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ABSTRACT

SGD with momentum acceleration is one of the key components for improving
the performance of neural networks. For decentralized learning, a straightforward
approach using momentum acceleration is Distributed SGD (DSGD) with mo-
mentum acceleration (DSGDm). However, DSGDm performs worse than DSGD
when the data distributions are statistically heterogeneous. Recently, several stud-
ies have addressed this issue and proposed methods with momentum acceleration
that are more robust to data heterogeneity than DSGDm, although their conver-
gence rates remain dependent on data heterogeneity and decrease when the data
distributions are heterogeneous. In this study, we propose Momentum Tracking,
which is a method with momentum acceleration whose convergence rate is proven
to be independent of data heterogeneity. More specifically, we analyze the con-
vergence rate of Momentum Tracking in the standard deep learning setting, where
the objective function is non-convex and the stochastic gradient is used. Then, we
identify that it is independent of data heterogeneity for any momentum coefficient
β ∈ [0, 1). Through image classification tasks, we demonstrate that Momen-
tum Tracking is more robust to data heterogeneity than the existing decentralized
learning methods with momentum acceleration and can consistently outperform
these existing methods when the data distributions are heterogeneous.

1 INTRODUCTION

Neural networks have achieved remarkable success in various fields such as image processing (Si-
monyan & Zisserman, 2015; Chen et al., 2020) and natural language processing (Devlin et al., 2019).
To train neural networks, we need to collect large amounts of training data. However, because of
privacy concerns, it is often difficult to collect large amounts of data such as medical images on one
server. In such scenarios, decentralized learning has attracted significant attention because it allows
us to train neural networks without aggregating all the data onto one server. Recently, decentral-
ized learning has been studied from various perspectives, including data heterogeneity (Tang et al.,
2018b; Esfandiari et al., 2021), communication compression (Tang et al., 2018a; Lu & De Sa, 2020;
Liu et al., 2021; Takezawa et al., 2022a), and network topologies (Ying et al., 2021).

One of the key components for improving the performance of neural networks is SGD with momen-
tum acceleration (SGDm). Whereas SGD updates the model parameters using a stochastic gradient,
SGDm updates the model parameters using the moving average of the stochastic gradient, which
is called the momentum. Because SGDm can accelerate convergence and improve generalization
performance, SGDm has become an indispensable tool, enabling neural networks to achieve high
accuracy (He et al., 2016). Recently, SGDm has been improved in many studies, and methods such
as Adam (Kingma & Ba, 2015) and RAdam (Liu et al., 2020a) have been proposed.

In decentralized learning, the straightforward approach to using the momentum is Distributed SGD
(DSGD) with momentum acceleration (DSGDm) (Gao & Huang, 2020). When the data distributions
held by each node (i.e., the server) are statistically homogeneous, DSGDm works well and can
improve the performance as well as SGDm (Lin et al., 2021). However, in real-world decentralized
learning settings, the data distributions may be heterogeneous (Hsieh et al., 2020). In such cases,
DSGDm performs worse than DSGD (i.e., without momentum acceleration) (Yuan et al., 2021).
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Table 1: Comparison of the convergence rates. In the “Data-Heterogeneity” column, “✓” indicates
that the convergence rate is independent of data heterogeneity, and “(✓)” indicates that it is inde-
pendent, but there is no discussion about data heterogeneity either theoretically or experimentally.
In the “Momentum,” “Stochastic,” and “Non-Convex” columns, “✓” respectively indicates that the
method is accelerated using momentum, the convergence rate is provided when the stochastic gra-
dient is used, and the convergence rate is provided when the objective function is non-convex.

Data-Heterogeneity Momentum Stochastic Non-Convex

DSGD (Lian et al., 2017) ✓ ✓
Gradient Tracking (Koloskova et al., 2021) ✓ ✓ ✓

DSGDm (Gao & Huang, 2020) ✓ ✓ ✓
QG-DSGDm (Lin et al., 2021) ✓ ✓ ✓
DecentLaM (Yuan et al., 2021) ✓ ✓ ✓

ABm (Xin & Khan, 2020) (✓) ✓
GTAdam (Carnevale et al., 2022) (✓) ✓

Momentum Tracking (our work) ✓ ✓ ✓ ✓

This is because, when the data distributions are heterogeneous and we use the momentum instead
of the stochastic gradient, each model parameter is updated in further different directions and drifts
away more easily. As a result, the convergence rate of DSGDm falls below that of DSGD. To address
this issue, Lin et al. (2021) and Yuan et al. (2021) modified the update rules of the momentum in
DSGDm and proposed methods that are more robust to data heterogeneity than DSGDm. However,
their convergence rates remain dependent on data heterogeneity, and our experiments revealed that
their performance are degraded when the data distributions are strongly heterogeneous (Sec. 4).

Data heterogeneity for decentralized learning has been well studied from both experimental and
theoretical perspectives (Hsieh et al., 2020; Koloskova et al., 2020). Subsequently, many methods
including Gradient Tracking (Lorenzo & Scutari, 2016; Nedić et al., 2017) have been proposed and
it has been shown that their convergence rates do not depend on data heterogeneity (Tang et al.,
2018b; Vogels et al., 2021; Koloskova et al., 2021). However, these studies considered only the case
where the momentum was not used, and it remains unclear whether these methods are robust to data
heterogeneity when the momentum is applied.

In the convex optimization literature, Xin & Khan (2020) and Carnevale et al. (2022) proposed com-
bining Gradient Tracking with momentum or Adam and analyzed the convergence rates. However,
they considered only the case where the objective function is strongly convex and the full gradient
is used, which does not hold in the standard deep learning setting, where the objective function is
non-convex and only the stochastic gradient is accessible. Hence, their convergence rates are still
unknown in standard deep learning settings, and it remains unclear whether their convergence rates
are independent of data heterogeneity. Furthermore, they did not discuss data heterogeneity, either
theoretically or experimentally.

In this work, we propose a decentralized learning method with momentum acceleration, which we
call Momentum Tracking, whose convergence rate is proven to be independent of data hetero-
geneity in the standard deep learning setting. More specifically, we provide the convergence rate of
Momentum Tracking in a setting in which the objective function is non-convex and the stochastic
gradient is used. Then, we identify that the convergence rate of Momentum Tracking is independent
of data heterogeneity for any momentum coefficient β ∈ [0, 1). In Table 1, we compare the conver-
gence rate of Momentum Tracking with those of existing methods. To the best of our knowledge,
Momentum Tracking is the first decentralized learning method with momentum acceleration whose
convergence rate has been proven to be independent of data heterogeneity in the standard deep
learning setting. Experimentally, we demonstrate that Momentum Tracking is more robust to data
heterogeneity than the existing decentralized learning methods with momentum acceleration and
can consistently outperform these existing methods when the data distributions are heterogeneous.

2 PRELIMINARIES AND RELATED WORK

2.1 DECENTRALIZED LEARNING

Let G = (V,E) be an undirected graph that represents the underlying network topology, where V
denotes the set of nodes and E denotes the set of edges. Let N := |V | be the number of nodes, and
we label each node in V by a set of integers {1, 2, · · · , N} for simplicity. We define Ni := {j ∈
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V | (i, j) ∈ E} as the set of neighbor nodes of node i and defineN+
i := Ni ∪ {i}. In decentralized

learning, node i has a local data distribution Di and local objective function fi : Rd → R, and can
communicate with node j if and only if (i, j) ∈ E. Then, decentralized learning aims to minimize
the average of the local objective functions as follows:

min
x∈Rd

[
f(x) :=

1

N

N∑
i=1

fi(x)

]
, fi(x) := Eξi∼Di [Fi(x; ξi)] ,

where x is the model parameter, ξi is the data sample that follows Di, and local objective function
fi(x) is defined as the expectation of Fi(x; ξi) over data sample ξi. In the following, ∇Fi(x; ξi)
and ∇fi(x) := Eξi∼Di

[∇Fi(x; ξi)] denote the stochastic and full gradient respectively.

Distributed SGD (DSGD) (Lian et al., 2017) is one of the most well-known algorithms for decen-
tralized learning. Formally, the update rules of DSGD are defined as follows:

x
(r+1)
i =

∑
j∈N+

i

Wij

(
x
(r)
j − η∇Fj(x

(r)
j ; ξ

(r)
j )
)
, (1)

where η > 0 is the step size and Wij ∈ [0, 1] is the weight of edge (i, j). Let W ∈ [0, 1]N×N be
the matrix whose (i, j)-element is Wij if (i, j) ∈ E and 0 otherwise. In general, a mixing matrix is
used for W (i.e., W = W⊤, W1 = 1, and W⊤1 = 1). Lian et al. (2018) extended DSGD in the
case where each node communicates asynchronously and analyzed the convergence rate. Koloskova
et al. (2020) analyzed the convergence rate of DSGD when the network topology changes over time.
These results revealed that the convergence rate of DSGD decreases and the performance is degraded
when the data distributions held by each node are statistically heterogeneous. This is because the
local gradients∇fi are different across nodes and each model parameter xi tends to drift away when
the data distributions are heterogeneous. To address this issue, D2 (Tang et al., 2018b), Gradient
Tracking (Lorenzo & Scutari, 2016; Nedić et al., 2017), and primal-dual algorithms (Niwa et al.,
2020; 2021; Takezawa et al., 2022b) were proposed to correct the local gradient ∇fi to the global
gradient ∇f . As a different approach, Vogels et al. (2021) proposed a novel averaging method
to prevent each model parameter xi from drifting away. It has been shown that the convergence
rates of these methods do not depend on data heterogeneity and do not decrease, even when the
data distributions held by each node are statistically heterogeneous. However, these methods do not
consider the case in which momentum is used.

2.2 MOMENTUM ACCELERATION

The methods with momentum acceleration were originally proposed by Polyak (1964), and SGD
with momentum acceleration (SGDm) has achieved successful results in training neural networks
(Simonyan & Zisserman, 2015; He et al., 2016; Wang et al., 2020b). In decentralized learning, a
straightforward approach to using the momentum is DSGD with momentum acceleration (DSGDm)
(Gao & Huang, 2020). The update rules of DSGDm are defined as follows:

u
(r+1)
i = βu

(r)
i +∇Fi(x

(r)
i ; ξ

(r)
i ), (2)

x
(r+1)
i =

∑
j∈N+

i

Wij

(
x
(r)
j − ηu

(r+1)
j

)
, (3)

where ui is the local momentum of node i and β ∈ [0, 1) is a momentum coefficient. In addi-
tion, several variants of DSGDm were studied by Yu et al. (2019); Assran et al. (2019); Wang et al.
(2020a); Singh et al. (2021). When the data distributions held by each node are statistically homoge-
neous, DSGDm works well and can improve the performance as well as SGDm. However, when the
data distributions are statistically heterogeneous, DSGDm leads to poorer performance than DSGD.
This is because when the data distributions held by each node are statistically heterogeneous (i.e.,
∇fi varies significantly across nodes), the difference in the updated value of the model parameter
across the nodes (i.e., ηui) is amplified by the momentum (Lin et al., 2021).

To address this issue, Yuan et al. (2021) and Lin et al. (2021) proposed methods to modify the
update rules of the momentum in DSGDm, called DecentLaM and QG-DSGDm, respectively. They
further experimentally demonstrated that these methods are more robust to data heterogeneity than
DSGDm. However, their convergence rates have been shown to still depend on data heterogeneity
and decrease when the data distributions are heterogeneous.
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2.3 GRADIENT TRACKING

One of the most well-known methods whose convergence rate does not depend on data heterogene-
ity is Gradient Tracking (Lorenzo & Scutari, 2016). Whereas DSGD exchanges only the model
parameter xi, Gradient Tracking exchanges the model parameter xi and local (stochastic) gradi-
ent ∇fi and then updates the model parameters while estimating global gradient ∇f . Nedić et al.
(2017) and Qu & Li (2018) analyzed the convergence rate of Gradient Tracking when the objec-
tive function is (strongly) convex and the full gradient is used. Pu & Nedic (2021) analyzed the
convergence rate when the objective function is strongly convex and the stochastic gradient is used.
Recently, Koloskova et al. (2021) analyzed the convergence rates of Gradient Tracking in a standard
deep learning setting, where the objective function is non-convex and the stochastic gradient is used.
There is also a line of research to combine Gradient Tracking with variance reduction methods (Xin
et al., 2022). They showed that the convergence rate of Gradient Tracking does not depend on data
heterogeneity. However, these studies only consider the case without momentum acceleration, and
the convergence analysis for Gradient Tracking with momentum acceleration has not been explored
thus far in the aforementioned studies.

In the convex optimization literature, Xin & Khan (2020) and Carnevale et al. (2022) proposed a
combination of Gradient Tracking and the momentum or Adam (Kingma & Ba, 2015). However,
they only considered the case where the objective function is strongly convex and the full gradient is
used. The convergence rate is still unclear in the standard deep learning setting, where the objective
function is non-convex and the stochastic gradient is used. Furthermore, there is no discussion about
data heterogeneity in these studies, either theoretically or experimentally.

3 PROPOSED METHOD

In this section, we propose Momentum Tracking, which is a decentralized learning method with
momentum acceleration whose convergence rate is proven to be independent of the data heterogene-
ity in the standard deep learning setting.

3.1 SETUP

We assume that the following four standard assumptions hold:
Assumption 1. There exists a constant f⋆ > −∞ that satisfies f(x) ≥ f⋆ for all x ∈ Rd.
Assumption 2. There exists a constant p ∈ (0, 1] that satisfies for all x1, · · · ,xN ∈ Rd,

∥XW − X̄∥2F ≤ (1− p)∥X − X̄∥2F , (4)

where X := (x1, · · · ,xN ) ∈ Rd×N and X̄ := 1
NX11⊤.

Assumption 3. There exists a constant L > 0 that satisfies for all i ∈ V and x,y ∈ Rd,

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥. (5)

Assumption 4. There exists a constant σ2 that satisfies for all i ∈ V and xi ∈ Rd,

Eξi∼Di∥∇Fi(xi; ξi)−∇fi(xi)∥2 ≤ σ2. (6)

Assumptions 1, 2, 3, and 4 are commonly used for decentralized learning algorithms (Lian et al.,
2017; Yu et al., 2019; Koloskova et al., 2021; Lin et al., 2021). Additionally, the following as-
sumption, which represents data heterogeneity, is commonly used in the convergence analysis of
decentralized learning algorithms (Lian et al., 2017; Yu et al., 2019; Lin et al., 2021).
Assumption 5. There exists a constant ζ2 that satisfies for all x ∈ Rd,

1

N

N∑
i=1

∥∇fi(x)−∇f(x)∥2 ≤ ζ2.

Under Assumption 5, the convergence rates of DSGD (Lian et al., 2017), DSGDm (Gao & Huang,
2020; Yuan et al., 2021), QG-DSGDm (Lin et al., 2021), and DecentLaM (Yuan et al., 2021) were
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shown to be dependent on data heterogeneity ζ2 and decrease as ζ2 increases. By contrast, in Sec.
3.3, we prove that Momentum Tracking converges without Assumption 5 and the convergence rate
is independent of data heterogeneity ζ2. In addition, we do not assume the convexity of the objective
functions f(x) and fi(x). Therefore, f(x) and fi(x) are potentially non-convex functions (e.g., the
loss functions of neural networks).

3.2 MOMENTUM TRACKING

In this section, we propose Momentum Tracking, which is robust to data heterogeneity and accel-
erated by the momentum. The update rules of Momentum Tracking are defined as follows:

u
(r+1)
i = βu

(r)
i +∇Fi(x

(r)
i ; ξ

(r)
i ), (7)

x
(r+1)
i =

∑
j∈N+

i

Wijx
(r)
j − η

(
u
(r+1)
i − c

(r)
i

)
, (8)

c
(r+1)
i =

∑
j∈N+

i

Wij

(
c
(r)
j − u

(r+1)
j

)
+ u

(r+1)
i , (9)

where β ∈ [0, 1) is a momentum coefficient. The pseudo-code for Momentum Tracking is presented
in Sec. A. In Momentum Tracking, ci corrects the local momentum ui to the global momentum
1
N

∑
j uj and prevents each model parameter xi from drifting, even when the data distributions are

statistically heterogeneous (i.e., the local momentum ui varies significantly across nodes).

Because Momentum Tracking is equivalent to Gradient Tracking when β = 0, Momentum Track-
ing is a simple extension of Gradient Tracking. Hence, when β = 0, it has been shown that the
convergence rate of Momentum Tracking is independent of data heterogeneity ζ2 (Koloskova et al.,
2021). However, because data heterogeneity is amplified when the momentum is used instead of the
stochastic gradient (i.e., β > 0) (Lin et al., 2021; Yuan et al., 2021), it is unclear whether the conver-
gence rate of Momentum Tracking is independent of data heterogeneity ζ2 for any β ∈ [0, 1) or for
only a restricted range of β. In Sec. 3.3, we provide the convergence rate of Momentum Tracking
and prove that it is independent of data heterogeneity ζ2 for any β ∈ [0, 1).

3.3 CONVERGENCE ANALYSIS

Under Assumptions 1, 2, 3, and 4, Theorem 1 provides the convergence rate of Momentum Tracking
in the standard deep learning setting. All proofs are presented in Sec. D.
Theorem 1 (Convergence Rate in Non-Convex Setting). Suppose that Assumptions 1, 2, 3, and
4 hold, each model parameter xi is initialized with the same parameters, and both ui and ci are
initialized as 1

1−β (∇Fi(x
(0)
i ; ξ

(0)
i )− 1

N

∑N
j=1∇Fj(x

(0)
j ; ξ

(0)
j )). Then, for any β ∈ [0, 1) and R ≥ 1,

there exists a step size η such that the average parameter x̄ := 1
N

∑N
i=1 xi generated by Eqs. (7-9)

satisfies

1

R

R−1∑
r=0

E
∥∥∥∇f(x̄(r))

∥∥∥2 (10)

≤ O

(√
r0σ2L

NR
+

(
r20σ

2L2

p4R2(1− β)

(
1 +

pβ2

1− β

)) 1
3

+
Lr0

(1− β)p2R

√
1 +

β2

(1− β2)3p

)
,

where r0 := f(x̄(0))− f⋆.
Remark 1. Combinations of Gradient Tracking with the momentum or Adam have also been pro-
posed by Xin & Khan (2020) and Carnevale et al. (2022). However, they considered only the setting
in which the objective function is strongly convex and the full gradient is used. By contrast, our
study focuses on the deep learning setting. Hence, our proof strategies are completely different from
those in these previous studies, and Theorem 1 provides the convergence rate in the setting where
the objective function is non-convex and the stochastic gradient is used.
Remark 2. The convergence rate of Gradient Tracking in the standard deep learning setting was
provided by Koloskova et al. (2020). However, they did not consider the case where the momentum
is used, and it is not trivial to provide the convergence rate of Momentum Tracking from the results
in this previous work.
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3.4 DISCUSSION

Comparison with Gradient Tracking: Theorem 1 indicates that the convergence rate of Momen-
tum Tracking does not depend on data heterogeneity ζ2 for any β ∈ [0, 1) and does not decrease
even when the data distributions are statistically heterogeneous (i.e., ζ2 > 0). Therefore, Theorem
1 indicates that Momentum Tracking is theoretically robust to data heterogeneity for any β ∈ [0, 1).
Although Momentum Tracking is a simple extension of Gradient Tracking, our work is the first
to identify that the combination of Gradient Tracking and the momentum converges without being
affected by data heterogeneity ζ2 for any β ∈ [0, 1) in the standard deep learning setting.

Because the convergence rate of Momentum Tracking Eq. (10) is optimal when β = 0, Theorem
1 does not show that the convergence rate is improved by using the momentum. However, the
convergence rates of DSGDm and QG-DSGDm provided by Gao & Huang (2020) and Lin et al.
(2021) are also optimal when β = 0. Moreover, they do not provide theoretical results that are
consistent with the experimental results that the convergence rates are improved when β > 0. As in
these studies, we experimentally demonstrate that convergence is accelerated when β > 0 in Sec. 4
and leave for future work to show the theoretical benefits of using β > 0.

Comparison with Existing Algorithms with Momentum Acceleration: Next, we compare the
convergence rate of Momentum Tracking with those of existing decentralized learning algorithms
with momentum acceleration: DSGDm (Gao & Huang, 2020), DecentLaM (Yuan et al., 2021), and
QG-DSGDm (Lin et al., 2021). Here, we only show the convergence rate of QG-DSGDm, but the
same discussion holds for the other methods. The convergence rate of QG-DSGDm is as follows:

Theorem 2 ((Lin et al., 2021)). Suppose that Assumptions 1, 2, 3, and 4 hold, and Assumption 5
also holds. Then, for any β ∈ [0, p

21+p ] and R ≥ 1, there exists a step size η such that the average
parameter x̄ := 1

N

∑
i xi generated by QG-DSGDm satisfies1

1

R

R−1∑
r=0

E
∥∥∥∇f(x̄(r))

∥∥∥2≤ O(√r0σ2L

NR
+

(
r20L

2(ζ2 + σ2)

p2R2

) 1
3

+
Lr0
R

(
1

p
+

1

1− β
+

β

(1− β)3

))
,

where r0 := f(x̄(0))− f⋆.

Data heterogeneity ζ2 appears in the second term, and the convergence rate of QG-DSGDm depends
on data heterogeneity ζ2. Therefore, the convergence rate of QG-DSGDm decreases when the data
distributions held by each node are statistically heterogeneous. By contrast, the convergence rate
of Momentum Tracking Eq. (10) does not depend on data heterogeneity ζ2. Therefore, Momentum
Tracking is more robust to data heterogeneity than QG-DSGDm. Because the convergence rates
of DSGDm and DecentLaM also depend on data heterogeneity ζ2, the same discussion holds for
DSGDm and DecentLaM. Hence, Momentum Tracking is more robust to data heterogeneity than
these methods. To the best of our knowledge, Momentum Tracking is the first decentralized learning
method with momentum acceleration whose convergence rate has been proven to be independent of
data heterogeneity ζ2 in the standard deep learning setting.

Next, we discuss the range of β. The convergence rates of QG-DSGDm and DecentLaM provided
by Lin et al. (2021) and Yuan et al. (2021) hold only when the range of β is restricted. For instance,
Theorem 2 assumes that β ≤ p

21+p (< 0.05). However, these restrictions on the range of β do not
hold in practice. (Typically, β is set to 0.9.) Therefore, the convergence rates of QG-DSGDm and
DecentLaM are unclear in such practical cases. By contrast, Theorem 1 can provide the convergence
rate of Momentum Tracking that holds for any β ∈ [0, 1).

Comparison with SGDm: Next, we compare the convergence rate of Momentum Tracking with
that of SGDm. In a setting where the objective function is non-convex and the stochastic gradi-
ent is used, SGDm has been proven to converge to the stationary point with O(1/

√
R) (Yan et al.,

2018; Liu et al., 2020b). By contrast, Theorem 1 indicates that if the number of rounds R is suffi-
ciently large, Momentum Tracking converges with O(1/

√
NR). Therefore, Momentum Tracking

can achieve a linear speedup with respect to the number of nodes N , which is a common and impor-
tant property in decentralized learning methods (Lian et al., 2018; Koloskova et al., 2020).

1For simplicity, we set the additional hyperparameter µ for QG-DSGDm to β.
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Figure 1: (a) Learning curve on CIFAR-10 with LeNet in the 10-class (i.e., homogeneous) setting.
We evaluated the test accuracy per 10 epochs. (b) Learning curve in the 4-class (i.e., heterogeneous)
setting. (c) Average test accuracy for all datasets (i.e., FashionMNIST, SVHN, and CIFAR-10).

4 EXPERIMENT

In this section, we present the results of an experimental evaluation of Momentum Tracking and
demonstrate that Momentum Tracking is more robust to data heterogeneity than the existing decen-
tralized learning methods with momentum acceleration. In this section, we focus on test accuracy,
and more detailed evaluation about the convergence rate is presented in Sec. C.4.

4.1 SETUP

Comparison Methods: (1) DSGD (Lian et al., 2017): the method described in Sec. 2.1; (2) DS-
GDm (Gao & Huang, 2020): the method described in Sec. 2.2; (3) QG-DSGDm (Lin et al., 2021):
a method in which the update rule of the momentum in DSGDm is modified to be more robust to
data heterogeneity than DSGDm; (4) DecentLaM (Yuan et al., 2021): a method in which the update
rule of the momentum in DSGDm is modified to be more robust to data heterogeneity; (5) Gradi-
ent Tracking (Nedić et al., 2017): a method without momentum acceleration that is robust to data
heterogeneity; (6) Momentum Tracking: the proposed method described in Sec. 3.

Dataset and Model: We evaluated Momentum Tracking using three 10-class image classification
tasks: FashionMNIST (Xiao et al., 2017), SVHN (Netzer et al., 2011), and CIFAR-10 (Krizhevsky,
2009). Following the previous work (Niwa et al., 2020), we distributed the data to nodes such that
each node was given data of randomly selected k classes. When k = 10, the data distributions held
by each node can be regarded as statistically homogeneous. When k < 10, the data distributions
are regarded as statistically heterogeneous. We evaluated the comparison methods by setting k to
{4, 6, 8, 10} and changing data heterogeneity. Note that a smaller k indicates that the data distribu-
tions are more heterogeneous. For the neural network architecture, we used LeNet (LeCun et al.,
1998) with group normalization (Wu & He, 2018) in Sec. 4.2. In Sec. 4.3, we present more de-
tailed evaluation by varying the neural network architecture (e.g., VGG-11 (Simonyan & Zisserman,
2015) and ResNet-34 (He et al., 2016)). For each comparison method, we used 10% of the training
data for validation and individually tuned the step size. For DSGDm, QG-DSGDm, DecentLaM,
and Momentum Tracking, we set β to 0.9. All experiments were repeated using three different seed
values, and we report their averages. More detailed hyperparameter settings are presented in Sec E.

Network Topology and Implementation: In Secs. 4.2 and 4.3, we present the results of setting
the underlying network topology to a ring consisting of eight nodes (i.e., N = 8). In Sec. C.1, we
present more detailed evaluation by varying the network topology. All comparison methods were
implemented using PyTorch and run on eight GPUs (NVIDIA RTX 3090).

4.2 EXPERIMENTAL RESULTS

Table 2 lists the test accuracy for FashionMNIST, SVHN, and CIFAR-10. Fig. 1 (a) and (b) present
the learning curves for CIFAR-10 and Fig. 1 (c) presents the average test accuracy for all datasets.
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Table 2: Test accuracy on FashionMNIST, SVHN, and CIFAR-10 with LeNet. “k-class” means that
each node has only the data of randomly selected k classes. Bold font means the highest accuracy.

FashionMNIST
10-class 8-class 6-class 4-class

DSGD 85.6± 0.49 85.6± 0.41 82.7± 1.12 78.1± 1.56
Gradient Tracking 85.0± 0.49 85.4± 0.26 85.0± 0.37 84.9± 0.22

DSGDm 89.5± 0.15 89.3± 0.21 82.1± 3.23 68.7± 5.02
QG-DSGDm 89.6± 0.10 89.5± 0.47 86.9± 1.59 80.8± 2.94
DecentLaM 89.5± 0.14 89.3± 0.36 89.2± 0.41 84.3± 3.05
Momentum Tracking 89.5± 0.36 89.4± 0.05 88.9± 0.47 86.8± 1.56

SVHN
10-class 8-class 6-class 4-class

DSGD 90.1± 0.17 89.5± 0.61 87.6± 1.94 78.8± 8.55
Gradient Tracking 90.1± 0.30 89.8± 0.38 89.8± 0.39 89.4± 0.47

DSGDm 92.6± 0.35 92.4± 0.19 88.1± 4.38 67.2± 9.69
QG-DSGDm 92.5± 0.22 92.5± 0.17 90.9± 1.67 83.5± 7.14
DecentLaM 92.4± 0.21 92.2± 0.39 92.0± 0.48 88.2± 4.75
Momentum Tracking 92.6± 0.32 92.4± 0.40 92.3± 0.23 91.7± 0.53

CIFAR-10
10-class 8-class 6-class 4-class

DSGD 63.1± 0.60 64.1± 0.52 61.2± 1.16 47.6± 5.77
Gradient Tracking 62.3± 0.73 62.0± 0.80 61.9± 0.58 61.8± 0.82

DSGDm 72.9± 0.41 72.5± 0.20 63.8± 6.24 38.8± 1.61
QG-DSGDm 72.4± 0.87 73.1± 0.16 69.6± 2.42 55.3± 5.30
DecentLaM 73.2± 0.36 72.9± 0.14 71.7± 1.10 63.1± 5.43
Momentum Tracking 72.9± 0.59 73.0± 0.49 72.6± 0.41 70.7± 1.38

Comparison of Momentum Tracking and Gradient Tracking: First, we discuss the results of
Momentum Tracking and Gradient Tracking. Table 2 and Fig. 1 indicate that Momentum Tracking
achieves a higher accuracy faster than Gradient Tracking and outperforms Gradient Tracking in
all settings. When the data distributions are homogeneous (i.e., 10-class), Momentum Tracking
outperforms Gradient Tracking by 5.8% on average. When the data distributions are heterogeneous
(e.g., 4-class), Momentum Tracking outperforms Gradient Tracking by 4.4% on average. Therefore,
the results show that Momentum Tracking can consistently outperform Gradient Tracking regardless
of data heterogeneity.

Comparison of Momentum Tracking and DSGDm: Next, we discuss the results of Momentum
Tracking and DSGDm. The results show that when the data distributions are homogeneous (i.e.,
10-class), Momentum Tracking and DSGDm are comparable and outperform DSGD and Gradient
Tracking. However, when the data distributions are heterogeneous (e.g., 4-class), the test accuracy
of DSGDm decreases even more than that of DSGD, and DSGDm underperforms DSGD by 9.9%
on average. By contrast, the results indicate that Momentum Tracking consistently outperforms
DSGD and Gradient Tracking by 14.9% and 4.4% respectively when the data distributions are het-
erogeneous. The results indicate that Momentum Tracking is more robust to data heterogeneity than
DSGDm and outperforms DSGDm by 24.9% on average.

Comparison of Momentum Tracking, QG-DSGDm, and DecentLaM: When the data distribu-
tions are homogeneous (i.e., 10-class), Momentum Tracking, QG-DSGDm, and DecentLaM are
comparable and outperform DSGD and Gradient Tracking. By contrast, when the data distributions
are heterogeneous (e.g., 4-class), Momentum Tracking consistently outperforms QG-DSGDm and
DecentLaM by 9.9% and 4.5% respectively, whereas QG-DSGDm and DecentLaM are more robust
to data heterogeneity than DSGDm. Hence, these results are consistent with our theoretical analysis,
as discussed in Secs. 3.3 and 3.4.
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Table 3: Test accuracy on CIFAR-10 with VGG-11 and ResNet-34. “k-class” indicates that each
node has only the data of randomly selected k classes, and bold font indicates the highest accuracy.

CIFAR-10 + VGG-11 CIFAR-10 + ResNet-34
10-class 4-class 2-class 10-class 4-class 2-class

DSGD 89.7± 0.15 85.8± 2.39 70.3± 2.73 93.4± 0.05 87.5± 3.27 64.1± 0.54
Gradient Tracking 88.1± 0.19 86.0± 0.45 82.9± 0.13 85.1± 1.07 81.2± 0.73 75.9± 0.41

DSGDm 92.2± 0.09 77.3± 4.05 39.6± 5.92 95.8± 0.26 79.0± 3.69 27.7± 2.83
QG-DSGDm 92.0± 0.04 89.4± 1.04 77.8± 1.96 95.6± 0.37 94.0± 1.02 77.4± 3.13
DecentLaM 92.1± 0.09 90.9± 0.65 85.2± 0.67 95.9± 0.04 95.2± 0.51 89.2± 2.26
Momentum Tracking 91.9± 0.06 90.9± 0.60 87.0± 0.48 95.0± 0.13 94.4± 0.52 89.9± 0.73
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Figure 2: Learning curves for CIFAR-10 with VGG-11 and ResNet-34 in the 2-class setting.

In summary, when the data distributions are homogeneous, DSGDm, QG-DSGDm, DecentLaM,
and Momentum Tracking are comparable and outperform DSGD and Gradient Tracking. When the
data distributions are heterogeneous, Momentum Tracking is more robust to data heterogeneity than
DSGDm, QG-DSGDm, and DecentLaM, and can outperform all comparison methods.

4.3 RESULTS WITH VARIOUS NEURAL NETWORK ARCHITECTURES

Next, we evaluated Momentum Tracking in more detail by varying the neural network architecture.
Table 3 lists the test accuracy with VGG-11 (Simonyan & Zisserman, 2015) and ResNet-34 (He
et al., 2016) when we set k to {2, 4, 10}, and Fig. 2 shows the learning curves.

For both neural network architectures, Table 3 reveals that when the data distributions are homo-
geneous (i.e., 10-class), Momentum Tracking is comparable with DSGDm, QG-DSGDm, and De-
centLaM and outperforms DSGD and Gradient Tracking. By contrast, when the data distributions
are heterogeneous (e.g., 2-class), Table 3 and Fig. 2 reveal that Momentum Tracking outperforms
all comparison methods for both neural network architectures. In particular, Fig. 2 indicates that
DSGDm, QG-DSGDm, and DecentLaM are unstable and continue to oscillate in the final training
phase, whereas Momentum Tracking converges stably. These results are consistent with those of
LeNet presented in Table 2. Therefore, the results indicate that Momentum Tracking is more ro-
bust to data heterogeneity than DSGDm, QG-DSGDm, and DecentLaM, and can outperform these
methods regardless of the neural network architecture.

5 CONCLUSION

In this study, we propose Momentum Tracking, which is a method with momentum acceleration
whose convergence rate is proven to be independent of data heterogeneity. More specifically, we
provide the convergence rate of Momentum Tracking in the standard deep learning setting, in which
the objective function is non-convex and the stochastic gradient is used. Our theoretical analysis
reveals that the convergence rate of Momentum Tracking is independent of data heterogeneity for
any β ∈ [0, 1). Through image classification tasks, we demonstrated that Momentum Tracking
can consistently outperform the decentralized learning methods without momentum acceleration
regardless of data heterogeneity. Moreover, we showed that Momentum Tracking is more to data
heterogeneity than existing decentralized learning methods with momentum acceleration and can
consistently outperform these existing methods when the data distributions are heterogeneous.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, and Mike Rabbat. Stochastic gradient push for
distributed deep learning. In International Conference on Machine Learning, 2019.

Guido Carnevale, Francesco Farina, Ivano Notarnicola, and Giuseppe Notarstefano. Gtadam: Gra-
dient tracking with adaptive momentum for distributed online optimization. In arXiv, 2022.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International Conference on Machine Learning,
2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Conference of the North American
Chapter of the Association for Computational Linguistics, 2019.

Yasaman Esfandiari, Sin Yong Tan, Zhanhong Jiang, Aditya Balu, Ethan Herron, Chinmay Hegde,
and Soumik Sarkar. Cross-gradient aggregation for decentralized learning from non-iid data. In
International Conference on Machine Learning, 2021.

Hongchang Gao and Heng Huang. Periodic stochastic gradient descent with momentum for decen-
tralized training. In arXiv, 2020.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In IEEE Conference on Computer Vision and Pattern Recognition, 2016.

Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip Gibbons. The non-IID data quagmire of
decentralized machine learning. In International Conference on Machine Learning, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian Stich. A unified
theory of decentralized SGD with changing topology and local updates. In International Confer-
ence on Machine Learning, 2020.

Anastasia Koloskova, Tao Lin, and Sebastian U Stich. An improved analysis of gradient tracking for
decentralized machine learning. In Advances in Neural Information Processing Systems, 2021.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.
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