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Abstract

Contrastive learning is an essential method in self-
supervised learning. It primarily employs a multi-branch
strategy to compare latent representations obtained from
different branches and train the encoder. In the case of
multi-modal input, diverse modalities of the same object
are fed into distinct branches. When using single-modal
data, the same input undergoes various augmentations be-
fore being fed into different branches. However, all exist-
ing contrastive learning frameworks have so far only per-
formed contrastive operations on the learned features at
the final loss end, with no information exchange between
different branches prior to this stage. In this paper, for
point cloud unsupervised learning without the use of ex-
tra training data, we propose a Contrastive Cross-branch
Attention-based framework for Point cloud data (termed
PoCCA), to learn rich 3D point cloud representations. By
introducing sub-branches, PoCCA allows information ex-
change between different branches before the loss end. Ex-
perimental results demonstrate that in the case of using
no extra training data, the representations learned with
our self-supervised model achieve state-of-the-art perfor-
mances when used for downstream tasks on point clouds.

1. Introduction

Contrastive learning stands as a pivotal method for learning
latent representations, especially in the domain of computer
vision and natural language processing. However, while its
success has been widely demonstrated in 2D image-based
tasks [9, 10, 27, 49], its application to self-supervised con-
trastive learning on 3D point cloud data has remained rel-
atively underexplored. Point clouds possess unique char-
acteristics and structural complexities that necessitate tai-

lored approaches for representation learning. Despite the
challenges, and while the majority still use reconstruction-
based methods [3, 5, 11, 28, 32, 48, 65], recent research has
started to address this gap. Promising advancements have
been made in the domain of contrastive learning-based point
cloud self-supervised learning. For example, STRL [29]
extends BYOL [49] to the 3D domain and performs con-
trastive learning on global representations directly. Point-
Contrast [64] performs contrastive learning on the point-
wise level yet is computationally expensive. While Info3D
[50] uses the shape part and the full shape as positive pairs
directly, HSN [17] only considers the part pair information
and ignores the information of the whole shape.

On the other hand, in recent years, the surge of large
models has sparked significant interest in multi-modality-
based approaches that leverage extra training data for
contrastive-based point cloud representation learning. For
example, CrossPoint [2] and [2P-MAE [72] use multi-view
images of the objects as extra training data, while ReCon
[47] further introduces additional text information for richer
latent representation learning. However, there are still many
cases that only single modality data is available for the train-
ing. Moreover, in all the above methods, latent representa-
tions are learned solely on each branch, with no information
exchange before the loss end. In this paper, we rethink the
way of applying contrastive learning to point clouds without
extra training data, and explore the new possibility of incor-
porating information from different branches when using a
multi-branch framework.

The key idea of contrastive learning is to use multi-
ple branches to learn multiple latent representations for the
same input of different variants, and the network is trained
by minimizing their latent representation differences. When
multi-modality is used, it is natural to use one branch for
each modality. For example, CrossPoint [2] uses one branch



for images and the other branch for point clouds. The en-
coders for each modality on the perspective branches are to-
tally different and the whole framework can be trained sta-
bly. When only one modality is used, the most widely used
method is to perform different augmentations on the same
input and use augmented variants for different branches
[29]. However, the model may collapse easily if the vanilla
model of both branches sharing a same encoder is used, i.e.,
the encoder encodes everything into a same latent represen-
tation. Various methods have been proposed to deal with
this problem, including introducing negative pairs [9, 27],
using memory bank [59, 63], adding a predictor on single
branch [10, 49], and using momentum update for certain
branch encoder [27, 29, 49], etc. In our case, we only use
a single modality of point cloud data and only use positive
pairs for training. Following BYOL [49], the single-branch
predictor strategy and the momentum update strategy are
adopted to prevent model collapse.

By using each branch to learn one latent representation
solely, all existing contrastive learning frameworks only
performed contrastive operations on the learned features
at the final loss end, with no information exchange be-
tween different branches prior to this stage. At this point,
a question arises: is it possible to incorporate information
from different branches before the loss end? In this paper,
we explore this possibility by introducing sub-branches on
the common frameworks. To this end, we propose a self-
supervised contrastive learning framework for point clouds
by fusing (i) the online branch information and the target
branch information; (ii) the global sub-branch information
and the local sub-branch information, as illustrated in Fig-
ure 1. PoCCA is a symmetric 3D point cloud representa-
tion learning framework. It augments the raw point clouds
and then samples them globally or locally on different sub-
branches. The features from different branches are fused
subsequently. Using different augmentations of the same
raw point cloud as a positive pair, the contrastive loss is de-
fined by their latent representation difference. Further de-
tails of the framework are given in Section 3. Experimen-
tal results demonstrate that the representations learned with
our self-supervised model achieve excellent performances
when used for downstream tasks on point clouds.

We summarize our contributions as follows:

* A contrastive learning framework that enables informa-
tion exchange between the online branch and the target
branch by introducing sub-branches.

* Both global and local features of the input point cloud are
extracted. Cross-attention modules are used for global-
local feature fusion.

* Multiple variants of the proposed contrastive learning
framework are evaluated in the ablation study, as well
as various local patch sampling methods.

» Excellent experimental results on multiple downstream

tasks. Among the point cloud unsupervised learning
methods that do not use extra training data, PoCCA
achieves state-of-the-art results.

2. Related Work
2.1. Contrastive Learning

Self-supervised learning methods have made great strides
in recent years. They are usually either generative-based
[14, 33] or contrastive-based [0, 10, 27, 49]. Contrastive
learning, in contrast to generative models, is a discrimi-
native strategy that tries to separate varied samples while
grouping similar samples. As a pioneering work, Inst-
Disc [63] separates the extracted features in high dimen-
sional space and categorizes the features as positive and
negative samples. Contrastive Multiview Coding [54] ex-
tends the definition of positive samples by considering dif-
ferent views from the same object as positive pairs. MoCo
[27] proposes a strategy of stopping-gradient on the target
branch and instead uses a moving-averaged encoder. SWAV
[6] further discards the negative samples and compares new
sample features with the center of positive features clus-
tering. SimCLR [9] demonstrates that unsupervised con-
trastive learning benefits from stronger data augmentations,
and a non-linear transformation between the representation
and the contrastive loss can significantly improve the qual-
ity of the learned representations. SimSam [10] and BYOL
[49] further add a predictor at the end and both use only
positive pairs for self-supervised learning.

2.2. Self-supervised Learning on Point Cloud

In order to accomplish self-supervised representation learn-
ing on 3D point clouds, various methods have been pro-
posed. Pretext tasks-based self-supervised learning meth-
ods are first explored. Jigsaw [52] is trained by reconstruct-
ing point clouds from randomly rearranged parts. PointRo-
tation [44] learns point cloud representations by predicting
their rotation. STRL [29] takes two temporally-correlated
frames from a 3D point cloud sequence as the input, trans-
forms it with the spatial data augmentation, and learns
the invariant representation in a self-supervised manner.
Contrastive-based learning has also been used in several
works. Wang et al. [57] pre-trains an encoder with occluded
points for downstream tasks. Point-level invariant mapping
is carried out by PointContrast [64] on two transformed
views of the input point cloud. CrossPoint [2] performs
cross-modality contrastive learning between point clouds
and their corresponding rendered images. More recently,
MAE-based reconstruction methods have shown promis-
ing results on point cloud self-supervised learning. Point-
BERT [69] and Point-MAE [43] are the first two methods
that transfer the idea of MAE to point clouds by masking
point patches. A similar encoder is used in MaskPoint [39],
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Figure 1. The framework of our proposed POCCA. Given an input point cloud, it is first augmented with two different augmentation
operations. After global sampling and local patching, global and local features are obtained respectively with a pre-designed encoder (e.g.
PointNet, DGCNN). The local features from the two branches are then aligned and sent to the cross-attention module to enhance the online-
and target global features, respectively. Finally, by comparing the difference between the output representations, we obtain a contrastive
loss and train the whole model. See more module details in subsection 3.3.

but instead of using the transformer as a decoder for recon-
struction, it uses the transformer as a discriminator. Point-
M2AE [71] further updates the encoder with a hierarchi-
cal Transformer by introducing multi-scale masking. Using
extra training data, 2P-MAE [72] and ReCon [47] obtain
superior 3D representations via cross-modal training.

2.3. Attention Mechanism on Point Cloud

In recent years, attention-based methods start dominat-
ing the image learning domain since ViT [15]. More re-
cently, the attention mechanism [56] has also been proven
to be effective for point cloud learning. PCT [24] em-
ploys self-attention for point cloud understanding with pro-
posed offset-attention. By constructing a residual point
transformer block with self-attention-based layers and lin-
ear projections, PT [73] builds a U-Net-like network struc-
ture. Pointformer [42] proposes a local-global Transformer
to integrate features from different levels. 3DPCT [41] de-
signs a dual transformer approach and builds a hierarchi-
cal encoder-decoder network. SA-Det3D [4] proposes a
generic globally-adaptive context aggregation module and
a scalable self-attention variant is designed. Pyramid Point
Cloud Transformer [30] develops a pyramid module to ag-
gregate multi-scale features. SeedFormer [75] and PoinTr
[68] employ attention-based methods for point cloud com-
pletion. APES [60] uses the attention map for sampling
edge points of the point clouds. PatchFormer [13] pro-
poses patch-attention and a lightweight multi-scale atten-
tion block. Stratified Transformer [35] is proposed to addi-
tionally sample distant points as keys to capture long-range
contexts and demonstrates strong generalization ability.

3. Methodology
3.1. Preliminaries

Denote two main branches as branch A and B (in most
papers, they are referred to as online branch and target
branch), they have sub-branches A, A and Bi, Bo. By
introducing sub-branches, we can fuse the information on
sub-branches, e.g. A5 and Bs, before the loss end, and share
this fused feature for A; and B; for further operations. In
this case, the fused feature should be useful for A; and
B; in generating richer latent representations. In the point
cloud deep learning domain, local-to-global cross-attention
for feature fusion has been proven to be an effective opera-
tion [13, 20, 42] and is ideal in our case. Therefore, we use
sub-branches A; and B for global feature learning, and
sub-branches A5 and B for local feature learning. In prac-
tice, since the patch features are from different augmenta-
tions, for one certain branch, using the local features from
the other branch as the key and value input directly is not
ideal for the subsequent step of local-to-global cross atten-
tion. We hence further propose an additional aligner module
to align the local features from different augmentations.

As the basics of the framework have been established,
the only question that remains to be answered now is: For
the vanilla mode that only has two main branches, it is
quite clear that the encoder on one branch updates with the
gradient backpropagation normally, while the encoder on
the other branch (gradient stopped) updates with momen-
tum update. But in our framework, there are four encoders
on four sub-branches, which ones should be updated nor-
mally, and which ones should be momentum updated? Our



proposal and also the best practice is: follow the gradient.
The proposed framework is illustrated in Figure 1, in which
green arrows indicate the gradient flow, with red crosses
indicating that gradients are stopped on these paths. In
this case, we update the encoders on sub-branches A7, Ao,
and B; normally with backpropagation (which means they
share a same encoder), while updating the encoder on sub-
branch By with momentum update.

3.2. Overall Framework

Given a point cloud P, the goal of PoCCA is to pre-train
a powerful encoder fy that can encode it into a good latent
representation that can be used for downstream tasks. There
are four branches in our network architecture: online global
branch, online patch branch, target global branch, and target
patch branch, corresponding to the four branches in Figure
1 from top to bottom. The online branch consists of five
stages: (i) two sampling sub-branches to obtain a global
sample with sampling function 7g,s and multiple local sam-
ples with sampling function 7pach; (ii) an encoder fg, for
shape global/patch encoding; (iii) an aligner [,, for local
feature aligning; (iv) a cross-attention module g4, for merg-
ing local and global features; and (v) a predictor hy. The
target branch uses the same structure as the online branch
but without the predictor. Moreover, while the target patch
branch uses a parameter-shared encoder fp, with the online
branch, the target global branch uses another encoder fy,
whose parameters are momentum updated with the online
parameters in fg,. The same goes for the target attention
module gg4,, whose parameters are momentum updated with
the online parameters in gy, .

3.3. PoCCA Step by Step

Augmentation. Many successful self-supervised learning
approaches cast the prediction problem directly into repre-
sentation space: the representation of one augmented view
of an image should be similar to the representation of an-
other augmented view of the same image [8, 10, 49]. How-
ever, compared to 2D image benchmarks that have mil-
lions of training samples, 3D datasets are typically much
smaller in size, and often have fewer labels and less diver-
sity. Therefore, for 3D vision, data augmentation is a very
important step to avoid overfitting and improve the gener-
alization ability of the network. Same as many previous
methods [45, 46], we augment input point clouds with ran-
dom rotation, scaling, translation, and jittering.

Sampling methods. We sample the raw point cloud
to capture its global and local features, respectively. Far-
thest point sampling (FPS) [19] is used for global sampling.
For local sampling, given a desired number of patches N,
such many kernel points are first selected with FPS on the
original point cloud. Then for each kernel point, K near-
est neighbors are gathered to form a patch of K points.

Direct KNN

Perception Enlarged KNN

ﬁggi i -

Y ¥ 3N

Figure 2. Perception enlarged KNN-based patch sampling. Af-
ter kernel points are selected, direct-KNN gets patches with
Kneighbors for each kernel point directly, while perception-
enlarged-KNN gets patches with 29 K neighbors first and then
samples them to K points with FPS. « is the scale factor.

In our experiments, we adopt a perception-enlarged multi-
scale KNN sampling strategy. A demo is given in Figure 2
for output patch comparison of direct KNN and perception-
enlarged KNN. The multi-scale idea has also been used in
many other advanced frameworks in other fields, e.g. GCN
[36] and Stratified Transformer [34]. Denoting « as the
scale factor, after IV, kernel points are first selected, 2% K
points are gathered with KNN, and subsequently downsam-
pled to K points with FPS. For scale 0 (o« = 0), it falls
into the normal direct KNN method. We use multi-scale
a = 0,1, 2 as the default setting.

Encoder. For a fair comparison with existing self-
supervised methods, we use PointNet [45], DGCNN [58]
and Transformer as the backbone for extracting point cloud
features. To enable contrastive learning, the encoders for
the online global branch, the online patch branch, and the
target patch branch share the same weights, while the en-
coder for the target global branch is updated via the momen-
tum update with the weights from other branches. Specifi-
cally, we parameterize the online branches with 6, and the
target branch with 5. The target branch is used to train the
online branches, and its parameters 65 are an exponential
moving average of the online parameters 6.

92(*7'92+(17T)91 (1)

where 7 € (0, 1) is the decay rate of moving average.
Aligner. The aligner module is an important compo-
nent of POCCA. It enables information exchange between
the online branch and the target branch. Since the patch
features are from different augmentations, for one certain
branch, using the patch features from the other branch as the
key and value input directly is not ideal for the subsequent



step of local-to-global cross attention. We propose to use
an aligner module to align the patch features from different
augmentations. The aligner module is basically a mixture
of self-attention and cross-attention by using the local patch
features from two branches as the queries separately, while
using them both as the key and value dictionary. Its detailed
architecture is given in Figure 3.

Cross-Attention. Cross-attention takes two separate
embedding sequences of the same dimension and fuses
them asymmetrically. For local-global feature fusion, the
global feature serves as the query input, while the local
patch features serve as the key and value input. As with up-
dating the encoder, we use the momentum update method to
update our cross-attention. Specifically, we denote the pa-
rameters for the online cross-attention module as ¢1, for the
target cross-attention module as ¢2, and 7 € (0, 1) keeps up
with the former 7.

P2 < T2 + (1 — 7)1 2

Predictor. In particular, inspired by BYOL [49], PoOCCA
uses symmetric network branches that interact and learn
from each other. Since the training pair comes from the
same original point cloud, it is possible for the encoder to
produce the same representation for all augmented samples,
which means that the network falls into a collapsed solution.
In order to prevent collapse, and based on the experience of
other methods [10, 49], we append a predictor to all online
branches, which has been shown to be effective. Our predic-
tor is a simple MLP-based network consisting of two linear
layers and a batch norm layer.

3.4. Loss

As described in Section 3.2, for a given point cloud
P, PoCCA first augments P to get two augmenta-
tions m; and mgy by using two different augmentations.
Then we process m; and mo with sampling function
Tfps 10 get two global samples oy, 02, and with sam-
pling function 7pch to get a set of local samples A =
{a%,a%,...,aivp,aé,ag,...,aév”}, where each a denotes
one certain patch. After that, 01 and A are sent to the online
branch encoder fy, , while o5 is sent to the target branch en-
coder fy,. After being processed with the aligner module
1), the outputs are subsequently sent to the respective cross-
attention module g4, and g4,. Denote the output of the on-
line branch as zp, and the output of the target branch as zg, .
h., denotes the predictor for online branches. We minimize
the similarity loss between hy(zg, ) and zg,, which is de-
fined by their mean square error:
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Figure 3. Detailed architecture of the aligner module and two
local-to-global cross-attention variants.

During each training step, we swap the 2 shape augmen-
tations for online and target branches to compute the sym-
metry L, o, . The total loss is given as:

Etotal - £(71,02 + 502,01 (4)

4. Experiments
4.1. Pre-training

Dataset. We pre-train our model with the ShapeNet [7]
dataset, which contains 57,448 synthetic models from 55
categories. The point clouds are preprocessed following the
work of Yang et al. [66] and each contains 2048 points.
After inputting into the network, each 3D shape is first aug-
mented with different augmentation operations.
Implementation Details. For each shape augmentation,
we sample a global point cloud of 1024 points with FPS and
local patches of 256 points (i.e., K = 256) of multi-scales
(8 patches per scale) with perception-enlarged multi-scale
KNN. We use the Adam optimizer with parameter weight
decay 1 x 10~*. The initial learning rate is set as 1 x 1074,
A cosine annealing schedule is used for the learning rate
and the model is trained end-to-end for 100 epochs with a



Category

Method

Backbone

Extra

Overall Accuracy(%)
Training Data 1o 4eINetd0  ScanObjectNN

Extra

Overall Accuracy(%)

SO-Net [37] SO-Net-Encoder x 873
FoldingNet [66] FoldingNet-Encoder x 88.4
MRTNet [23] MRT-Encoder x 86.4
3D-PointCapsNet [74] 3D Capsule-Encoder x 88.9
Selpsupervisea  YP-GAN 151 EncoderRNN x 902 -
Ry 0cCO [ST] PointNet x 88.7 695
e 0cCo [57] DGCNN x 89.2 783
Point-BERT [69] Transformer x 874 -
Point-MAE [43] Transformer x 910 777
Point-M2AE [71] H. Transformer v 929 84.1
12P-MAE [72] H. Transformer v 934 87.1
ReCon [47] Transformer v 934 -
Jigsaw [52] PointNet x 873 552
STRL [29] PointNet x 88.3 742
Rotation [44] PointNet X 88.6 -
CrossPoint [2] PointNet v 89.1 756
SelfCorrection [12] PointNet v 899 -
PoCCA (Ours) PointNet x 89.4 75.6
Self-supervised ™ cyerNer [70] DGCNN x 36.8
(Pretext tasks /- \p1i Tagk 126] DGCNN x 89.1
Contrastive g1 Contrast [16] DGCNN x 89.6
-based) HSN [17] DGCNN x 89.6 -
Jigsaw [52] DGCNN x 90.6 595
STRL [29] DGCNN x 909 779
Rotation [44] DGCNN x 9.8 -
CrossPoint [2] DGCNN v 912 81.7
PoCCA (Ours) DGCNN x 914 822
PoCCA (Ours) Transformer x 92.1 836

Table 1. Comparison of linear classification results with previous
self-supervised methods on ModelNet40 and ScanObjectNN. A
linear classifier is fit onto the shape global representation learned
with the pre-trained model (the encoder is frozen). The overall
accuracy for the classification task is reported. ”H. Transformer”
stands for Hierarchical Transformer. PoCCA achieves state-of-
the-art results among the methods that do not use extra training
data in both backbones.

batch size of 16. We set the exponential moving average
parameter 7 = 0.99. After pre-training, the target branch
encoder, alinger [,,, cross-attention g, and predictor h,, are
all discarded. All downstream tasks are performed on the
pre-trained encoder fy.

4.2. Justification of Performed Comparison

Although in various fields nowadays, multi-modal ap-
proaches often outperform their single-modal counterparts
in terms of performance, and this study primarily focuses
on research involving single-modal data, we have still in-
cluded the results of some recent multi-modal methods for
comparison. This is because they remain important relevant
literature in the field of unsupervised learning. On the other
hand, please note that for self-supervised learning frame-
works, the key is the framework itself, other than the back-
bone. That is why MoCo, SimCLR, BYLO, etc. all used
ResNet-50 as the backbone for image self-supervised con-
trastive learning. Using a more advanced backbone would
surely improve performance, but they did not for a fair com-
parison. But for those reconstruction-based self-supervised
learning methods, various customized backbones are used
since their frameworks include additional generators, es-
pecially the recent MAE-based ones. Before these MAE-
based methods, in the point cloud contrastive learning sub-
domain, most papers use PointNet and DGCNN as the back-
bone for a fair framework comparison. In our experiments,

Category Method Backbone Training Data -
ModelNet40  ScanObjectNN
PointNet [45] X 89.2 68.2
PointNet++ [46] X 90.7 719
Supervised PointCNN [38] x 92.2 78.5
DGCNN [58] X 92.9 78.1
PCT [24] x 93.2 -
0OcCo [57] PointNet X 90.1 80.0
OcCo [57] DGCNN X 93.0 83.9
Self-supervised  Point-BERT [69] Transformer X 92.7 83.1
(Reconstruction  Point-MAE [43] Transformer X 93.2 852
-based) Point-M2AE [71] H. Transformer v 93.4 -
12P-MAE [72] H. Transformer v 93.7 90.1
ReCon [47] Transformer v 94.1 90.6
Jigsaw [52] PointNet X 89.6 76.5
Info3D [50] PointNet X 90.2 -
SelfCorrection [12] PointNet v 90.0
Self-supervised ParAE [18] PointNet v 90.5 -
PoCCA (Ours) PointNet X 90.2 80.3
(Pretext tasks /
Contrastive Jigsaw [52] DGCNN X 92.4 82.7
_based) ParAE [18] DGCNN v 92.9 -
Info3D [50] DGCNN X 93.0
STRL [29] DGCNN x 93.1 -
PoCCA (ours) DGCNN X 93.2 84.1
PoCCA (ours) Transformer X 933 84.8

Table 2. Results of shape classification task network fine-tuned on
ModelNet40 and ScanObjectNN. The self-supervised pre-trained
backbone encoders serve as the initial weights for supervised
downstream tasks.

we mainly compare our results with those that use PointNet
and DGCNN as the backbone, but meanwhile, the results
on a simple Transformer backbone is also reported.

4.3. Downstream Tasks

Linear SVM Classification. For the classification task,
we adopt the protocols of previous work [29] to evaluate
the transferability of POCCA on the ModelNet40 [62] and
ScanObjectNN [55] benchmarks. A linear Support Vector
Machine (SVM) [21] is used to classify 3D shapes by ap-
plying it to the encoded global feature representations. We
freeze the pre-trained encoder and fit a simple linear SVM
classifier on the train split of ModelNet40 and ScanOb-
jectNN, respectively. Experimental results are presented
in Table 1. Note that reconstruction-based methods typi-
cally design specific encoder-decoder architectures and do
not use common encoders (e.g. PointNet, DGCNN) as the
backbone. They also typically incorporate an additional re-
construction loss. As shown in Table 1, in the category
of pretext tasks and contrastive-based self-supervised learn-
ing method, PoOCCA outperforms other state-of-the-art un-
supervised methods with both backbones. It even outper-
forms the reconstruction-based methods that do not use ex-
tra training data.

Fine-tuned Classification. The results of transfer learn-
ing on the ModelNet40 classification task are reported in
Table 2, i.e., the decoder is first initialized with pre-trained
weights, then the whole task network is fine-tuned in a su-
pervised manner on the training set. From it, we observe
that our method outperforms most other SOTA contrastive-
based methods. The t-SNE plots are given in Figure 4
for better visualization of the learned latent representations.
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Figure 4. t-SNE visualization of features on the test split of Mod-
elNet10 dataset, with PointNet and DGCNN as the backbone in a
self-supervised manner (left and middle), the right one illustrates
the latent features learned with DGCNN after fine-tuning.

Method 1% 5% 10% 20% 100%
DGCNN 584% 80.7% 852% 88.1% 92.9%

STRL + DGCNN 60.5% 82.7% 86.5% 89.7% 93.1%
PoCCA + DGCNN  65.7% 858% 89.2% 91.3% 93.2%

Table 3. Shape classification fine-tuned on ModelNet40 with only
partial training samples.

Additional results of fine-tuning on partial training samples
are also provided in Table 3 in comparison with STRL [29].

Few-shot Classification. We additionally give the re-
sults on the few-shot object classification metric. Few-
shot learning (FSL) [22] is a machine learning methodol-
ogy where models are trained on small datasets, where each
category only provides a few instances. We test our models
on a standard few-shot task, namely X-way Y-shot learn-
ing, where the model is evaluated on X classes, and each
class contains Y samples. Like standard 3D object classifi-
cation. We again use ModelNet40 [62] and ScanObjectNN
[55] datasets to carry out FSL experiments. We take 10 ran-
dom few-shot tasks and report the mean and standard devia-
tion of their results. As presented in Table 4, our FSL results
on ModelNet40 show that POCCA outperforms most prior
works for both PointNet and DGCNN backbones. The FSL
results for the ScanObjectNN dataset are presented in Table
5. By using PoCCA, the accuracy is also increased signifi-
cantly in most settings for both feature extractors.

Part Segmentation. The pre-trained model is also used
for the 3D part segmentation task on the ShapeNetPart [67]
dataset. This dataset contains a total of 16881 3D objects
from 16 different categories with 50 annotated semantic
parts. We first pre-train our POCCA framework with the
DGCNN or Transformer backbone on the ShapeNet [7]
dataset. The model is then fine-tuned on the training set
of ShapeNetPart. Both category mloU and instance mloU
are computed and presented in Table 6. It shows that the
backbone pre-trained via POCCA leads to better part seg-
mentation performance than other self-supervised methods,
as well as the randomly initialized DGCNN baseline. Re-
garding the transformer backbone, POCCA does not achieve
comparable results to methods that use extra training data,
yet still outperforms the ones that do not. Overall, POCCA

Method ‘ 5-way 10-way
‘ 10-shot ~ 20-shot  10-shot  20-shot
3D-GAN [61] 55.843.4 65.8+£3.1 40.3+2.1 48.4+1.8

FoldingNet [66]
Latent-GAN [1]
3D-PointCapsNet [74]
PointNet++ [46]
PointCNN [38]
RSCNN [40]

PointNet + Rand
PointNet + Jigsaw [52]

33.4+4.1 35.845.8 18.6+1.8 15.4+2.2
41.6+£5.3 46.2+6.2 32.9+29 25.54+3.2
42.3£5.5 53.0+£5.9 38.0+£4.5 27.24+4.7
38.5+4.4 424445 23.1£2.2 18.8+1.7
65.4+2.8 68.64+2.2 46.6+1.5 50.0+2.3
65.4£8.9 68.6+7.0 46.6+4.8 50.0£7.2

52.0+£3.8 57.84+4.9 46.6+4.3 35.2+4.8
66.5+2.5 69.2£2.4 56.9+2.5 66.5+1.4
PointNet + cTree [53] 63.243.4 68.94+3.0 49.2+1.9 50.1£1.6
PointNet + OcCo [57] 89.7+1.9 92.4+1.6 83.9+1.8 89.7£1.5
PointNet + CrossPoint [2] | 90.9+4.8 93.54+4.4 84.6+4.7 90.24+2.2
PointNet + PoOCCA (Ours) | 91.7+3.1 94.24+3.5 87.3+2.9 90.9+4.1

DGCNN + Rand 31.6+2.8 40.8+4.6 19.94+2.1 16.9+1.5
DGCNN + Jigsaw [52] 34.3+1.3 42.243.5 26.0+£2.4 29.9£2.6
DGCNN + cTree [53] 60.0+2.8 65.7£2.6 48.5+1.8 53.0£1.3
DGCNN + OcCo [57] 90.6+2.8 92.54+1.9 82.9+1.3 86.5+2.2
DGCNN + CrossPoint [2] |92.5£3.0 94.94+2.1 83.6+5.3 87.9+4.2
DGCNN + PoCCA (Ours) |93.54+3.7 92.1+3.6 88.1+£5.3 90.9+4.0

Table 4. Few-shot object classification results on ModelNet40.
We report mean and standard error over 10 runs. Our proposed
PoCCA improves the few-shot accuracy in most of the reported
settings. Table is extended from [2].

Method ‘ 5-way 10-way

| 10-shot  20-shot ~ 10-shot  20-shot

57.6+2.5 614424 41.3+1.3 43819
58.6£1.9 67.6+2.1 53.6+1.7 48.1£1.9
PointNet + cTree [53] 59.6+£2.3 61.4+1.4 53.0+£1.9 50.9+2.1
PointNet + OcCo [57] 70.4+3.3 72.243.0 54.8+1.3 61.8£1.2
PointNet + CrossPoint [2] | 68.2£3.3 73.24+2.9 58.7£1.8 64.6+1.2
PointNet + PoOCCA (Ours) | 70.5+1.8 74.8+3.2 60.3+2.3 65.2+1.7

DGCNN + Rand 62.0+5.6 67.8£5.1 37.844.3 41.8+2.4
DGCNN + Jigsaw [52] 65.243.8 72.242.7 45.6+3.1 48.2+2.8
DGCNN + cTree [53] 68.4+£3.4 71.6+2.9 42.44+2.7 43.0£3.0
DGCNN + OcCo [57] 72.4+1.4 772£1.4 57.0+£1.3 61.6+1.2
DGCNN + CrossPoint [2] | 74.8£1.5 79.0+1.2 62.9+1.7 73.9+2.2
DGCNN + PoCCA (Ours) | 79.9+4.7 83.5+4.2 66.0+£3.2 75.1+2.7

PointNet + Rand
PointNet + Jigsaw [52]

Table 5. Few-shot object classification results on ScanObjectNN.
We report mean and standard error over 10 runs. Our proposed
PoCCA improves the few-shot accuracy in all the reported set-
tings. Table is extended from [2].

is a good choice for weight initialization for feature extrac-
tors, as proved by the results.

4.4. Ablation Study

PoCCA variants. Apart from the PoOCCA framework used
above, its variants of modifying different parts are addi-
tionally investigated, including discarding local branches,
not aligning local features, using different local-global fea-
ture fusion methods, and not using the predictor. Nu-
merical results are given in Table7. From it, we can ob-
serve that not using local patches decreases performance
significantly. Meanwhile, not merging the patch features
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Category Method Backbone Training Data Cat. mIoU  Ins. mIoU

PointNet [45] X 80.4 83.7
PointNet++ [46] X 81.9 85.1
Supervised DGCNN [58] X 82.3 85.1
RSCNN [40] x 84.0 86.2
PCT [24] x 83.1 86.4
CloudContext [51] DGCNN X - 81.5
Self-supervised ~ HNS [17] DGCNN X 79.9 82.3
(Encoder frozen) CMCV [31] DGCNN X 74.7 80.8
PoCCA (Ours) DGCNN X 80.8 83.7
Jigsaw [52] DGCNN X 83.1 85.3
CMCV [31] DGCNN X 79.1 83.7

OcCo [57] DGCNN X 84.4 -
CrossPoint [2] DGCNN v - 85.5
Self-supervised ~ PoCCA (Ours) DGCNN X 84.5 85.8
(Encoder  “poin BERT[69]  Transformer x 84.1 85.6
fine-tuned)  poine MAE [43] Transformer x - 86.1
Point-M2AE [71] H. Transformer v 84.9 86.5
12P-MAE [72] H. Transformer ' 85.1 86.7
ReCon [47] Transformer v 84.8 86.4
PoCCA (Ours) Transformer X 84.7 86.1

Table 6. Shape part segmentation results on the ShapeNetPart
dataset using DGCNN or Transformer as the backbone. Both cat-
egory mloU and instance mloU are reported. Cases of encoder
frozen and encoder fine-tuned are both presented. “H. Trans-
former” stands for Hierarchical Transformer.

from both branches also decreases the performance in most
cases. Regarding the local-global feature fusion opera-
tion, the cross-attention module outperforms direct concate-
nation significantly. Direct concatenation even performs
worse than not using the patches, indicating the importance
of feature fusion. Apart from the classical cross-attention
from Transformers, we also have tried the offset attention
which was introduced in PCT [24]. Their structures are
given in Figure 3. However, while they claimed better per-
formance in supervised learning tasks with offset attention,
we observe a performance decrease in our self-supervised
learning task. Moreover, using momentum update is help-
ful to the model, yet should be used wisely. We recommend
following the actual backpropagated gradients. Last but not
least, same as in BYOL, when the predictor is not used, the
pipeline collapses to a minimal solution and thus does not
work anymore.

Patch Sampling Methods. Ablation experiments are
carried out for the comparison of different patch sampling
methods. All experiments are conducted with the DGCNN
backbone. From Table 8, we can observe that cuboid-cut
and sphere-cut sampling methods achieve similar perfor-
mances, which is quite reasonable since they produce simi-
lar patches. Meanwhile, the KNN-based sampling methods
outperform shape-cut-based sampling methods. The addi-
tional results of using different settings of the KNN-based
sampling methods show that random kernel point selection
achieves lower performance, especially when the perceptual
field is small. This is because patches that are not around
the point cloud contours usually do not contain too much
information, let alone it is hard to guarantee a good cover-
age of shapes with these patches. On the other hand, FPS-

Momentum Updated ~ Sub-branch  Local-Global

Sub-branch Encoder Branch Merge Merge Predictor  Accuracy
v Target global Aligner Classical CA v 914
v Target global Concat. Classical CA v 91.0
v Target global - Classical CA v 89.7
v Target global Aligner Offset CA v 91.2
v Target global Concat. Offset CA v 90.9
v Target global - Offset CA v 89.5
v Target global Aligner Concat. v 84.2
v Target global Concat. Concat. v 84.3
v Target global - Concat. v 86.1
v None Aligner Classical CA v 90.2
v Target both Aligner Classical CA v 85.8
v Target global Aligner Classical CA - 8.3
- Target - - - 7.7

Target - - v 89.6

Table 7. Ablation study of different modules or settings in POCCA.
”CA” stands for Cross-Attention.

Patch Sampling ~ Kernel Points

Test Accuracy

Method for KNN
Slice-cut - 88.7
Cuboid-cut - 90.3
Sphere-cut - 90.5
KNN scale 0 random 89.2
KNN scale 1 random 90.1
KNN scale 2 random 90.5
KNN scale 0, 1, 2 random 90.9
KNN scale 0 FPS 89.6
KNN scale 1 FPS 90.5
KNN scale 2 FPS 91.1
KNN scale 0, 1, 2 FPS 91.4

Table 8. Numerical results with different patch sampling methods.

based kernel point selection assures better patch acquisition.
When multi-scale perception KNN is used to create multi-
scale patches, our method achieves the best performance.

5. Conclusion

In this paper, we propose an effective unsupervised frame-
work PoCCA for point cloud representation learning. Com-
pared to common contrastive learning frameworks, POCCA
enables information exchange between the online branch
and the target branch by leveraging the local and global
features of different sub-branches. We have evaluated
our approach on point cloud classification and segmenta-
tion benchmarks, and the experimental results show that
it achieves state-of-the-art performance between the point
cloud contrastive learning methods that do not use extra
training data. We have also evaluated the influence of dif-
ferent components of POCCA through ablation studies. For
future work, it would be interesting to investigate point-wise
contrastive frameworks. New losses could be designed for
better model pre-training. Moreover, better ways to exploit
the attention mechanism could be explored.
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