
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

SatGuard: Concealing Endless and Bursty Packet Losses in LEO
Satellite Networks for Delay-Sensitive Web Applications

Anonymous Author(s)
Submission Id: 1935

ABSTRACT
Delay-sensitive Web services are crucial applications in emerging
low-earth orbit (LEO) satellite networks (LSNs). However, our real-
world measurement study based on SpaceX’s Starlink, the most
widely used commercial LSN today reveals that the endless and
bursty packet losses over unstable LEO satellite links impose signif-
icant challenges on guaranteeing the quality of experience (QoE)
of Web applications. We propose SatGuard, a distributed in-orbit
loss recovery mechanism that can reduce user-perceived delay by
completely concealing packet losses in the unstable and lossy LSN
environment from endpoints. Specifically, SatGuard adopts a se-
ries of techniques to: (i) correctly migrate on-board packet buffer
to support link local retransmission under LEO dynamics; (ii) effi-
ciently detect packet losses on satellite links; and (iii) ensure pack-
ets ordering for endpoints. We implement a SatGuard prototype,
and conduct extensive trace-driven evaluations guided by public
constellation information and real-world measurements. Our exper-
iments demonstrate that, in comparison with other state-of-the-art
approaches, SatGuard can significantly improve Web-based QoE,
by reducing: (i) up to 48.3% of page load time for Web browsing;
and (ii) up to 57.4% end-to-end communication delay for WebRTC.

1 INTRODUCTION
We are experiencing two major changes in today’s Internet. Upper
layer applications are marching to the new era of Web 3.0, driven by
a range of new technologies [34, 40]. Simultaneously, the underlying
network architecture is evolving from the land to outer space, stim-
ulated by the recent low earth orbit (LEO) satellite constellations.
Big companies, such as SpaceX [16], Telesat [17] and Amazon [6],
are planning and deploying satellite constellations (e.g., Starlink
and Kuiper) for global Internet access. These constellations, consist-
ing of a large number of broadband satellites equipped with laser
inter-satellites links (ISLs) [1, 14], ground-satellite links (GSLs), and
user-satellite links (USLs), extend the boundary of today’s Internet
and construct LEO satellite networks (LSNs) to provide low-delay
and high-speed Internet services ubiquitously [31, 37].

Web-based applications should be important scenarios in the
upcoming era of satellite Internet. Representative Web applica-
tions, such as Web browsing and Web-based real-time communi-
cation (e.g.,WebRTC [18]) are expected to provide good end-user
quality of experience (QoE) under LSNs. However, our real-world
measurements on Web applications in the operational Starlink LSN
plot a gloomy picture: while the low orbit altitude guarantees low
baseline propagation delay for LSN users, the inherent unstable
and lossy satellite links impose significant challenges on sustaining
good Web QoE. Since LEO satellites continuously move at high
velocity related to the earth surface, such inherent LEO dynamics
can result in endless and burst packet losses for transport endpoints.
Although the existing sender-side reliability control used in statue
quo Web applications can recover lost packets, retransmission from

the sender inevitably involves extra delay and high jitter which
can further hinder user-perceived Web experience (e.g., prolonging
Web page load time and user-perceived communication delay).

Existing approaches to accomplish fast loss recovery (and thus
reduce the user-perceived delay) can be classified into two major
categories. On one hand, many efforts [28, 32, 47, 61] proposed to
use network coding (e.g., forward error correction, FEC) to inject re-
dundant information in data packets on the source, and recover the
lost packets on the receiver without the need of sender-side retrans-
mission. However, due to the highly dynamic packet loss ratio, a
lower redundancy coding information may lead to recovery failure
while a higher redundancy one requires much additional bandwidth,
which is scarce in LSNs. Although recent studies have used ma-
chine learning technologies to predict packet loss rate [32, 41], the
used datasets can not reflect unique packet loss behaviors in LSN
scenarios (e.g., handovers in satellite systems and signal attenuation
caused by objects blocking the view of satellite terminals). On the
other hand, other works proposed link-local retransmission (LL-
ReTx) to buffer packets on intermediate network nodes, and re-send
lost packet locally. This idea is mainly implemented in either (i)
the transport layer [20, 22, 38, 42, 51] (i.e., intermediate nodes have
full transport-layer functions and maintain information for each
flow, thus splitting the end-to-end connection into segments) or
(ii) the link layer [10, 35, 52] (i.e., only buffering packets or frames
at the network interface and retransmitting them when any loss
is detected). However, due to the high LEO dynamics, frequent
disconnections and reconstructions of satellite links can disrupt the
retransmission process and limit the recovery efficiency.

In this paper, we propose SatGuard, a novel in-orbit loss re-
covery mechanism that can be deployed in operational LSNs to
effectively improve QoE for Web applications. SatGuard extends
the existing link local retransmission mechanism to address the
unique challenges caused by LEO dynamics and conceal packet
losses for endpoints. The core design of SatGuard incorporates
three key techniques: (i) leveraging predictable handover infor-
mation (e.g., ground-satellite connectivity and accurate handover
time) based on the global scheduler of LSN operators to correctly
migrate buffered content; (ii) dynamically configuring appropri-
ate packet loss detection parameters (i.e., timeout for LL-ReTx) for
land-based users served by different satellite beams to improve
recovery efficiency, and (iii) preserving the order of packets while
leaving LSNs without head-of-line blocking, which can reduce the
negative impacts of the disordered packets generated by LL-ReTx
(e.g., increasing jitter buffer greatly) on the upper-layer protocols.

We have implemented a SatGuard prototype upon Linux, and
built an LSN simulation environment based on public constella-
tion information and realistic Starlink data trace. SatGuard only
requires operator-side modifications, and can be deployed in oper-
ational LSNs by software upgrades on satellites, ground stations

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Anon. Submission Id: 1935

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

LEO Satellite Network

User

···

Satellite
Terminal

Terrestrial Internet

Inter-Satellite
Link(s)

Ingress
Satellite

Ground
Station

Web
Server

Ground-Satellite
Link(s)

Point of Presence

User-Satellite
Link(s)

Beams

Figure 1: A high-level architecture of today’s LSNs.

and satellite terminals, without the need to change user-side ap-
plication interface. Our extensive evaluations demonstrate that:
in comparison with other existing reliability control approaches,
SatGuard can: (i) reduce 99th percentile end-to-end delay by up to
59.8% and keep higher capacity utilization on average; and (ii) speed
up Web browsing time by up to 48.3% and reduce user-perceived
communication delay by up to 57.4% for WebRTC sessions.

In summary, main contributions in this paper can be concluded as
follows: (i) we conduct a real-world measurement study to identify
and analyze the performance issues suffered by representative Web
applications in emerging LSNs; (ii) we present SatGuard, an in-
orbit fast loss recovery mechanism which extends existing LL-ReTx
mechanisms to accomplish consistent low delay in unstable and
lossy LSNs and improve user-perceived QoE; and (iii) we implement
a SatGuard prototype and conduct extensive, real-data-driven
evaluations to verify the improvement on Web browsing and RTC.
We will release the source code of SatGuard.

2 BACKGROUND AND MOTIVATION
2.1 LEO Satellite Networks
Figure 1 plots a typical networking architecture that has been
widely used by today’s commercial LSNs such as SpaceX’s Star-
link [4]. At a high level, an LSN contains a space segment with a
large number of LEO broadband satellites, and a ground segment
consisting of geo-distributed ground stations (GSes) and satellite
terminals (dishy) [8, 9, 13, 15]. Satellites can be equipped with
laser inter-satellite links (ISLs) for inter-satellite communication,
be equipped with radio ground-satellite links (GSLs) for ground
communications, and further be connected to satellite terminals via
radio user-satellite links (USLs) consisting of multiple spot-beams.
When a user terminal accesses Internet services (e.g.,a Web server)
through the LSN, the user’s request is first forwarded to a ground
station through one (i.e.,via bent-pipe transparent forwarding [46])
or multiple satellites (i.e.,via ISL-based space routing [44]) and then
to a Point-of-Presence (PoP) of the Internet. Similarly, the server’s
response returns to the user terminal via the reverse path.

2.2 Understanding Web Performance in LSNs
To quantitatively understand the user-perceived experience of typi-
cal Web applications in emerging LSNs, we conduct a real-world
measurement study in Starlink, the currently most popular com-
mercial LSNs with more than 2 million subscribers globally [57].
Experiment setup.We deploy a vantage point with two laptops
in New York City (NYC). These two laptops connect to the Internet
via Starlink and Optimum (i.e.,a wired broadband service provider

0 5 10 15 20
Page load time (s)

0
0.2
0.4
0.6
0.8

1

C
D

F

Starlink Optimum

0 5 10 15 20
Speed index (s)

0
0.2
0.4
0.6
0.8

1

C
D

F

Starlink Optimum

Figure 2: QoE analysis for Alexa Top 200 Web browsing.

 Starlink Optimum

200

400

600

800

200

400

600

800

C
o

m
m

. d
el

ay
 (

m
s)

200

400

600

800

NewYork-Paris NewYork-Beijing NewYork-Davis

Figure 3: The end-to-end user-perceived communication de-
lay for WebRTC communications.

F
P

S

Starlink Optimum
0

10
20
30
40
50

NewYork-Paris

Starlink Optimum
0

10
20
30
40
50

NewYork-Beijing

Starlink Optimum
0

10
20
30
40
50

NewYork-Davis

Figure 4: Violin plot of FPS in WebRTC communications.

in U.S.) respectively. Further, we measure the QoE of two repre-
sentative applications: Web browsing and Web Real-Time Com-
munication (WebRTC) via the two different networks. For Web
browsing, we use Chrome to visit Alexa Top 200 websites [5]. We
then exploit the Browsertime tool [7] to measure: (i) page load time,
which refers to the time it takes for a Web page to fully load in a
browser, and (ii) speed index, which measures the visual complete-
ness of a Web page, and lower values indicate faster perceived page
loading. For WebRTC, we use Kurento [11] to build RTC sessions
between the laptop client in NYC and other users in Paris (France),
Beijing (China) and Davis (U.S.). Based on WebRTC’s statistics
APIs [58], we measure: (i) end-to-end user-perceived communica-
tion delay; and (ii) frames per second (FPS). In addition, we use
tcpdump to collect packet-level traces of the two applications for
further network analysis.
Observations. Figure 2 plots the QoE results of Web browsing in
different networks. We observe that in the Starlink network envi-
ronment, both page load time and speed index are much higher than
those in the wired network. Specifically, the 60th/80th/90th per-
centile page load time in Starlink are about 245.0%/202.4%/136.3%
higher than those in Optimum. Similarly, the 60th/80th/90th per-
centile speed index in Starlink is about 185.3%/241.6%/219.3% higher,
indicating that for the same Web content, LSN users suffer from
higher perceived delay and worse browsing experience. Since high
page load time can increase the likelihood of users leaving the
website [59], optimizing the page load time in LSNs should be an
important goal for both network operators and content providers.

In addition, Figure 3 and Figure 4 show the QoE analysis for
WebRTC in different networks. We find that for all three sessions
associated with users in different locations, they experiences higher
user-perceived communication delay and fluctuating FPS in Star-
link, indicating a worse user experience compared to the wired

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

SatGuard: Concealing Endless and Bursty Packet Losses in LEO Satellite Networks for Delay-Sensitive Web Applications

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

0 20 40 60 80 100
Time (s)

0

5

10

15

20

P
L

R
 (

%
)

0
200
400
600
800
1000

O
W

D
 (

m
s)

v v v v v v v
Handovers

Figure 5: Network-level burst packet loss rate (PLR) and one-
way delay (OWD) variation measured in Starlink.

network. Specifically, as shown in Figure 3, the average commu-
nication delay experienced in Starlink is about 57.2%/43.1%/34.5%
higher than that in Optimum for the three sessions. As shown in
Figure 4, we observe that Optimum achieves a stable FPS with an
average value of 30 and smooth user experience, while the FPS in
Starlink is very relatively unstable and changes frequently.
Root cause analysis.To uncover the underlying factors that hinder
Web QoE, we further conduct an in-depth analysis. Based on the
traces collected by tcpdump, we calculate the network-level packet
loss rate (PLR) and packet-level one-way delay (OWD), which refers
to the duration from the first time the data packet is sent by the
sender, to the first time it is received by the receiver. We reveal two
LSN-specific factors that jointly affect the user-perceived Web QoE.
(i) Endless and bursty packet loss in dynamic LSNs. Figure 5
plots the PLR over time experienced by the Starlink client and a
website server. We find that the bursty PLR ranges from 3% to
about 15%. Every 3-5 seconds, a sudden increase in PLR can be
clearly observed. Unlike traditional terrestrial Internet where the
key network infrastructure is sealed in a protected environment,
the core space backbone (i.e., a large number of satellite switches
or routers) of an LSN is operated and exposed in the error-prone
intermittent space environment, in which packet loss may occur fre-
quently for both ground-satellite and inter-satellite communication
due to a ranges of factors such as LEO dynamics [21, 36] and electro-
magnetic interference [33, 45, 46]. For example, recent reports have
demystified the Starlink’s handover strategy [29, 55, 56], which uses
a global scheduler to manage the satellite-terminal connectivity.
Handovers occur every 15 seconds between the satellite terminal
and its ingress satellite. In Figure 5, we also plot the time point
when the handovers occur during the Web session. We observe
that every time a handover occurs, it is always accompanied by a
significant and noticeable increase in PLR.
(ii) Long tail delay due to sender-based retransmission. To
cope with packet losses, existing approaches typically use sender-
based retransmission to guarantee reliable transmission in lossy
networks (e.g.,TCP retransmission). However, sender-based retrans-
mission can result in out-of-order packets and long-tail delay in the
lossy LSN environment.We also plot the OWD over time in Figure 5,
and we find that burst high delays are always accompanied by burst
high packet losses. Over the entire session, although the low orbit
altitude enables low propagation delay over satellite links, we still
observe that the 99th percentile receiver-perceived delay can reach
up to 523.3% of the medium value. These high delay variations can
seriously affect Web user experience. On one hand, a Web page
typically consists of a number of objects (e.g., images, texts and
scripts), and the total page load time mainly depends on the last
object received. On the other hand, Web-based RTC applications
typically use a receiver-side jitter buffer to ensure that the audio

C
D

F

0 200 400 600
NewYork-Paris JBD (ms)

0
0.2
0.4
0.6
0.8

1

Starlink
Optimum

0 100 200 300 400 500
NewYork-Beijing JBD (ms)

0
0.2
0.4
0.6
0.8

1

Starlink
Optimum

0 100 200 300 400 500
NewYork-Davis JBD (ms)

0
0.2
0.4
0.6
0.8

1

Starlink
Optimum

Figure 6: JBD analysis for WebRTC communications.

and video are played smoothly. The jitter buffer size is determined
based on the maximum delay observed by the receiver over a past
period of time. Therefore, the high tail delay can increase the jitter
buffer delay (JBD) on the receiver, and accordingly amplify the
user-perceived end-to-end communication delay. Figure 6 plots the
JBD results of the three WebRTC sessions in previous experiments.
We find that the burst packet losses and high delay variation indeed
increase the JBD for RTC sessions in Starlink, which finally increase
the end-to-end communication delay.
2.3 Why Existing Approaches Are Insufficient?
The network community has a long history of research into fast
packet recovery, which can be mainly divided into two categories.
Network coding. One classic technique for fast packet recovery is
Forward Errors Correction (FEC) [28, 47, 61]. FEC works by adding
redundant information to the original data packets before trans-
mission. These redundancy packets contain additional information
that allows the receiver to recover lost or corrupted packets. When
a packet is lost or damaged in transit, the receiver uses the redun-
dancy packets to reconstruct the missing or corrupted data, thus
achieving fast packet recovery without sender-side retransmissions.

However, as shown in Figure 5, packet loss rates in LSNs are
highly dynamic. FEC typically applies a fixed level of redundancy
to all packets, or simply make overdue redundancy adjustments
based on recently perceived network conditions. Selecting the right
level of redundancy can be quite challenging in LSNs. Adding more
redundancy to the original data packets improves error recovery
capabilities, but significantly increases bandwidth overhead which
is a scarce resource in LSNs. Although machine learning technolo-
gies can help to train a model that can predict packet loss rates
by inputting a large number of real-word network measurement
data [32, 41], the effectiveness is limited by the quality of the dataset
and end-device computing capacity to run a heavy neural network
model quickly and get accurate results. Besides, to our knowledge,
there is no large-scale dataset currently that can reflect the unique
packet loss behaviors of emerging LSNs described in §2.2.
Link local retransmission (LL-ReTx). Another existing method
for fast packet recovery is to retransmit lost packets directly at inter-
mediate nodes instead of requiring the sender to retransmit. Many
previous efforts deploy buffers on intermediate node to realize such
link local retransmission [35, 52], which can greatly shorten the re-
covery delay of lost packets and save a lot of bandwidth. However,
these solutions are originally designed for static networks such
as data center networks where intermediate nodes with stateful
buffers are relatively static. The relative positions of intermediate
nodes in the LSNs change rapidly over time, making it challenging
to directly apply existing LL-ReTx mechanisms in LSNs, because
the upstream node which buffers the lost packets may not con-
nect to the downstream node after link handovers. Although some
methods attempt to deploy full transport-layer functions in inter-
mediate nodes to achieve a hop-by-hop transmission [19, 38, 42],

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Anon. Submission Id: 1935

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

ISL

Tx Buffer

③ Reordering Buffer

Buffer Migration

②Per-beam
Timeout

𝑯𝑨𝑪𝑲𝟏
in 𝑩𝒆𝒂𝒎𝟏

𝑯𝑨𝑪𝑲𝟐
in 𝑩𝒆𝒂𝒎𝟐

①

USL GSL

Tx Buffer

Web Server

Satellite Satellite

Terrestrial
Network

Figure 7: SatGuard design overview, where green compo-
nents are key techniques proposed in SatGuard.

which can also recover packets loss in dynamic scenarios after new
transport-connection built. However, heavy functions and large
per-flow transmission states pose huge challenges for satellites
with scarce resources. Moreover, frequent connection reconstruc-
tion may not meet the requirements of persistent delay-sensitive
Web application (e.g.,WebRTC).
Takeaways. Collectively, our measurement study and analysis
demonstrate that due to the unique LEO dynamics and lossy links in
LSNs, end-to-end communications suffer from consistent, frequent,
and highly-dynamic packet losses, which further affects the user
experience of upper-layer delay-sensitive applications, such as Web
browsing andWebRTC. Existing fast recovery methods either could
cause extra waste of scarce bandwidth resources in LSNs, or are
not applicable for LSNs with unique dynamic topology. The statue
quo motivates us to seek an effective solution to cope with such
LSN loss and improve Web user experience.

3 SATGUARD DESIGN AND IMPLEMENTATION
We present SatGuard, a novel in-orbit loss recovery mechanism
that can effectively improve user-perceived Web QoE by enabling
fast link local retransmission and concealing endless and bursty
packet losses in LSNs for endpoint applications.

3.1 System Overview
Architecture and baseline approach. Figure 7 plots a high-level
view of SatGuard upon today’s LSN architecture. SatGuard first
adopts a baseline link-local retransmission (denoted as LL-ReTx)
approach to fast recover packet losses instead of requiring endpoint
retransmission. The baseline LL-ReTx incorporates a hop-specific
sequence number, called HSeq, to facilitate fast loss detection and
local recovery. Without loss of generality, we define that packets
are forwarded from an upstream node to its downstream node.
LL-ReTx requires the upstream node sequentially packs an HSeq
in the header of each incoming packet and buffers a copy of this
packet in the network interface (i.e., Tx buffer). On the downstream
node, LL-ReTx checks the HSeq of arriving packets and sends a link
local feedback, denoted as HAck, which can instruct the upstream
node to detect and retransmit lost packets. Basically, the HAck
is sent after each packet arrives, which contains the information
that a packet has been successfully received. Once an HAck is
received on the upstream node, the corresponding packet can be
deleted from the buffered. A packet loss can be detected on the
upstream node by examining the HAckmutation (e.g.,when receives
a larger and discontinuous HAck). When a packet loss is detected,

the upstream node can retransmit the corresponding packet from
the buffer locally, instead of sender-side retransmissions.
Challenges caused by unique LSN characteristics.While at the
first glance, the above baseline approach can attain fast link local
retransmission, we highlight three challenges caused by the unique
LSN characteristics that can hinder the effectiveness of LL-ReTx.
(1) Buffer invalidation due to LEO dynamics: Due to the LEO
dynamics and endless ground-satellite handovers (i.e.,link discon-
nection and reconstruction), the relationship between the upstream
and downstream node is not stable, resulting in LL-ReTx buffer
invalidation during handovers. For example, LL-ReTx may fail if
the old upstream node with the buffered packets disconnects from
the downstream node, and the new upstream node does not has
the corresponding packets in its buffer.
(2) Inaccurate loss detection: The basic LL-ReTx mechanism
works well for loss detection and recovery in one-to-one links, such
as ISLs where one upstream satellite forwards packets to another
downstream satellite. However, for one-to-many shared links like
USLs where the upstream satellite can simultaneously forward
packets to a number of downstream user terminals, HAcks from
multiple downstream nodes might arrive at the upstream node out
of order. In this situation, discontinuous HAck observed by the
LL-ReTx upstream node does not necessarily indicate packet losses.
(3) Compatible with endpoint protocols: Even though lost pack-
ets can be recovered by LL-ReTx, the receiver might still receive
out-of-order packets, which may mislead the protocol behaviors on
endpoints and hinder the user-perceived QoE. For example, some
endpoint mechanisms detect packet losses based on the order of re-
ceived packets. While lost packets have been recovered by LL-ReTx
on intermediate nodes, the consequential out-of-order packets ob-
served by the endpoints can still trigger sender-side retransmission,
and unexpectedly increase the receiver-side jitter buffer size.

SatGuard addresses the aforementioned challenges by incorpo-
rating three key techniques upon the baseline approach, which are
marked in green in Figure 7.
(1) Handover-aware buffer migration (§3.2): To tackle the buffer
invalidation caused by LEO dynamics, SatGuard exploits the pre-
dictable handover information from the LSN operator and routes
buffered content (e.g.,the lost packets) from the old upstream node
to the new upstream node in time to avoid LL-ReTx failure.
(2) Efficient loss detection via HACK classification (§3.3): To
avoid inaccurate loss detection on one-to-many shared links, Sat-
Guard introduces a beam-specific HAck classification method to
efficiently detect user-side packet losses in fine-granularity.
(3) In-network order preserving (§3.4): To mask out-of-order
packets caused by LL-ReTx, SatGuard preserves packet orders on
ground facilities (e.g.,satellite terminals) before forwarding Web
traffic to the user equipment (e.g.,user laptops).

3.2 Handover-aware seamless buffer migration
Network-layer buffer. Figure 8 shows a concrete example where
the baseline LL-ReTx fails due to the LEO dynamics. Assume packets
are forwarded from the satellite to the ground equipment (e.g., GS
and dishy). Satellites move from right to left in this example. After
a handover, the old upstream satellite (i.e., the left one), which
buffers packets, is no longer connected to the ground equipment,
resulting in a LL-ReTx failure. SatGuard leverages a network-layer

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

SatGuard: Concealing Endless and Bursty Packet Losses in LEO Satellite Networks for Delay-Sensitive Web Applications

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Tx buffer

② ReTx failure
due to link

disconnection

①
Handover

occurs

Tx buffer

Pkts before
handover

Figure 8: LL-ReTx fail-
ure due to dynamics.

②ReTx by
new route

① Handover
occurs

Pkts before
handover

Network
buffer

New
egress

Original
egress

Network
buffer

③ Recovery
after handover

Figure 9: Network-layer ReTx can
reroute packets in a new path.

buffer to store packets temporarily. As shown in Figure 9, during
the handover, the GS is disconnected from the old satellite (the
left one) and then connects to the new satellite (the right one).
SatGuard exploits a handover-aware buffer migration strategy
which perceives the handover and migrates the buffered packets
from the old upstream node to the new upstream node correctly
and timely.
How to find the new satellite? For SatGuard’s buffer migration,
one critical problem is how does the old satellite know which new
satellite the ground equipment will connect to. To solve this issue,
SatGuard exploits a key insight obtained from today’s emerging
LSN: operators typically leverages a centralized global scheduler to
pre-calculate and decide ground-satellite connectivity in different
time slots [55]. Hence, SatGuard incorporates a connectivity cache
on each satellite, which pre-caches the ground-satellite connectivity
pre-calculated by the LSN operator. During a handover, the old
satellite thus checks its connectivity cache to identify the new
satellite that will serve the ground equipment after the handover.
When and how to migrate buffered contents? Once the new
satellite (i.e., the migration destination) is decided, SatGuard relies
on space routing (e.g., [27]) to forward the buffered content to the
new satellite. The underlying routing mechanism takes care of the
routing calculation, and updates the routing table once the han-
dover happens. Considering that the migration of buffered content
can also take a certain amount of time, SatGuard does not start the
migration just at the beginning of the handover. Instead, because
the time point at which the handover occurs can be predictable
according to the connectivity cache, SatGuard starts to forward
buffered content ahead of the handover, i.e.,𝑡 seconds earlier than
the handover time. SatGuard sets 𝑡 approximately to the ratio be-
tween buffer size and link capacity. Figure 10 shows an example of
such ahead-of-handover migration. First, the LSN operator’s global
scheduler pre-calculates the connectivity which is pre-cached on
satellites in advance. Second, just before the handover occurs, pack-
ets that are not acknowledged in the buffer are migrated to the new
ingress satellite (i.e., the new upstream node). After the handover,
packets can be retransmitted directly from the new satellite.

3.3 HAck-classification-based loss detection
For one-to-many shared links (e.g., the radio USL on satellites that
serve a number of land-based users), it is difficult to identify packet
losses based on discontinuous HAck, since all the downstream
nodes may send the HAcks back asynchronously. One approach to
locally identify packet losses for LL-ReTx is to set a timer and treat
unacknowledged packets after timeout as lost. For example, the LL-
ReTx used in standard 802.11 WiFi [10] suggests to set a fixed timer
on the WiFi access point to detect packet losses. However, unlike

③
Handover

occurs ④ ReTx after
handover

Global
Scheduler

Ground
Station

① Deliver
connectivity
information

② Identify migration destination
and pre-load buffered contents

Figure 10: Ahead-of-handover
buffer migration.

Orbit
Direction

𝑫𝒊𝒔𝒉𝟐𝑫𝒊𝒔𝒉𝟏

𝑪𝒆𝒍𝒍𝟏 𝑪𝒆𝒍𝒍𝟐

𝒕𝒉𝒅𝒕𝟏
𝟐,𝒔

𝒕𝟏 𝒕𝟐 Timeline

Thd.
Value

𝒕𝒉𝒅𝒕𝟏
𝟏,𝒔

𝒕𝒉𝒅𝒕𝟐
𝟐,𝒔

𝒕𝒉𝒅𝒕𝟐
𝟏,𝒔

Figure 11: Beam-based
timer setting and update.

conventional WiFi which serves users in nearby locations, satellites
have a significantly wider communication coverage. The distance
between land-based users and satellites varies greatly, resulting in
inherent propagation delay differences between users served by a
satellite. A fixed timeout value can not effectively identify packet
losses in USLs with dynamic time-varying propagation distances.
Beam-based HAck classification. To effectively detect packet
losses on USLs, SatGuard exploits another key insight in LSNs:
emerging satellites typically use multiple high-throughput spot-
beams to serve geo-distributed users grouped into cells, which are
terrestrial regions decided by the LSN operator. A cell is attached
by at least one spot-beam, and it clusters a number of users in
geo-graphically nearby locations. Therefore, SatGuard classifies
HAcks from geo-distributed users based on the beam the users
are attached to, and set an independent timer for each beam to
detect lost packets. In particular, SatGuard inserts a beam tag
in each HAck to distinguish its group. SatGuard dynamically
calculates 𝑡ℎ𝑑𝑘,𝑠𝑡 , the timeout threshold for the cell attached to spot-

beam 𝑘 of satellite 𝑠 in time 𝑡 , and 𝑡ℎ𝑑𝑘,𝑠𝑡 =
2×distancekcell,s𝑡

𝑐 , where
distancekcell,s𝑡 is the straight-line physical distance from the center of
the𝑘-attached cell to the satellite 𝑠 in time 𝑡 , and 𝑐 is the propagation
speed of electromagnetic waves. For each packet sent from 𝑠 to users
in cell kcell in time 𝑡 , if the satellite does not receive HAck for 𝑡ℎ𝑑𝑘,𝑠𝑡

seconds, the packet is considered lost. Figure 11 plots an example of
beam-based timer setting and update. In time 𝑡1, the satellite 𝑠 was
closer to 𝐷𝑖𝑠ℎ1 in𝐶𝑒𝑙𝑙1, resulting in 𝑡ℎ𝑑1,𝑠𝑡1 < 𝑡ℎ𝑑

2,𝑠
𝑡1

. As the satellite
moves, it gets closer to 𝐷𝑖𝑠ℎ2 in 𝐶𝑒𝑙𝑙2 and a handover occurs in
time 𝑡2, thus 𝑡ℎ𝑑1,𝑠𝑡2 > 𝑡ℎ𝑑

2,𝑠
𝑡2

.

3.4 In-network order preserving
SatGuard adopts a ground-assist order preserving buffer to mi-
grate out-of-order packets caused by LL-ReTx. The buffer only
needs to be deployed at the ground facilities (i.e., ground stations or
satellite terminals) and does not require modifications on endpoints.
Order identification. SatGuard adds a flow-level network-layer
sequence number (FSeq) to packets before they enter the satellite
network (i.e., at the dishy), and does not allow them to be modified
by intermediate nodes, so that the correct order can be recognized
when they leave lossy satellite environment (e.g., at the GS).
Reordering packets by FSeq. The basic operation of the buffer is
to wait for local retransmitted packets appropriately and forward
packets in order. Basically, the reordering buffer checks the FSeq of
received packets. Once the FSeqmutation is detected, the packet will
be buffered. Otherwise, the packet will be forwarded immediately.
The reordering buffer also identifies duplicate packets based on

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Anon. Submission Id: 1935

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

duplicate FSeq of the flow and discards them. The reordering is
executed in flow-level, so there is no head-of-line blocking problem.
SatGuard also records the interval of receiving in-order packets
and recovery delay of local retransmitted packets to dynamically
adjust the maximum buffering time of disordered packets.

3.5 Overhead optimization
Partial traffic processing. Processing HSeq/HAck and updating
the header of packets on satellite routers can involve additional
computation overhead. Note that only part of LSN traffic is delay-
sensitive. To reduce the overhead on each intermediate node, Sat-
Guard adopts a partial traffic processing mechanism, and only
delay-sensitive traffic with stringent performance requirements
will be processed by SatGuard’s local recovery mechanism. In
practice, satellite Internet operators can mark the delay-sensitive
traffic of high-value customers by configuring the Traffic Class
option [24] in the standard IP header.
Dealing with ReTx and HAck loss. Retransmitted (ReTx) packets
may also be lost again. Some previous efforts (e.g., [35]) retrans-
mit a packet multiple times, which involves additional bandwidth
overhead. To identify the loss of retransmitted packets, SatGuard
updates the HSeq of retransmitted packets. For example, the up-
stream node sends packets with HSeq from 1 to 4 to the downstream
node, and the packet with HSeq=3 is lost. Then the upstream node
only receives HAck for 1,2 and 4. In this case, the upstream node
retransmits packet with original HSeq = 3, and assigns a new HSeq
according to its latest sending order, i.e., HSeq=5 in the retransmit-
ted packet. The unnecessary retransmission caused ny HAck loss
can be mitigated by enabling cumulative HAck. Since SatGuard
reassigns a new larger HSeq to a retransmitted packet, the HAck in
SatGuard is designed to carry the information about the biggest
interval of the most recently received consecutive HSeq.

3.6 SatGuard Implementation
We have implemented a SatGuard prototype with all the features
described above. Since many emerging satellites run Linux-like
on-board operating systems (e.g., [3]), we implement the current
version of SatGuard upon Linux kernel 5.4. Next we highlight the
salient aspects of SatGuard’s implementation.
Exploiting IPv6 extension to embed recovery information in
data packets. To facilitate compatible deployment, we implement
SatGuard’s network-level HSeq, HAck and FSeq based on the stan-
dard IPv6 Hop-by-Hop options header [24], which can be processed
on each network node. In particular, an HSeq, HAck and FSeq occu-
pies 16 bits in one options header respectively. To implement the in-
network functions of SatGuard, we use lib_netfilterqueue [12]
to capture packets in kernel space for subsequent packet parsing
and processing on intermediate nodes.
Leveraging segment routing to guide fast buffer migration.
We implement SatGuard’s buffer migration described in §3.2 based
on Segment Routing (SR) [26] which is intrinsically supported by
Linux kernel. SR allows a network node to append a header to pack-
ets that contain a list of segments, which are instructions that can
be executed on subsequent nodes in the network. Therefore, when
migrating buffered packets during a handover, SatGuard leverages
SR to re-route packets to the predicted next ingress satellite.

4 PERFORMANCE EVALUATION
4.1 Experiment Setup
We use a recent tool [39] to build a container-based LSN simulator
based on real constellation information (e.g., real orbital parame-
ters and distribution of ground stations). The LSN simulator can
mimic the LEO dynamics and network behaviors of large-scale LSNs.
Each container is a Linux docker instance simulating a network
node (i.e., a satellite, ground station or satellite terminal). Moreover,
our LSN simulator supports the run of real TCP/IP stack and thus
we can load our SatGuard implementation on each simulated net-
work node and load interactive Web traffic in our experiments. We
deploy the LSN simulator on two DELL R940xa rack servers and
each machine has two Intel Xeon 5217 Processors and 8GB RDIMM.
Network configurations. We use our LSN simulator to mimic
the network environment of SpaceX’s Starlink phase-I constella-
tion which consists of 1584 satellites operating in 72 orbital planes.
Further, we configure the packet loss rate in the experimental en-
vironment based on our real-world measurements collected from
the operational Starlink. As LEO satellites move, we simulate the
ground-satellite handovers, and the ground equipment selects a
new ingress satellite with the shortest distance [23, 55], which is
widely used in today’s satellite communication systems. The space
segment of the LSN adopts the +Grid connectivity [2, 30], which
indicates that each satellite connects to two adjacent satellites in
the same orbit (front and rear), and other two satellites in adjacent
orbits (left and right). The maximum capacity of the ISL and GSL is
configured to 1Gbps. Routing for LSNs is not the focus of this paper,
and we use the well-known snapshot routing [27] as the underlying
routing mechanism. In snapshot routing, each network node has a
pre-calculated valid routing table for each time slot, which indicates
how to forward incoming packets on network nodes.
Approaches of comparison. We compared the performance of
SatGuard with recent state-of-the-art mechanisms for improv-
ing network performance in lossy environment: SaTCP [21], Tam-
bur [54], M-PEP [22] and LinkGuard [35]. SaTCP is a link-layer
assisted transport enhancement mechanism deployed in the end
points in emerging LSNs. SaTCP leverages the handover signal to
freeze the congestion window to keep high throughput during han-
dover. The key idea behinds Tambur [54] is to leverage streaming
codes to guide receiver to recover lost data in a required guard
spaces of packet receptions. M-PEP [22] is a solution based on the
well-studied Performance Enhancement Proxy (PEP) technology,
which uses in-network proxies to transparently split TCP connec-
tions and mitigate the impact of long delay and high loss. We deploy
M-PEPs on the ground stations, dishes and their ingress satellites.
LinkGuard [35] uses small buffer to achieve link-local retransmis-
sion without per-flow state to reduce tail delay in links caused by
packet losses. Next we verify the effectiveness of SatGuard from
both the network and application perspectives.

4.2 Network-level Performance
Improvement on tail delay. Figure 12 plots the 99th percentile
delay for different communication pairs between populated cities
around the world. Since SaTCP only freezes congestion window of
the sender during handovers, it can not accelerate the loss recovery
and it retransmits lost packets from the sender, resulting high tail

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

SatGuard: Concealing Endless and Bursty Packet Losses in LEO Satellite Networks for Delay-Sensitive Web Applications

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

99
th

 %
ti

le
 d

el
ay

 (
m

s)

NYC-LON
0

20

40

60

80

100

LON-SP
0

30

60

90

120

SP-SYD
0

30

60

90

120

150

SYD-NYC
0

80

160

240

320

400
SaTCP Tambur M-PEP LinkGuard SatGuard

Figure 12: 99th percentile user-perceived end-to-end delay
of different communication pairs. NYC: New York City. LON:
London. SYD: Sydney. SP: Sao Paulo.

0
500

1000

0
500

1000

0
500

1000

SaTCP Tambur M-PEP LinkGuard SatGuard
0

500
1000T

h
ro

u
g

h
p

u
t

(M
b

p
s)

NYC-LON

LON-SP

SP-SYD

SYD-NYC

Figure 13: Violin plot of the achievable end-to-end through-
put between different communication pairs.
delay up to 351.97 ms for SYD-NYC communication. Although
Tambur leverages streaming codes to guide local recovery on the
receiver, the required guard spaces of packet receptions in LSNs can
not be guaranteed due to consistent packet loss in an error-prone
environment, which affects the success rate of local recovery and
prolongs the delay up to 342.27 ms. The tail delay in M-PEP ranges
from 84.98ms to 258.10ms, becauseM-PEP needs tomigrate various
state information (e.g., the parameters related to rate control) from
the previous ingress satellite to the new ingress satellite before
restarting the transmission, which can cost as much as 91.2 ms,
depending on the transmission path between the two satellites.
After handovers, the buffered packets in the LinkGuard LL-ReTx
buffer can not be retransmitted successfully, triggering long-time
sender-based recovery and leading to a tail delay up to 342.90 ms.
Based on the extended LL-ReTx mechanism, SatGuard leverages
network-layer buffer and route updates information to achieve fast
buffer migration after handovers, which effectively reduces the tail
delay by up to 56.2% for all communication pairs.
Improvement on end-to-end throughput. Next, we compare
the achievable end-to-end throughput by different approaches. As
shown in Figure 13, SaTCP freezes the congestion window during
the handover by predicting the moment when the handover occurs.
However, packet loss due to interference factors such as badweather
is unpredictable, which makes the throughput in SaTCP less than
500 Mbps in 13.69% of the time. In Tambur, once any packet loss
occurs during the guard spaces, lost packets cannot be recovered
in the receiver, thus reducing the sending rate to less than 500
Mbps in 12.94% of the time. During the handover, M-PEP needs to
resume the transmission after state transition, so the flow frequently
goes through the slow start phase. For LinkGuard, although it
can effectively recovery packet loss in non-handover scenarios,
those lost packets caused by LEO dynamics are still perceived by
the sender. Besides, due to unreasonable HAck timeout settings

0 2 4 6 8 10
Page load time (s)

0
0.2
0.4
0.6
0.8

1

C
D

F

SaTCP
Tambur
M-PEP

LinkGuard
SatGuard

0 2 4 6 8 10
Speed index (s)

0
0.2
0.4
0.6
0.8

1

C
D

F

SaTCP
Tambur
M-PEP

LinkGuard
SatGuard

Figure 14: The CDF of page load time and speed index for
browsing websites by different loss recovery approaches.

100

200

300

400

500

C
o

m
m

. d
el

ay
 (

m
s)

SaTCP Tambur M-PEP LinkGuard SatGuard

100

200

300

400

500

100

200

300

400

500

100

200

300

400

500

NYC-LON LON-SP SP-SYD SYD-NYC

Figure 15: User-perceived one-way WebRTC session delay.
in the one-to-many shared links, the loss detection efficiency is
reduced, so the attainable average throughput varies from 719.3
Mbps to 785.2 Mbps. Though integrating handover-aware buffer
migration and HAck classification to extend LL-ReTx, SatGuard
can locally recover lost packets in various scenarios, maintaining
high throughput of more than 800 Mbps for 83.04% of the time.

4.3 Application-level Performance
SatGuard can accelerateWeb browsing in LSNs.We next evalu-
ate the effectiveness of SatGuard on improving the user experience
of Web browsing. We use mahimahi [49] to record and replay the
workload of browsing all sites in the Alexa Top 200 [5] with different
reliability control mechanism. As shown in Figure 14, SatGuard
achieves the lowest page load time and speed index. Specifically, the
average page load time in SatGuard is 48.3%, 38.1%, 40.2% and 34.4%
shorter than that in SaTCP, Tambur, M-PEP and LinkGuard respec-
tively. The achieves speed index in SatGuard is 46.6%/36.2%/25.9%
and 38.9% shorter than that in other mechanisms, respectively. The
main reason is that SatGuard can recover various losses in time,
while (i) SaTCP has to re-request resource from Web servers when
any loss occurs, (ii) Tambur can not set appropriate redundancy
in such a short flow, (iii) M-PEP has to load resources until state
migration completion and transport connection reconstruction, and
(iv) LinkGuard behaves similarly to SaTCP in the face of packet
losses due to handovers.
SatGuard can sustain low-delay and smooth WebRTC com-
munications. Finally, to evaluate the performance improvement of
SatGuard on Web-based RTC applications, we use two thinkpad-
x1 laptops connect to our LSN simulator as the sender and receiver,
and build WebRTC sessions via kurento [11]. We run each RTC
session for at least 1 hour and use the WebRTC statistic APIs to
capture core QoE metrics including delay, jitter and FPS.
(i) End-to-end user-perceived communication delay. Figure 15 plots
the communication delay of different sessions. The average com-
munication delay in SatGuard is 213.3 ms, and the delay variation
among different city pairs is small, because most lost packets can
be recovered locally without passing through long-path retrans-
mission. Therefore, the communication delay in M-PEP also fluc-
tuates very little. However, due to long-term state migration and
connection reconstruction during every handover, the communi-
cation delay is stable at a high value of about 335.8 ms. Due to the

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Anon. Submission Id: 1935

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

C
D

F 0 50 100 150 200 250
NYC-LON JBD (ms)

0

0.5

1

0 50 100 150 200 250
LON-SP JBD (ms)

0

0.5

1

0 50 100 150 200 250
SP-SYD JBD (ms)

0

0.5

1

0 50 100 150 200 250
SYD-NYC JBD (ms)

0

0.5

1

SaTCP Tambur M-PEP LinkGuard SatGuard

Figure 16: Jitter buffer delay for different WebRTC sessions.

F
ra

m
es

 p
er

 s
ec

o
n

d

25

30

35

NYC-LON
20

30

40

LON-SP

20

30

40

SP-SYD

20

30

40

SYD-NYC

SaTCP Tambur M-PEP LinkGuard StarGuard

Figure 17: User-perceived FPS in different WebRTC sessions.

lack of local recovery capacity to dynamic packet loss, SaTCP and
LinkGuard, in such cases, must endure the impact of sender-based
retransmission on the communication delay, which was aggravated
with the increase of the communication distance, resulting in an
average delay of 298.6 ms and 279.4 ms.
(ii) Jitter buffer delay (JBD). As shown in Figure 16, the JBD in
M-PEP is more than 150 ms in up to 94.1% of the session period,
because frequent long-term state migration causes the receiver to
experience large jitter while receiving packets. Tambur and SaTCP
cause JBD higher than 100 ms in at least 86.2% and 84.3% of the
time because they are difficult to maintain low jitter over a long
period of time. Although LinkGuard can achieve low jitter in static
scenarios constantly by local retransmission, it fails in dynamic
scenarios, causing that the JBD fluctuates greatly, from 52.1 to 130.2
ms. In all communication pairs, the JBD in SatGuard is less than
73.1 ms because the packet loss caused by handovers can also be
effectively recovered.
(iii) Frames per second (FPS). As plotted in Figure 17, the FPS of
M-PEP is stable at about 33 and 26 most of the time. In fact, we
find that the FPS of M-PEP is hopping between the two values
frequently, mainly because during the state migration among PEP
nodes, a large amount of accumulated frames are played quickly
after the transmission is resumed. The FPS in SaTCP is less than
29.5 in 41.6% of time and varies from 12.3 to 43.2. Such fluctuation
is mainly because lost frames can not being recovered in time
and received frames wait too long in the jitter buffer. Although the
average FPS achieved by Tambur and LinkGuard are 29.91 and 29.83
respectively, the standard deviation of Tambur and LinkGundian is
423% and 336% than that of SatGuard, indicating an unexpected
FPS variation which may hinder user experience. The main reason,
similar to SaTCP, is that the lost frame information can not be
recovered by LinkGuard during handovers and by Tambur when
loss occurs in required guard space, and thus discarded in playout.
Empowered by handover-aware LL-ReTx, our SatGuard keeps a
stable 30 FPS and guarantees smooth experience for WebRTC.

5 RELATEDWORK
We briefly discuss efforts related to our work not covered in §2.3.
Real-world LSN measurement.With the expansion of the ser-
vice area, there have been many measurement reports on satellite
networks performance. Authors in [48] measure the performance
of QUIC [40] and TCP in Starlink and find QUIC can achieve more
stable throughput for uploads in such a dynamic environment but
has a lower throughput for downloads. Measurement in [36] shows
frequent and severe packet losses of up to 50% of packets, which
usually occurs during handovers in Starlink. Authors in [55] reveal
the existence of Starlink’s global scheduler through long-duration
measurements, which allocates satellites to terminals every 15 sec-
onds. In [50], authors show the composition of the Starlink access
and backbone network through a large number of traceroute
results. [29] observes throughput decrease and [56] finds delay in-
crease every 15 seconds respectively. These explorations demystify
the network architecture and protocols of emerging LSNs, and help
us understand LSN behaviors. Our measurement study in this paper
goes one step further, by characterizing the QoE of representative
Web services, which are important applications in future LSNs.
Web application performance and optimization in lossy en-
vironment. Authors in [53] finds that in a wireless environment,
inter-RAT (Radio Access Technology) handover caused by user mo-
bility is the most important reason for QoE degradation, which can
induce a significant increase in page loading time and speed index,
and even frequent Web page loading failures. WiseTrans [60] is a
selection mechanism to adaptively switch to the transport protocol
that best suits the current network environment based on the de-
tected packet loss rate, round-trip time and bandwidth to reduce
delay tail and request completion time, which can be used in collab-
oration with SatGuard to reduce the impact of switching transport
protocols. Authors in [25] design a WebRTC-compliant video con-
ferencing platform that leverages the larger bandwidth provided
by multipath to meet the rising demand for high-resolution video
conferencing. SatGuard can improve transmission performance
on each subpath, further improving overall platform performance.
Like SaTCP, authors in [43] uses historical handover logs to predict
the time of the next handover and quickly restores the sending rate
after the handovers. However, this method cannot reduce packet
loss recovery delay and still suffers from high communication delay.

6 CONCLUSION
This paper proposes SatGuard, a distributed in-orbit loss recovery
mechanism based on link local retransmission. Key ideas behind
SatGuard include (i) exploiting handover information provided by
satellite operators to effectively migrating buffers to correct node to
prevent buffer invalidation, (ii) leveraging dynamic beam-specific
timeout calculation to set the appropriate loss detection parameters
for users in different cells to improve recovery efficiency, and (iii)
processing out-or-order packets in the ground to make in-network
recovery transparent to the upper-layer protocols and applications.
The implementation of SatGuard is based on existing standard
protocols, and it is compatible with existing Internet protocol stack.
Extensive trace-driven evaluations show that SatGuard can re-
duce average page load time for Web browsing and user-perceived
communication delay for WebRTC by up to 48.3% and 57.4%.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

SatGuard: Concealing Endless and Bursty Packet Losses in LEO Satellite Networks for Delay-Sensitive Web Applications

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] 2020. SpaceX Successfully Tests Inter-Satellite Starlink Connectivity Via Lasers.

https://wccftech.com/spacex-starlink-satellite-laser-test/. [Online; accessed
13-Oct-2023].

[2] 2021. Polar and inclined orbits with +Grid connectivity. https://satnet-authors.
github.io/cesium-orbit-grid-demo.html. [Online; accessed 13-Oct-2023].

[3] 2022. Embedded operating systems. https://blog.felgo.com/embedded/embedded-
operating-systems. [Online; accessed 13-Oct-2023].

[4] 2022. Starlink. https://www.techtarget.com/whatis/definition/Starlink. [Online;
accessed 13-Oct-2023].

[5] 2023. Alexa Top 500 Websites. https://www.expireddomains.net/alexa-top-
websites/. [Online; accessed 13-Oct-2023].

[6] 2023. Amazon Kuiper. https://www.geekwire.com/2019/amazon-project-kuiper-
broadband-satellite/. [Online; accessed 13-Oct-2023].

[7] 2023. Browsertime. https://www.sitespeed.io/documentation/browsertime/
introduction/. [Online; accessed 13-Oct-2023].

[8] 2023. The flat high-performance satellite ternminal of Starlink. https://www.
starlink.com/specifications?spec=3. [Online; accessed 13-Oct-2023].

[9] 2023. The high-performance satellite ternminal of Starlink. https://www.starlink.
com/specifications?spec=2. [Online; accessed 13-Oct-2023].

[10] 2023. IEEE 802.11T Wireless Local Area Networks. https://www.ieee802.org/11/.
[Online; accessed 13-Oct-2023].

[11] 2023. Kurento. https://github.com/Kurento. [Online; accessed 13-Oct-2023].
[12] 2023. Netfilter. https://www.netfilter.org/projects/libnetfilter_queue/index.html.

[Online; accessed 13-Oct-2023].
[13] 2023. The satellite ternminal of Kuiper. https://www.aboutamazon.com/news/

innovation-at-amazon/heres-your-first-look-at-project-kuipers-low-cost-
customer-terminals. [Online; accessed 13-Oct-2023].

[14] 2023. SPACEX NON-GEOSTATIONARY SATELLITE SYSTEM. https://licensing.
fcc.gov/myibfs/web/userHome.do?attachment_key=1158350. [Online; accessed
13-Oct-2023].

[15] 2023. The standard satellite ternminal of Starlink. https://www.starlink.com/
specifications?spec=1. [Online; accessed 13-Oct-2023].

[16] 2023. StarLink. https://www.starlink.com/. [Online; accessed 13-Oct-2023].
[17] 2023. Telesat. https://www.telesat.com/. [Online; accessed 13-Oct-2023].
[18] 2023. WebRTC. https://webrtc.org/. [Online; accessed 13-Oct-2023].
[19] Muhammad Ayaz, Azween Abdullah, and Ibrahima Faye. 2010. Hop-by-hop

reliable data deliveries for underwater wireless sensor networks. In 2010 In-
ternational Conference on Broadband, Wireless Computing, Communication and
Applications. IEEE, 363–368.

[20] John Border, Markku Kojo, Jim Griner, Gabriel Montenegro, and Zach Shelby.
2001. Performance enhancing proxies intended to mitigate link-related degradations.
Technical Report.

[21] Xuyang Cao and Xinyu Zhang. 2023. SaTCP: Link-Layer Informed TCP Adapta-
tion for Highly Dynamic LEO Satellite Networks. In IEEE INFOCOM 2023-IEEE
Conference on Computer Communications. IEEE, 1–10.

[22] Alberto Caponi, Andrea Detti, Michele Luglio, Cesare Roseti, and Francesco
Zampognaro. 2015. Mobile-PEP: Satellite terminal handover preserving service
continuity. In 2015 International Symposium on Wireless Communication Systems
(ISWCS). IEEE, 221–225.

[23] Pulak K Chowdhury, Mohammed Atiquzzaman, and William Ivancic. 2006. Han-
dover schemes in satellite networks: state-of-the-art and future research direc-
tions. IEEE Communications Surveys & Tutorials 8, 4 (2006), 2–14.

[24] Steve Deering and Robert Hinden. 2017. RFC 8200: Internet protocol, version 6
(IPv6) specification.

[25] Sandesh Dhawaskar Sathyanarayana, Kyunghan Lee, Dirk Grunwald, and Sang-
tae Ha. 2023. Converge: QoE-drivenMultipath Video Conferencing overWebRTC.
In Proceedings of the ACM SIGCOMM 2023 Conference. 637–653.

[26] Clarence Filsfils, Stefano Previdi, Les Ginsberg, Bruno Decraene, Stephane
Litkowski, and Rob Shakir. 2018. Segment routing architecture. Technical Report.

[27] Daniel Fischer, David Basin, Knut Eckstein, and Thomas Engel. 2012. Predictable
mobile routing for spacecraft networks. IEEE Transactions on Mobile Computing
12, 6 (2012), 1174–1187.

[28] Silas L Fong, Salma Emara, Baochun Li, Ashish Khisti, Wai-Tian Tan, Xiaoqing
Zhu, and JohnApostolopoulos. 2019. Low-latency network-adaptive error control
for interactive streaming. In Proceedings of the 27th ACM International Conference
on Multimedia. 438–446.

[29] Johan Garcia, Simon Sundberg, Giuseppe Caso, and Anna Brunstrom. 2023.
Multi-Timescale Evaluation of Starlink Throughput. In Proceedings of the 1st
ACM Workshop on LEO Networking and Communication. 31–36.

[30] Giacomo Giuliari, Tommaso Ciussani, Adrian Perrig, and Ankit Singla. 2021.
ICARUS: Attacking low earth orbit satellite networks. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21). 317–331.

[31] Mark Handley. 2018. Delay is Not an Option: Low Latency Routing in Space.
In Proceedings of the 17th ACM Workshop on Hot Topics in Networks (HotNets)
(Redmond, WA, USA). Association for Computing Machinery, New York, NY,
USA, 85–91. https://doi.org/10.1145/3286062.3286075

[32] Han Hu, Sheng Cheng, Xinggong Zhang, and Zongming Guo. 2021. LightFEC:
Network adaptive FEC with a lightweight deep-learning approach. In Proceedings
of the 29th ACM International Conference on Multimedia. 3592–3600.

[33] M Hussein and A Hanani. 2016. Routing in IP/LEO satellite communication
systems: past, present and future. Int J Electron Commun Eng 3 (2016), 745.

[34] ITU. 2018. F.743.6: Service requirements for next generation content delivery
networks. https://www.itu.int/rec/T-REC-F.743.6-201808-I. [Online; accessed
13-Oct-2023].

[35] Raj Joshi, Cha Hwan Song, Xin Zhe Khooi, Nishant Budhdev, Ayush Mishra,
Mun Choon Chan, and Ben Leong. 2023. Masking Corruption Packet Losses in
Datacenter Networks with Link-local Retransmission. In Proceedings of the ACM
SIGCOMM 2023 Conference. 288–304.

[36] Mohamed M. Kassem, Aravindh Raman, Diego Perino, and Nishanth Sastry.
2022. A Browser-Side View of Starlink Connectivity. In Proceedings of the 22nd
ACM Internet Measurement Conference (Nice, France) (IMC ’22). Association for
Computing Machinery, New York, NY, USA, 151–158. https://doi.org/10.1145/
3517745.3561457

[37] Simon Kassing, Debopam Bhattacherjee, André Baptista Águas, Jens Eirik
Saethre, and Ankit Singla. 2020. Exploring the "Internet from Space" with Hypa-
tia. In Proceedings of the ACM Internet Measurement Conference (Virtual Event,
USA) (IMC ’20). Association for Computing Machinery, New York, NY, USA,
214–229. https://doi.org/10.1145/3419394.3423635

[38] Inkyu Kim, Jaeuk Baek, SangIk Han, and YoungNam Han. 2020. The perfor-
mance analysis of multi-hop relay DTN communication system in interplanetary
network. In 2020 International Conference on Information and Communication
Technology Convergence (ICTC). IEEE, 1136–1141.

[39] Zeqi Lai, Hewu Li, Yangtao Deng, Qian Wu, Jun Liu, Yuanjie Li, Jihao Li, Lixin
Liu, Weisen Liu, and Jianping Wu. 2023. StarryNet: Empowering Researchers to
Evaluate Futuristic Integrated Space and Terrestrial Networks. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 23). 1309–
1324.

[40] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic,
Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, et al. 2017.
The quic transport protocol: Design and internet-scale deployment. In Proceedings
of the conference of the ACM special interest group on data communication. 183–
196.

[41] Insoo Lee, Seyeon Kim, Sandesh Sathyanarayana, Kyungmin Bin, Song Chong,
Kyunghan Lee, Dirk Grunwald, and Sangtae Ha. 2022. R-FEC: RL-based FEC Ad-
justment for Better QoE in WebRTC. In Proceedings of the 30th ACM International
Conference on Multimedia. 2948–2956.

[42] Ming Li, Devesh Agrawal, Deepak Ganesan, Arun Venkataramani, and Himan-
shu Agrawal. 2009. Block-switched Networks: A New Paradigm for Wireless
Transport.. In NSDI, Vol. 9. 423–436.

[43] Xiangyu Li and Guixian Wang. 2022. Handover Detection and Fast Recovery
over Satellite Networks for WebRTC. In 2022 IEEE 8th International Conference
on Computer and Communications (ICCC). IEEE, 599–603.

[44] Lixin Liu, Hewu Li, Yuanjie Li, Zeqi Lai, Yangtao Deng, Yimei Chen, Wei Liu,
and Qian Wu. 2022. Geographic Low-Earth-Orbit Networking without QoS
Bottlenecks from Infrastructure Mobility. In 2022 IEEE/ACM 30th International
Symposium on Quality of Service (IWQoS). IEEE, 1–10.

[45] Yan Lou, Yi Wu Zhao, Chunyi Chen, Shoufeng Tong, and Cheng Han. 2016.
Analysis of Sun Outages Influence on GEO to LEO Communication. In Wireless
Communications, Networking and Applications. Springer, 1017–1025.

[46] Sami Ma, Yi Ching Chou, Haoyuan Zhao, Long Chen, Xiaoqiang Ma, and
Jiangchuan Liu. 2023. Network Characteristics of LEO Satellite Constellations:
A Starlink-Based Measurement from End Users. In IEEE INFOCOM 2023-IEEE
Conference on Computer Communications. IEEE, 1–10.

[47] François Michel, Quentin De Coninck, and Olivier Bonaventure. 2019. QUIC-
FEC: Bringing the benefits of Forward Erasure Correction to QUIC. In 2019 IFIP
Networking Conference (IFIP Networking). IEEE, 1–9.

[48] François Michel, Martino Trevisan, Danilo Giordano, and Olivier Bonaventure.
2022. A first look at starlink performance. In Proceedings of the 22nd ACM Internet
Measurement Conference. 130–136.

[49] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein,
James Mickens, and Hari Balakrishnan. 2015. Mahimahi: Accurate Record-and-
Replay for HTTP.. In Usenix annual technical conference. 417–429.

[50] Jianping Pan, Jinwei Zhao, and Lin Cai. 2023. Measuring a low-earth-orbit
satellite network. arXiv preprint arXiv:2307.06863 (2023).

[51] JC Pavur, Martin Strohmeier, Vincent Lenders, and Ivan Martinovic. 2021. QPEP:
An actionable approach to secure and performant broadband from geostationary
orbit. (2021).

[52] Ting Qu, Raj Joshi, Mun Choon Chan, Ben Leong, Deke Guo, and Zhong Liu.
2019. SQR: In-network packet loss recovery from link failures for highly reliable
datacenter networks. In 2019 IEEE 27th International Conference on Network
Protocols (ICNP). IEEE, 1–12.

[53] Mohammad Rajiullah, Andra Lutu, Ali Safari Khatouni, Mah-Rukh Fida, Marco
Mellia, Anna Brunstrom, Ozgu Alay, Stefan Alfredsson, and Vincenzo Mancuso.
2019. Web experience in mobile networks: Lessons from two million page visits.

9

https://wccftech.com/spacex-starlink-satellite-laser-test/
https://satnet-authors.github.io/cesium-orbit-grid-demo.html
https://satnet-authors.github.io/cesium-orbit-grid-demo.html
https://blog.felgo.com/embedded/embedded-operating-systems
https://blog.felgo.com/embedded/embedded-operating-systems
https://www.techtarget.com/whatis/definition/Starlink
https://www.expireddomains.net/alexa-top-websites/
https://www.expireddomains.net/alexa-top-websites/
https://www.geekwire.com/2019/amazon-project-kuiper-broadband-satellite/
https://www.geekwire.com/2019/amazon-project-kuiper-broadband-satellite/
https://www.sitespeed.io/documentation/browsertime/introduction/
https://www.sitespeed.io/documentation/browsertime/introduction/
https://www.starlink.com/specifications?spec=3
https://www.starlink.com/specifications?spec=3
https://www.starlink.com/specifications?spec=2
https://www.starlink.com/specifications?spec=2
https://www.ieee802.org/11/
https://github.com/Kurento
https://www.netfilter.org/projects/libnetfilter_queue/index.html
https://www.aboutamazon.com/news/innovation-at-amazon/heres-your-first-look-at-project-kuipers-low-cost-customer-terminals
https://www.aboutamazon.com/news/innovation-at-amazon/heres-your-first-look-at-project-kuipers-low-cost-customer-terminals
https://www.aboutamazon.com/news/innovation-at-amazon/heres-your-first-look-at-project-kuipers-low-cost-customer-terminals
https://licensing.fcc.gov/myibfs/web/userHome.do?attachment_key=1158350
https://licensing.fcc.gov/myibfs/web/userHome.do?attachment_key=1158350
https://www.starlink.com/specifications?spec=1
https://www.starlink.com/specifications?spec=1
https://www.starlink.com/
https://www.telesat.com/
https://webrtc.org/
https://doi.org/10.1145/3286062.3286075
https://www.itu.int/rec/T-REC-F.743.6-201808-I
https://doi.org/10.1145/3517745.3561457
https://doi.org/10.1145/3517745.3561457
https://doi.org/10.1145/3419394.3423635

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Anon. Submission Id: 1935

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

In The world wide web conference. 1532–1543.
[54] Michael Rudow, Francis Y Yan, Abhishek Kumar, Ganesh Ananthanarayanan,

Martin Ellis, and KV Rashmi. 2023. Tambur: Efficient loss recovery for videocon-
ferencing via streaming codes. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23). 953–971.

[55] Hammas Bin Tanveer, Mike Puchol, Rachee Singh, Antonio Bianchi, and Rishab
Nithyanand. 2023. Making Sense of Constellations: Methodologies for Under-
standing Starlink’s Scheduling Algorithms. arXiv preprint arXiv:2307.00402
(2023).

[56] Pouria Tolouei. 2023. Analysing the Performance of Cloud Gaming over a
Low-Earth Orbit Satellite Network. (2023).

[57] TS2. 2023. SpaceX’s Starlink Surpasses 2 Million Active Customers
Globally. https://ts2.space/en/spacexs-starlink-surpasses-2-million-active-
customers-globally/. [Online; accessed 13-Oct-2023].

[58] W3C. [n. d.]. Identifiers for WebRTC’s Statistics API. https://www.w3.org/TR/
webrtc-stats/. [Online; accessed 13-Oct-2023].

[59] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David
Wetherall. 2013. Demystifying page load performance with {WProf}. In 10th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 13).
473–485.

[60] Jia Zhang, Enhuan Dong, Zili Meng, Yuan Yang, Mingwei Xu, Sijie Yang, Miao
Zhang, and Yang Yue. 2021. WiseTrans: Adaptive transport protocol selection
for mobile web service. In Proceedings of the Web Conference 2021. 284–294.

[61] Mihail Zverev, Pablo Garrido, Fatima Fernandez, Josu Bilbao, Özgü Alay, Simone
Ferlin, Anna Brunstrom, and Ramón Agüero. 2021. Robust QUIC: Integrating
Practical Coding in a Low Latency Transport Protocol. IEEE Access 9 (2021),
138225–138244.

10

https://ts2.space/en/spacexs-starlink-surpasses-2-million-active-customers-globally/
https://ts2.space/en/spacexs-starlink-surpasses-2-million-active-customers-globally/
https://www.w3.org/TR/webrtc-stats/
https://www.w3.org/TR/webrtc-stats/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 LEO Satellite Networks
	2.2 Understanding Web Performance in LSNs
	2.3 Why Existing Approaches Are Insufficient?

	3 SatGuard Design and Implementation
	3.1 System Overview
	3.2 Handover-aware seamless buffer migration
	3.3 HAck-classification-based loss detection
	3.4 In-network order preserving
	3.5 Overhead optimization
	3.6 SatGuard Implementation

	4 Performance Evaluation
	4.1 Experiment Setup
	4.2 Network-level Performance
	4.3 Application-level Performance

	5 Related Work
	6 Conclusion
	References

