

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MOMAGRAPH : STATE-AWARE UNIFIED SCENE GRAPHS WITH VISION-LANGUAGE MODEL FOR EM- BODIED TASK PLANNING

Anonymous authors

Paper under double-blind review

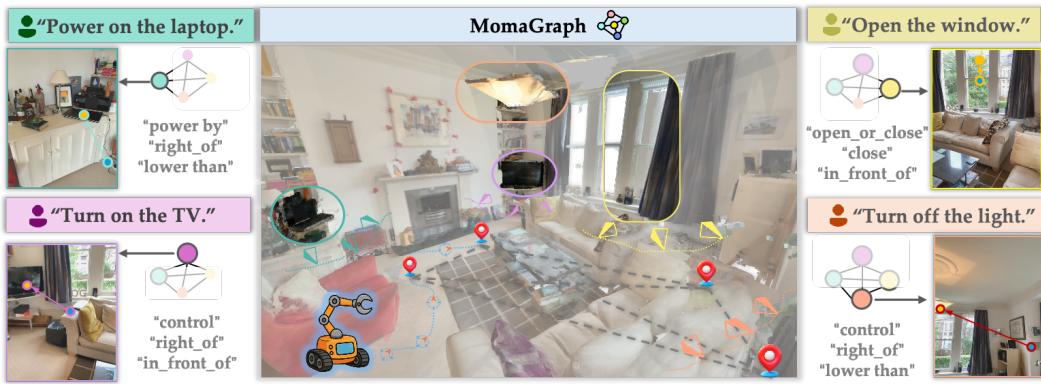


Figure 1: Overview of the **MomaGraph**. For each task instruction, **MomaGraph** builds a task-specific subgraph that focuses on relevant objects or parts and their spatial-functional relationships, enabling the robot to reason and plan actions for the given task.

ABSTRACT

Mobile manipulators in households must both navigate and manipulate. This requires a compact, semantically rich scene representation that captures *where* objects are, *how* they function, and *which parts* are actionable. Scene **graphs** are a natural choice, yet prior work often separates spatial and functional relations, treats scenes as static snapshots without object states or temporal updates, and overlooks information most relevant for accomplishing the current task. To overcome these shortcomings, we introduce **MomaGraph**, a unified scene representation for embodied agents that integrates spatial-functional relationships and part-level interactive elements. However, advancing such a representation requires both suitable data and rigorous evaluation, which have been largely missing. To address this, we construct **MomaGraph-Scenes**, the first large-scale dataset of richly annotated, task-driven scene graphs in household environments, and design **MomaGraph-Bench**, a systematic evaluation suite spanning six reasoning capabilities from high-level planning to fine-grained scene understanding. Built upon this foundation, we further develop **MomaGraph-R1**, a 7B vision-language model trained with reinforcement learning on **MomaGraph-Scenes**. **MomaGraph-R1** predicts task-oriented scene graphs and serves as a zero-shot task planner under a *Graph-then-Plan* framework. Extensive experiments show that our model achieves state-of-the-art results among open source models, reaching **71.6%** accuracy on the benchmark (**+11.4%** over the best baseline), while generalizing across public benchmarks and transferring effectively to real-robot experiments. More visualizations and robot demonstrations are available at <https://momagraph.github.io/>.

For clarity, throughout this paper, **MomaGraph** is a novel scene representation, **MomaGraph-Scenes** is our constructed dataset, **MomaGraph-R1** is our proposed model, and **MomaGraph-Bench** is our designed benchmark.

054 1 INTRODUCTION

055 When mobile manipulators (Qiu et al., 2024; Honerkamp et al., 2024a; Wu et al., 2023) enter house-
 056 hold environments, they face the fundamental challenge of understanding how the environment
 057 works, which objects are interactive, and how they can be used. In other words, such robots must
 058 not only be capable of navigating through the home, but also of manipulating objects within. While
 059 navigation requires modeling the overall spatial layout, manipulation demands capturing more fine-
 060 grained object affordances. This naturally raises a central question: ***What is the most effective,***
 061 ***compact, and semantically rich representation of an indoor scene?*** An intuitive answer is the
 062 ***scene graph***, which (Armeni et al., 2019; Koch et al., 2024a;b) organizes objects and their rela-
 063 tionships in a scene through a graph structure and has shown great potential in various downstream
 064 robotic applications (Rana et al., 2023; Werby et al., 2024; Ekpo et al., 2024).

065 However, existing scene graphs suffer from notable limitations. (1) Their edges typically encode
 066 only a single type of relationship, either spatial (Gu et al., 2024; Loo et al., 2025) or functional
 067 (Zhang et al., 2025; Dong et al., 2021)(e.g., *a remote controlling a TV, a knob adjusting parameters*).
 068 Relying solely on spatial relationships captures geometric layout but overlooks operability, while
 069 relying solely on functional relationships ignores spatial constraints, leading to incomplete and less
 070 executable structures. (2) Most existing methods (Wu et al., 2021; Takmaz et al., 2025; Zhang
 071 et al., 2021) are limited to static scenes and struggle to adapt to dynamic environments where object
 072 positions change or object states change. (3) They lack task relevance, as they fail to emphasize
 073 information directly tied to task execution, thereby reducing efficiency and effectiveness. In contrast,
 074 cognitive science research (Uithol et al., 2021; Kondyli et al., 2020; Castanheira et al., 2025) shows
 075 that human perception in new environments is both dynamic and task-oriented. Humans do not
 076 process all information equally; instead, they flexibly adjust their attention according to the current
 077 task. This process is similar to browsing a map on an iPad: people first take a broad view to roughly
 078 locate the area of interest, and then zoom in to focus on the specific details needed for the task.

079 Motivated by these insights, we emphasize that ***an ideal scene graph should integrate both spatial***
 080 ***and functional relationships, include fine-grained object parts as nodes, making the represen-***
 081 ***tation compact, adaptive to dynamic changes, and highly aligned with task instructions, thus***
 082 ***providing a more concrete guidance for embodied perception and task planning.***

083 To achieve this goal, we present **MomaGraph**, a novel scene representation specifically designed for
 084 embodied agents. It is the first to unify spatial and functional relationships while introducing part-
 085 level interactive nodes, providing a more fine-grained, compact, and task-relevant structured repre-
 086 sentation than existing approaches. To support this representation, we build **MomaGraph-Scenes**,
 087 the first dataset that jointly models spatial and functional relationships with part-level annotations,
 088 encompassing multi-view observations, executed actions, and their interactive object parts, and task-
 089 aligned scene graph annotations.

090 Building on this foundation, we propose **MomaGraph-R1**, a 7B vision-language model
 091 (VLM) trained with the DAPO (Yu et al., 2025) reinforcement learning algorithm on
 092 **MomaGraph-Scenes**. We design a graph-alignment reward function to guide the model toward
 093 constructing accurate, task-oriented scene graphs. **MomaGraph-R1** not only predicts scene graphs
 094 but also serves as a zero-shot task planner within a ***Graph-then-Plan*** framework: the model first
 095 generates a structured scene graph as an intermediate representation and then performs task plan-
 096 ning based on this graph, significantly improving reasoning effectiveness and interpretability.

097 Despite progress in task-graph planning (Agia et al., 2022), the community still lacks a unified
 098 benchmark to systematically evaluate whether task-oriented scene graphs genuinely improve plan-
 099 ning. To address this, we introduce **MomaGraph-Bench**, a comprehensive benchmark that sys-
 100 tematically evaluates six key reasoning capabilities, spanning from high-level task planning to fine-
 101 grained scene understanding.

102 In summary, our work makes the following key contributions:

- 103 • We propose **MomaGraph**, the first scene graph representation that jointly models spatial and func-
 104 tional relationships and incorporates part-level interactive nodes, providing a compact, dynamic,
 105 and task-aligned knowledge structure for embodied intelligence.
- 106 • We develop **MomaGraph-R1**, a 7B vision-language model that leverages reinforcement learn-
 107 ing to optimize spatial-functional reasoning, enabling zero-shot planning in a ***Graph-then-Plan***
 108 paradigm.

- 108 • We construct **MomaGraph-Scenes**, the first large-scale dataset of richly annotated, task-driven
109 scene graphs in household environments, and build **MomaGraph-Bench**, a unified evaluation
110 suite that systematically measures the impact of scene graph representations on task planning
111 across six core reasoning capabilities.
- 112 • **MomaGraph-R1** surpasses all open-source baseline models, delivering substantial gains across
113 public benchmarks and translating these improvements into strong generalization and effective-
114 ness in real-world robotic demonstrations.

116 2 RELATED WORKS

117 **Scene Graphs for 3D Indoor Scene Understanding.** Scene graphs have emerged as a structured
118 and hierarchical representation in autonomous driving (Zhang et al., 2024; Greve et al., 2024), robot
119 manipulation (Lee et al., 2025; Jiang et al., 2024; Wang et al., 2025; Engelbracht et al., 2024), and
120 spatial intelligence (Yin et al., 2025; Zemskova & Yudin) community. They function not only as a
121 means of scene representation but also as a critical bridge between spatial understanding and action
122 planning. We focus on the household scenes. However, existing works often focus on a single type
123 of scene graphs. For example, ConceptGraphs (Gu et al., 2024) primarily model spatial layouts,
124 representing object instances and their geometric relations in an open-vocabulary manner. While
125 spatial graphs (Honerkamp et al., 2024b; Yan et al., 2025) provide useful geometric and semantic
126 grounding, they overlook how objects can functionally interact with one another. Conversely, functional
127 graphs (Li et al., 2021; Dong et al., 2021; Zhang et al., 2025) highlight object affordances
128 and control relations but do not capture the overall spatial structure. Relying solely on either spatial
129 or functional graphs leads to incomplete and less actionable representations. This motivates us to
130 build **MomaGraph**, which unifies spatial and functional relationships, incorporates part-level nodes,
131 and explicitly models state changes, providing a more comprehensive foundation for embodied task
132 planning.

133 **Zero-shot Embodied Task Planning with VLMs.** VLMs (OpenAI, 2023; Team et al., 2025; Ahn
134 et al., 2022) have gained significant attention in robotic task planning (Niu et al., 2024; Yue et al.,
135 2024; Lu et al., 2023) due to their powerful capabilities in processing multimodal inputs, such as
136 images and language instructions. However, when directly used as task planners, VLMs (Huang
137 et al., 2023; 2024; Ahn et al., 2022) often suffer from sensitivity to visual noise and shallow se-
138 mantic grounding; more fundamentally, their lack of structured object–relationship representations
139 necessitates extracting or constructing more effective representations from the same visual inputs
140 to support accurate and reliable high-level planning. Prior approaches such as SayPlan (Ahn et al.,
141 2022) assume access to a reliable 3D scene graph, which is often unrealistic in practice. To over-
142 come this gap, we propose the **Graph-then-Plan** strategy, which first generates task-specific scene
143 graphs as an intermediate structured representation before high-level planning. By explicitly mod-
144 eling objects and their relations, this approach significantly improves the accuracy and robustness of
145 task planning. Unlike prior graph-then-plan methods (Dai et al., 2024; Ekpo et al., 2024) that ei-
146 ther assume reliable scene graphs or treat graph construction and planning as separate modules, our
147 model enables a single VLM to jointly generate structured, task-oriented scene graphs and perform
148 high-level planning.

149 3 PRELIMINARY FINDINGS AND MOTIVATION EXPERIMENTS

150 To ground our analysis, before the full evaluations we perform two motivating experiments on the
151 **MomaGraph-Bench**. These comparisons are designed to validate our motivation and design prin-
152 ciples, and to reveal why our proposed model is essential for embodied task planning. In this section,
153 we aim to answer the following questions.

154 3.1 ARE VLMs RELIABLE FOR DIRECT PLANNING WITHOUT SCENE GRAPHS?

155 To examine whether direct planning from visual inputs is reliable even for strong closed-source
156 VLMs, we design controlled evaluations on real-world household tasks such as “*Open the window*”
157 and “*Obtain clean boiled water*”. In these scenarios, models must reason over functional rela-
158 tionships, spatial constraints, and multi-step dependencies (e.g., plug-in before activation, filtration
159 before boiling). As shown in Fig. 2, despite their scale, closed-source VLMs like GPT-5 produce incor-
160 rect or incomplete plans, missing prerequisite steps, or misidentifying interaction types. In contrast,
161

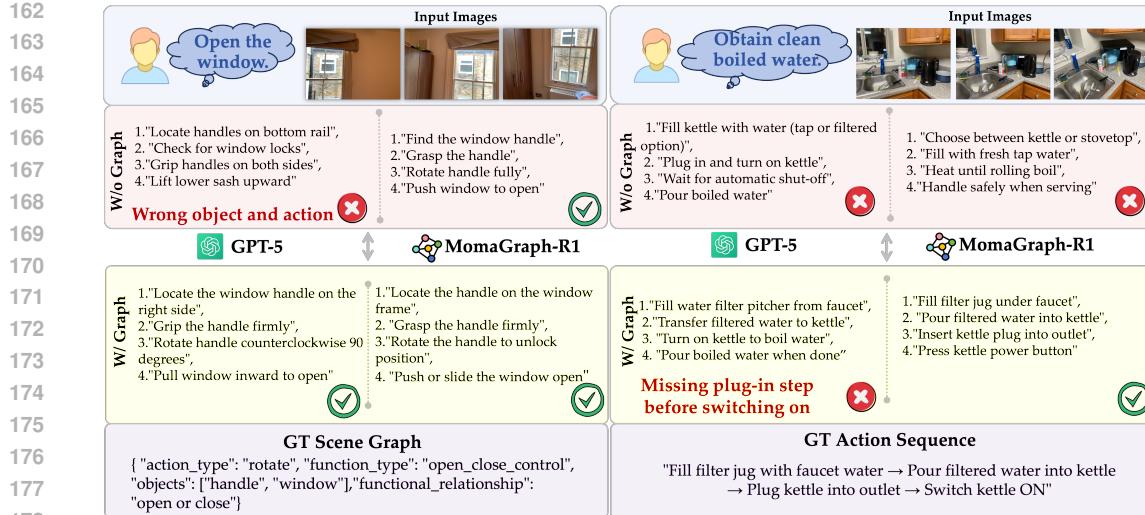


Figure 2: Direct planning often fails even for strong closed-source models like GPT-5, producing wrong actions or missing key steps, while our **Graph-then-Plan** approach with structured scene graphs enables accurate and complete task sequences aligned with ground truth.

our **Graph-then-Plan** approach, which first generates a task-specific scene graph and then performs planning, consistently produces correct and complete action sequences aligned with ground-truth logic. This demonstrates that incorporating structured scene representations significantly enhances planning accuracy and robustness beyond what direct planning can achieve.

Preliminary Findings 1

- In contrast to directly relying on vision-language models for task planning from raw scene images, our **Graph-then-Plan** strategy—which incorporates task-oriented scene graph generation as an intermediate structured representation prior to high-level planning, substantially improves both the accuracy and robustness of task planning.*

3.2 ARE SINGLE-RELATIONSHIP GRAPHS ADEQUATE FOR EMBODIED AGENTS?

To ensure a fair comparison, we retrain our model using the same graph structure as in **MomaGraph**, but constrain the edge types to encode only a single kind of relation—either spatial or functional. This setup allows us to isolate the effect of relation types while keeping the graph topology consistent, thereby directly examining whether single-relation representations are sufficient for task planning. To ensure this finding generalizes beyond one specific architecture, we evaluate this comparison across different base models using the same dataset and experimental configurations. As demonstrated in Table 1, both **MomaGraph-R1** (trained from Qwen-2.5-VL-7B) and LLaVA-Onevision consistently show superior performance with unified spatial-functional scene graphs compared to single-relationship variants, supporting our hypothesis that integrated representations are essential for effective embodied task planning. Detailed training methodology is described in the following section.

Table 1: Comparison between **MomaGraph-R1** and LLaVA variants across task tiers.

Models	T1	T2	T3	T4	Overall	Models	T1	T2	T3	T4	Overall
MomaGraph-R1 (Spatial-only)	69.1	67.0	58.4	45.4	59.9	LLaVA-Onevision (Spatial-only)	63.4	56.7	59.7	36.3	54.0
MomaGraph-R1 (Functional-only)	71.4	65.8	63.6	59.0	64.9	LLaVA-Onevision (Functional-only)	65.1	61.7	55.8	45.4	57.0
MomaGraph-R1 (Unified)	76.4	71.9	70.1	68.1	71.6	LLaVA-Onevision (Unified)	68.6	62.9	67.5	56.5	66.0

216

Preliminary Findings 2

217

218

219

220

221

222

223

224

225

4 METHOD

4.1 MOMAGRAPH DEFINITION

Given a single indoor room, the agent receives as input a set of *multi-view images* $\{\mathcal{I}_i\}_{i=1}^n$ and a natural language instruction \mathcal{T} . The objective is to construct an *instruction-conditioned, task-oriented scene graph* $\mathcal{G}_{\mathcal{T}} = (\mathcal{N}_{\mathcal{T}}, \mathcal{E}_{\mathcal{s}}^{\mathcal{T}}, \mathcal{E}_{\mathcal{f}}^{\mathcal{T}})$. Here, $\mathcal{N}_{\mathcal{T}}$ denotes the set of nodes representing objects relevant to task \mathcal{T} . $\mathcal{E}_{\mathcal{s}}^{\mathcal{T}}$ encodes the *spatial relationships* among these nodes, and $\mathcal{E}_{\mathcal{f}}^{\mathcal{T}}$ captures their *functional relationships*. This task-oriented scene graph provides a minimal yet sufficient structured representation that grounds the instruction \mathcal{T} in the observed scene and facilitates downstream embodied task planning. Both $\mathcal{E}_{\mathcal{s}}^{\mathcal{T}}$ and $\mathcal{E}_{\mathcal{f}}^{\mathcal{T}}$ are modeled as directed edges, pointing from the *triggering object* to the *affected object*.

4.2 VLMS LEARN SCENE GRAPH REPRESENTATIONS WITH REINFORCEMENT LEARNING

Existing open-source VLMs have demonstrated limited capability in generating accurate task-oriented scene graphs $\mathcal{G}_{\mathcal{T}}$ from multi-view observations $\{\mathcal{I}_i\}_{i=1}^n$ and natural language instructions \mathcal{T} . VLMs do not form structured spatial-functional representations or reason effectively about task-relevant object relationships needed for embodied tasks. To go further, we want to know: ***Can reinforcement learning teach VLMs to build more precise and task-relevant scene graph representations with MomaGraph?***

Reinforcement learning offers a more principled approach by encouraging the model to explore, reason, and iteratively refine its representations through outcome-driven feedback. Rather than replicating memorized patterns, RL enables models to discover effective strategies for constructing task-relevant scene graphs through structured thinking and reasoning. We apply the DAPO (Yu et al., 2025). The key innovation lies in our carefully designed **graph-based reward function** $\mathcal{R}(\mathcal{G}_{\mathcal{T}}^{\text{pred}}, \mathcal{G}_{\mathcal{T}}^{\text{gt}})$, where $\mathcal{G}_{\mathcal{T}}^{\text{pred}}$ and $\mathcal{G}_{\mathcal{T}}^{\text{gt}}$ denote the predicted and ground truth task-oriented scene graphs, respectively, which evaluates how well predicted graphs embody these principles through three key components.

Action type prediction. Given the task instruction \mathcal{T} , we ensure correct prediction of the required action type through $R_{\text{action}} = \mathbb{I}[a_{\text{pred}} = a_{\text{gt}}]$, where a_{pred} and a_{gt} denote the predicted and ground truth action types, respectively.

Spatial-functional integration on edges. We jointly evaluate both spatial relationships $\mathcal{E}_{\mathcal{s}}^{\mathcal{T}}$ and functional relationships $\mathcal{E}_{\mathcal{f}}^{\mathcal{T}}$ within each edge, where $\mathcal{E}_{\mathcal{s}}^{\mathcal{T}}$ and $\mathcal{E}_{\mathcal{f}}^{\mathcal{T}}$ represent the predicted and ground truth edge sets:

$$R_{\text{edges}} = \frac{1}{|\mathcal{E}_{\mathcal{gt}}^{\mathcal{T}}|} \sum_{e_j \in \mathcal{E}_{\mathcal{gt}}^{\mathcal{T}}} \max_{e_i \in \mathcal{E}_{\mathcal{pred}}^{\mathcal{T}}} S_{\text{edge}}(e_i, e_j) \quad (1)$$

where $S_{\text{edge}}(e_i, e_j)$ measures semantic similarity between edges e_i and e_j based on their spatial and functional relationship labels.

Node completeness. We compute intersection-over-union similarity for task-relevant objects in $\mathcal{N}_{\mathcal{T}}$, where $\mathcal{N}_{\mathcal{T}}^{\text{pred}}$ and $\mathcal{N}_{\mathcal{T}}^{\text{gt}}$ denote the predicted and ground truth sets of task-relevant nodes: $R_{\text{nodes}} = \frac{|\mathcal{N}_{\mathcal{T}}^{\text{pred}} \cap \mathcal{N}_{\mathcal{T}}^{\text{gt}}|}{|\mathcal{N}_{\mathcal{T}}^{\text{pred}} \cup \mathcal{N}_{\mathcal{T}}^{\text{gt}}|}$.

The final reward function integrates these task-oriented design principles with format validation and length control, where R_{format} ensures valid JSON structure and R_{length} penalizes overly verbose outputs:

$$\mathcal{R}(\mathcal{G}_{\mathcal{T}}^{\text{pred}}, \mathcal{G}_{\mathcal{T}}^{\text{gt}}) = w_a \cdot (R_{\text{action}} + R_{\text{edges}} + R_{\text{nodes}}) + w_f \cdot R_{\text{format}} + w_l \cdot R_{\text{length}} \quad (2)$$

270 where w_a , w_f , and w_l are hyperparameters controlling the relative importance of each component.
 271

272 This reward design directly implements our core insight: scene graphs must simultaneously capture
 273 spatial layout ($\mathcal{E}_s^{\mathcal{T}}$) and functional relationships ($\mathcal{E}_f^{\mathcal{T}}$) while remaining tightly coupled to task re-
 274 quirements (\mathcal{T}). With RL training on **MomaGraph-Scenes**, we develop **MomaGraph-R1**, a 7B
 275 vision-language model built on Qwen2.5-VL-7B-Instruct (Qwen, 2025), which learns to generate
 276 compact, task-relevant representations that provide concrete guidance for embodied planning.
 277

278 We demonstrate that RL significantly enhances both the effectiveness and generalizability of open-
 279 source VLMs for scene graph generation in the following section. This aligns with broader findings
 280 that combining structured scene representations with reasoning consistently improves VLM scene
 281 understanding. Critically, **MomaGraph-R1** achieves robust performance across diverse environ-
 282 ments and task configurations, enabling practical deployment in unseen embodied scenarios.
 283

4.3 STATE-AWARE DYNAMIC SCENE GRAPH UPDATE

284 In realistic environments, multiple objects of the same category may coexist, and their task-related
 285 correspondences are often initially *uncertain*. Take Figure 3 as an example, a kitchen stove may
 286 have several knobs, but only one controls the burner required for the current cooking task. Simply
 287 relying on visual appearance is insufficient to determine the correct functional relationship. In this
 288 work, we do not focus on the agent’s interaction policy; instead, our emphasis lies on *how to capture*
 289 and *incorporate observed state changes in the environment* into the scene graph to resolve such
 290 ambiguities.
 291

292 Formally, at time step t , the task-oriented scene
 293 graph is represented as:
 294

$$\mathcal{G}_{\mathcal{T}}^{(t)} = (\mathcal{N}_{\mathcal{T}}^{(t)}, \mathcal{E}_s^{\mathcal{T},(t)}, \mathcal{E}_f^{\mathcal{T},(t)}), \quad (3)$$

295 where $\mathcal{N}_{\mathcal{T}}^{(t)}$ denotes the set of task-relevant
 296 candidate objects, $\mathcal{E}_s^{\mathcal{T},(t)}$ encodes their spatial
 297 layout, and $\mathcal{E}_f^{\mathcal{T},(t)}$ captures *hypothesized*
 298 functional relationships, which may initially include
 299 one-to-many mappings.
 300

301 After the agent executes an action a_t and ob-
 302 serves the new environment state s_{t+1} , the
 303 scene graph is refined as:
 304

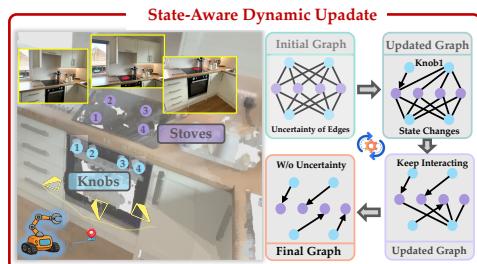
$$\mathcal{G}_{\mathcal{T}}^{(t+1)} = \mathcal{U}(\mathcal{G}_{\mathcal{T}}^{(t)}, a_t, s_{t+1}), \quad (4)$$

306 where the update function $\mathcal{U}(\cdot)$ removes incon-
 307 sistent hypotheses and strengthens confirmed correspondences based on the observed state transi-
 308 tion. As illustrated in Fig. 3, if rotating a specific knob ignites the burner while others have no
 309 effect, the functional edge [control] between that knob and the burner is established, while
 310 edges from other knobs are pruned. This process enables the scene graph to evolve from ambigu-
 311 ous, one-to-many hypotheses into a compact, *state-aware dynamic representation* with unique and
 312 reliable object-to-object correspondences.
 313

5 DATASET AND BENCHMARK

5.1 MOMAGRAPH-SCENES DATASET

315 Existing scene graph datasets for 3D indoor environments are often constrained to a single rela-
 316 tionship: some focus exclusively on *spatial layouts* of objects (Armeni et al., 2019; Koch et al.,
 317 2024b), while others emphasize *functional interactions* (Dong et al., 2021; Zhang et al., 2025).
 318 However, these scene graph representations that are restricted to a single relationship type are in-
 319 sufficient for embodied agents, as task execution in household environments requires reasoning
 320 about both *where objects are* and *how they can be used*. To address these limitations, we in-
 321 troduce **MomaGraph-Scenes**, the first dataset designed to provide a more comprehensive and
 322 task-relevant scene representation. **MomaGraph-Scenes** jointly encodes *spatial relationships*
 323 and *functional relationships*, which explicitly represent interactive elements such as handles and
 324



325 Figure 3: **MomaGraph** captures state changes
 326 in the environment and dynamically updates the
 327 task-specific scene graph accordingly, enabling
 328 the graph to evolve as interactions occur and re-
 329 reflecting updated spatial-functional relationships.
 330

Figure 4: Examples of evaluation Multi-Choices VQA tasks in the **MomaGraph-Bench**. We showcase example questions covering six core reasoning capabilities. Beyond these core capabilities, we further design tasks on *Dynamic Verification* and *Long-horizon Task Decomposition* to evaluate temporal reasoning and multi-steps planning.

buttons. Our dataset consists of approximately 1,050 task-oriented subgraphs and 6278 multi-view RGB images, collected from a combination of manually collected real-world data, re-annotated existing datasets (Zhang et al., 2025; Delitzas et al., 2024), and simulated environments built with AI2-THOR (Kolve et al., 2017). These samples span more than **350 diverse household scenes** and encompass **93 distinct task instructions**. Compared with prior datasets, our annotations are significantly more detailed, and capturing interaction semantics at both the object and part levels. This broad coverage ensures rich variability in scene layouts, object configurations, and interaction types, supporting robust learning and evaluation of embodied reasoning. Details of the dataset design and annotation process are provided in the Appendix A.1.

5.2 MOMAGRAPH BENCHMARK AND EVALUATION

We introduce **MomaGraph-Bench**, the first benchmark that jointly evaluates fine-grained scene understanding and task planning abilities across diverse levels of difficulty. Our design principle for **MomaGraph-Bench** is to evaluate whether advances in scene understanding provide tangible improvements in downstream task planning and reasoning. Our evaluation framework examines six essential reasoning capabilities in four tiers of difficulty levels: (1) *Action Sequence Reasoning*, (2) *Spatial Reasoning*, (3) *Object Affordance Reasoning*, (4) *Precondition & Effect Reasoning*, (5) *Goal Decomposition*, and (6) *Visual Correspondence* (with concrete examples shown in Fig. 4).

MomaGraph-Bench is formulated as a multi-choice VQA task which comprises 294 diverse indoor scenes with 1,446 multi-view images, featuring 352 task-oriented scene graphs spanning 1,756 instances that range from simple object manipulation(Tier 1) to complex multi-step planning (Tier 4) scenarios (detailed breakdown in Appendix A.4). **MomaGraph-Bench** offers the most comprehensive assessment for embodied agents’ capacity to generalize across tasks and scenarios. To ensure that the evaluation truly reflects generalization rather than memorization, all scenarios are drawn from **entirely unseen environments**.

6 EXPERIMENTS

6.1 BENCHMARK EVALUATION FOR EMBODIED TASK PLANNING

We compare the performance of our **MomaGraph-R1** with other models across all task tiers in **MomaGraph-Bench** to rigorously assess embodied planning, including state-of-the-art closed

378 Table 2: Performance comparison on the **MomaGraph-Bench**. We report accuracy (%) across
 379 four tiers (T1-T4) and the overall score, with and without graph-based reasoning.
 380

381	382	383	Type	384 Models	385 Params	MomaGraph Benchmark																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
						386 Tier 1		387 Tier 2		388 Tier 3		389 Tier 4		390 Overall																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																									
						w/o Graph	w/ Graph	w/o Graph	w/ Graph	w/o Graph	w/ Graph	w/o Graph	w/ Graph	w/o Graph	w/ Graph																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								
391	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500	501	502	503	504	505	506	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	552	553	554	555	556	557	558	559	560	561	562	563	564	565	566	567	568	569	570	571	572	573	574	575	576	577	578	579	580	581	582	583	584	585	586	587	588	589	590	591	592	593	594	595	596	597	598	599	600	601	602	603	604	605	606	607	608	609	610	611	612	613	614	615	616	617	618	619	620	621	622	623	624	625	626	627	628	629	630	631	632	633	634	635	636	637	638	639	640	641	642	643	644	645	646	647	648	649	650	651	652	653	654	655	656	657	658	659	660	661	662	663	664	665	666	667	668	669	670	671	672	673	674	675	676	677	678	679	680	681	682	683	684	685	686	687	688	689	690	691	692	693	694	695	696	697	698	699	700	701	702	703	704	705	706	707	708	709	710	711	712	713	714	715	716	717	718	719	720	721	722	723	724	725	726	727	728	729	730	731	732	733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748	749	750	751	752	753	754	755	756	757	758	759	760	761	762	763	764	765	766	767	768	769	770	771	772	773	774	775	776	777	778	779	780	781	782	783	784	785	786	787	788	789	790	791	792	793	794	795	796	797	798	799	800	801	802	803	804	805	806	807	808	809	810	811	812	813	814	815	816	817	818	819	820	821	822	823	824	825	826	827	828	829	830	831	832	833	834	835	836	837	838	839	840	841	842	843	844	845	846	847	848	849	850	851	852	853	854	855	856	857	858	859	860	861	862	863	864	865	866	867	868	869	870	871	872	873	874	875	876	877	878	879	880	881	882	883	884	885	886	887	888	889	890	891	892	893	894	895	896	897	898	899	900	901	902	903	904	905	906	907	908	909	910	911	912	913	914	915	916	917	918	919	920	921	922	923	924	925	926	927	928	929	930	931	932	933	934	935	936	937	938	939	940	941	942	943	944	945	946	947	948	949	950	951	952	953	954	955	956	957	958

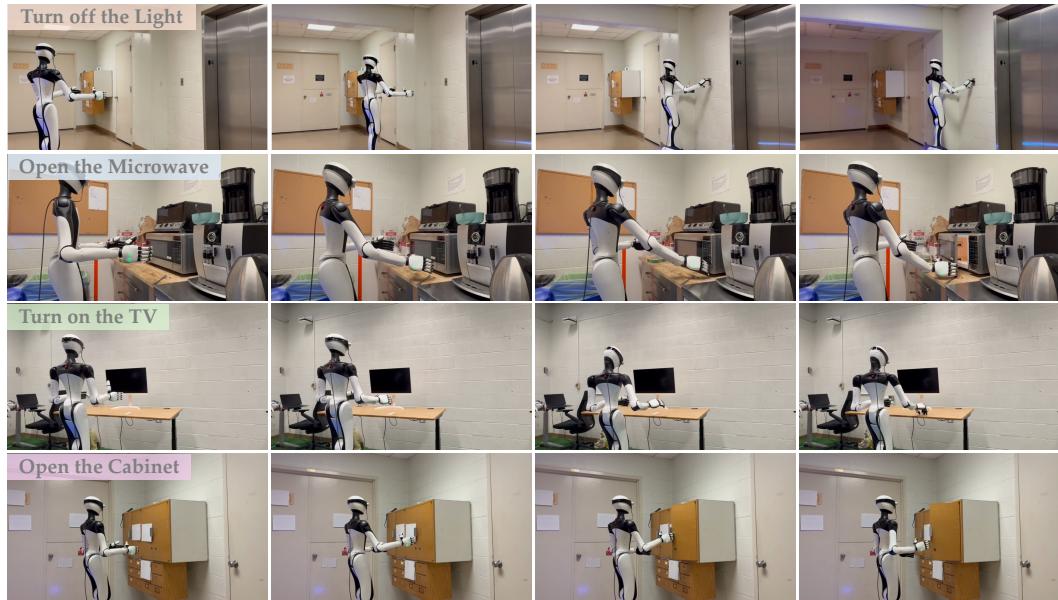


Figure 5: Real Robot experiments on the RobotEra Q5 with a D455, demonstrating four household tasks that require spatial, functional, and part-level interactive elements reasoning for task execution.

model performance on visual correspondence tasks from public benchmark BLINK Fu et al. (2024) and our **MomaGraph-Bench**. Scene graph representations enhance performance universally by reducing VLM hallucinations in visual perception. By prompting models to first generate structured scene graphs (*w/ Graph*) and then answer questions in single-turn interactions, we force them to explicitly reason about spatial and functional relationships between objects before answering. We primarily evaluate perception on multi-view reasoning and visual correspondence tasks from BLINK, as well as multi-view correspondence in **MomaGraph-Bench**. Our **MomaGraph-R1** achieves state-of-the-art performance among open-source VLMs, leading by 3.8% on BLINK and 4.8% on our correspondence benchmark compared to the best competing open-source models. These results confirm that **MomaGraph-R1** enables more nuanced and detailed perception of complex indoor scenes, effectively mitigating hallucinations and enabling more reliable scene perception.

6.3 REAL ROBOT DEMONSTRATIONS

Setup. To validate the effectiveness of our model in real-world settings, we deploy on the RobotEra Q5, a bimanual humanoid platform with a mobile base. An Intel RealSense D455 camera is mounted to enhance RGB-D perception. Importantly, all evaluation scenes are *unseen*, ensuring that performance reflects true generalization. **Tasks.** We design four representative tasks (Figure 5), consisting of two *local* interactions (e.g., opening a cabinet, opening a microwave) and two *remote* interactions (e.g., turning on the TV, turning off a light). **Deployment.** Prior to execution, the robot performs active perception by adjusting its head pose to acquire multi-view observations. **MomaGraph-R1** processes these observations together with the task instruction to generate a task-specific subgraph, which explicitly encodes the relevant objects and their spatial-functional relationships, see more deployment details in A.6. Following the *Graph-then-Plan* paradigm, **MomaGraph-R1** then functions as a task planner, producing a structured action sequence. These specifications are subsequently instantiated as low-level trajectories through a library of parameterized primitive skills. **Summary.** Our real-world evaluations show that **MomaGraph-R1** delivers robust scene understanding and task planning even in unseen scenarios, while remaining directly compatible with standard mobile humanoid systems. This combination underscores the strength of our model and its practicality for real-world deployment.

6.4 QUANTITATIVE REAL-ROBOT EVALUATION

To provide rigorous quantitative validation of our system’s robustness, we conducted a comprehensive evaluation on a complex multi-step long-horizon task. This evaluation includes success rates and failure analysis across different stages to validate overall system performance under realistic, sequential conditions. Detailed visualizations are available at the bottom of our project website.

486 **Task Setup.** We evaluate on the following natural language instruction that requires sequential
 487 reasoning and manipulation: *“I need better lighting. Turn on the light closest to the remote so I can
 488 find it and turn on the monitor to watch.”*

490 **Results.** Table 4 summarizes the success rates and failure analysis across different stages. The
 491 system achieves an **80% success rate** in graph generation, **87.5% success rate** in planning (conditioned
 492 on correct graphs), and an **overall task success rate of 70%** across 10 trials.

494 Stage	495 Success Rate	496 Failures	497 Failure Types
496 Graph Generation	497 80% (8/10)	498 2	499 Spatial relation error (1) 500 Missing node (1)
500 Planning	501 87.5% (7/8)	502 1	503 Action sequencing error (1)
503 Overall Task Success	504 70% (7/10)	505 3	506 –

500 Table 4: Quantitative evaluation on a complex multi-step long-horizon task in real-robot settings.
 501 The system demonstrates robustness across multiple reasoning and execution stages.

503 These results demonstrate that MomaGraph remains robust across multiple reasoning and execution
 504 stages, achieving a 70% overall success rate on a complex multi-step task. This validates the sys-
 505 tem’s reliability under realistic long-horizon conditions where errors can compound across stages.

507 7 ADDITIONAL ABLATION STUDIES

510 7.1 COMPARISON WITH SFT AND ICL BASELINES

511 To validate our choice of RL-based training over alternative learning paradigms, we compare our
 512 model against two additional baselines:

514 **SFT baseline:** We fine-tune Qwen2.5-VL-7B on MomaGraph-Scenes using supervised learning
 515 only (without RL), with the same graph-alignment objectives as our full method.

516 **ICL baseline:** We evaluate the base model with 3-5 in-context graph examples provided in the
 517 prompt (same setting as Qwen2.5-VL-7B-Instruct (w/ Graph) in Table 2 and 3 of the main paper).

518 As shown in Table 2 and Table 3, our RL training method achieves clearly superior performance
 519 compared to both the SFT baseline (+3.1 on BLINK, +7.7 on MomaGraph-Bench) and the ICL
 520 baseline (+4.8 on BLINK, +11.4 on MomaGraph-Bench). This demonstrates that the RL formula-
 521 tion is crucial for learning high-quality scene graph generation that effectively improves downstream
 522 planning performance.

523 8 CONCLUSION

525 This work addresses to the fundamental limitations of existing scene graphs for embodied agents:
 526 reliance on a single type of relationship, inability to adapt to dynamic environments, and lack of
 527 task relevance. To overcome these issues, we introduce **MomaGraph**, a novel scene representation
 528 that unifies spatial and functional scene graphs with interactive elements. To learn this represen-
 529 tation, we construct a large-scale dataset **MomaGraph-Scenes** and propose **MomaGraph-R1**,
 530 a 7B VLM trained with reinforcement learning, which predicts task-oriented scene graphs and
 531 serves as a zero-shot task planner under a *Graph-then-Plan* framework. Furthermore, we design
 532 the **MomaGraph-Bench**, a comprehensive benchmark that rigorously evaluates both fine-grained
 533 reasoning and high-level planning. Through extensive experiments, we demonstrate that our model
 534 achieves state-of-the-art performance among open source models, remains competitive with closed
 535 source systems, and transfers effectively to public benchmarks and real robot experiments. We hope
 536 that **MomaGraph** will serve as a foundation for advancing scene representations, fostering stronger
 537 connections between the spatial VLM and robotics communities, and ultimately enabling more in-
 538 telligent and adaptive embodied agents.

540 REPRODUCIBILITY STATEMENT
541542 We are committed to ensuring the reproducibility of our results. Detailed descriptions of our ex-
543 perimental setup, including model architectures, training procedures, and hyperparameter settings,
544 are provided in Appendix A.2. We have included comprehensive information on the datasets used,
545 along with any preprocessing steps, in Appendix A.1546
547 LLM USAGE STATEMENT
548549 We confirm that Large Language Models (LLMs) were exclusively utilized for minor editing, pol-
550 ishing, and improving the clarity and flow of the text within this paper. Additionally, LLMs were
551 employed to assist in benchmark construction, including tasks such as prompt refinement, annota-
552 tion validation, and quality assurance of dataset instances. However, LLMs were not involved in
553 any core method design, experimental setup, data analysis, or interpretation of results. All original
554 contributions, including concepts, methodologies, experimental findings, and scientific insights, are
555 solely the work of the authors.556
557 REFERENCES
558559 Christopher Agia, Krishna Murthy Jatavallabhula, Mohamed Khodeir, Ondrej Miksik, Vibhav Vi-
560 neet, Mustafa Mukadam, Liam Paull, and Florian Shkurti. Taskography: Evaluating robot task
561 planning over large 3d scene graphs. In *Conference on Robot Learning*, pp. 46–58. PMLR, 2022.562 Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
563 Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
564 Grounding language in robotic affordances. *arXiv preprint arXiv:2204.01691*, 2022.565 Iro Armeni, Zhi-Yang He, JunYoung Gwak, Amir R Zamir, Martin Fischer, Jitendra Malik, and
566 Silvio Savarese. 3d scene graph: A structure for unified semantics, 3d space, and camera. In
567 *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 5664–5673, 2019.568 Jason da Silva Castanheira, Nicholas Shea, and Stephen M Fleming. How attention simplifies mental
569 representations for planning. *arXiv preprint arXiv:2506.09520*, 2025.570 Zhirui Dai, Arash Asgharivaskasi, Thai Duong, Shusen Lin, Maria-Elizabeth Tzes, George Pappas,
571 and Nikolay Atanasov. Optimal scene graph planning with large language model guidance. In
572 *2024 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 14062–14069.
573 IEEE, 2024.574 Alexandros Delitzas, Ayca Takmaz, Federico Tombari, Robert Sumner, Marc Pollefeys, and Fran-
575 cис Engelmann. SceneFun3D: Fine-Grained Functionality and Affordance Understanding in 3D
576 Scenes. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024.577 Ang Dong, Li Feng, Dengcheng Yang, Shuang Wu, Jinshuai Zhao, Jing Wang, and Rongling Wu.
578 Fungraph: A statistical protocol to reconstruct omnigenic multilayer interactome networks for
579 complex traits. *Star Protocols*, 2(4):100985, 2021.580 Daniel Ekpo, Mara Levy, Saksham Suri, Chuong Huynh, and Abhinav Shrivastava. Verigraph:
581 Scene graphs for execution verifiable robot planning. *arXiv preprint arXiv:2411.10446*, 2024.582 Tim Engelbracht, René Zurbrügg, Marc Pollefeys, Hermann Blum, and Zuria Bauer. Spot-
583 light: Robotic scene understanding through interaction and affordance detection. *arXiv preprint
584 arXiv:2409.11870*, 2024.585 Xingyu Fu, Yushi Hu, Bangzheng Li, Yu Feng, Haoyu Wang, Xudong Lin, Dan Roth, Noah A
586 Smith, Wei-Chiu Ma, and Ranjay Krishna. Blink: Multimodal large language models can see but
587 not perceive. In *European Conference on Computer Vision*, pp. 148–166. Springer, 2024.588 Elias Greve, Martin Büchner, Niclas Vödisch, Wolfram Burgard, and Abhinav Valada. Collaborative
589 dynamic 3d scene graphs for automated driving. In *2024 IEEE International Conference on
590 Robotics and Automation (ICRA)*, pp. 11118–11124. IEEE, 2024.

594 Qiao Gu, Ali Kuwajerwala, Sacha Morin, Krishna Murthy Jatavallabhula, Bipasha Sen, Aditya
 595 Agarwal, Corban Rivera, William Paul, Kirsty Ellis, Rama Chellappa, et al. Conceptgraphs:
 596 Open-vocabulary 3d scene graphs for perception and planning. In *2024 IEEE International Con-*
 597 *ference on Robotics and Automation (ICRA)*, pp. 5021–5028. IEEE, 2024.

598

599 Daniel Honerkamp, Martin Büchner, Fabien Despinoy, Tim Welschehold, and Abhinav Valada.
 600 Language-grounded dynamic scene graphs for interactive object search with mobile manipula-
 601 tion. *IEEE Robotics and Automation Letters*, 2024a.

602 Daniel Honerkamp, Martin Büchner, Fabien Despinoy, Tim Welschehold, and Abhinav Valada.
 603 Language-grounded dynamic scene graphs for interactive object search with mobile manipula-
 604 tion. *IEEE Robotics and Automation Letters*, 2024b.

605

606 Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:
 607 Composable 3d value maps for robotic manipulation with language models. *arXiv preprint*
 608 *arXiv:2307.05973*, 2023.

609

610 Wenlong Huang, Chen Wang, Yunzhu Li, Ruohan Zhang, and Li Fei-Fei. Rekep: Spatio-
 611 temporal reasoning of relational keypoint constraints for robotic manipulation. *arXiv preprint*
 612 *arXiv:2409.01652*, 2024.

613 Hanxiao Jiang, Binghao Huang, Ruihai Wu, Zhuoran Li, Shubham Garg, Hooshang Nayyeri, Shen-
 614 long Wang, and Yunzhu Li. Roboexp: Action-conditioned scene graph via interactive exploration
 615 for robotic manipulation. *arXiv preprint arXiv:2402.15487*, 2024.

616

617 Sebastian Koch, Pedro Hermosilla, Narunas Vaskevicius, Mirco Colosi, and Timo Ropinski.
 618 Lang3dsg: Language-based contrastive pre-training for 3d scene graph prediction. In *2024 Inter-*
 619 *national Conference on 3D Vision (3DV)*, pp. 1037–1047. IEEE, 2024a.

620

621 Sebastian Koch, Narunas Vaskevicius, Mirco Colosi, Pedro Hermosilla, and Timo Ropinski.
 622 Open3dsg: Open-vocabulary 3d scene graphs from point clouds with queryable objects and open-
 623 set relationships. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 624 *Recognition*, pp. 14183–14193, 2024b.

625

626 Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Matt
 627 Deitke, Kiana Ehsani, Daniel Gordon, Yuke Zhu, et al. Ai2-thor: An interactive 3d environment
 628 for visual ai. *arXiv preprint arXiv:1712.05474*, 2017.

629

630 Vasiliki Kondyli, Mehul Bhatt, and Jakob Suchan. Towards a human-centred cognitive model of
 631 visuospatial complexity in everyday driving. *arXiv preprint arXiv:2006.00059*, 2020.

632

633 Seungjae Lee, Daniel Ekpo, Haowen Liu, Furong Huang, Abhinav Shrivastava, and Jia-Bin Huang.
 634 Imagine, verify, execute: Memory-guided agentic exploration with vision-language models. *arXiv*
 635 *preprint arXiv:2505.07815*, 2025.

636

637 Qi Li, Kaichun Mo, Yanchao Yang, Hang Zhao, and Leonidas Guibas. Ifr-explore: Learning inter-
 638 object functional relationships in 3d indoor scenes. *arXiv preprint arXiv:2112.05298*, 2021.

639

640 Joel Loo, Zhanxin Wu, and David Hsu. Open scene graphs for open-world object-goal navigation.
 641 *arXiv preprint arXiv:2508.04678*, 2025.

642

643 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
 644 Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of
 645 foundation models in visual contexts. *arXiv preprint arXiv:2310.02255*, 2023.

646

647 Dantong Niu, Yuvan Sharma, Giscard Biamby, Jerome Quenum, Yutong Bai, Baifeng Shi, Trevor
 648 Darrell, and Roei Herzig. Llarva: Vision-action instruction tuning enhances robot learning. *arXiv*
 649 *preprint arXiv:2406.11815*, 2024.

650

651 OpenAI. Gpt-4 technical report. Technical report, OpenAI, 2023. URL <https://api.semanticscholar.org/CorpusID:257532815>.

648 Yu Qi, Yuanchen Ju, Tianming Wei, Chi Chu, Lawson LS Wong, and Huazhe Xu. Two by two:
 649 Learning multi-task pairwise objects assembly for generalizable robot manipulation. *CVPR 2025*,
 650 2025.

651

652 Ri-Zhao Qiu, Yafei Hu, Yuchen Song, Ge Yang, Yang Fu, Jianglong Ye, Jiteng Mu, Ruihan Yang,
 653 Nikolay Atanasov, Sebastian Scherer, et al. Learning generalizable feature fields for mobile ma-
 654 nipulation. *arXiv preprint arXiv:2403.07563*, 2024.

655 Qwen. Qwen2.5-vl, January 2025. URL [https://qwenlm.github.io/blog/qwen2.](https://qwenlm.github.io/blog/qwen2.5-vl/)
 656 5-vl/.

657

658 Krishan Rana, Jesse Haviland, Sourav Garg, Jad Abou-Chakra, Ian Reid, and Niko Suenderhauf.
 659 Sayplan: Grounding large language models using 3d scene graphs for scalable robot task plan-
 660 ning. *arXiv preprint arXiv:2307.06135*, 2023.

661

662 Ayca Takmaz, Alexandros Delitzas, Robert W Sumner, Francis Engelmann, Johanna Wald, and
 663 Federico Tombari. Search3d: Hierarchical open-vocabulary 3d segmentation. *IEEE Robotics and*

664 *Automation Letters*, 2025.

665 Gemini Robotics Team, Saminda Abeyruwan, Joshua Ainslie, Jean-Baptiste Alayrac, Montser-
 666 rat Gonzalez Arenas, Travis Armstrong, Ashwin Balakrishna, Robert Baruch, Maria Bauza,
 667 Michiel Blokzijl, et al. Gemini robotics: Bringing ai into the physical world. *arXiv preprint*
 668 *arXiv:2503.20020*, 2025.

669 Sebo Uithol, Katherine L Bryant, Ivan Toni, and Rogier B Mars. The anticipatory and task-driven
 670 nature of visual perception. *Cerebral Cortex*, 31(12):5354–5362, 2021.

671

672 Yixuan Wang, Leonor Fermoselle, Tarik Kelestemur, Jiuguang Wang, and Yunzhu Li. Curious-
 673 bot: Interactive mobile exploration via actionable 3d relational object graph. *arXiv preprint*
 674 *arXiv:2501.13338*, 2025.

675 Abdelrhman Werby, Chenguang Huang, Martin Büchner, Abhinav Valada, and Wolfram Burgard.
 676 Hierarchical open-vocabulary 3d scene graphs for language-grounded robot navigation. In *First*
 677 *Workshop on Vision-Language Models for Navigation and Manipulation at ICRA 2024*, 2024.

678

679 Jimmy Wu, Rika Antonova, Adam Kan, Marion Lepert, Andy Zeng, Shuran Song, Jeannette Bohg,
 680 Szymon Rusinkiewicz, and Thomas Funkhouser. Tidybot: Personalized robot assistance with
 681 large language models. *Autonomous Robots*, 47(8):1087–1102, 2023.

682 Shun-Cheng Wu, Johanna Wald, Keisuke Tateno, Nassir Navab, and Federico Tombari. Scene-
 683 graphfusion: Incremental 3d scene graph prediction from rgb-d sequences. In *Proceedings of the*
 684 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 7515–7525, 2021.

685

686 Zhijie Yan, Shufei Li, Zuoxu Wang, Lixiu Wu, Han Wang, Jun Zhu, Lijiang Chen, and Jihong Liu.
 687 Dynamic open-vocabulary 3d scene graphs for long-term language-guided mobile manipulation.
 688 *IEEE Robotics and Automation Letters*, 2025.

689

690 Baiqiao Yin, Qineng Wang, Pingyue Zhang, Jianshu Zhang, Kangrui Wang, Zihan Wang, Jieyu
 691 Zhang, Keshigeyan Chandrasegaran, Han Liu, Ranjay Krishna, et al. Spatial mental modeling
 692 from limited views. *arXiv preprint arXiv:2506.21458*, 2025.

693

694 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 695 Fan, Gaodong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
 696 at scale. *arXiv preprint arXiv:2503.14476*, 2025.

697

698 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruqi Liu, Ge Zhang, Samuel Stevens,
 699 Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
 700 modal understanding and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF*
 701 *Conference on Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024.

Tatiana Zemskova and Dmitry Yudin. 3dgraphllm: Combining semantic graphs and large language
 models for 3d referred object grounding.

702 Chenyangguang Zhang, Alexandros Delitzas, Fangjinhua Wang, Ruida Zhang, Xiangyang Ji, Marc
703 Pollefeys, and Francis Engelmann. Open-vocabulary functional 3d scene graphs for real-world
704 indoor spaces. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.
705 19401–19413, 2025.

706 Shoulong Zhang, Aimin Hao, Hong Qin, et al. Knowledge-inspired 3d scene graph prediction in
707 point cloud. *Advances in Neural Information Processing Systems*, 34:18620–18632, 2021.

709 Yunpeng Zhang, Deheng Qian, Ding Li, Yifeng Pan, Yong Chen, Zhenbao Liang, Zhiyao Zhang,
710 Shurui Zhang, Hongxu Li, Maolei Fu, et al. Graphad: Interaction scene graph for end-to-end
711 autonomous driving. *arXiv preprint arXiv:2403.19098*, 2024.

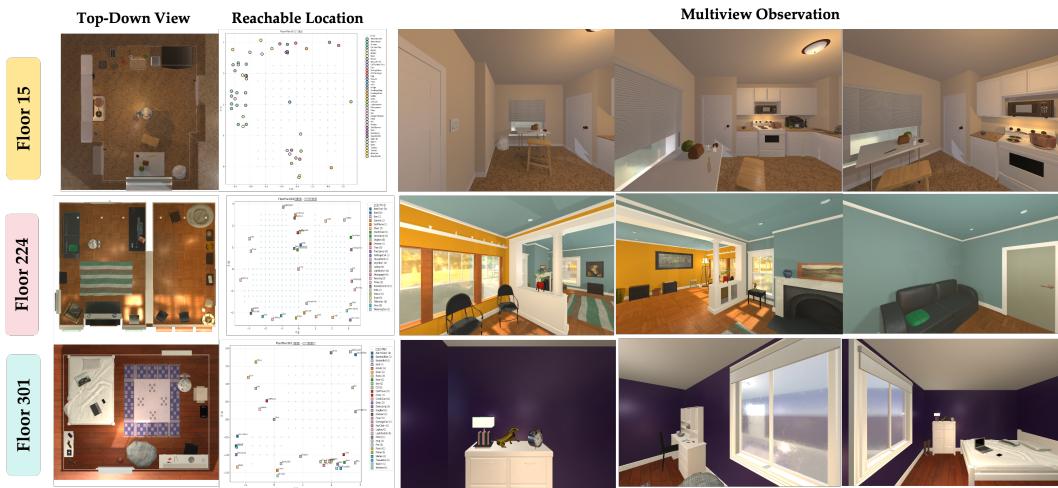
712 Yaowei Zheng, Junting Lu, Shenzhi Wang, Zhangchi Feng, Dongdong Kuang, and Yuwen Xiong.
713 Easyr1: An efficient, scalable, multi-modality rl training framework. [https://github.com/](https://github.com/hiyouga/EasyR1)
714 [hiyouga/EasyR1](https://github.com/hiyouga/EasyR1), 2025.

716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 **A APPENDIX**
757758 **A.1 MOMAGRAPH-SCENES DATASET**
759760 **A.1.1 DATASET DESIGN**
761762 **Multi-View Observation Design.** The multi-view images provided for each graph are not
763 constrained to always contain every relevant object within each single view. We also do not impose
764 restrictions on the number of viewpoints or their exact configurations. This flexible setup better re-
765 flects realistic perception conditions, where embodied agents must reason across partial and diverse
766 observations to build consistent scene graph representations.767 **Task Instruction Design.** It is worth noting that the task instructions in our dataset do not explicitly
768 mention all the objects required to accomplish the task. Instead, they are expressed in simple and
769 natural forms (e.g., “Fill the bathtub”), where the relevant objects such as the *bathtub*, *faucet*, and
770 *button* must be inferred by the model. This design encourages the model to learn how to ground
771 natural instructions into the appropriate set of objects and relationships, rather than relying on object
772 names being explicitly stated.773 **Node Design.** \mathcal{N}_T primarily consists of the objects necessary to accomplish the instruction. When
774 the task execution requires interacting with specific parts, the graph may additionally include *part-
775 level interactive elements* (e.g., handles, knobs, or buttons). For example, for the instruction “Open
776 the fridge,” \mathcal{N}_T includes both the *fridge* and its *handle*; for the instruction “Turn on the light,” \mathcal{N}_T
777 consists of the *switch* and the *ceiling light*.778 **Edge Design.** Edges in the task-oriented scene graph capture both *functional* and *spatial* relation-
779 ships between nodes.
780781 • **Functional Relationships.** We define a functional relationship as **the ability of one object to
782 change the state of another object**. In indoor environments, common tasks can be broadly cate-
783 gorized as *Parameter Adjustment*, *Device Control*, *Open/Close the Cabinet or Door*, *Water Flow
784 Control*, *Power Supply*, and *Assembly*. Accordingly, we identify six major types: **[OPEN OR
785 CLOSE]**, **[ADJUST]**, **[CONTROL]**, **[ACTIVATE]**, **[POWER BY]**, and **[PAIR WITH]**. No-
786 tably, **[PAIR WITH]** does not alter the internal state of objects but instead modifies their spatial
787 configuration, which is essential for assembly tasks (Qi et al., 2025). Since such tasks are critical
788 for robotic interaction and task planning, we explicitly include **[PAIR WITH]** as a functional
789 relationship. Through this definition, our dataset extends beyond physical and electronic interac-
790 tions to encompass fine-grained reasoning about assembly and pairing, enhancing its utility for
791 downstream action execution and planning.792 • **Spatial Relationships.** Capture geometric dependencies between objects and parts. The dataset
793 primarily annotates:
794 – **Directional:** `left_of`, `right_of`, `in_front_of`, `behind`, `higher_than`,
795 `lower_than`.
796 – **Distance-based:** `close`, `far`, `touching`.797 These annotations provide the geometric context necessary for reasoning about layout, reachabil-
798 ity, and interaction feasibility.
799800 **A.1.2 REAL-WORLD DATASET SOURCE AND COLLECTION.**
801803 Our dataset is built through a synergistic integration of newly curated data and existing public
804 resources. We manually collected a substantial portion of the data in real-world household envi-
805 ronments, capturing diverse interaction scenarios under natural conditions. To further enrich the
806 dataset, we incorporated samples from two public benchmarks, OpenFunGraph (Zhang et al., 2025)
807 and SceneFun3D (Delitzas et al., 2024), both of which contain videos depicting human-object
808 interactions in indoor contexts. From these videos, we carefully curated representative keyframes to
809 derive multi-view RGB observations, ensuring comprehensive coverage of interaction dynamics and
spatial variability.

810 A.1.3 SIMULATION DATA COLLECTION
811

812 To complement the real-world data, we additionally generated samples within the AI2-THOR sim-
813 ulation environment Kolve et al. (2017). We strategically positioned the embodied agent at diverse,
814 reachable viewpoints and captured multi-view observations from varying perspectives, as illustrated
815 in Fig. 6. Throughout this process, we applied manual post-filtering to exclude non-interactable
816 elements, thereby ensuring that the curated dataset remains focused on actionable objects and em-
817 phasizes functional relevance critical for downstream embodied reasoning tasks.



818
819 Figure 6: Simulated indoor environments in our benchmark. Each row shows three scenes (*Floor*
820 *Floor 15*, *Floor 224* and *Floor 301*) with a top-down view of the layout, reachable locations for the robot,
821 and multiview observations from different viewpoints.
822
823
824
825
826
827
828
829
830
831
832
833
834

835 A.1.4 DATASET ANNOTATION AND FORMAT.
836

837 **Annotation and Format.** Each task-oriented subgraph in **MomaGraph-Scenes** is stored in a
838 structured JSON format and linked to its corresponding scene. Annotations include a subgraph iden-
839 tifier, the associated scene identifier, the action type, the functional category, the natural language
840 task instruction, a set of nodes, and a set of edges. Nodes correspond to the *objects or part-level*
841 *interactive elements* required to accomplish the task, while edges capture both *functional relation-
842 ships* (e.g., *control*, *open* or *close*) and *spatial relationships* (e.g., *close*, *in_front_of*,
843 *lower_than*).

844 This example corresponds to the instruction “*Turn on the television*”, where the relevant nodes
845 are the *remote control* and the *TV*, connected by a *control* functional edge and spatial relations
846 *lower_than*, *in_front_of*, and *close*.

847 In addition, each subgraph is grounded in *multi-view observations*. For every scene, we provide
848 synchronized RGB images captured from multiple viewpoints. This multi-view grounding allows
849 the annotated subgraphs to be consistently aligned with visual evidence, supporting both instruc-
850 tion-conditioned graph prediction from perception and multi-view reasoning tasks.

851 A.1.5 MULTI-ASPECT STATISTICS OF THE TRAINING DATASET
852

853 Our dataset consists of approximately 1,050 subgraphs and 6278 multi-view RGB images, collected
854 across more than 350 diverse household scenes and encompassing 93 distinct task instructions. This
855 broad coverage ensures rich variability in scene layouts, object configurations, and interaction types.

856 To provide a comprehensive overview of our training data, we present multi-aspect statistics cov-
857 ering scene context, action diversity, functional relationships, and object distributions. As shown
858 in Fig. 8, the dataset spans four common household room types and captures the correspond-
859 ence between action types and functional categories, reflecting the diversity and richness of real-world

```

864
865 1 {
866 2   "subgraph_id": "da21b9f9-f4fa-4a85-961b-2e2c2e182d3e",
867 3   "scene_id": "466828",
868 4   "action_type": "press",
869 5   "function_type": "device_control",
870 6   "task_instruction": "Turn on the television.",
871 7   "nodes": [
872 8     {"label": "remote control", "id": "f15474de-7b35-4a5e-ac8a-dc02f93960b3"},
873 9     {"label": "tv", "id": "91486017-94ce-4788-aabd-0d07262c9bed"}
874 10  ],
875 11   "edges": [
876 12     {
877 13       "relation_id": "ef3e72fe-ae9f-42e4-9b5a-505b5cb1844a",
878 14       "functional_relationship": "control",
879 15       "object1": {"label": "remote control", "id": "f15474de-7b35-4a5e-ac8a-dc02f93960b3"},
880 16       "object2": {"label": "tv", "id": "91486017-94ce-4788-aabd-0d07262c9bed"},
881 17       "spatial_relations": ["lower_than", "in_front_of", "close"],
882 18       "is_touching": false
883 19     }
884 20   ]
885 21 }

```

Figure 7: Example JSON annotation for the task “Turn on the television.”

manipulation scenarios. Fig. 9 illustrates the distribution of action types across different room contexts, while Fig. 10 summarizes the prevalence of various functional relationships and Fig. 11 summarizes the frequency of object occurrences. Together, these statistics highlight the diversity and task relevance of our dataset, ensuring broad coverage of spatial–functional interactions essential for embodied planning and reasoning.

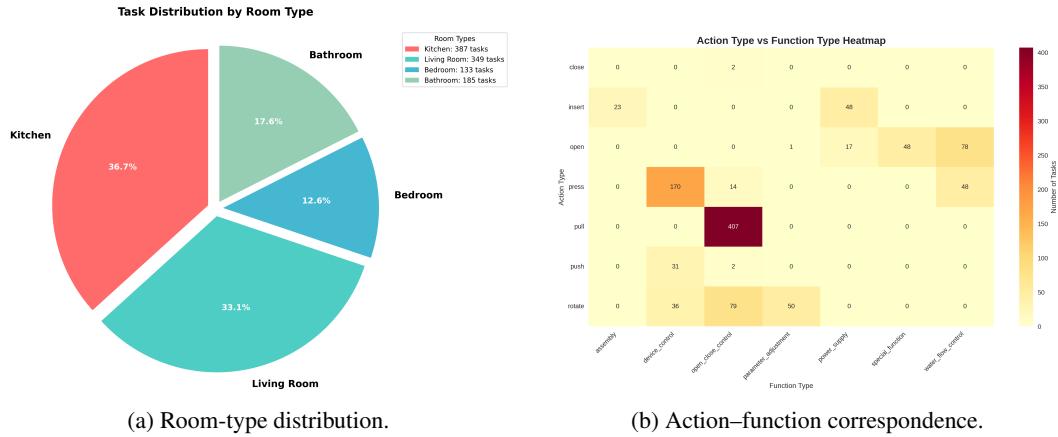


Figure 8: Dataset statistics: (a) Distribution across four room types; (b) Heatmap showing the correspondence between action types and functional types.

A.2 TRAINING DETAILS

We train our model using 8x 80GB A100 GPUs for approximately 13 hours based on the EasyR1 (Zheng et al., 2025) training framework. The complete training configuration for DAPO algorithm is presented in Table 5.

A.3 TRAINING CURVE

Figure 12 and 13 shows the training curves during DAPO optimization. The training and validation curves closely align across all metrics, indicating good generalization without significant overfitting. The **overall reward** converges to ~ 0.93 , while **accuracy reward** stabilizes at ~ 0.9 . The **format reward** quickly reaches 1.0 within the first 25 steps, showing the model rapidly learns to produce valid JSON-structured outputs.

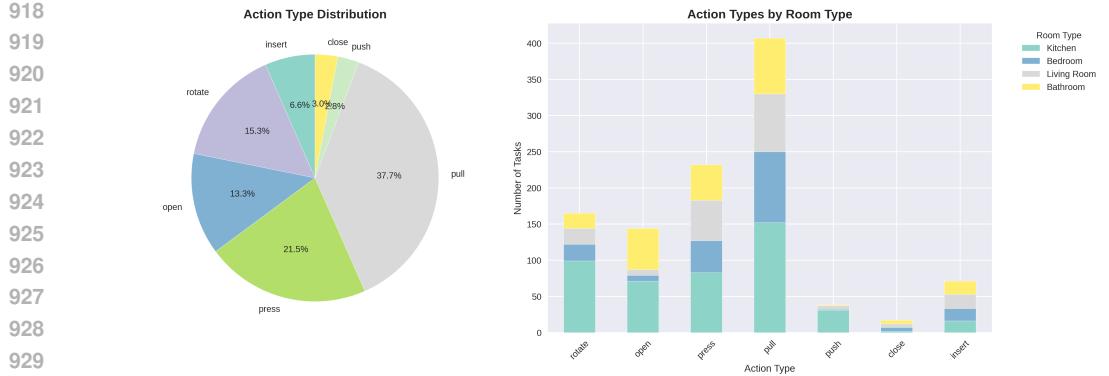


Figure 9: Task distribution across four room types: kitchen, living room, bedroom, and bathroom.

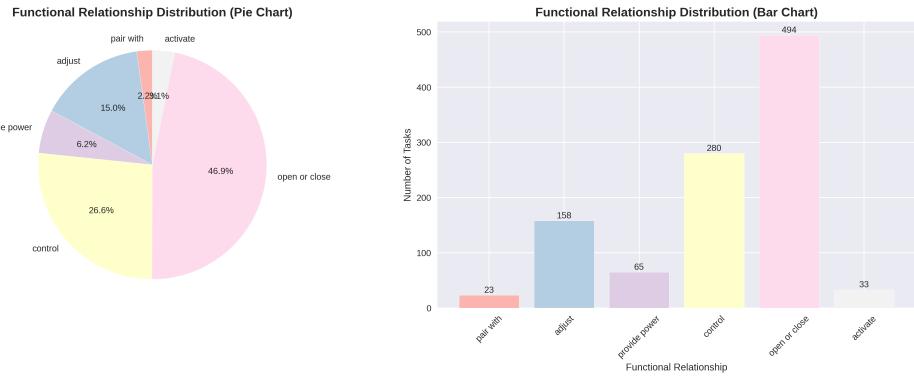


Figure 10: Distribution of functional relationships across all tasks in the dataset.

A.4 MOMAGRAPH BENCHMARK

A.4.1 BENCHMARK DESIGN

To rigorously evaluate spatial-functional reasoning and task planning capabilities, we design a comprehensive multi-choice VQA benchmark based on the scenes and tasks in our dataset. Rather than manually crafting all questions, we leverage large vision-language models (VLMs) to generate them in a scalable and diverse manner. Specifically, we provide the model with structured prompts describing the scene images, state-aware scene graph, and task instructions, and instruct it to produce question-answer pairs that probe different reasoning skills, such as spatial relation understanding, affordance inference, precondition reasoning, and goal decomposition. To ensure the reliability and correctness of the benchmark, all generated questions and answers undergo several rounds of manual verification, during which ambiguous or low-quality samples are refined or removed.

Moreover, since the benchmark is formulated as a multi-choice VQA task with clearly defined correct answers, it does not require complex evaluation metrics. Model performance can be directly measured by simple accuracy — i.e., the proportion of correctly answered questions — which provides an intuitive and reliable indicator of spatial-functional reasoning and planning capabilities. This simplicity enables straightforward comparison across models while ensuring that the evaluation remains rigorous and meaningful.

Our evaluation framework systematically examines six essential reasoning capabilities: (1) *Action Sequence Reasoning*, (2) *Spatial Reasoning*, (3) *Object Affordance Reasoning*, (4) *Precondition & Effect Reasoning*, (5) *Goal Decomposition*, and (6) *Visual Correspondence*. By covering both low-level perception and high-level planning, **MomaGraph-Bench** offers the most comprehensive assessment to date of embodied agents’ capacity to generalize across tasks and scenarios.

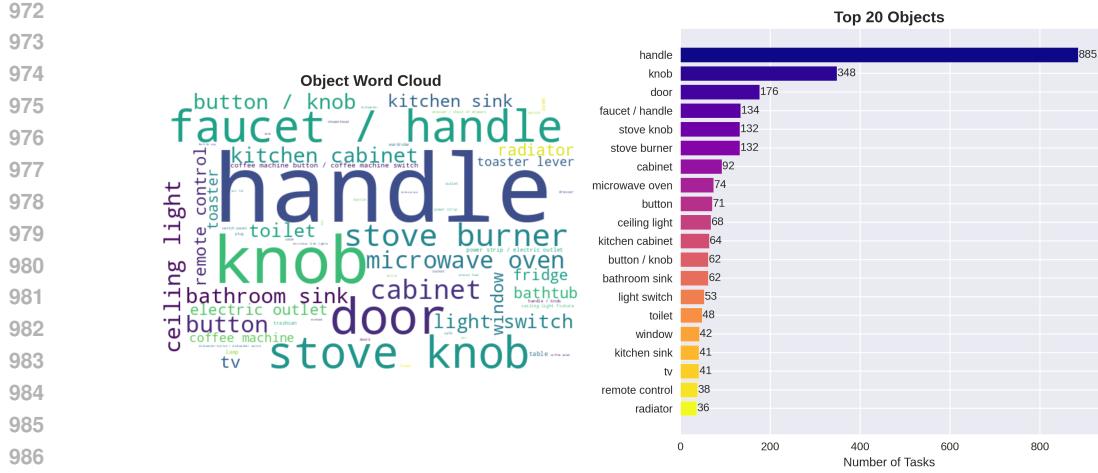


Figure 11: Statistics of object occurrences, highlighting the most frequent objects in tasks.

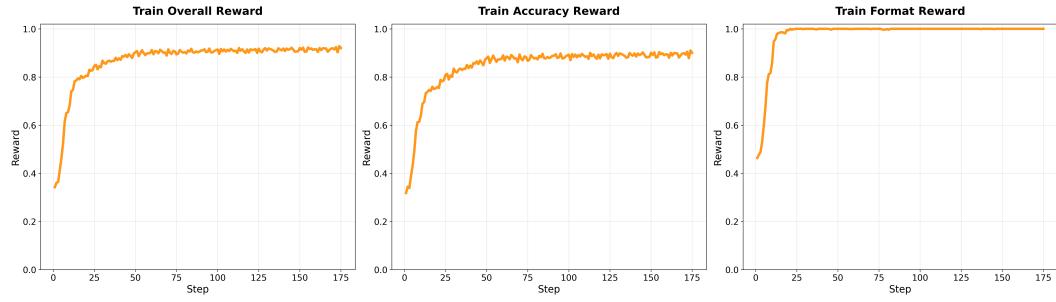


Figure 12: Training reward curves during MomaGraph-R1 training.

- **Action Sequence Reasoning:** examines whether models understand the order and dependency of actions and can plan efficient sequences.
- **Spatial Reasoning:** focuses on reasoning over spatial relations such as *left_of* or *in_front_of*, judging reachability, and selecting the most suitable object among candidates.
- **Object Affordance Reasoning:** evaluates whether models can infer the functionality of objects (e.g., knobs can be turned, cabinets can be opened), match objects to task requirements, and reason about indirect tool use.
- **Precondition & Effect Reasoning:** assesses whether models understand the preconditions and effects of actions, such as a door needing to be closed before it can be opened, and can predict possible side effects.
- **Goal Decomposition:** measures the ability to break down complex tasks into sub-goals, prioritize them, and determine parallel versus sequential execution strategies.
- **Visual Correspondence (extended capability):** tests whether models can maintain object consistency across multiple views and integrate information under viewpoint changes.

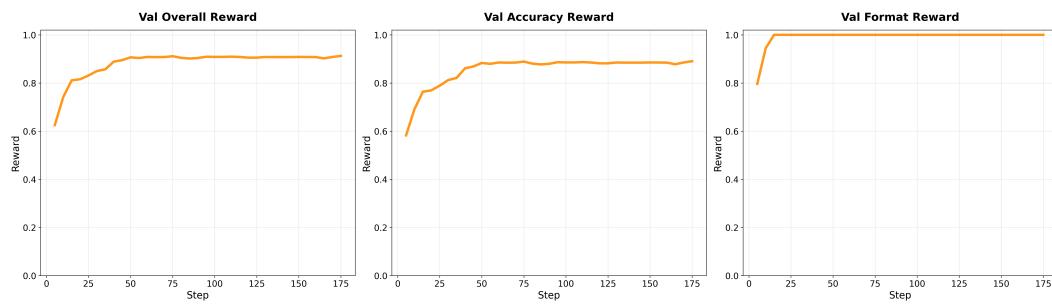
Data Source and Task Scope. We leverage long video sequences from SceneFun3D (Delitzas et al., 2024) that capture human-recorded layouts of entire indoor environments, from which key frames are extracted and manually annotated with task-specific graphs. To enhance diversity and coverage, we additionally collect data from real indoor scenes. Our benchmark spans four representative indoor room categories: *bathroom*, *kitchen*, *living room*, and *bedroom*. The task scope is organized into four levels of difficulty:

T1 Single-step actions: e.g., turning on a light, pulling a drawer, opening a door.

T2 Two complementary steps: e.g., filling a bathtub by first pressing the drain button and then turning on the faucet.

Table 5: DAPO Training Configuration

Parameter	Value
Model Configuration	
Base Model	Qwen2.5-VL-7B-Instruct
Mixed Precision	bfloat16
Training Setup	
Total Epochs	25
Training Steps	175
Actor Global Batch Size	128
Critic Global Batch Size	256
Micro Batch Size (Actor)	1
Micro Batch Size (Critic)	4
Optimization	
Learning Rate	1e-6
Optimizer	AdamW
Weight Decay	0.01
Beta1, Beta2	0.9, 0.999
Gradient Clipping	1.0
DAPO Algorithm	
KL Coefficient	0.01
KL Penalty	low_var_kl
Disable KL	True
Clip Ratio Low	0.2
Clip Ratio High	0.28
Clip Ratio Dual	3.0
Reward Function	
Format Weight	0.2
Max Response Length	2048
Overlong Penalty Factor	0.5
Generation Config	
Temperature	1.0
Top-p	1.0
Rollout Samples	5

Figure 13: Validation reward curves during **MomaGraph-R1** training.

T3 Multi-step or preconditioned tasks: e.g., making coffee (pick up a cup → add water → start the coffee machine).

T4 Dynamic verification tasks: e.g., when the target object is missing, the system must perform *graph-based replanning* and identify *alternative interactive objects*.

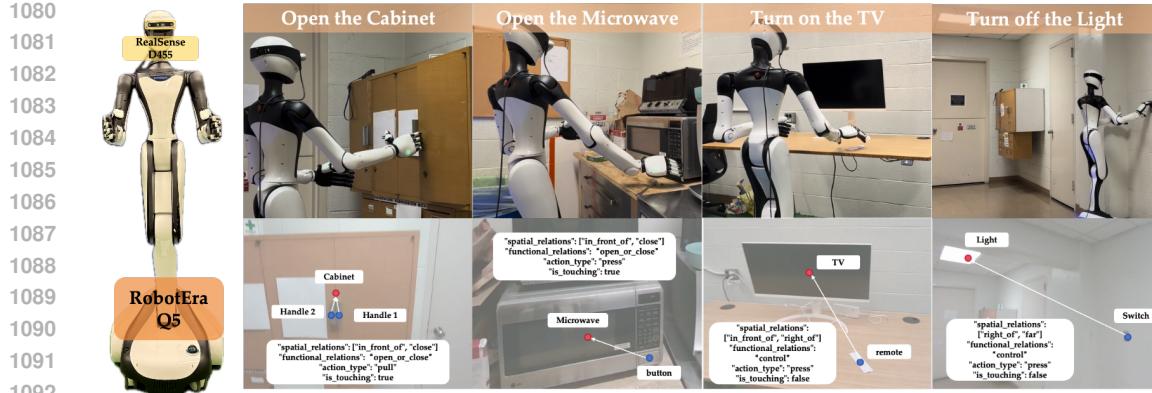


Figure 14: Real-world robot execution of household tasks.

A.5 REWARD WEIGHT SENSITIVITY STUDY

We follow the original DAPO implementation in the EasyR1 framework for default settings of w_a and w_l in Eq. 2 of the main paper. We conduct a sensitivity study by varying (w_a, w_f, w_l) around the default configuration:

Setting ID	w_a	w_f	w_l	BLINK	MomaGraph-Bench (Overall)
A	0.5	0.5	0.5	61.3	68.2
B	0.7	0.3	0.5	63.1	70.9
C	0.8	0.2	0.7	63.7	71.2
Default	0.8	0.2	0.5	63.5	71.6

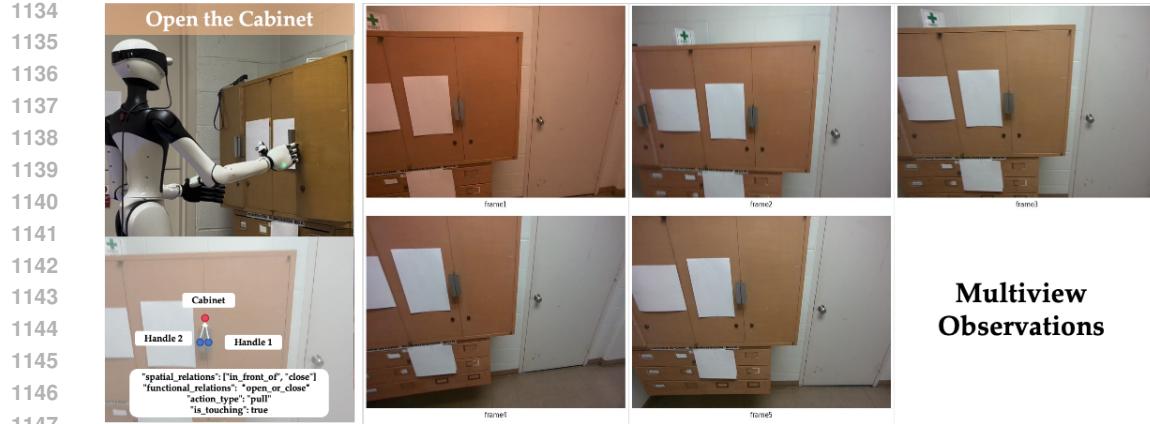
Table 6: Sensitivity analysis of reward weights (w_a, w_f, w_l) in our DAPO training. The model’s performance remains stable across different weight configurations.

As shown in Table 6, the model’s performance remains stable across these weight configurations, with variations of less than 2.4% on BLINK and 3.4% on MomaGraph-Bench. This indicates low sensitivity to reward-weight choices and demonstrates the robustness of our training approach.

A.6 DETAILED REAL-WORLD DEMONSTRATIONS.

To provide a closer look into the behavior of our system, this section presents fine-grained real-world examples. We illustrate how the model processes raw images captured in realistic household environments, transforms them into task-oriented scene graphs, and generates corresponding planner outputs. These case studies highlight the system’s ability to capture subtle details, encode them into structured graphs, and reason over them to produce actionable plans.

To validate the effectiveness of our approach in real-world settings, we deploy the system on a mobile manipulator to perform a variety of everyday tasks, as shown in Fig. 14. These tasks span multiple functional categories, such as turning off a light, opening a microwave, turning on a TV, and opening a cabinet. In each case, the robot leverages the predicted spatial-functional scene graph to plan and execute a sequence of actions without task-specific fine-tuning. The successful completion of these tasks demonstrates the system’s ability to generalize from structured graph representations to real-world interaction scenarios, highlighting its potential for practical household assistance.



MomaGraph-R1 Answer:

Scene Graph Analysis:

First, I understand the task: "Open the cabinet." Then, I identify the key objects needed: two handles and a cabinet. Next, I analyze their spatial relationships: knob1 is in front of and close to the cabinet, while knob2 is in front of and close to the cabinet, requiring a "pull" action for opening/closing operations.

Answer: {"task_instruction": "Open the cabinet.", "nodes": ["handle1", "handle2", "cabinet"], "edges": [{"functional_relationship": "openorclose", "object1": "handle1", "object2": "cabinet", "spatial_relations": ["in_front_of", "close"], "is_touching": true}, {"functional_relationship": "openorclose", "object1": "handle2", "object2": "cabinet", "spatial_relations": ["in_front_of", "close"], "is_touching": true}], "action_type": "pull", "function_type": "open_close_control"}

Action Sequence:

1. Approach the target area and identify the cabinet.
2. Locate the handle1, which is in front of and close to the cabinet.
3. Grasp the handle1 and pull it to the right.
4. If the cabinet does not open, locate the handle2, which is in front of and close to the kitchen cabinet.
5. Grasp the handle2 and pull it to the left.
6. Verify that the kitchen cabinet is now open.

Figure 15: Real-world example of **MomaGraph-R1** performing the task "Open the Cabinet." From multiview images, the system generates a scene graph capturing spatial-functional relations and outputs the corresponding action plan.

1188 Turn off the Light
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

Multiview Observations

MomaGraph-R1 Answer:

Scene Graph Analysis:

First, I understand the task: "Turn off the light." Then, I identify the key objects needed: a light switch and a light. Next, I analyze their spatial relationships: the light switch is to the right of and far from the light, requiring a "press" action to turn off the light.

Answer: {"task_instruction": "Turn off the light.", "nodes": ["light switch", "light"], "edges": [{"functional_relationship": "control", "object1": "light switch", "object2": "light", "spatial_relations": ["right_of", "far"], "is_touching": false}], "action_type": "press", "function_type": "device_control"}

Action Sequence:

1. Approach the target area: Move towards the light switch, which is located to the right of and far from the light.
2. Identify the key objects mentioned in the scene graph: Locate the light switch and the light.
3. Press the light switch: Use your hand to press the light switch.
4. Verify the task is completed: Check if the light is off by looking at the light.
5. Confirm the task completion: Ensure that the light is off, indicating that the task "Turn off the light" has been successfully completed.

Figure 16: Real-world example of **MomaGraph-R1** performing the task "Turn off the light." From multiview images, the system generates a scene graph capturing spatial-functional relations and outputs the corresponding action plan.

1255 **MomaGraph-R1 Answer:**

1256 Scene Graph Analysis:

1257 First, I understand the task: "Open the microwave." Then, I identify the key objects needed: a microwave and a
1258 microwave button. Next, I analyze their spatial relationships: the microwave button is in front of and close to the
1259 microwave, requiring a "press" action for opening/closing operations.

1260 Answer: {"task_instruction": "Open the microwave.", "nodes": ["microwave button", "microwave"], "edges":
1261 [{"functional_relationship": "openorclose", "object1": "microwave button", "object2": "microwave", "spatial_relations":
1262 ["in_front_of", "close"], "is_touching": true}], "action_type": "press", "function_type": "open_close_control"}

1263 Action Sequence:

1. Approach the microwave door, which is in front of the microwave and currently closed.
2. Identify the microwave button and the microwave as the key objects mentioned in the scene graph.
3. Press the button of the microwave with your hand.
4. Verify that the microwave door is fully open.

1267 Figure 17: Real-world example of **MomaGraph-R1** performing the task "Open the microwave."
1268 From multiview images, the system generates a scene graph capturing spatial-functional relations
1269 and outputs the corresponding action plan.

1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

MomaGraph-R1 Answer:

Scene Graph Analysis:

First, I understand the task: "Turn on the TV." Then, I identify the key objects needed: a remote and a TV. Next, I analyze their spatial relationships: The remote is to the right of and in front of the TV, requiring a "press" action for activation.

Answer: {"task_instruction": "Turn on the TV.", "nodes": ["remote", "TV"], "edges": [{"functional_relationship": "control", "object1": "remote", "object2": "TV", "spatial_relations": ["in_front_of", "right_of"], "is_touching": false}, {"action_type": "press", "function_type": "device_control"}]}

Action Sequence:

1. Approach the target area: Move towards the TV and the remote, ensuring they are within reach.
2. Identify the key objects mentioned in the scene graph: Locate the remote and the TV.
3. Hold the remote: Use your hand to grasp the remote, ensuring it is in your control.
4. Aim the remote at the TV: Position the remote in front of the TV, making sure it is close enough to the TV's surface for effective control.
5. Press the power button: Locate the power button on the remote and press it firmly. This action should turn on the TV.
6. Verify the task is completed: Check if the TV is turned on by looking for the power indicator light or by attempting to change channels or adjust the volume.

Figure 18: Real-world example of **MomaGraph-R1** performing the task “Turn on the TV.” From multiview images, the system generates a scene graph capturing spatial–functional relations and outputs the corresponding action plan.