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Abstract

Despite the recent progress in video generative models, ex-
isting state-of-the-art methods can only produce videos last-
ing 5-16 seconds, often labeled “long-form videos”. Fur-
thermore, videos exceeding 16 seconds struggle to main-
tain consistent character appearances and scene layouts
throughout the narrative. In particular, multi-subject long
videos still fail to preserve character consistency and mo-
tion coherence. While some methods can generate videos
up to 150 seconds long, they often suffer from frame re-
dundancy and low temporal diversity. Recent work has
attempted to produce long-form videos featuring multiple
characters, narrative coherence, and high-fidelity detail.
We studied 32 papers on long-video generation to identify
key architectural components and training strategies that
consistently yield these qualities. We also construct a com-
prehensive novel taxonomy of existing methods and present
comparative tables that categorize papers by their architec-
tural designs and performance characteristics.

1. Introduction
The advent of diffusion-based models DDPM [27] and
DDIM [65], together with recent advances in large lan-
guage models [5], has laid the foundation for cinematic
long-form video generation and AI content creation. High-
quality, realistic video generation now underpins applica-
tions in education [73], marketing [101], autonomous driv-
ing [85], gaming [51], entertainment [41], robotic learning

[36], medicine [90], and virtual reality [94]. These model-
ing developments produce large volumes of synthetic video
data that benefit all of the aforementioned domains. Such
data can support educational content, drive task-specific ap-
plications, or facilitate training of machine learning models.

Video generation poses greater challenges than text or
image generation. It incorporates temporal complexity
alongside spatial complexity, ensuring frames’ consistency,
which is a key distinction from image generation. Conse-
quently, beyond 16 seconds, autoregressive methods accu-
mulate quality degradation, leading to inconsistencies, vi-
sual artifacts, or other perceptual errors [89]. Another lim-
itation is the high memory requirements and computational
resources required for video generation, as in the spatiotem-
poral attention [3, 16, 79].

Video datasets that can be used commercially are very
limited, which further hampers progress. Most public
datasets require commercial licenses e.g., MovieBench
[86], Koala-36M [74], CelebV-HQ [106], Panda-70M [8],
HD-VG-130M [77] and MiraData [39], impeding industry-
driven innovation. Long-form video generation demands
realistic clips with detailed annotations to capture full nar-
rative scenes. However, existing open-source datasets typi-
cally contain only a few seconds of footage. Moreover, cru-
cial metadata such as shot type, camera motion, character
emotions, background context, and action labels are rarely
provided, necessitating custom dataset creation and cura-
tion. Richly annotated datasets, as in MovieBench [86], in-
clude details about the background, characters, camera shot
type, and camera motion. All of these annotation details
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Figure 1. Architectural taxonomy of long-video generation methods. These trees were selected because together they span the key axes of
temporal decomposition, compression, personalization scope, narrative structure, and openness that govern modern long-video synthesis.
(a) Keyframes-to-Video: two-stage generating images as keyframes followed by motion pipelines that scale to minute-long clips (b)
Discrete Temporal Chunks: constant-memory, parallel decoding of N-frame blocks (c) High Compression: heavy latent down-sampling
for real-time, low-power inference (d) Flattened 3D One-Shot: end-to-end full-tensor synthesis: 1. Foundational: joint spatiotemporal
prior for fixed-length clips; 2. Single-Subject: adapters for identity consistency and faithful individual likeness; 3. Multi-Subject: dedicated
per-entity fusion modules for coherent multi-character scenes; 4. Multi-Shot: shot-level segmentation for structured scene planning (e)
Token-Stream Autoregressive: unified text-video token decoding with maximal modality flexibility (f) Closed-Source: proprietary
systems that set the current quality ceiling.

of the dataset would improve text-to-video alignment and
prompt adherence as per their benchmark results. In ad-
dition, the same dataset includes high-quality long videos,
leading to the capability of generating longer videos.

Maintaining character appearance consistency over time
poses a challenge [68]. Camera-relative character motion
alters scale and density, disrupting visual continuity [4]. En-
suring temporal scene consistency during character move-
ment is also critical [92]. Supporting multiple characters
while preserving consistency is even more demanding [46].
Abrupt scene transitions hinder coherent narrative genera-

tion [88]. Enforcing physical plausibility and accurate in-
teractions further complicates video synthesis [95].

In this survey, we highlight the core architectural ele-
ments and training methodologies that reliably address the
primary obstacles in video generation. We introduce a
foundational framework that identifies and recommends a
set of novel, high-potential components whose integration
can overcome these challenges and enable the synthesis of
longer, coherent, and visually compelling videos.

Our contributions in this paper are summarized as:

1. Comprehensive Taxonomy and Architectural Back-
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bone: We introduce a taxonomy tree in Section 2 that or-
ganizes video-generation methods by their architectural
focus, and Table 1 presents a detailed comparison of the
core components used in state-of-the-art models.

2. Architectural Advances: We survey emerging design
patterns in video generation—covering training objec-
tives, backbone networks, text encoders, VAE variants,
positional embeddings, and other core modules. Sec-
tion 3 distills these components to guide the next gen-
eration of foundational video-diffusion models.

3. Datasets and Evaluation Metrics: We identify under-
explored cinematic and long-form video datasets with
high potential, and catalog the evaluation metrics re-
cently adopted by the community (see Appendix).

2. Long Video Generation Architectural Styles
We organize video-generation research into 6 distinct tax-
onomies (Fig. 1), and for each taxonomy tree we provide a
detailed analysis along with principled guidelines for select-
ing the most suitable architectural paradigm. For example,
a category like Keyframes-to-Video focuses on generating
the video through keyframes images. While a category like
discrete temporal chunks, focuses more on dividing the gen-
eration into multiple smaller generations stitched together.

2.1. Keyframes-to-Video
Unlike one-shot text-to-video methods, several recent
works [12, 28, 49, 87, 100, 104] employ a two-stage gen-
eration pipeline. For example, KeyVID [80], unlike oth-
ers, uses audio-to-video modality. It first partitions the au-
dio stream into audio latent keyframe segments and then
synthesizes video for each segment. Likewise, StoryDif-
fusion [104] decomposes the narrative text into a series of
sub-prompts, generates a keyframe image per sub-prompt,
and uses a motion-prediction module to interpolate these
keyframes into a continuous video sequence. This two-
stage paradigm enables scalable long-duration video syn-
thesis by producing keyframes, followed by motion inter-
polation or generation, and stitching the resulting segments
into arbitrarily long videos. This methodology ensures the
consistency of the whole video semantically. However, the
sequential nature of keyframe and video synthesis incurs
extra latency compared to end-to-end approaches, and re-
quires distinct text-to-image and text-to-video models when
a single model does not natively support both modalities.

2.2. Discrete Temporal Chunks
In this approach, a video is partitioned into disjoint temporal
chunks of N frames (e.g., 8, 16, or 25). Each chunk is gen-
erated independently and then concatenated to reconstruct
the full sequence. By capping memory usage at the chunk
level, this scheme significantly reduces peak GPU require-
ments and naturally supports chunks parallel processing.

The primary drawback is the potential for artifacts at chunk
boundaries. Several recent studies employ this chunk-based
paradigm [11, 18, 67]. For example, MAGI-1 [67] par-
titions videos into 24-frame segments and holistically de-
noises each one. The denoised output then conditions the
subsequent segment, with four segments processed con-
currently. CA2-VDM [18] further demonstrates that such
chunked training schedules often require additional epochs
to learn the diverse chunked boundaries across segments.

2.3. High Compression
Most existing video-generation models demand high-end
GPUs at inference. To address this, several recent
works [24, 38, 45, 98] have aggressively reduced model
size and parameter count. LTXVideo [24] introduces Video-
VAE, a variational autoencoder that compresses spatiotem-
poral dimensions by 192× into a 128-channel latent tensor
without patchification, reducing token count and enabling
low-latency inference; however, this level of compression
sacrifices fine-grained texture details and subtle motions,
and can introduce artifacts in regions of rapid movement.
FramePack [98] enforces a fixed context length via rela-
tive temporal weighting, assigning 50% to the most recent
frame, 25% to the prior, 12.5% to the next. This supports ef-
ficient extension across arbitrary durations but often yields
outputs with limited diversity in background and motion.

2.4. Flattened 3D Space-Time (One-Shot)
The flattened 3D space–time one-shot approach regards the
entire video as a single spatiotemporal tensor and synthe-
sizes it in a single forward pass. By folding the temporal
axis into a unified spatial latent and applying 3D convo-
lutional diffusion-transformer blocks, these models capture
cross-frame dependencies to produce high-fidelity clips of
fixed duration as in [28, 97]. However, this end-to-end for-
mulation imposes heavy GPU requirements, which in turn
limit achievable clip length and spatial resolution [71]. It
ensures semantic coherence across frames while effectively
modeling long-range motion correlations. Most of the video
generation models are using one-shot techniques. However,
one-shot models differ in their focus as WAN2.1 [71] aims
to build a foundational model. On the other side, Phantom
[48] focuses more on subject personalization.

2.4.1. Foundational One-Shot
Foundational one-shot models formalize blueprint for treat-
ing the entire video as unified spatiotemporal tensor and
generating it in a single pass. They learn a joint prior
over the full video tensor via 3D UNet Diffusion, DiT, or
MM-DiT backbones [17, 47, 53, 61], enabling one-shot
video synthesis. They use a 3D VAE that compresses each
clip and converts it into a dense latent grid. Papers like
[2, 28, 37, 42, 54, 71, 97] focus on creating Foundational
models. For instance, WAN2.1 [71] uses a single DiT
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instead of using MM-DiT; however it complements by us-
ing a cross-attention module. While HunyuanVideo [42],
employs a dual-stream methodology MM-DiT that converts
separate text and video streams to flattened 3D space-time.

2.4.2. Single-Subject Personalization
Single-subject personalization methods adapt a base one-
shot video generator to faithfully reproduce a target indi-
vidual’s appearance given only a one or a few reference
frame as in [19, 23, 48, 55, 96]. They achieve this by in-
jecting or fine-tuning compact identity modules such as: (i)
Embedding adapters inject lightweight projection modules
into a frozen generator to encode subject appearance. Phan-
tom [48] fine-tunes these adapters on a handful of exemplar
frames to capture identity style, while MovieGen [55] ap-
plies per-subject adapters to preserve facial details across
temporal generation. (ii) Textual inversion networks opti-
mize new pseudo-token embeddings that encapsulate per-
sonalized identity concepts. DreamVideo [19] learns these
embeddings from static images to steer motion-conditioned
synthesis, and CogVideoX [96] extends inversion across
video frames for enhanced temporal consistency. (iii) LoRA
layers [30] insert trainable low-rank matrices into attention
modules, enabling efficient adaptation of large backbones.
AnimateDiff [23] leverages LoRA adapters in both U-Net
and transformer blocks to personalize motion and appear-
ance with minimal compute, avoiding full-model retraining.

2.4.3. Multiple-Subject Personalization
Multi-subject personalization extends one-shot video syn-
thesis to scenes with multiple entities by integrating mod-
ules that encode and fuse each subject’s identity separately
as in [6, 10, 31, 33]. Multi-subject personalization can be
organized into four modular strategies: (i) Cross-Attention
Fusion inserts per-entity attention heads into a frozen dif-
fusion backbone so that each subject’s image and text de-
scriptor attend separately. Video Alchemist binds each ref-
erence via dedicated cross-attention layers to support open-
set multi-entity conditioning without fine-tuning [10]. (ii)
Element Embedding Fusion encodes scene elements into a
unified latent space and injects them via fusion modules for
coherent multi-entity synthesis. SkyReels-v2 learns an im-
age–text joint embedding that precisely assembles multiple
characters and backgrounds in one pass [6]. (iii) Decou-
pled Concept Embeddings learns independent latent vectors
for each subject to avoid identity crosstalk, injecting them
through diffusion-transformer adapters. ConceptMaster en-
forces strong per-entity disentanglement by adapting low-
rank concept tokens [33]. (iv) Multi-Modal Adapter Fu-
sion layers modality-specific adapters (text, image, audio)
into a unified fusion pipeline to preserve subject consistency
across modalities. HunyuanCustom uses LLaVA-based
text–image fusion and AudioNet adapters to maintain co-
herent identities in multi-subject, multi-modal videos [31].

2.4.4. Multi-Shot Narrative Planning

Multi-shot narrative planning refers to generating video
clips segmented into shots or scenes, ensuring coherent
transitions and consistent visual elements across cuts as in
[6, 20, 32]. (i) End-to-end native planning as in Seedance
[20]. This method integrates shot segmentation within its
diffusion-transformer backbone via Multishot MM-RoPE
and per-shot captions, producing all shots in a single pass
with implicit cut boundaries. (ii) Planner-on-top architec-
ture as in StepVideo [32]. This methodology adds a Sto-
ryAnchors layer on top of its Step-Video-T2V backbone; an
LLM expands the prompt into a script, StoryAnchors pre-
dicts key “anchor” frames for each shot, and the base model
animates between anchors to yield a coherent multi-shot se-
quence. (iii) LLM-directed autoregressive planning as in
SkyReels-V2 [6]. This architecture uses a multimodal lan-
guage model to decompose the user prompt into a sequence
of shot instructions, then a diffusion-forcing autoregressive
generator renders shots one after another; supporting hard
cuts, soft dissolves, and infinite-length film generation.

2.5. Token-Stream Autoregressive-Token

This method formulates video generation as next-token pre-
diction over a unified text–video token stream. Specifi-
cally, a decoder-only transformer with causal attention au-
toregressively predicts each token conditioned on all previ-
ously generated tokens as in [64, 81]. VideoPoet [64] adopts
MagViT-v2 [97] to tokenize video clips, whereas Loong
[81] leverages a causal 3D-CNN encoder followed by vec-
tor quantization clustering to produce discrete video tokens.
Both then apply a decoder-only transformer to predict the
subsequent token in the combined sequence and finally em-
ploy super-resolution to recover spatial details. Despite
their flexibility, these approaches incur high-frequency de-
tail loss and compression artifacts in fine details. The need
to attend over all prior tokens imposes substantial memory
and compute overhead, leading to slow inference. More-
over, early tokens are harder to predict and error accumu-
lates across which further degrades long-range temporal co-
herence and visual fidelity.

2.6. Closed-Source Video Generation

Proprietary video generation systems have pushed the
boundaries of realism and complexity. Kling2.1 [66], Run-
way Gen-3 [59], MiniMax Hailuo [43], Pika 2.2 [35],
Sora [52], and MovieGen [55] have established a substantial
performance gap between closed-source and open-source
approaches. Recently, Google’s Veo3 [22] and ByteDance’s
Seedance 1.0 [20] generate high-fidelity videos that adhere
to physical laws, support complex multi-subject scenes,
capture intricate pose dynamics and cinematic camera
movements, and maintain character consistency.
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Table 1. A comprehensive backbone table of recent video generation frameworks, organized by their core training objectives, that reveals
emerging design patterns and architectural innovations across state-of-the-art systems.

Training
Objective

Model Backbone Text-Visual
Tower

Visual-Video
Tower

Positional
Encodings Params Resolution

Seedance [20] MM-DiT Qwen2.5-14B VAE 3DRoPE
MM-RoPE – 720p, 1080p

HunyuanVideo-
Avatar [12]

MM-DiT LLaVA Two Hunyuan
3D VAE 3DRoPE 13B 704p, 1216p

MAGI-1 [67] DiT T5 Transformer-based
VAE 3DRoPE 4.5B–24B 720p

HunyuanCustom [31] Hunyuan-MM-DiT LLaVA Two Hunyuan
3D VAE 3DRoPE 13B 512p, 720p

Veo3 [22] DiT – – – – 1080p

SkyReels-v2 [6] Wan-DiT umT5 Wan VAE
Learnable
Frequency
Embeddings

1.3B, 5B, 14B 256p, 360p,
540p, 720p

Open-Sora 2.0 [54] Flux (MM-DiT) T5-XXL,
CLIP-Large

HunyuanVideo
3DVAE,
Video Deep
Compression
Autoencoder

3DRoPE 11B 256p, 768p

WAN2.1[71] DiT + Cross-attn umT5,
Qwen2-VL Wan-VAE

Standard
Sinusoidal
Spatial positional
Encodings

1.3B, 14B 480p, 720p

Flow-
Matching

VACE [37] Wan-T2V-14B, LTX-
Video-2B

Inherited Inherited Inherited 2B, 14B 480p, 720p

Phantom [48] MMDiT T5
Dinov2 (Ref. Img)

(CLIP, VAE)
(Qwen2.5, 3DVAE) 3DRoPE 1.3B, 14B 480p, 720p

StepVideo [32] DiT Hunyuan-CLIP,
Step-LLM Video-VAE 3DRoPE 30B 544p

ConceptMaster [33] Transformer-based
latent diffusion

T5
CLIP 3DVAE 3D self-attention – –

VideoAlchemist [10] DiT
DiT Text Encoder,
CLIP,
Arcface

(CogVideoX-5B VAE,
DiT Tokenizer),
(CLIP ViT-L/14,
DINOv2 ViT-L/14)

RoPE 5B 256p

HunyuanVideo [42] Flux (MM-DiT)
Hunyuan MLLM
Decoder,
CLIP

3D VAE 3DRoPE 13B 720p

LTX-video [24] DiT + Cross-attn DiT Text Encoder Video-VAE RoPE 2B 512p

MovieGen [55] LLaMa3 Design

UL2,
ByT5,
Long-prompt
MetaCLIP

TAE,
VAE (Spatial
Upsampler)

Factorized 30B 256p, 1080p

Pyramid Flow [38] MM-DiT –
Pyramid Stages
Autoregressive
Temporal Pyramid

– – 768p

Sora [52] DiT – – – – 480p, 1080p

Score-
Matching

SVD [29] 3DUNet CLIP SD 2D VAE – 1.5B 512p

I2VGen-XL [100] 3DUNet CLIP VQGAN
Standard VLDM
positional
embeddings

– 64p, 720p

StoryDiffusion [104] UNet CLIP SD 2D VAE – 1B, 4B 512p

DDIM

DreamVideo [19] 3DUNet CLIP LDM VAE
Standard
Transformer
positional embed

85M –

Ca2-VDM [18] UNet T5 SD 2D VAE

SinusoidalSpatial
Positional Embed,
Temporal
Positional Embed
with cyclic-shift
mechanism

– 256p

Lumiere [2] Space-Time U-Net Imagen T5-XXL Pixel space – – –

DDPM

SEINE [11] LaVie-UNet SD SD VQGAN/VQVAE – – 320p

AnimateDiff [23] 3DUNet CLIP,Conditioned
Cross-Attention

SD VAE

Standard
Transformer
Temporal
Positional Embed

– 512p

VDM [28] 3DUNet – Pixel space Relative Position
Embed – 64p, 128p
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Table 1. Continued

Training
Objective

Paper Backbone Text-Visual
Tower

Visual-Video
Tower

Positional
Encodings Params Resolution

V-Prediction
& Zero-SNR

CogVideoX [96] DiT + Cross-attn T5 3DVAE 3DRoPE 2B, 5B 768p

Reconstruction
Loss

Open-Sora Plan [45] UNet Skiparse De-
noiser

mT5-XXL Wavelet-Flow VAE 3DRoPE – 256p

Next-Token
Prediction

Loong [81] LLaM decoder design – 3DCNN + Clustering
Vector Quantization

Causal Unidirect.
Attention Across
Token Sequence

700M, 3B, 7B –

Autoregressive
Multimodal
Tokenization

VideoPoet [64] Decoder-only Trans-
former LLM

T5 MAGVIT-V2
Standard
Transformer
Positonal Embed

300M, 8B 128p

Masked
Token

MAGVIT-v2 [97] MLLM – 3DCNN-VQVAE – 300M 256p, 512p

3. Long Video Generation Architectural Mod-
ules Recommendations

In this section, we illustrate the important components of
the video generation architecture and we recommend the
usage of these components. For example, we discuss the
usage of text-encoder in literature and recommend using
MLLM, while recent research used variations of T5 along-
side CLIP. We also recommend using MeanFlow as a train-
ing objective for the diffusion model. While for the archi-
tectural main backbone, we recommend using MM-DiT and
Flux-MM-DiT. Even though we recommend specific com-
ponents, the architecture can be different based on the tax-
onomy discussed in Figure 1. A summary of this survey is
shown in Table 1 comparing the key architectural compo-
nents used by each literature.

3.1. Text-Visual Encoder

Text-visual encoder is used to extract the text embeddings
and extract the similarity score between text and image em-
beddings. It is common between the literature to use CLIP’s
text-visual encoder [56] in conjunction with T5, T5-XXL
or umT5 [13, 14, 57] as they provided robust text–to-video
alignment by extracting semantically rich embeddings. Re-
cently, HunyuanVideo [42] replaced T5 with a Multimodal
Large Language Model (MLLM) reaching better alignment
between visual features and text embeddings. The equation
of the clip encoder is as follows:

hI = ViTI
(
PatchEmbed(I)

)
, (1)

hT = TrT
(
TokEmbed(T )

)
, (2)

Lclip = − log
exp

(
τ−1h⊤I hT

)∑
j exp

(
τ−1h⊤I h

(j)
T

) . (3)

Where I is an RGB image, T is the caption text, hI , hT are
the CLS embeddings, τ is a temperature scalar, and Lclip is
the contrastive loss. While for T5 equations:

HE = T5-Enc
(
Etok(Tsrc)

)
, (4)

hD,i = T5-Dec
(
Etok(Y<i), HE

)
, (5)

LT5 = −
∑
i

log[softmax(WOhD,i) yi ] . (6)

Where Tsrc are the input tokens, Y are the target tokens with
prefix Y<i, Etok is the token–embedding table, HE is the
encoder context, hD,i is the decoder hidden state at step i,
WO is the output projection, and LT5 is the autoregressive
cross-entropy loss.

3.2. Diffusion Training Objective
Diffusion models have demonstrated remarkable success in
high-quality image synthesis, laying the groundwork for
video generation by leveraging denoising diffusion models
such as DDPM [27] and DDIM [65]. The introduction
of a latent representation via VAEs further reduced com-
putational cost and enabled more efficient sampling as in
[60]. Flow matching methods have emerged as a more ro-
bust and efficient alternative to denoising diffusion samplers
like DDPM and DDIM by directly regressing continuous-
time vector fields that transport noise to data, thus reducing
reliance on multi-step noise schedules [17, 47]. More re-
cently, MeanFlow [21] replaces instantaneous ordinary dif-
ferential equation (ODE) velocities with a learned average
velocity field. On Kinetics-400, it achieves an FVD of 128,
compared to 142 for flow-matching. On UCF-101, it attains
an SSIM of 0.85 [82], exceeding flow-matching’s 0.82 [15].
It also achieves an LPIPS of 0.12 [99], improving on flow-
matching’s 0.15 [17, 47]. MeanFlow reduces inference time
by 4× compared to flow-matching. It also narrows the qual-
ity gap with multi-step diffusion models [76]. Based on
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these results, we recommend using MeanFlow for efficient,
high-quality video generation.

Flow-matching formulas are as follows:

ut→t+1 = F
(
h
(t)
I , h

(t+1)
I ; θF

)
, (7)

Lflow =
∥∥ut→t+1(p)− ût→t+1(p)

∥∥2
2
. (8)

Where h
(t)
I is image feature at frame t, ut→t+1 is the pre-

dicted optical flow, ût→t+1 is the ground-truth flow, F is
a flow network with parameters θF , and Lflow is L1 loss.
While for MeanFlow formula:

ū =
1

(T − 1)HW

T−1∑
t=1

HW∑
p=1

ut→t+1(p). (9)

Where T is video length in frames, H,W are frame height
and width, respectively, p is linear pixel index, ut→t+1(p)
is the optical-flow vector at pixel p between frames t and
t+1, ū is the spatial–temporal average flow.

3.3. Variational Auto Encoder (VAE)
VAE is crucial in learning the compressed latent format of
original visual data. In video generation, the 3D VAE cap-
tures complex spatio-temporal dependencies. Some designs
choose to replace standard VAEs with VQ-VAEs [58, 70]
to enhance the compression and construction. Other designs
[24] modified the VAE decoder to fit-in a last denoising step
while converting the latents to pixels. 3D VAE is the most
common among the top-performing models in the literature.

z ∼ qϕ(z |X) = N
(
µϕ(X),diag σ2

ϕ(X)
)
, (10)

L3DVAE = Eqϕ
[
∥Dψ(z)−X∥22

]
+ β DKL

(
qϕ∥p(z)

)
.
(11)

Where X is the ground-truth video tensor, qϕ is the proba-
bilistic encoder, µϕ, σϕ are the per-frame Gaussian param-
eters, z is the latent code, Dψ is the 3D decoder, p(z) is the
standard normal prior, β is the KL-weight, L3DVAE is the
reconstruction plus regularization loss.

3.4. Dual Variational Auto Encoder
Recent architectures decouple appearance and motion by
using two distinct encoders. One for static image features
and another for temporal dynamics like in [10, 12, 31, 48,
54, 55]. This enables specialized feature learning and re-
ducing interference between modalities. Models like Open-
Sora 2.0 [54] adopt this dual-stream design to lower train-
ing costs by 5–10× while maintaining state-of-the-art video
quality. Similarly, VideoAlchemist [10] demonstrates built-
in multi-subject personalization and improved identity con-
sistency without test-time fine-tuning by leveraging sepa-
rate foreground and background encoding streams.

3.5. Attention Mechanism
Video Diffusion Models (VDM) extended 2D UNet ar-
chitecture [61] to 3D UNet, modeling spatio-temporal
(2D spatial + 1D temporal layer) dependencies [28].
Subsequent methods such as AnimatedDiff [23], Mag-
icVideo [103], ModelScope Text-to-Video [72], Stable
Video Diffusion (SVD) [29], and CogVideoX [96] adopted
a hybrid strategy by integrating 1D temporal attention
blocks into a 2D spatial backbone of the attention, yield-
ing full 3D attention for frame coherence. Despite these ad-
vances, early diffusion-based video systems typically gen-
erated 2–5 second clips with artifacts and limited long-term
consistency, indicating that simple 2D + 1D temporal mod-
ules remain insufficient for robust motion modeling.

Recent models with robust performance as in Seedance
1.0 [20], they decoupled the attention spatial and tempo-
ral layers, where spatial layers perform global self-attention
within each frame and temporal layers apply window-
partitioned 3D self-attention across time to link frames
causally. Seedance incorporates specialized windowed at-
tention modules in temporal layers, partitioning frames
into local blocks that attend within sliding windows, yield-
ing 10× faster inference on 1080p benchmarks. Another
top performing method by MAGI-1 [67], employs block-
causal self-attention, which performs unrestricted full atten-
tion within each fixed-length video chunk while applying
causal masks across chunk boundaries. MAGI-1 integrates
a Flexible-Flash-Attention kernel on top of FlashAttention-
3 [63], optimizing memory access patterns and reducing
GPU overhead during attention computation. MAGI-1 fur-
ther accelerates computation by computing shared query
projections once and feeding them into spatial-temporal
self-attention and cross-attention blocks in parallel.

3.6. Positional Encoding
WAN2.2 [71] retains standard sinusoidal encodings to re-
duce computational overhead while LTX-Video [24] applies
one-dimensional rotary positional embeddings (RoPE) over
flattened tokens for real-time inference. Recently, Three-
dimensional rotary positional embeddings (3D RoPE) that
rotate feature pairs across time and space have been used by
HunyuanVideo [42], MAGI-1 [67], StepVideo [32], Hun-
yuanCustom [31], Phantom [48] and Open-Sora 2.0 [54]
to enhance motion coherence and length extrapolation.
Seedance [20] introduces a multi-modal RoPE (MM-RoPE)
by appending it to ordinary 3D RoPE for caption tokens,
which tightens text–video alignment in multi-shot genera-
tion which proves to be a promising technique.

3.7. Diffusion-based Transformers
The transformer-based backbones such as Diffusion Trans-
formers (DiT) [53], Latte [50], PixArt-α [7] generate bet-
ter images and videos than UNet backbones. DiT operating

7029



on latent image patches, leveraging global cross-attention
for conditioning and yielding to high-fidelity videos as in
MAGI-1 [67], StepVideo [32], Wan2.2 [71], LTX-Video
[24] and VideoAlchemist [10]. Proceeded with MultiModal
Diffusion Transformer (MM-DiT) [17], a dual-stream DiT
architecture, as the text embeddings are concatenated with
the visual embeddings to have a linked text-visual attention
which yields stronger text–video alignment and lower FID
at the cost of increased parameter count and inference over-
head as in Seedance 1.0 [20], Phantom [48] and Pyramid-
Flow [38]. Another method is Flux-MM-DiT [84], which
augments MM-DiT with rectified flow residual modules to
enable one-step sampling and faster convergence, achiev-
ing comparable sample quality in far fewer denoising steps
while introducing additional architectural complexity as in
HunyuanVideo [42] and Open-Sora 2.0 [54].

3.8. Prompt Enhancement
User-supplied prompts are often short, whereas training
captions are multi-sentence and detailed, causing a distri-
bution mismatch that degrades video quality. To bridge
this gap, an LLM-powered prompt rewriting stage is added
into the text–visual tower. For example, Seedance leverages
Qwen2.5-Plus to expand concise user inputs with spatial,
lighting, and action modifiers [20]; HunyuanVideo-Avatar
uses LLaVA to paraphrase free-form queries into training-
style captions, reducing semantic drift [12]; and StepVideo
incorporates a bespoke Step-LLM module to structure
prompts into chunk-level directives, ensuring smoother mo-
tion and coherent long-form generation [32]. Models with-
out dedicated rewrite modules such as VACE [37] and
VideoAlchemist [10], rely solely on fixed text encoders. By
aligning rewritten prompts with the training caption distri-
bution, these enhancements sharpen visual detail, suppress
flicker, and unify style across video frames.

3.9. Story Agent
Operating at the narrative level, the story agent uses LLMs
to segment the input plot into scenes and shots, aligns char-
acters, locations, and camera cues across those shots, and
generates scene-specific prompts that preserve temporal co-
herence and multi-subject consistency. Following the ap-
proach of StoryDiffusion [104], MovieAgent [87], and Au-
toStory [49], these prompts drive an image-to-video stage
for each keyframe; the resulting clips are concatenated into
a seamless long-form video, yielding a decoupled architec-
ture in which prompt-level refinements boost frame quality
while the agent governs plot flow.

4. Conclusions and Future Work
Despite a narrowing performance gap between propri-
etary and open-source video generation systems, closed-
source solutions still lead in overall quality. Recent open-

source models such as HunyuanVideo [42] and Wan2.2 [71]
demonstrate that open frameworks can now generate realis-
tic, high-fidelity videos.

Our architectural analysis reveals that: (i) MM-DiT
and Flux-MM-DiT serve as the most effective backbones
for modern video diffusion (ii) Flow matching has sup-
planted DDIM and DDPM as the preferred diffusion train-
ing objective for realism (iii) MeanFlow generates promis-
ing results that may replace Flow-matching (iv) MLLMs
outperform T5 as text encoders (v) convolutional VAEs
with discriminator loss remain superior for image and video
encoding (vi) Dual VAE for image and video separately
showed superior results compared to one VAE for both (vii)
Dual usage of 3D RoPE and 3D MM-RoPE as positional
encodings yields better temporal coherence than traditional
sinusoidal embeddings (viii) LLM-driven prompt rewriting
consistently enhances generation quality.

The current limitations are observed as follows: (i)
Substantial memory and GPU requirements that limit model
scale and clip length (ii) A shortage of open-source long-
form video datasets suited to foundational generation tasks
(iii) Existing annotated datasets lack critical metadata, such
as camera shot styles, camera movements, and interpersonal
relationships (v) Inconsistent temporal coherence, where
frame-to-frame continuity breaks down in longer sequences
(vi) Lack of fine-grained control over semantics in object in-
teractions beyond coarse prompts (vii) Difficulty in model-
ing multiple subjects simultaneously with reference images,
resulting in identity inconsistencies and unrealistic interac-
tions (viii) Generated videos are very short between 5-16
seconds (ix) Lack of story coherent generated videos

Solutions for the creation of long-video generation
and future work: (i) Collect long-video open-source
dataset (ii) Define and annotate a hierarchical metadata
schema with four key pillars: narrative segments, cinematic
shot labels, character attributes (pose & emotion), and inter-
action graphs (iii) Quantization and pruning for the models
to overcome resources limitations (iv) Models distillation
to learn from teacher models (v) Integration of prompt en-
hancer (v) Dividing the prompt into story narration for the
coherence of the video (vi) Using multiple adapters for per-
sonalization consistency (vii) Repeating the reference im-
age across the spatiotemporal attention.

These insights collectively chart the progress in video
generation and highlight key directions for future research
aimed at bridging the remaining gaps.
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