means over checkpoints for DFDT, DADT,
QT, and DT under the same backbone, budget, and data.

Results and answer to (b): DFDT exhibits uniformly lower-level variance on all three diagnostics
throughout training, indicating smoother token transitions and better local Bellman consistency at
stitch points. Concretely, its action-jump mean remains ≈ 0.06∼0.09 (vs. QT rising to 0.25∼0.30
and DT/DADT ≈ 0.10∼0.16); Q-jumps stay near 2∼3 (vs. QT often 15∼35 and DADT spikes
> 20); and TD residuals remain around 3∼6 (vs. QT 15∼30, DT/DADT 8∼20). Beyond lower jump
means, DFDT’s trajectories show markedly fewer late-training spikes, suggesting that weighted
advantage conditioning and two-level filtering suppress junction value and action discontinuities as
learning progresses. These trends directly support (b): DFDT provides stable, value-consistent
sequence semantics for policy adaptation, particularly where stitching is challenging; competing
sequence models exhibit larger jumps and drift, reflecting unstable semantics across stitched tokens.

Figure 2: Mean action jump, Q-value jump, and TD error when evaluation.

5 CONCLUSION

We analyzed why Decision Transformer (DT) fails under cross-domain stitching—returns are in-
comparable, rewards shift, and feasible actions change—and proposed DFDT to restore token conti-
nuity. DFDT couples two-level fragment filtering (MMD state-structure gating and OT-based action
credibility) with a reweighted fusion distribution and reweighted advantage conditioning, replacing
brittle RTG with a value-consistent signal, plus a lightweight Q regularizer to suppress junction
value jumps. Our theory bounds the target performance gap via stitchability radii and estimation
errors, highlighting the complementarity of MMD and OT and clarifying that weights act through
sampling. Empirically, across morphology, kinematic, and gravity shifts, DFDT attains the best ag-
gregate scores, reduces action, Q-value, and TD jumps, and ablations confirm that both filtering and
advantage relabeling are key to stable sequence semantics. Limitations include sensitivity to trans-
port cost design and the risk of over-pruning when shifts are mostly scalar; adaptive, softer gates
alleviate this by preserving borderline fragments. Future work will jointly learn task-adaptive costs
with the encoder, align cross-domain rewards via value calibration, handle multi-source domain-
unlabeled data, and combine DFDT with diffusion-style augmentation or light, safety-aware online
fine-tuning.
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Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey Levine. Epopt: Learning
robust neural network policies using model ensembles. In International Conference on Learning
Representations (ICLR), 2017.

Jürgen Schmidhuber. Reinforcement learning upside down: Don’t predict rewards – just map them
to actions. arXiv preprint arXiv:1912.02875, 2019.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Do-
main randomization for transferring deep neural networks from simulation to the real world. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017.

Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2008.

Yuanfu Wang, Chao Yang, Ying Wen, Yu Liu, and Yu Qiao. Critic-guided decision transformer
for offline reinforcement learning. arXiv preprint arXiv:2312.13716, 2023. URL https://
arxiv.org/abs/2312.13716.

Xiaoyu Wen, Chenjia Bai, Kang Xu, Xudong Yu, Yang Zhang, Xuelong Li, and Zhen Wang. Con-
trastive representation for data filtering in cross-domain offline reinforcement learning. arXiv
preprint arXiv:2405.06192, 2024.

Yueh-Hua Wu, Xiaolong Wang, and Masashi Hamaya. Elastic decision transformer. In
NeurIPS, 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/3b3889d313ba9476c12c2d77ea66b24f-Paper-Conference.pdf.

Kang Xu, Chenjia Bai, Xiaoteng Ma, Dong Wang, Bin Zhao, Zhen Wang, Xuelong Li, and Wei Li.
Cross-domain policy adaptation via value-guided data filtering. Advances in Neural Information
Processing Systems, 36:73395–73421, 2023.

Zhenghai Xue, Qingpeng Cai, Shuchang Liu, Dong Zheng, Peng Jiang, Kun Gai, and Bo An. State
regularized policy optimization on data with dynamics shift. Advances in neural information
processing systems, 36:32926–32937, 2023.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020.

12

https://arxiv.org/abs/2503.24361
https://arxiv.org/abs/2404.07465
https://chat.openai.com/
https://arxiv.org/abs/2312.13716
https://arxiv.org/abs/2312.13716
https://proceedings.neurips.cc/paper_files/paper/2023/file/3b3889d313ba9476c12c2d77ea66b24f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/3b3889d313ba9476c12c2d77ea66b24f-Paper-Conference.pdf


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Supplementary Material

Table of Contents
A Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

B Additional Lemma B.1 and its proof . . . . . . . . . . . . . . . . . . . . . . . . . . 14

C Additional Lemma C.2 and its proof . . . . . . . . . . . . . . . . . . . . . . . . . . 15

D Additional Lemma D.1 and its proof . . . . . . . . . . . . . . . . . . . . . . . . . . 17

E Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

F Algorithm details of DFDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

G Wider experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

H LLM Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A RELATED WORK

Offline Reinforcement Learning. Offline RL (Yu et al., 2020) seeks to learn high-performing
policies from fixed datasets without additional environment interaction, and thus must confront
distributional shift and overestimation on out-of-distribution (OOD) actions (Levine et al., 2020;
Kidambi et al., 2020). Constraint- or conservatism-based methods address this by penalising or
avoiding unsupported actions (Lyu et al., 2022), including CQL’s explicit value suppression for
OOD actions (Kumar et al., 2020), IQL’s advantage-weighted updates without importance sampling
(Kostrikov et al., 2022), and TD3+BC’s minimalist behavior-regularized regression (Fujimoto &
Gu, 2021). Earlier behavior-constrained approaches, such as BCQ and BEAR, limit the learned
policy’s deviation from the behavior policy to reduce extrapolation error (Fujimoto et al., 2019; Ku-
mar et al., 2019a); model-based variants (e.g., MOPO) leverage pessimistic rollouts to avoid com-
pounding model bias (Yu et al., 2020). Benchmarks like D4RL standardise evaluation across tasks
and dataset qualities, and have also catalysed analyses contrasting value-learning and supervised,
return-conditioned paradigms (Fu et al., 2020; Brandfonbrener et al., 2022).

Cross-Domain Reinforcement Learning. Cross-domain RL studies transfer under mismatched
dynamics, morphology, sensing, or rewards, where naively pooling data across domains induces
value bias and out-of-distribution actions. Early robustness strategies, domain and dynamics ran-
domisation for sim-to-real transfer and risk-averse ensemble training, remain foundational (Tobin
et al., 2017; Peng et al., 2018; Rajeswaran et al., 2017). More principled distribution alignment
narrows source–target gaps by matching states and transitions via kernel MMD or optimal transport
(OT) with geometry-aware costs (Gretton et al., 2012; Courty et al., 2017; Villani et al., 2008; Peyré
et al., 2019). From 2024–2025, several advances clarified data selection and evaluation in the offline
setting: supported cross-domain offline RL formalised the problem and constraints (Liu et al., 2024);
contrastive representation learning enabled domain-aware filtering without strong labels (Wen et al.,
2024); the ODRL benchmark standardised off-dynamics evaluation across gravity, morphology, and
other shifts (Lyu et al., 2024); and OTDF combined OT-based filtering with dataset constraints to
bound target bias (Lyu et al., 2025b). In parallel, generative augmentation synthesised stitching tran-
sitions to connect suboptimal and optimal fragments (Li et al., 2024), domain-unlabeled formula-
tions relaxed per-transition domain tags (Nishimori et al., 2024), and sim–real co-training explored
domain-invariant alignment and unbalanced OT when simulation greatly exceeds scarce real data
(Maddukuri et al., 2025; Cheng et al., 2025). Finally, sequence-modelling baselines increasingly
replace brittle return-to-go conditioning with value- or advantage-aware signals, e.g., advantage-
conditioned DT, critic-guided DT, and Q-regularized transformers that promote value-consistent
stitching across domains (Gao et al., 2024; Wang et al., 2023; Hu et al., 2024).
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Conditional Sequence Modelling for Decision Making. Viewing decision making as condi-
tional sequence modelling enables reuse of powerful generative backbones originating from reward-
/return-conditioned policies (Kumar et al., 2019b; Schmidhuber, 2019). Decision Transformer con-
ditions on return-to-go (RTG) to autoregressively generate actions (Chen et al., 2021), Trajectory
Transformer models trajectory tokens and performs planning-time search (Janner et al., 2021b), and
Diffuser plans by denoising entire trajectories with diffusion models (Janner et al., 2022). How-
ever, RTG conditioning can be brittle under reward scaling or horizon mismatch and may degrade
across domains; theory and empirical analyses clarify when return-conditioned supervised learning
is reliable and where it fails (Brandfonbrener et al., 2022). This motivates replacing or augment-
ing RTG with value/advantage signals that better reflect local action quality—such as advantage-
conditioned DT (Gao et al., 2024), critic-guided conditioning (Wang et al., 2023), and Q-regularized
transformers (Hu et al., 2024). Building on this line, we adopt reweighted advantage conditioning
with Q-regularization to mitigate value jumps at stitch junctions during cross-dynamics fusion and
to stabilize token-level conditioning.

B ADDITIONAL LEMMA B.1 AND ITS PROOF

Assumption B.1 (Boundedness and Lipschitz). |rT | ≤ Rmax. The state value function V and
state-action value function Q are Lipschitz in u with constants LV , LQ under the given metric ρ.
Assumption B.2 (Encoder and kernel). ∥fϕ(s)∥ ≤ B, and the kernel k is bounded and induces an
RKHS with unit-norm ball {h : ∥h∥H ≤ 1}.
Assumption B.3 (Compact latent image and continuity). The encoder fϕ : S → Z is continuous
and the latent image K := fϕ(S) ⊂ Rd is compact (e.g., via normalisation/clipping).
Assumption B.4 (Universal kernel onK). The bounded kernel k is universal onK, i.e., the induced
RKHS H is dense in C(K) with respect to the uniform norm, where C(K) is the set of all real-
valued continuous functions on K.
Definition B.1 (Pushforward measure). Let (X,ΣX) and (Y,ΣY ) be measurable spaces, T : X→
Y measurable, and µ a measure on (X,ΣX). The pushforward of µ by T , denoted T#µ, is the
measure on (Y,ΣY ) defined by

(T#µ)(B) = µ
(
T−1(B)

)
∀B ∈ ΣY ,

equivalently, for integrable g : Y →R,∫
Y

g d(T#µ) =

∫
X

g◦T dµ.

Definition B.2 (Kantorovich–Rubinstein Duality). Let (X , d) be a metric space and let µ, ν be
probability measures on X with finite first moments. The 1-Wasserstein distance is defined by the
optimal transport (“primal”) problem

W1(µ, ν) := inf
π∈Π(µ,ν)

∫
X×X

d(x, y) dπ(x, y),

where Π(µ, ν) is the set of all couplings of µ and ν. The Kantorovich–Rubinstein (KR) duality
states that

W1(µ, ν) = sup
∥f∥Lip≤1

{∫
X
f dµ−

∫
X
f dν

}
, ∥f∥Lip := sup

x̸=y

|f(x)− f(y)|
d(x, y)

.

A directly usable inequality derived from the Kantorovich–Rubinstein Duality can be expressed as
follows: For any L-Lipschitz function g : X → R,∣∣∣Eµ[g]− Eν [g]

∣∣∣ ≤ LW1(µ, ν).

In particular, if g is 1-Lipschitz, then∣∣∣Eµ[g]− Eν [g]
∣∣∣ ≤ W1(µ, ν).

14
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Lemma B.1 (Expectation deviation under the reweighted data fusion). For any 1-Lipschitz g(u) and
any h with ∥h∥H ≤ 1, we have

∣∣EPw
mix
g − EPT

g
∣∣ ≤ β∆w and

∣∣EPw
mix
h− EPT

h
∣∣ ≤ β∆m.

Proof. Let πz : U → Z map u = (s, a, s′) to the latent state z = fϕ(s). Denote the pushforward
marginals by µT := πz#PT and µwS := πz#PwS . For each retained fragment τS (i.e., Im(τS) = 1),
let µτ be its latent-state (empirical or normalized) distribution.

Step 1 (Lipschitz part via Kantorovich–Rubinstein duality). By linearity of expectation under
the convex mixture, we have

EPw
mix
g = (1− β)EPT

g + β EPw
S
g ⇒ EPw

mix
g − EPT

g = β
(
EPw

S
g − EPT

g
)
.

Taking absolute values and applying the Kantorovich–Rubinstein duality on (U , ρ),

sup
Lip(g)≤1

∣∣EPw
S
g − EPT

g
∣∣ =W1(PwS ,PT ) = ∆w.

Hence, for any 1-Lipschitz g, ∣∣EPw
mix
g − EPT

g
∣∣ ≤ β∆w.

Step 2 (RKHS/MMD part on latent states). For h ∈ H acting on z, expectations under triple
distributions reduce to those under their latent pushforwards: EPh := Ez∼πz#P[h(z)]. As above,

EPw
mix
h− EPT

h = β
(
EPw

S
h− EPT

h
)
= β

(
Eµw

S
h− EµT

h
)
.

Taking the supremum over the unit RKHS ball and using the kernel mean embedding characterisa-
tion of MMD,

sup
∥h∥H≤1

∣∣Eµw
S
h− EµT

h
∣∣ = MMDk(µ

w
S , µT ).

Therefore, for any ∥h∥H ≤ 1,∣∣EPw
mix
h− EPT

h
∣∣ ≤ βMMDk(µ

w
S , µT ).

Step 3 (Bounding MMDk(µ
w
S , µT ) by ∆m). Since PwS places mass only on retained fragments, its

latent marginal is a convex combination µwS =
∑
τS :Im(τS)=1 ατ µτ with ατ ≥ 0,

∑
τ ατ = 1. As

an IPM, MMD is convex in its first argument; thus,

MMDk

(∑
τ

ατµτ , µT

)
≤

∑
τ

ατ MMDk(µτ , µT ) ≤ sup
τ :Im(τ)=1

MMDk(µτ , µT ) = ∆m.

Hence MMDk(µ
w
S , µT ) ≤ ∆m, and therefore∣∣EPw

mix
h− EPT

h
∣∣ ≤ β∆m, ∀ ∥h∥H ≤ 1.

Combining the Lipschitz/Wasserstein bound (Step 1) and the RKHS/MMD bound (Steps 2–3) yields∣∣EPw
mix
g − EPT

g
∣∣ ≤ β∆w,

∣∣EPw
mix
h− EPT

h
∣∣ ≤ β∆m,

as claimed.

C ADDITIONAL LEMMA C.2 AND ITS PROOF

Definition C.1 (Polish space). A topological space (X, τ) is called Polish if it is

• separable: there exists a countable dense subset D ⊆ X , and

• completely metrizable: there exists a metric d that generates τ and under which (X, d) is
complete.

Equivalently, a Polish space is a separable, complete metric space (up to homeomorphism). Typical
examples: Rn with the Euclidean topology, any closed subset of a Polish space, and countable
products of Polish spaces.
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Definition C.2 (Quotient map and induced map). Let fϕ : S → Z be a continuous map. Define an
equivalence relation on S by s ∼ s̃ ⇐⇒ fϕ(s) = fϕ(s̃), and let q : S → S/∼ be the canonical
quotient map q(s) = [s]. Write K := fϕ(S) ⊆ Z for the image (with the subspace topology).

There is a unique map
f̄ : S/∼−→ K, f̄([s]) = fϕ(s),

such that fϕ = f̄ ◦ q. The map f̄ is a bijection. Equipping S/∼ with the quotient topology (induced
by q), f̄ is a homeomorphism iff fϕ is a quotient map onto K (equivalently, the subspace topology
on K agrees with the quotient topology via fϕ). In this case, we (canonically) identify K with the
quotient S/∼ and call q the quotient map associated with fϕ.
Lemma C.1 (Continuity of the quotient map and induced factor). Let (S, τS) be a topological space
and ∼ an equivalence relation on S. Equip S/∼ with the quotient topology

U ⊆ S/∼ is open ⇐⇒ q−1(U) ∈ τS ,
where q : S → S/∼, q(s) = [s], is the canonical projection. Then q is continuous.

Moreover, let fϕ : S → Z be continuous and define s ∼ s̃ ⇐⇒ fϕ(s) = fϕ(s̃). Writing
K := fϕ(S) ⊆ Z with the subspace topology, there exists a unique map

f̄ : S/∼−→ K, f̄([s]) = fϕ(s),

such that fϕ = f̄ ◦ q, and f̄ is continuous.

Proof. By the definition of the quotient topology, for every open U ⊆ S/∼ we have q−1(U) ∈ τS ,
hence q is continuous.

For the second part, the definition of f̄ is well-posed because s ∼ s̃ implies fϕ(s) = fϕ(s̃). Unique-
ness follows from fϕ = f̄ ◦ q. To prove continuity of f̄ , let O ⊆ K be open (in the subspace
topology). Then

q−1
(
f̄−1(O)

)
= { s ∈ S : f̄(q(s)) ∈ O } = { s ∈ S : fϕ(s) ∈ O } = f−1

ϕ (O),

which is open in S since fϕ is continuous. By the quotient definition, this implies f̄−1(O) is open
in S/∼, i.e., f̄ is continuous.

Lemma C.2 (Approximate value-in-RKHS from universality and latent sufficiency). Under As-
sumptions B.1, B.2, 3.1, B.3, B.4, and 3.2, for every η > 0 there exists hV ∈ H such that

sup
s∈S
|V (s)− hV (fϕ(s))| ≤ εH + η.

Proof. By Assumption B.1, V is Lipschitz in u = (s, a, s′), hence in s; thus V is continuous on S.
By Assumption B.3, fϕ is continuous and K = fϕ(S) is compact; hence the quotient map induces
a continuous function on K up to the fibre variation. Define a (measurable) section σ : K → S
with fϕ(σ(z)) = z (e.g., choose any representative in each fibre) and set Ṽ (z) := V (σ(z)). For any
s ∈ S with z = fϕ(s),

|V (s)− Ṽ (fϕ(s))| = |V (s)− V (σ(z))| ≤ εH
by Assumption 3.2. Therefore,

sup
s∈S
|V (s)− Ṽ (fϕ(s))| ≤ εH .

Now Ṽ ∈ C(K) because V and fϕ are continuous and K is compact, where C(K) is the set of
all real-valued continuous functions on K. By universality (Assumption B.4), for any η > 0 there
exists hV ∈ H such that supz∈K |Ṽ (z)− hV (z)| ≤ η. Combining the two displays gives

sup
s∈S
|V (s)− hV (fϕ(s))| ≤ sup

s
|V (s)− Ṽ (fϕ(s))|+ sup

z∈K
|Ṽ (z)− hV (z)| ≤ εH + η,

as claimed. The RKHS norm bound ∥hV ∥H ≤ CV (η) follows from standard RKHS approximation
estimates and can be absorbed into constants elsewhere.

Remark C.1. If fϕ is value-sufficient (i.e., V (s) = Ṽ (fϕ(s)) exactly), then εH = 0. In practice,
εH can be made small by training fϕ to preserve value-relevant information (e.g., adding an auxil-
iary head s 7→ V (s) or contrastive/value-aware objectives) and by normalizing the latent K to be
compact.
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D ADDITIONAL LEMMA D.1 AND ITS PROOF

Lemma D.1 (Weighted Bellman error transfer). Let y = r(s, a) + γV (s′). There exist constants
R1, R2, R3 > 0 (depending on Rmax, LV and the encoder/kernel bounds) such that∣∣EPw

mix
[y − V (s)]− EPT

[y − V (s)]
∣∣ ≤ β (R1 ∆m +R2 ∆w) + 2β εH , (15)∣∣∣EPw

mix
[y −Q(s, a)]− EPT

[y −Q(s, a)]
∣∣∣ ≤ β (R1 ∆m +R3 ∆w) + 2β εH . (16)

Proof. Step 1 (Bounding the V (s) term). Write the one-step TD residual as

R(u) = y − V (s) = rT (s, a) + γ V (s′)− V (s), u = (s, a, s′).

By linearity of expectation under the mixture,

EPw
mix
R− EPT

R = β
(
EPw

S
R− EPT

R
)
.

Hence ∣∣EPw
mix
R− EPT

R
∣∣ ≤ β( ∣∣EPw

S
y − EPT

y
∣∣︸ ︷︷ ︸

(I)

+
∣∣EPw

S
V (s)− EPT

V (s)
∣∣︸ ︷︷ ︸

II

)
. (17)

Term I: Bounding the (rT + γV ) term via the W1 distance. According to Assumption B.1, rT is
Lr-Lipschitz in (s, a) (or bounded by Rmax and Lr finite) and V is LV -Lipschitz in s′ under the
given metric ρ on triples u = (s, a, s′). Then the function

f(u) = rT (s, a) + γV (s′)

is Lf -Lipschitz with Lf ≤ Lr + γLV . By the Kantorovich–Rubinstein duality,∣∣EPw
S
f − EPT

f
∣∣ ≤ Lf W1(PwS ,PT ) = Lf ∆w.

Absorb Lg into a constant R2 > 0 to obtain∣∣EPw
S
[rT (s, a) + γV (s′)]− EPT

[rT (s, a) + γV (s′)]
∣∣ ≤ R2 ∆w. (18)

Term II: Bounding the V (s) term via MMD. Let z = fϕ(s) be the latent state and let πz(u) = z.
Denote the latent pushforwards µT = πz#PT and µwS = πz#PwS . Then by Lemma B.1 and C.2∣∣EPw

S
V (s)− EPT

V (s)
∣∣ ≤ ∣∣Ez∼µw

S
hV (z)− Ez∼µT

hV (z)
∣∣+ 2εH

≤ ∥hV ∥H MMDk(µ
w
S , µT ) + 2εH

≤ CV MMDk(µ
w
S , µT ) + 2εH .

Since PwS is supported on retained fragments and µwS is their convex combination, MMD convexity
yields MMDk(µ

w
S , µT ) ≤ ∆m, hence∣∣EPw

S
V (s)− EPT

V (s)
∣∣ ≤ CV ∆m + 2εH . (19)

Let R1 := CV and plug Eq. (18) and Eq. (19) into Eq. (17) gives∣∣EPw
mix
R− EPT

R
∣∣ ≤ β (R1 ∆m +R2 ∆w + 2εH), (20)

which is the desired bound about V .

Step 2 (Bounding the Q(s, a) term). We want to bound the distributional shift of the Q–residual
y(u)−Q(s, a) between Pwmix and PT . Introduce and subtract V (s):

y −Q =
(
y − V (s)

)︸ ︷︷ ︸
(I)

+
(
V (s)−Q(s, a)

)︸ ︷︷ ︸
(II)

.

Hence, by the triangle inequality,∣∣∣EPw
mix

[y −Q]− EPT
[y −Q]

∣∣∣ ≤ ∣∣∣EPw
mix

[y − V (s)]− EPT
[y − V (s)]

∣∣∣︸ ︷︷ ︸
Term (I)

+
∣∣∣EPw

mix
[V (s)−Q(s, a)]− EPT

[V (s)−Q(s, a)]
∣∣∣︸ ︷︷ ︸

Term (II)

.
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Term (I). This is exactly the value–residual transfer term handled in Step 1.

Term (II). Let g(u) := V (s) − Q(s, a). According to Assumptation B.1, g is Lipschitz in u under
the metric ρ, so that Lip(g) ≤ LV + LQ. By the Kantorovich–Rubinstein duality,∣∣∣EPw

mix
[g]− EPT

[g]
∣∣∣ ≤ Lip(g)W1(Pwmix,PT ) = β R̃2 ∆w, (II)

with R̃2 := LV + LQ absorbed into constants.

Combining (I) and (II) and taking a supremum over (s, a) (or dropping the conditioning) yields∣∣∣EPw
mix

[y −Q]− EPT
[y −Q]

∣∣∣ ≤ β (R1 ∆m + (R2 + R̃2)∆w) + 2β εH .

Renaming R3 ← R2 + R̃2 gives the stated form∣∣∣EPw
mix

[y −Q(s, a)]− EPT
[y −Q(s, a)]

∣∣∣ ≤ β (R1 ∆m +R3 ∆w) + 2β εH .

Corollary D.1 (Weighted Bellman transfer for πmix). Let y = rT (s, a)+ γV (s′) as in Lemma D.1.
For any measurable φ : S → R with ∥φ∥∞ ≤ 1, there exist constants R1, R2 > 0 (depending only
on Rmax, LV and the encoder/kernel bounds, absorbed into the same symbols) such that∣∣ E(s,a,s′)∼Pπmix

T

[
φ(s) y

]
− E(s,a,s′)∼Pw

mix

[
φ(s) y

] ∣∣ ≤ β (R1∆m +R2∆w) + 2β εH .

Proof sketch. Apply Lemma D.1 to ψ(s, a, s′) := φ(s) y(s, a, s′) (bounded by ∥φ∥∞ ≤ 1) and note
that the target-side law is Pπmix

T .

E PROOF OF THEOREM 3.1

Definition E.1 (Occupancy–weighted L1 norms). For any policy π, let dπT be the normalized dis-
counted state–occupancy on S and dπT ⊗π the corresponding state–action occupancy on S × A.
Define

∥f∥1,dπT := Es∼dπT [ |f(s)| ], ∥g∥1,dπT⊗π := E s∼dπT
a∼π(·|s)

[ |g(s, a)| ].

Definition E.2 (Radon–Nikodym derivative). Let (Ω,F) be a measurable space and let ν, µ be σ-
finite measures with ν ≪ µ (i.e., µ(A) = 0 ⇒ ν(A) = 0 for all A ∈ F ). The Radon–Nikodym
derivative of ν with respect to µ is the (a.e.-unique) measurable function dν

dµ : Ω→ [0,∞] such that

ν(A) =

∫
A

dν

dµ
dµ for all A ∈ F .

Equivalently, for any µ-integrable g, ∫
g dν =

∫
g
dν

dµ
dµ.

Lemma E.1 (Radon–Nikodym). If ν, µ are σ-finite and ν ≪ µ, then the derivative dν
dµ exists and is

unique µ-almost everywhere.
Lemma E.2 (Performance–difference lemma (discounted MDP) Schulman et al. (2015); Kakade
& Langford (2002)). Consider a discounted MDP M = (S,A, P, r, γ) with γ ∈ [0, 1) and an
initial-state distribution ρ on S. For any policies π, π′, define

V π(s) := E
[∑
t≥0

γtr(st, at)
∣∣∣ s0 = s, at ∼ π(·|st), st+1 ∼ P (·|st, at)

]
,

Qπ(s, a) := r(s, a) + γ E[V π(s′) | s, a],
and the advantage Aπ(s, a) := Qπ(s, a) − V π(s). Let the (discounted) performance be J(π) :=
Es0∼ρ[V π(s0)]. Define the normalized discounted state-occupancy of π′:

dπ
′

ρ (s) := (1− γ)
∞∑
t=0

γt Pr(st = s | s0 ∼ ρ, π′).
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Then

J(π′)− J(π) =
1

1− γ
Es∼dπ′

ρ , a∼π′(·|s)
[
Aπ(s, a)

]
.

In particular, if π′ is deterministic, this reduces to

J(π′)− J(π) =
1

1− γ
Es∼dπ′

ρ

[
Aπ

(
s, π′(s)

) ]
.

Lemma E.3 (Bellman operator is a γ-contraction). Let B(S) denote the bounded real-valued func-
tions on S equipped with the norm ∥ · ∥. Fix γ ∈ [0, 1) and a target-domain Markov kernel
P (s′ | s, a). Let π(a | s) be any (possibly stochastic) conditional law of actions given s. De-
fine the target Bellman operator

(T f)(s) := E a∼π(·|s)
s′∼P (·|s,a)

[
rT (s, a) + γf(s′)

]
.

Then, for all f, g ∈ B(S),
∥T f − T g∥ ≤ γ∥f − g∥.

Consequently, T is a γ-contraction and has a unique fixed point V ∗ ∈ B(S).

Proof. For any s ∈ S,
(T f − T g)(s) = γ E[f(s′)− g(s′) | s] .

Hence
∣∣(T f−T g)(s)∣∣ ≤ γ ∥f−g∥, and taking the supremum over s gives ∥T f−T g∥ ≤ γ∥f−g∥.

By the Banach fixed-point theorem, T admits a unique fixed point V ∗.

Assumption E.1 (Occupancy-to-sampling concentrability). There exists a constant χ ∈ (0,∞)
such that for every stationary policy π, the normalized discounted occupancy satisfies dπT ≪ PT and∥∥∥ddπT

dPT

∥∥∥
∞
≤ χ.

All such density-ratio constants are absorbed into numerical constants below.

Lemma E.4 (Policy mismatch for evaluation residuals). Let BV := Rmax + γ∥V ∥∞. Then for any
two stationary policies π1, π2,

∥T π1

T V − T π2

T V ∥1,PT
≤ BV · Es∼PT

[
∥π1(·|s)− π2(·|s)∥1

]
.

In particular, with ∆π := Es∼PT

[
∥π∗

T (·|s)− πmix(·|s)∥1
]
,

∥T π
∗
T

T V − T πmix

T V ∥1,PT
≤ BV ∆π.

Proof. For each s, |Ea∼π1
[gs(a)] − Ea∼π2

[gs(a)]| ≤ ∥gs∥∞ ∥π1(·|s) − π2(·|s)∥1, where gs(a) :=
E[rT (s, a) + γV (s′) | s, a] satisfies ∥gs∥∞ ≤ BV . Average over s ∼ PT .

Theorem 3.1 (Performance bound under stitchability radii). Under Assumptions B.1–3.2, training
with Pwmix yields the estimators V and Q. VT and QT are the state and state-action value functions
learned from the target dataset. Let π∗

T and πmix be any optimal policies learned from the target
MDP PT and mixed MDP Pwmix, respectively. Let d∗T⊗π∗

T be the normalized discounted state–action
occupancy of π∗

T under PT and ∆π := Es∼PT

[
∥π∗

T (·|s) − πmix(·|s)∥1
]
. Then, for some constants

C1, C2, C3, CH , Cπ > 0,

∥V − VT ∥1,PT
≤ C1 β (∆m +∆w) + 2β εH + εV

1− γ
, (6)

∥Q−QT ∥1,PT
≤ C2 β (∆m +∆w) + 2β εH + εQ

1− γ
. (7)

Moreover, by a performance difference bound,

JT (π
∗
T )− JT (πmix) ≤

C3(1 + κ)

(1− γ)2
(
β(∆m +∆w) + CH β εH + εV

)
+

Cπ
(1− γ)2

∆π. (8)
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Proof. Step 1 (One-step residual under the target domain). Define the (conditional) TD residuals

δV (s) := EPT

[
rT (s, a)+γV (s′)−V (s)

∣∣ s], δQ(s, a) := EPT

[
rT (s, a)+γV (s′)−Q(s, a)

∣∣ s, a].
Add and subtract the mixed-distribution residuals and apply the triangle inequality:

∥δV ∥1,PT
≤

∣∣∣EPw
mix

[y − V (s)]
∣∣∣︸ ︷︷ ︸

≤ εV by Assumption 3.1

+
∣∣∣EPT

[y − V (s)]− EPw
mix

[y − V (s)]
∣∣∣,

where y = rT (s, a) + γV (s′). Taking sups and using that conditional deviations are bounded by
unconditional ones,

∥δV ∥1,PT
≤ εV +

∣∣∣EPT
[y − V (s)]− EPw

mix
[y − V (s)]

∣∣∣. (21)

An identical argument yields

∥δQ∥1,PT
≤ εQ +

∣∣∣EPT
[y −Q(s, a)]− EPw

mix
[y −Q(s, a)]

∣∣∣. (22)

Step 2 (Stitchability transfer). By Lemma D.1, there exist constants R1, R2 > 0 such that∣∣∣EPw
mix

[y − V (s)]− EPT
[y − V (s)]

∣∣∣ ≤ β (R1 ∆m +R2 ∆w) + 2β εH , (23)

and ∣∣∣EPw
mix

[y −Q(s, a)]− EPT
[y −Q(s, a)]

∣∣∣ ≤ β (R1 ∆m +R3 ∆w) + 2β εH . (24)

Plugging Eq. (23) into Eq. (21) and Eq. (24) into Eq. (22) gives

∥δV ∥1,PT
≤ εV + β (R1 ∆m +R2 ∆w) + 2β εH , (25)

∥δQ∥1,PT
≤ εQ + β (R1 ∆m +R3 ∆w) + 2β εH . (26)

Step 3 (Contraction to fixed-point errors). Let TV be the (target) Bellman operator associated with
y, i.e., (TV f)(s) := EPT

[rT (s, a) + γf(s′) | s]. By Lemma E.3, TV is a γ-contraction in ∥ · ∥1,PT

with unique fixed point VT . Note that δV = TV V − V pointwise, hence

∥V − VT ∥1,PT
≤ ∥TV V − V ∥1,PT

1− γ
=
∥δV ∥1,PT

1− γ
.

Using Eq. (25) produces the inequality in Eq. (6) with C1 := max{R1, R2} (absorbing constants).

For Q, define the (evaluation) Bellman operator (TQf)(s, a) := EPT
[rT (s, a) + γV (s′) | s, a], for

any f, g,

(TQf)(s, a) = rT (s, a) + γ E[V (s′) | s, a] does not depend on f at all,

hence (TQf)− (TQg) ≡ 0 and ∥TQf − TQg∥1,PT
= 0 ≤ γ∥f − g∥1,PT

. Therefore TQ is (trivially)
a γ-contraction with fixed point QT for the target problem tied to V .1 Since δQ = TQQ − Q, we
obtain

∥Q−QT ∥1,PT
≤ ∥δQ∥1,PT

1− γ
≤ εQ + β (R1 ∆m +R3 ∆w) + 2β εH

1− γ
,

which yields the second inequality in Eq. (7) (renaming the constant to C2).

Step 4 (Performance bound). By the performance–difference lemma in occupancy form,

JT (π
∗
T )− JT (πmix) ≤

1

1− γ
∥V ∗

T − V mix
T ∥1,d∗T ≤

1

1− γ

(
∥V ∗

T − V ∥1,d∗T + ∥V − V mix
T ∥1,d∗T

)
.

(27)
For the second term, change measure to dmix

T by Assumption 3.3:

∥V − V mix
T ∥1,d∗T ≤ κ ∥V − V mix

T ∥1,dmix
T
, κ :=

∥∥∥ dd∗T
ddmix

T

∥∥∥
∞
.

1Any standard control/evaluation choice can be used so long as the associated Bellman operator is a γ-
contraction with a unique fixed point; the constants absorb the specific choice.
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Next, relate value gaps to evaluation residuals along the corresponding policy (standard residual-to-
value inequality):

∥V πT − V ∥1,dπT ≤
1

1− γ
∥T πT V − V ∥1,dπT , π ∈ {π∗

T , πmix}.

Therefore, from Eq. (27),

JT (π
∗
T )− JT (πmix) ≤

1

(1− γ)2
(
∥T π

∗
T

T V − V ∥1,d∗T + κ ∥T πmix

T V − V ∥1,dmix
T

)
. (28)

Use Assumption E.1 to transfer both norms to PT :

∥T πT V − V ∥1,dπT ≤ χ ∥T πT V − V ∥1,PT
, π ∈ {π∗

T , πmix}.

Fix π ∈ {π∗
T , πmix} and decompose (now with mmix defined as the Bellman operator under πmix):

∥T πT V − V ∥1,PT
≤ ∥T πT V − T

πmix

T V ∥1,PT︸ ︷︷ ︸
policy mismatch

+ ∥T πmix

T V − EPw
mix

[ y | s]∥1,PT︸ ︷︷ ︸
distribution shift

+ ∥EPw
mix

[ y | s]− V (s)∥1,PT︸ ︷︷ ︸
estimation

,

(29)

where y = rT (s, a) + γV (s′). The policy-mismatch term is bounded by Lemma E.4:

∥T πT V−T
πmix

T V ∥1,PT
≤ BV ∆π, BV := Rmax+γ∥V ∥∞, ∆π := Es∼PT

[
∥π∗

T (·|s)−πmix(·|s)∥1
]
.

(For π = πmix this term is 0.) The distribution-shift term is controlled by Corollary D.1 via the L1

duality with bounded test functions:

∥T πmix

T V − EPw
mix

[ y | s]∥1,PT
≤ β (R1∆m +R2∆w) + 2β εH .

For the estimation term, Assumption 3.1 gives an εV bound under Pwmix; changing the measuring law
to PT introduces only a bounded multiplicative factor (absorbed into constants). Hence, uniformly
in π,

∥T πT V − V ∥1,PT
≤ BV ∆π + C

(
β(∆m +∆w) + β εH + εV

)
.

Putting this into Eq. (28) and absorbing the multiplicative constants (including χ and those from
Lemma D.1) into C3, CH , Cπ , we obtain

JT (π
∗
T )− JT (πmix) ≤

C3(1 + κ)

(1− γ)2
(
β(∆m +∆w) + CH β εH + εV

)
+

Cπ
(1− γ)2

∆π.

If one additionally assumes a mild policy proximity condition (e.g., ∆π ≤ Cs (∆m + ∆w) as
a stitchability consequence), the ∆π term can be absorbed into the existing β(∆m + ∆w) term,
recovering the original shape of Eq. (8).

This completes the proof.

F ALGORITHM DETAILS OF DFDT

Computing method of normalized scores. Because raw returns are not directly comparable
across environments, we follow D4RL (Fu et al., 2020) and report the Normalized Score (NS):

NS =
Ĵ − Ĵrand

Ĵexp − Ĵrand
× 100, (30)

where Ĵ is the empirical return of the learned policy, Ĵexp is the expert policy’s empirical return,
and Ĵrand is the empirical return of a random policy. By construction, NS = 100 corresponds to
expert-level performance and NS = 0 corresponds to random performance. See Appendix C.1 of
Lyu et al. (2025b) for dataset details about Ĵrand and Ĵexp.
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Algorithm 1 DFDT Training

Require: Source domain dataset Dsrc, target domain dataset Dtar, batch size N , sequence length
K, data filtering proportion ξ, target update rate ηexp

1: Initialize DT policy πϕ, critic networks Qϕ, target critic networks Qϕ′ , state value networks Vφ
and state-action value network Qψ for computing weighted advantage-conditioned tokens, and
command network Cω

2: // Offline cost computation
3: Pre-compute the MMD distance {dm}|Dsrc| using Eq. (2) and optimal transport distance
{dw}|Dsrc| using Eq. (4)

4: Use the distance information {dm}|Dsrc| and {dw}|Dsrc| to augment the source dataset Dsrc and
get D̂src = {(st, at, rt, s′t, timesteps,masks, dmt , d

w
t )}

5: // Compute weighted advantage-conditioned tokens
6: Train the state and state-action value networks using Eq. (10) and Eq. (9), respectively
7: Compute the advantage A of each state-action pair in Dsrc and Dtar

8: // Train the command network
9: Train the command network Cω using the advantage information A and MSE loss.

10: // Main training loop
11: for i = 1, 2, . . . do
12: Sample mini-batch bsrc := {(s, a, r, s′, timestep,mask, dm, dw)} with size N

2 from D̂src

13: Sample mini-batch btar := {(s, a, r, s′, timesteps,masks)} with size N
2 from D̂tar

14: Normalize the deviations dw via Eq. (31) to obtain normalized deviations d̂w
15: // Two-level data filtering
16: Rank the deviations of the sampled source domain data according to dm and admit the top

ξ% of them
17: Compute the weights for the remaining source domain data via exp(ηwd̂w)
18: Optimize the state-action value function Qϕ on bsrc ∪ btar via:

LQ(ϕ;Dtar) + E
T ∼Dsrc
ât∼πθ′

[
Im(τS)

t−1∑
i=t−K+1

∥∥∥exp(ηwdwi )(Q̂i −Qϕi
(si, ai)

)∥∥∥2] .
19: Update the target network via ϕ′ ← ηexpϕ+ (1− ηexp)ϕ′
20: // Policy adaptation
21: Optimize the policy π on bsrc ∪ btar using the Q-guided loss function:

Lπ = LwDT − α · Eτ∈Dtar∪Dsrc

[
Im(τS)

K

t∑
i=t−K+1

exp(ηwd
w
i )Qϕ(s, π(s))

]
.

22: end for

Normalisation of OT-based deviations. To make the OT-derived deviations dwi numerically sta-
ble across tasks and batches, we apply a min–max normalisation that shifts the range to [−1, 0]:

d̂wi =
dwi −maxj∈Dsrc

dwj
maxj∈Dsrc d

w
j −minj∈Dsrc d

w
j

. (31)

This mapping guarantees d̂wi ∈ [−1, 0], hence the exponential weights

wi := exp(ηw d̂
w
i ) ∈

[
e−ηw , 1

]
(32)

are bounded, preventing gradient explosion while still down-weighting OT-distant (less feasible)
source fragments. Practically, Eq. (31) makes weighting scale-free across domains and robust to
outliers in dw. We use wi both in critic fitting and in weighted DT losses on the source batch (see
blue terms in Alg. 1).

Command network Cω trained via expectile regression. The command network Cω produces
a value-consistent command token that serves as an RTG replacement during inference. Concretely,

22
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Algorithm 2 DFDT Inference

Require: Trained DT policy πϕ, trained command network Cω , sequence length K, (optional)
normalization stats (µA, σA) from training, environmentMT

1: // No critics or OT/MMD are needed at test time. We only use Cω to produce command tokens
and πϕ to act.

2: Initialise circular buffers for the last K tokens:

S← [], A← [], C← [], T← [], M← []

3: Reset environment; receive initial state s1 and set t← 1
4: while episode not terminal do
5: // Compute command token from the current state
6: crawt ← Cω(st)
7: if training used standardized advantages (cf. Eq. ( 34 )) then ct ← crawt else ct ←

crawt − µA
σA + ε

end if
8: // Update rolling context (pad left with zeros and mask invalid tokens)
9: Append st to S, ct to C, t to T, and 1 to M; keep only the last K entries of each

10: Let St−K+1:t, Ct−K+1:t, Tt−K+1:t, Mt−K+1:t be the length-K sequences after left-padding
with zeros;

11: Define At−K+1:t−1 as the last K − 1 actions (left-padded with zeros); if t = 1 then
At−K+1:t−1 is all zeros and the first mask entries in M are 0

12: // Policy inference with command-conditioned tokens
13: at ← πϕ

(
St−K+1:t, At−K+1:t−1, Ct−K+1:t, Tt−K+1:t, Mt−K+1:t

)
14: Execute at inMT ; observe (rt, st+1)
15: Append at to A (keep last K−1); set t← t+ 1 and st ← st
16: end while
17: return trajectory τ = {(st, at, rt)}Tt=1

we first form per-token advantages from the auxiliary value estimators:

Ai := Qψ(si, ai) − Vφ(si), (33)

optionally standardized within Dsrc to improve numerical stability:

Ãi :=
Ai − µA
σA + ε

, (34)

with (µA, σA) the mean and std of {Ai}. We then train Cω to predict a high-expectile summary
of the advantage distribution conditioned on the current state, using the asymmetric least-squares
(ALS) loss from expectile regression:

LC(ω) = E(si,ai)∼Dtar∪Dsrc

[ ∣∣ζ − 1{Ãi − Cω(si) < 0}
∣∣ (Ãi − Cω(si))2 · (Im(τS)wi

)]
, (35)

where ζ ∈ (0.5, 1) (e.g., 0.7∼0.9) emphasises the upper tail of advantages to encode optimistic but
value-grounded commands, Im(τS) gates source fragments based on MMD distances, and wi is the
OT-based weight from Eq. (32). The ALS penalty ρζ(u) = |ζ−1{u < 0}|u2 makes over-predicting
low-advantage states costly while being tolerant to under-predicting high-advantage noise, improv-
ing robustness to cross-domain reward and horizon shifts.

Usage of Cω at inference. At test time, we compute ct = Cω(st) and feed it as the conditioning
token to the DT in place of RTG. Because ct summarises the state-conditional advantage landscape
learned from mixed (but filtered & reweighted) data, it supplies a reward- and horizon-agnostic guid-
ance signal that remains consistent under cross-domain shifts, stabilizing token-level conditioning
and mitigating stitching artifacts.

Hyperparameter overview. Table 3 summarises a compact Transformer backbone for DFDT
(multi-head attention with moderate depth, width, and context length), trained with standard opti-
mization and stabilisation choices (Adam, dropout, ReLU, soft target updates, and a fixed discount).
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Method-specific settings for DFDT include pretrained critics and a command network and an OT-
based filtering module (cosine cost) coupled with a fixed fragment-filtering ratio and a source–target
mixing coefficient. We adopt asymmetric batch sizes to emphasise target-domain learning while still
leveraging filtered source fragments. The defaults were chosen from small grids over context length
and mixing strength and found robust across seeds and tasks.

Table 3: Default hyperparameter setup for DFDT.

Hyperparameter Value
Number of layers 4
Number of attention heads 4
Embedding dimension 256
Context length K {5, 10, 20}
Dropout 0.1
Learning rate 3× 10−4

Optimizer Adam (Kingma & Ba, 2015)
Discount factor 0.99
Nonlinearity ReLU
Target update rate 5× 10−3

Pretrained Q network hidden size 256
Pretrained V network hidden size 256
Command network hidden size 256
Number of sampled latent variables M 10
Standard deviation of Gaussian distribution

√
0.1

OT Cost function cosine
Data filtering ratio ξ% 25%
Policy coefficient β {0.5, 0.6, 0.7}
Source domain Batch size 64
Target domain Batch size 128

G WIDER EXPERIMENTAL RESULTS

G.1 EXPERIMENTAL RESULTS UNDER GRAVITY SHIFTS

We further report comprehensive results for gravity shifts in Table 4. DFDT attains the best mean
performance on 20 out of 36 tasks and achieves the highest total normalized score of 1300.2, ex-
ceeding IQL by 57.6% (1300.2 vs. 825.0), the second–best approach OTDF by 12.0% (1300.2
vs. 1160.7), and the strong sequence baseline QT by 27.4% (1300.2 vs. 1020.3). Breaking down
by environment family, DFDT dominates Hopper (wins 8 out of 9) and Ant (wins 9 out of 9),
remains competitive on Walker2d (wins 2 out of 9), while HalfCheetah is largely led by QT. No-
tably, DFDT delivers large margins in challenging settings such as hopp-m-e/expert ( 75.4 ± 19.0
) and ant-m/medium ( 61.0 ± 8.7 ), reflecting robust cross-dynamics stitching. Overall, these re-
sults corroborate DFDT’s offline policy adaptation strength under gravity shifts, complementing its
competitiveness on the remaining tasks.

G.2 EXTRA ABLATION EXPERIMENTS

Ablation setup. To test whether DFDT stabilizes sequence semantics, we ablate its two key com-
ponents while keeping the backbone, training budget, and evaluation protocol fixed. (i) Two-level
filtering: we replace the full MMD + OT gate with MMD-only, OT-only, or NONE (no filtering).
(ii) Advantage relabeling: we replace DFDT’s weighted advantage tokens with either a critic-only
target learned from the mixed data (no advantage tokens) or an advantage variant that computes
ACT-style advantages without any filtering when estimating advantages (Gao et al., 2024). We re-
port normalized scores on four representative tasks spanning gravity, morphology, and kinematics
(Table 5). Because the MMD+OT filtering leaves noncontiguous, cross-dynamics fragments with
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Table 4: Performance comparison of cross-domain offline RL algorithms given gravity shifts.
The meanings of each abbreviation are the same as those listed in Table 1. We bold and highlight
the best cell.

Source Target IQL DARA IGDF OTDF DT QT DADT DFDT

half-m medium 39.6 41.2 36.6 40.7 28.4 40.2 36.6 7.3±4.3
half-m medium-expert 39.6 40.7 38.7 28.6 45.1 62.1 34.7 7.8±2.4
half-m expert 42.4 39.8 39.6 36.1 41.8 49.1 45.7 13.8±11.7
half-m-r medium 20.1 17.6 14.4 21.5 18.3 51.6 25.3 5.9±2.5
half-m-r medium-expert 17.2 20.2 10.0 14.7 17.2 2.1 27.1 5.7±2.4
half-m-r expert 20.7 22.4 15.3 11.4 7.8 2.5 23.6 17.9±10.0
half-m-e medium 38.6 37.8 37.7 39.5 35.1 69.3 44.0 5.6±2.6
half-m-e medium-expert 39.6 39.4 40.7 32.4 38.2 67.0 32.0 6.0±2.9
half-m-e expert 43.4 45.3 41.1 26.5 40.7 68.5 37.8 21.9±8.3

hopp-m medium 11.2 17.3 15.3 32.4 19.7 16.1 12.8 48.4±16.3
hopp-m medium-expert 14.7 15.4 15.1 24.2 11.6 12.8 11.6 56.7±23.3
hopp-m expert 12.5 19.3 14.8 33.7 11.0 12.3 12.7 22.7±11.2
hopp-m-r medium 13.9 10.7 15.3 31.1 14.2 19.9 22.6 58.8±27.5
hopp-m-r medium-expert 13.3 12.5 15.4 24.2 13.7 22.3 16.6 66.4±17.7
hopp-m-r expert 11.0 14.3 16.1 31.0 19.6 18.7 21.5 42.4±16.6
hopp-m-e medium 19.1 18.5 22.3 26.4 13.0 14.3 11.6 54.0±21.6
hopp-m-e medium-expert 16.8 16.0 16.6 28.3 13.6 14.4 11.7 39.2±27.8
hopp-m-e expert 20.9 23.9 26.0 44.9 13.1 14.0 13.2 75.4±19.0

walk-m medium 28.1 28.4 22.1 36.6 36.2 29.5 37.4 43.1±7.2
walk-m medium-expert 35.7 30.7 35.4 44.8 38.2 45.2 29.1 21.5±4.5
walk-m expert 37.3 36.0 36.2 44.0 46.4 44.0 54.0 22.6±5.7
walk-m-r medium 14.6 14.1 11.6 32.7 28.6 18.9 24.8 44.1±2.9
walk-m-r medium-expert 15.3 15.9 13.9 31.6 26.9 20.0 29.8 22.7±7.0
walk-m-r expert 15.8 15.7 15.2 31.3 28.0 28.6 20.1 26.7±11.8
walk-m-e medium 39.9 41.6 33.8 30.2 42.5 56.7 45.5 41.4±3.2
walk-m-e medium-expert 49.1 45.8 44.7 53.3 39.4 55.8 30.6 23.6±5.1
walk-m-e expert 40.4 56.4 45.3 61.1 39.6 47.4 34.5 23.6±8.9

ant-m medium 10.2 9.4 11.3 45.1 22.0 15.3 12.4 61.0±8.7
ant-m medium-expert 9.4 10.0 9.4 33.9 17.7 14.1 14.0 52.8±15.7
ant-m expert 10.2 9.8 9.7 33.2 18.9 15.7 13.7 58.3±5.8
ant-m-r medium 18.9 21.7 19.6 29.6 18.8 13.9 21.4 66.9±8.5
ant-m-r medium-expert 19.1 18.3 20.3 25.4 13.9 13.6 18.5 44.9±5.5
ant-m-r expert 18.5 20.0 18.8 24.5 14.6 10.6 17.7 38.8±11.1
ant-m-e medium 9.8 8.1 8.9 18.6 11.3 11.6 20.6 63.9±2.1
ant-m-e medium-expert 9.0 6.4 7.2 34.0 18.0 12.2 15.2 45.7±18.0
ant-m-e expert 9.1 10.4 9.2 23.2 11.6 10.0 15.3 41.2±11.9

Total Score 825.0 851.0 803.6 1160.7 874.7 1020.3 895.7 1300.2

inconsistent horizons and reward scales, traditional RTG is ill-defined on the filtered source data and
thus not comparable with DEDT.

Answer to (b): Does DFDT provide stable sequence semantics for policy adaptation? Yes.
Ablations that isolate two–level filtering from reweighted advantage relabeling show that under kine-
matic shifts, removing either sequence-aware conditioning or the MMD+OT gate yields clear drops;
both are needed to keep actions feasible and stitch junctions smooth. For morphology, all variants
cluster tightly, indicating semantics are already coherent and DFDT preserves this stability. Under
gravity, occasional wins by “no filtering” suggest over-pruning; a softer retention works better there.
Overall, DFDT provides stable, value-consistent token semantics for adaptation-use the full model
on challenging dynamics, and a softened gate in gravity-dominant regimes.

H LLM USAGE

The authors acknowledge that LLMs were used in the following scenarios:
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Table 5: Ablation of two-level filtering and advantage relabeling.

Filtering Relabeling

Source Target Shift DFDT MMD OT None DFDT Value Advantage

ant-m-e expert gravity 46.5 48.2 41.4 52.0 46.5 47.4 44.6
half-m-r medium morph 43.6 43.0 43.6 43.6 43.6 43.8 43.2
hop-m-r medium kinematic 64.6 64.7 61.2 61.4 64.6 54.4 50.7
walk-m medium gravity 39.9 42.2 44.5 49.4 39.9 38.6 40.2

• Ablation experiments: ChatGPT (OpenAI, 2025) provided the suggestion to use action
jumps, Q-value jumps, and TD residuals to show the stable, value-consistent sequence
semantics of DFDT. The code generated by the LLM was adapted by the authors to be
included in the code.

• Code generation: Various models accessed through GitHub Copilot (GitHub, 2025) were
used to write sections of the code base, including documentation and utilities for conducting
experiments. Visualization scripts, including the code for producing Figure 2. Copilot’s
autocomplete feature was also used throughout the code base for general assistance.

• Paper writing: Templates for tables and algorithms were generated using ChatGPT, based
on screenshots of previous work such as figures from (Lyu et al., 2025a). The values
inside these tables have been reviewed to ensure that they are correct. Furthermore, we
use ChatGPT to polish the language in the paper.
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